Chapter 2

Alon agin

Motivation 1: passing from a discrete measure-preserving dynamical system to a continuous measure-preserving one – suspension

Motivation 2: understanding the typical behaviour within this new constructed flow

First recall the conditional expectation Theorem: if (X, \mathcal{B}, μ) is a probability space $\mathcal{A} \subset \mathcal{B}$ is a Borell sub- σ -algebra, then there exists a map $\mathbb{E}(\cdot | \mathcal{A}) : L^1(X, \mathcal{B}, \mu) \longrightarrow L^1(X, \mathcal{A}, \mu)$ such that for any φ which \mathcal{B} -measurable and any $A \in \mathcal{A}$ we have that

$$\int_A \varphi \, d\mu = \int_A \mathbb{E}(\varphi|A) d\mu$$

and $\mathbb{E}(\varphi|\mathcal{A})$ is unique up to null-set.

Definition of suspension

Let $(B, [\mathcal{B}], \beta, T)$ be a probability ergodic measure-preserving system such that $(B, [\mathcal{B}], \beta)$ is a Lebesgue probability space – isomorphic (up to null sets) to an interval with Lebesgue measure, a finite or countable set of atoms, or a combination (disjoint union) of both.

roof function – let $\tau: B \to \mathbb{R}_{>0}$ be an integrable function.

General case – there is also a compact metrizable group M, and a function $\tau_M : M \to \mathbb{R}_{>0}$.

For $p \in \mathbb{N}$ and $\vec{b} \in B$ define a map

$$\tau_p(\vec{b}) := \tau(\vec{b}) + \tau(T^1(\vec{b})) + \dots + \tau(T^{p-1}(\vec{b}))$$
(1)

By Birkhoff ergodic Theorem, for β a.e $\vec{b} \in B$ we have that

$$\lim_{p \to \infty} \frac{1}{p} \tau_p(\vec{b}) = \int_B \tau \, d\beta > 0 \tag{2}$$

I.e.

$$\lim_{p \to \infty} \tau_p(\vec{b}) = \infty.$$

For $l \in \mathbb{R}_{\geq 0}$ we define a map

$$p_l: B \times \mathbb{R}_{>0} \longrightarrow \mathbb{N} \tag{3}$$

$$p_{l}(b,k) := \max\left\{ p \in \mathbb{N} \, | \, k + l - \tau_{p}(\vec{b}) \ge 0 \right\}$$
(4)

which is well defined for a.e $b \in B$ by (2).

Define the suspension of the dynamical system $(B, [\mathcal{B}], \beta, T)$ of the roof function τ to be the flow $\{T_l^{\tau} | l \in \mathbb{R}_{\geq 0}\}$ of the dynamical system $(B^{\tau}, [\mathcal{B}]^{\tau}, \beta^{\tau})$ defined by the followings:

- $B^{\tau} := \{ (\vec{b}, k) \mid 0 \le k \le \tau(\vec{b}) \}$
- $[\mathcal{B}]^{\tau} = [\mathcal{B}] \otimes LEB_{\mathbb{R}}$ i.e. the product σ -algebra of $[\mathcal{B}]$ and the Lebesgue σ -algebra of \mathbb{R} . (note that we do not need τ for this notation)

• $\beta^{\tau} = (\beta \times Leb_{\mathbb{R}_{>0}})_{|B^{\tau}}$ normalized.

$$T_l^{\tau}(\vec{b},k) := \left(\, T^{\, p_l(\vec{b},k)}(\vec{b}) \, , \, k+l - \tau_{p_l(\vec{b},k)}(\vec{b}) \, \right)$$

• In order to show T_l^{τ} is map from B^{τ} to B^{τ} we need to know that

$$k + l - \tau_{p_l(b,k)}(\vec{b}) \le \tau \left(T^{p_l(\vec{b},k)}(\vec{b})\right)$$

which holds exactly by the definition of the index $p_l(b, k)$.

• Example: $\tau(\vec{b}) = c$ for all \vec{b} for some c > 0. So

$$p_l(\vec{b}, k) = \max\left\{p \in \mathbb{N} \,|\, k+l-cp \ge 0\right\} = \left\lfloor\frac{k+l}{c}\right\rfloor \tag{5}$$

 \longrightarrow not dependent on \vec{b} .

claim: This is a flow. I.e. for all l_1 and l_2 we have $T_{l_1}^{\tau} \circ T_{l_2}^{\tau} = T_{l_1+l_2}^{\tau}$. Lemma 2.2. The flow { $T_l^{\tau} | l \in \mathbb{R}_{\geq 0}$ } preserves the measure β^{τ} .

Motivation: use suspension in a more specific settings to get deeper results.

Let $(A, [\mathcal{A}], \alpha)$ be a Lebesgue probability space, and define

- $B := A^{\mathbb{N}}$
- $[\mathcal{B}] := [\mathcal{A}]^{\otimes \mathbb{N}}$
- $\beta := \alpha^{\mathbb{N}}$

and let $T: B \to B$ be the left shift – if $\vec{b} = (b_n)_{n=0}^{\infty} \in B$ then $T(\vec{b}) = (b_{n+1})_{n=0}^{\infty}$.

