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These seminar notes closely follow Simion Filip’s published notes on the

multiplicative ergodic theorem, and contain ambiguities and inaccuracies.

1 Statement of the Theorem - intuition and motivation

(1h session)

1.1 Reminder

Definition 1.1. A probability preserving system (p.p.s) (Ω,B, µ, T ) is a sep-

arable, second-countable metric space Ω with B it’s Borel σ-algebra, µ a

probability measure on Ω and T : Ω → Ω measurable such that µ is T in-

variant (T∗µ = µ or ∀A ∈ B;µ(T−1(A)) = µ(A))

Definition 1.2. A p.p.s (Ω,B, µ, T ) is ergodic if measurable T -invariant sets

are either full or null : T−1(A) = A⇒ µ(A) ∈ {0, 1}.

Theorem 1.3 (Birkhoff Pointwise Ergodic Theorem). Let (Ω,B, µ, T ) an

ergodic p.p.s, f : Ω → R with f+ ∈ L1(Ω, µ) (f = f+ + f− with f+ =

max (f, 0), f− = min (f, 0)) then for µ-a.e ω ∈ Ω:

lim
N→∞

1

N

N−1∑
i=0

f(T i(ω)) =

∫
Ω

fdµ

Where the limit is allowed to be −∞.
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Remark 1.4 ( Kind of multiplicative theorem). In the same setting, take

g = exp(f) then for a.e ω ∈ Ω we have:

lim
N→∞

(g(ω)g(Tω) . . . g(TN−1(ω))1/N = exp

(∫
Ω

fdµ

)
1.2 Stating the theorem

Example 1.5. Let M a smooth manifold of dim = n, F : M →M a smooth

diffeomorphism preserving a measure µ on M . For every point in p ∈ M ,

the smooth structure of M defines a vector space called the tangent space

TpM (directions of all paths on M through p). The idea of tangent spaces

attached to every point in M is given the form of the tangent bundle

TM =
∐
p∈M

{p} × TpM

so an element of TM can be thought of as a pair (p, v) with v a direction

on TpM , and a natural projection π : TM → M by π(x, v) = x. TM has

the form of a 2n-dimensional manifold: if {(Uα, φα)} is an atlas of charts

(φα : Uα → Rn are diffeomorphisms) we take:

φ̃α : π−1(Uα)→ R2n by φ̃α(x, v) = (φα(x), v)

These maps provide the topology and the smooth structure on TM - A subset

A ⊂ TM is open if and only if φ̃α(A ∩ π−1(Uα)) is open for every α.

F induces a map on the tangent bundle. For p ∈M :

DpF : TpM → TF (p)M is a linear map

If we take a ball at the tangent space TpM We can apply DF iteratively

and see in what directions it has various growth rates. At each iteration

the set moves to a point FN(p) and it’s vector space shape is changed by

the m-fold derivative DFN (drawing). The chain rule implemented by the

N -fold composition:

DFN−1(p)F ◦ · · · ◦DpF : TpM → TFN (p)M
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This is an example of a problem answered by the Oseledets Multiplicative

Ergodic theorem. Unlike the Birkhoff multiplicative variant, here our multi-

plicative action lies in the extension of our space M,µ to the tangent bundle

of M .

To formalize the idea of vector spaces parametrized by some manifold

or probability space we introduce vector bundles, and consider TM as a

prototypical example.

Definition 1.6 (vector bundle). A vector bundle V → (Ω,B, µ, T ) of dimen-

sion d is a space V with a continuous surjection π : V → Ω such that for

every ω ∈ Ω:

1. the fiber Vω := π−1({ω}) is a d-dimensional vector space.

2. ∃ω ∈ U ⊂ Ω open neighborhood and a homeomorphism ϕ : U × Rd →
π−1(U) such that for all x ∈ U :

� ∀v ∈ Rd; (π ◦ ϕ)(x, v) = x

� v 7→ ϕ(x, v) is a linear isomorphism Rd → π−1({x}).