Notice that in this case $(B, [\mathcal{B}], \beta)$ is also a Lebesgue probability space, and that the left shift T is measure preserving and ergodic.

Let $\tau:B\to\mathbb{R}_{>0}$ be an integrable function.

Let $(B^{\tau}, [\mathcal{B}]^{\tau}, \beta^{\tau}, \{T_l^{\tau}\}_{l \ge 0})$ be the suspension as before.

 $(T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})$ is a σ -algebra which satisfies $(T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})^{\tau} \subseteq [\mathcal{B}]^{\tau}$.

Motivation: compute explicitly $\mathbb{E}\left(\cdot \mid (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})\right)$.

Recall the conditional expectation Theorem: There exists a map $\mathbb{E}\left(\cdot | (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})\right) : L^1(B^{\tau}, [\mathcal{B}]^{\tau}, \beta^{\tau}) \longrightarrow L^1(B^{\tau}, (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau}), \beta^{\tau})$ such that for any φ which is $[\mathcal{B}]^{\tau}$ -measurable and any $A \in (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})$ we have that

$$\int_{A} \varphi \, d\beta^{\tau} = \int_{A} \mathbb{E}(\varphi \,|\, (T_{l}^{\tau})^{-1}([\mathcal{B}]^{\tau})) d\beta^{\tau}$$

and $\mathbb{E}(\varphi|(T_l^{\tau})^{-1}([\mathcal{B}]^{\tau}))$ is unique up to null-set.

Assume from now on l is fixed.

The following definitions appear in the paper with an l index, which we omit for convenience.

For $q \in \mathbb{N}$ and $\vec{a}, \vec{b} \in B = A^{\mathbb{N}}$ we denote $\vec{a}[q] := (a_{q-1}, a_{q-2}, ..., a_1, a_0)$, and by $\vec{a}[q] \vec{b} \in B$ the concatenated word

$$\vec{a}[q]b := (a_{q-1}, a_{q-2}, ..., a_1, a_0, b_0, b_1, b_2...)$$

For (\vec{b}, k) define maps in the following way

$$\widetilde{q}_{\vec{b},k}: B \longrightarrow \mathbb{N} \tag{6}$$

$$\widetilde{q}_{\vec{b},k}(\vec{a}) := \min\{q \in \mathbb{N} \mid k - l + \tau_q(\vec{a}[q]\vec{b}) \ge 0\}$$

$$\tag{7}$$

Example: $\tau(\vec{b}) = c$ for all \vec{b} . So we have

$$\widetilde{q}_{\vec{b},k}(\vec{a}) := \min\{q \in \mathbb{N} \mid k - l + cq \ge 0\} = \left\lceil \frac{l - k}{c} \right\rceil$$

 \longrightarrow independent on \vec{a} and \vec{b} .

$$\widetilde{h}_{\vec{b},k}: B \longrightarrow B^{\tau} \tag{8}$$

$$\widetilde{h}_{\vec{b},k}(\vec{a}) := \left(\vec{a} \left[\widetilde{q}_{\vec{b},k}(\vec{a}) \right] \vec{b} , k - l + \tau_{\widetilde{q}_{\vec{b},k}(\vec{a})}(\vec{a} \left[\widetilde{q}_{\vec{b},k}(\vec{a}) \right] \vec{b} \right) \right)$$
(9)

By Birkhoff ergodic Theorem, for β a.e $\vec{a}, \vec{b} \in B$ we have that

$$\lim_{q \to \infty} \frac{1}{q} \tau_q(\vec{a} [q] \vec{b}) = \int_B \tau \, d\beta > 0 \tag{10}$$

hence $\tilde{q}_{\vec{b},k}(\vec{a})$ and $\tilde{h}_{\vec{b},k}(\vec{a})$ is well defined for a.e $\vec{a}, \vec{b} \in B$.

Claim:

$$\{ \tilde{h}_{\vec{b},k}(\vec{a}) \,|\, \vec{a} \in B \,\} = (T_l^{\tau})^{-1}(\vec{b},k) \tag{11}$$

$$\{\tilde{h}_{T_{l}^{\tau}(\vec{b},k)}(\vec{a}) \,|\, \vec{a} \in B\} = \{(b',k') \,|\, T_{l}^{\tau}(b',k') = T_{l}^{\tau}(b,k)\} = [(\vec{b},k)]_{(T_{l}^{\tau})^{-1}([\mathcal{B}]^{\tau})} \tag{12}$$

Proposition 2.3. The law of last jump: For any positive $[\mathcal{B}]^{\tau}$ -measurable function φ on and for β^{τ} -a.e. $(\vec{b}, k) \in B^{\tau}$ we have

$$\mathbb{E}\big(\varphi \,|\, (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})\big)(\vec{b},k) = \int_B \varphi\big(\tilde{h}_{T_l^{\tau}(\vec{b},k)}(\vec{a})\big) \,d\beta(\vec{a})$$