V is called the total space, Ω the base space, (U,ϕ) is a local trivialization of

the vector bundle.

The action of T on the base space Ω can be lifted to an action on V

provided that on each fiber the action would be a linear map such that a

composition compatibility criterion is met. We introduce a general concept

of a system of compatible linear maps and use it to define the lift of T.

Definition 1.7 (cocycle). A cocycle of (Ω, T ) is a map α : Z≥0 × Ω →
GL(d,R) for which the following identity holds for all m,n ∈ Z≥0:

α(m+ n, x) = α(m,T nx) ◦ α(n, x) (1)

With Z≥0 = N ∪ {0}. For invertible T , we define the cocycle as a map

α : Z × Ω → GL(d,R) with the condition that identity (1) holds for all

m,n ∈ Z.

3



Definition 1.8. A vector bundle V → (Ω,B, µ, T ) is equipped with a cocycle

α if the action of T lifts to V by the linear maps of α. That is, if there is a

map T : V → V such that for a.e ω, every v ∈ Vω and every m ∈ Z≥0:

T
m

(ω, v) = (Tω, α(m,ω)v)

So fixing bases for the local trivializations, we obtain linear maps:

(Tm)ω : Vω → VTmω

such that the cocycle identity holds:

∀v ∈ Vω ∀m,n ∈ Z≥0; (Tm+n)ωv = TmTnω ◦ T nω v

Which by iterative applications can also be written (similarly to the differ-

ential chain rule) as the condition:

TNω = TTN−1ω ◦ · · · ◦ Tω

Remark 1.9.

1. When the context is clear we remove the ω subscript.

2. When T is invertible, we use a cocycle defined over Z and the respective

conditions.

Definition 1.10. A set W ⊂ V is a subbundle of dimension d′ ≤ d if the

same vector bundle definition holds for W with d′ as the dimension of the

model real vector space. We denote Wω the fiber over ω in W . W is T -

invariant if for all ω, Tω maps Wω to WTω (TωWω = WTω)

Example 1.11 (To motivate the result a bit more and shed some light on

the statement’s notation). Consider a single matrix A acting on Rn. Assume

that A has positive eigenvalues eλ1 > · · · > eλk (multiplicities allowed).

For v ∈ Rn we consider the behavior of ‖ANv‖ as N gets large. Let Eλi the
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eigenspace corresponding to eigenvalue eλi , and take: E≤λi := Eλk⊕· · ·⊕Eλi .
Taking v ∈ E≤λi \ E≤λi+1 and assume λi ≥ 0, our term would have growth

rate of eNλi and so:
1

N
log ‖ANv‖ → λi

Analyzing growth rates we could also recover the filtration

E≤λk ⊂ · · · ⊂ E≤λ1 = Rn

Theorem 1.12 (Oseledets Multiplicative Ergodic Theorem). Suppose (Ω,B, µ, T )

is a ergodic p.p.s, V → (Ω,B, µ, T ) is a vector bundle equipped with a cocycle

α. Assume that every fiber in V is a normed vector space (has a symmetric,

positive-definite bilinear form) such that:∫
Ω

log+ ‖Tω‖op dµ(ω) <∞

Here log+(x) := max(0, log x) and ‖ − ‖op denotes the operator norm of

a linear map between normed vector spaces. Then there exist real numbers

λ1 > λ2 > · · · > λk (allowing λk = −∞) and T -invariant subbundles of V

defined on a full measure set:

0 ( V ≤λk ( · · · ( V ≤λ1 = V

such that for every i and all v ∈ V ≤λiω \ V ≤λi+1
ω we have:

1

N
log ‖TNv‖ → λi

and the limit is uniform for fixed ω and i over v ∈ V ≤λiω \V ≤λi+1
ω with ‖v‖ = 1.

Note 1.13.

1. The filtration V ≤λ? is called the forward Oseledets filtration. The num-

bers {λi} are called Lyapunov exponents.

2. The multiplicity of exponent λi is defined to be dimV ≤λi−dimV ≤λi+1 .

3. The above result is a defining property for the Lyapunov exponents

and the Oseledets Filteration, which in this sense are canonical.
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2 Proof of the Theorem (2h)

2.1 Reminder

Setting: Ω a compact metric space (may be relaxed with separable, second-

countable metric space). B it’s Borel σ-algebra, T : Ω → Ω a µ-invariant

continuous function, (Ω,B, µ, T ) an ergodic probability preserving system

(T (A) = A⇒ µ(A) ∈ {0, 1}). Note that we stated the Birkhoff ergodic the-

orem for general probability spaces but for the multiplicative ergodic theorem

we take more specific conditions on Ω.

Note 2.1. Suppose that T is invertible and that the cocycle on V for T−1

satisfies the same assumptions in the Oseledets theorem. Applying the result

to the inverse operator gives a set of k′ exponents ηj and the backwards

Oseledets filtration V ≤ηk′ ( · · · ( V ≤η1 such that for v ∈ V ≤ηj \ V ≤ηj+1 :

lim
N→∞

log ‖T−Nv‖ = ηj

Now assume that this is compatible with the forward behavior, namely that:

ηj = −λk+1−j for all j and k = k′. Taking V λj := V ≤λj ∩ V ≤ηk+1−j gives a a

T -invariant direct sum decomposition:

V = V λ1 ⊕ · · · ⊕ V λk

with the defining property for the decomposition:

0 6= v ∈ V λi ⇐⇒ lim
N→±∞

1

N
log ‖TNv‖ = λi

2.2 Preliminaries

Definitions for vector bundles equipped with cocycles:

Definition 2.2 (vector bundle morphism). Let V,W vector bundles equipped

with a cocycle. A map f : V → W is a vector bundle morphism if first, the
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following diagram commutes:

V W

Ω

π1

f

π2

That is, if π1 = π2 ◦ f , which guarantees that fibers are mapped to fibers

f(Vω) = Wω and second, if for every ω ∈ Ω, fω := f |Vω is a linear map. Com-

position of bundle morphisms are bundle morphisms so we have a category

of vector bundles over Ω. The kernel of a vector bundle morphism can be

considered as the preimage of the zero vector bundle.

Definition 2.3 (quotient). Let E ⊂ V vector bundles over Ω equipped

with a cocycle. The space V/E for which every fiber (V/E)ω = Vω/Eω is

the quotient fiber bundle of V by E. Note that this is just (or barely) a

description of an object we do not carefully define and exhibit that it is a

vector bundle.

Definition 2.4 (direct sum). V ⊕ W is the space in which every fiber is

(V ⊕W )ω = Vω ⊕Wω

Definition 2.5 (exact sequence). A sequence of vector bundles and mor-

phisms

. . .
fi−1→ Vi

fi→ Vi+1
fi+1→ Vi+2 → . . .

is an exact sequence if for all i, Im (fi) = ker(fi+1), equivalently, if for all ω,

the induced sequence of (Vω)i’s is exact. A short exact sequence is an exact

sequence of the form

0→ E → V → F → 0

Note 2.6.

1. In an exact sequence W → V → V/W we have that the Lyapunov

exponents of V are the union of those in W and those in V/W .
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2. Let E ⊂ V and E is T -invariant, then the same boundedness condition

of the Oseledec theorem holds for E and V/E with the natural norms.

Definition 2.7 (projective space bundle). For a vector bundle V , the pro-

jective space bundle P(V ) is a fiber bundle over Ω (P(V )
π→ Ω), derived from

V in a way that each fiber is the projective space of the corresponding V -

fiber: (P(V ))ω := π−1({ω}) = P(Vω) (for some vector space H, P(H) is the

quotient space (H \ {0})/ ∼ with v ∼ v′ ⇐⇒ ∃λ ∈ R; v = λv′).