I.e. if $(\vec{b}, k) = T_l^{\tau} ((a_{N-1}, a_{N-2}, \dots, a_1, a_0, \vec{b}), x)$ then $N = \tilde{q}_{T_l^{\tau}(\vec{b}, k)}(\vec{a})$ and statistically each digit of a_i is chosen randomly with respect to the measure α .

proof of law of last jump:

Need to show that for any $A \in (T_l^{\tau})^{-1}([\mathcal{B}]^{\tau})$ we have

$$\int_{A} \varphi(\vec{b},k) \, d\beta^{\tau}(\vec{b},k) = \int_{A} \int_{B} \varphi\left(\tilde{h}_{T_{l}^{\tau}(\vec{b},k)}(\vec{a})\right) d\beta(\vec{a}) \, d\beta^{\tau}(\vec{b},k) \tag{13}$$

I.e. enough to show that for any ψ positive $[\mathcal{B}]^{\tau}$ -measurable we have that

$$\int_{B^{\tau}} \psi \left(T_l^{\tau}(\vec{b},k) \right) \varphi(\vec{b},k) \, d\beta^{\tau}(\vec{b},k) = \int_{B^{\tau}} \psi \left(T_l^{\tau}(\vec{b},k) \right) \left(\int_B \varphi \left(\tilde{h}_{T_l^{\tau}(\vec{b},k)}(\vec{a}) \right) d\beta(\vec{a}) \right) d\beta^{\tau}(\vec{b},k). \tag{14}$$

Define the LHS of (14) as G and Notice that

$$G = \int_{B^{\tau}} \psi \left(T^{p_{l}(\vec{b},k)}(\vec{b}), k+l - \tau_{p_{l}(\vec{b},k)}(\vec{b}) \right) \varphi(b,k) d\beta^{\tau}(\vec{b},k) = \sum_{p=0}^{\infty} \int_{B^{\tau}} \mathbb{1}_{\{p_{l}(\vec{b},k)=p\}}(\vec{b},k) \psi \left(T^{p}(\vec{b}), k+l - \tau_{p}(\vec{b}) \right) \varphi(b,k) d\beta(\vec{b}) dk$$
(15)

Write $(b',k') := (T^p(\vec{b}), k+l-\tau_p(\vec{b})) = f(\vec{b},k)$, and define

$$D(b', k', p) := \{ \vec{a} \in B \mid \tilde{q}_{b', k'}(\vec{a}) = p \}$$
(16)

By this,

$$\{f^{-1}(b',k') \mid p_l(f^{-1}(b',k')) = p\} = \{(\vec{a}[p]b', k'-l + \tau_p(\vec{a}[p]b')) \mid \vec{a} \in D(b',k',p)\}.$$

So using a change of variables we have that

$$\begin{aligned} G &= \sum_{p=0}^{\infty} \int_{B^{\tau}} \psi(T^{p}(\vec{b}), k+l-\tau_{p}(\vec{b})) \left(\mathbb{1}_{\{p(\vec{b},k)=p\}}(\vec{b},k) \ \varphi(b,k)\right) d\beta(\vec{b}) dk \\ &= \sum_{p=0}^{\infty} \int_{B^{\tau}} \psi(b',k') \left(\int_{D(b',k',p)} \varphi(\vec{a}\,[p]\,b', \ k'-l+\tau_{p}(\vec{a}\,[p]\,b')) d\beta(\vec{a})\right) d\beta(b') dk' \\ &= \int_{B^{\tau}} \psi(b',k') \left(\sum_{p=0}^{\infty} \int_{D(b',k',p)} \varphi(\vec{a}\,[p]\,b', \ k'-l+\tau_{p}(\vec{a}\,[p]\,b')) d\beta(\vec{a})\right) d\beta(b') dk' \end{aligned}$$
(17)
$$&= \int_{B^{\tau}} \psi(b',k') \left(\int_{B} \varphi(\tilde{h}_{b',k'}(\vec{a})) d\beta(\vec{a})\right) d\beta^{\tau}(b',k') \\ &= \int_{B^{\tau}} \psi(T^{\tau}_{l}(b',k')) \left(\int_{B} \varphi(\tilde{h}_{T^{\tau}_{l}(\vec{b},k)}(\vec{a})) d\beta(\vec{a})\right) d\beta^{\tau}(b',k') \end{aligned}$$

where the last equality holds since T_l^τ preserves the measure $\beta^\tau.$

$$\widetilde{h}_{\vec{b},k}(\vec{a}) := \left(\left(\vec{a} \left[\widetilde{q}_{\vec{b},k}(\vec{a}) \right] \vec{b} \right), \, k - l + \tau_{\widetilde{q}_{\vec{b},k}(\vec{a})}(\vec{a} \left[\widetilde{q}_{\vec{b},k}(\vec{a}) \right] \vec{b} \right) \right) \tag{18}$$