The action of T on V lifts to P(V ) by projective linear maps:

T̃ (ω, [v]) = (Tω, [Tωv])

2.3 Equivalence of the Birkhoff and the 1-dimensional

Oseledec Theorems

Proposition 2.8. For a 1-dimensional vector bundle, the Oseledets theorem

is equivalent to the Birkhoff theorem.

Proof. (B⇒ O): Observe that f(ω) := log ‖Tωv‖‖v‖ is independent of a choice of

0 6= v ∈ Vω so f(ω) = log ‖Tω‖op . Assumptions of integrability is equivalent

in both statements as f+ = log+ ‖Tω‖op and the Birkhoff average converges:

1

N
(f(ω) + · · ·+ f(TN−1ω))

N→∞−→
∫

Ω

fdµ

We use the cocycle identity (TTmωT
m
ω v = Tm+1

ω v) and manipulate the Birkhoff

averages term, each time choosing f(Tmω) = log ‖TTmωT
mv‖

‖Tmv‖ :

1

N
(f(ω) + · · ·+ f(TN−1ω)) =

1

N
log

(
‖Tv‖
‖v‖

‖T 2v‖
‖Tv‖

. . .
‖TNv‖
‖TN−1v‖

)
=

1

N
log

(
‖TNv‖
‖v‖

)
But 1

N
log(‖T

Nv‖
‖v‖ ) = 1

N
log ‖TNv‖ − log ‖v‖

N
It follows that

1

N
log ‖TNv‖ →

∫
Ω

fdµ = λ1
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(O⇒ B): Assume f+ ∈ L1, define Tωv := exp(f(ω)). again f+ ∈ L1 ⇐⇒
log+ ‖Tω‖op ∈ L1 and applying the above in reverse order grants us the con-

vergence of Birkhoff averages to Lyapunov exponent λ1. Using T -invariance

(
∫
f ◦Tm =

∫
f) with dominated convergence we conclude that λ1 =

∫
f .

2.4 The two Lemmas

Lemma 2.9. At least one but perhaps both of the following holds:

1. There is λ ∈ R such that for a.e ω ∈ Ω and for all nonzero v ∈ Vω

lim
N→∞

1

N
log ‖TNv‖ = λ

and for fixed ω, the limit is uniform over {v ∈ Vω : ‖v‖ = 1}

2. There exists a non-trivial proper T -invariant subbundle E ( V which

is defined at µ- a.e ω.

Remark 2.10. In our setting, when E ⊂ V is an a.e defined T -invariant

subbundle then the boundedness condition in Oseledec theorem holds for E

and V/E with the natural norms.

Lemma 2.11. Consider a short exact sequence of cocycles over Ω

0→ E → V → F → 0

Assume that there exists λE, λF such that for a.e ω ∈ Ω

∀0 6= e ∈ Eω :
1

N
log ‖TNe‖ → λE

∀0 6= f ∈ Fω :
1

N
log ‖TNf‖ → λF

and that the limits are uniform over ‖e‖ = ‖f‖ = 1 and fixed ω. If λE > λF

then the sequence is split: there exists a linear (splitting) map σ : F → E

such that V = E ⊕ σ(F ) and p ◦ σ = 1F and this decomposition of V is

T -invariant. λF is allowed to be −∞.
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Remark 2.12. The lyapunov exponent of F and σ(F ) are the same and V

has the two exponents λE, λF . Having an Oseledec filtration, the maximal

exponent is getting smaller as we go down the sets in the filtration. When

maximal exponent is not reduced when moving to a subbundle, we have that

subbundle as a direct summand of the entire cocycle.

Proof. (of Oseledec MET) Proceed by induction on dimension d := dimV .

For d = 1 the claim follows from the Birkhoff equivalence. It also follows by

Lemma 2.9 as a line bundle has no proper non-trivial subbundles so case 1

of the lemma must hold and this is the case of a single Lyapunov exponent

and trivial filtration.

Now assume the theorem holds for cocycles of dimension ≤ d − 1. Let V a

cocycle of dimV = d. We observe two cases:

case 1 There exists λ such that for a.e ω ∈ Ω and all v ∈ Vω we have

lim
N→∞

1

N
log ‖TNv‖ = λ

In this case the result holds for V with a single exponent and trivial filtration.

If it does not occur, by Lemma 2.9 we are in the second case:

case 2 There exists a non-trivial proper T -invariant subbundle. Take such

subbundle E that has maximal dimension. The theorem holds for E with

exponents λ1, . . . , λk and a filtration E≤λk ( · · · ( E≤λ1 = E. The quotient

V/E has no proper T -invariant subbundles so by Lemma 2.9 it has one

Lyapunov exponent λ′. Note that λ′, λ1, . . . , λk are all of V ’s Lyapunov

exponents. If λ′ ≥ λ1 we show that the forward Oseledec filtration is either

E≤λk ( · · · ( E≤λ1 ( V in case λ′ > λ1, with V \ E≤λ1 having growth rate

λ′, or E≤λk ( · · · ( E≤λ2 ( V in case λ1 = λ′. For an appropriate change

of basis V = E⊕ σ0(V/E) (not necessarily a T -invariant decomposition), we
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can use the notation:

Tω =

[
TE,ω Uω

0 Hω

]
, TN =

[
TNE,ω UN,ω

0 HN
ω

]
(similarly done in the proof of Lemma 2.11) with

TE,ω : Eω → ETω

Uω : σ0(V/E)ω → ETω

Hω : σ0(V/E)ω → σ0(V/E)Tω

and

UN,ω : σ0(V/E)ω → ETNω

In this basis, v ∈ σ0(V/E)ω grows under H in rate 1
N

log ‖HNv‖ → λ′,

uniformly on unit vectors and similarly v ∈ Eω grows under TE,ω in rate at

most λ1 with uniformity. The issue is with vectors that project non-trivially

to V/E, we need to make sure that they grow in rate λ′. As such vector has

growth rate at least λ′, we are left with showing that

lim sup
1

N
log ‖UN‖op ≤ λ′

that would grant us with uniform convergence for unit vectors in Vω \ Eω.

For that, observe that by multiplying the above two matrices we get:

UN+1,ω = TE,TNωUN,ω + UTNωH
N
ω

this inductively expand to:

UN+1,ω = TNE,TωUω + TN−1
E,T 2ωUTωHω + · · ·+ TE,TNωUTN−1ωH

N−1
ω + UTNωH

N
ω =

N∑
m=0

TN−mE,Tm+1ωUTmωH
m
ω

Note the resemblance to the formal sum constructed in the proof of Lemma

2.11. For each N pick 0 ≤ k ≤ N such that the respective term in the sum

is maximal in operator norm. We have:

‖UN+1,ω‖op ≤ (N + 1)‖TN−k
E,Tk+1ω

UTkωH
k
ω‖op
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Note that
1

N + 1
log ‖UN + 1‖op

If λ′ < λ1 we apply Lemma 2.11 to the exact sequence:

0→ E/E≤λ2 ↪→ V/E≤λ2 � V/E → 0

(E/E≤λ2 is a cocycle with single Lyapunov exponent λ1) that so splits with

a splitting map σ : V/E → V/E≤λ2

V/E≤λ2 = E/E≤λ2 ⊕ σ(V/E)

Let τ : V → V/E≤λ2 the natural projection and take V ≤λ2 := τ−1(σ(V/E)),

which is a subbundle (τ is a bundle homomorphism so the inverse of every

fiber in σ(V/E) is a linear space. τ pulls back local trivializations of σ(V/E)

to local trivializations of τ−1(σ(V/E))). Observe that for E≤λ2 ⊂ V ≤λ2

(inverse projection takes the zero of any bundle to the space by which we

quotient). For v ∈ V \ V ≤λ2 , τ(v) ∈ E/E≤λ2 so v ∈ E \ E≤λ2 , with Lya-

punov exponent λ1. If v ∈ V ≤λ2 , then either v ∈ E≤λ2 or τ(v) is a nonzero

vector in σ(V/E) so it has Lyapunov exponent λ′ (using our remark on ex-

ponents and quotient vector bundles). So V ≤λ2 is a subbundle with maximal

exponent max{λ2, λ
′}. Now dimV ≤λ2 < d so by the inductive assumption it

has a filtration and Lyapunov exponents (that we already named) so putting

V ≤λ1 := V above this filtration we are done. Alternatively, we can proceed

the above construction to produce V ≤λi ’s until λi+1 < λ′, each time use

0→ E≤λi/E≤λi+1 ↪→ V ≤λi/E≤λi+1 � V ≤λi/E≤λi → 0

Proof. (Of Lemma 2.9)

Define the space of probability measures on P(V ) which project (or pushed

forward by π : P(V )→ Ω) to µ:

M1(P(V ), µ) := {η prob. measure on P(V ) with π∗η = µ}
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The action of T on P(V ) can be extended to M1(P(V ), µ) naturally (T̃ η =

T̃∗η) as for all A ∈ B, T̃ η projects to µ:

π∗(T̃∗η)(A) = T̃∗η(π−1(A)) = η(T̃−1π−1(A))
?
= η(π−1(T−1A)) = µ(T−1A) = µ(A)

? follows from the set equality T̃−1π−1(A) = π−1(T−1A) which indeed holds

as the linear maps of the lifted T (to V and P(V )) that acts on the fibers are

assumed to be invertible, and so each fiber Pω := π−1({ω}) ⊂ P(V ) of ω ∈ A
has T̃−1{Pω} =

⋃
Tδ=ω{Pδ}. On the RHS, the inverse projection takes each

δ ∈ T−1 {ω} to it’s fiber Pδ so π−1(T−1{ω}) =
⋃
Tδ=ω{Pδ} and each ω ∈ A

has the same contribution to both sides.

EquipM1(P(V ), µ) with the weak-* topology, here it is the smallest topology

such that for every φ : P(V )→ R that is measurable on P(V ) and continuous

on a.e fiber, the operator

M1(P(V ), µ)→ R, η 7→
∫
P(V )

φdη is continuous

Theorem 2.13 (Krylov-Bogoliubov). M1(P(V ), µ) is weak-* compact and

sequentially compact. It has at least one T -invariant measure.

Define f : P(V )→ R by:

f([v]) := log
‖Tv‖
‖v‖

(formally, in local trivialization f(ω, [v]) = log ‖Tωv‖‖v‖ ) and observe the contin-

uous operator ∫
f :M1(P(V ), µ)→ R, η 7→

∫
P(V )

fdη

LetM1(P(V ), µ)T be the space of T -invariant measures. By Krylov-Bogolyubov,

it’s non-empty, weak-* closed (take a ηn → η, and take the limit on
∫
φdηn =∫

φ◦Tdηn ) so it’s weak-* compact. Thus f achieves a minimum onM1(P(V ), µ)T .
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Theorem 2.14 (Krein-Milman). A compact convex set in a topological vector

space is the convex hull of its extreme points.

The set of measures on which the minimum is achieved is convex (for

η1, η2 ∈ M1(P(V ), µ)T , s ∈ [0, 1], write sη1 + (1 − s)η2 and observe that

this is a T -invariant measure that projects to µ). That set is also closed

(for a weak-* convergent ηn → η, use the above idea for T -invariance and∫
fdηn is a constant series converging to

∫
fdη) so by Krein-Milman it has an

extreme point, denoted η. This measure is ergodic for the T action on P(V )

(otherwise, for a set A ⊂ P(V ) with 0 < η(A) < 1 and T−1(A) = A define

η1 = η(A∩ · )
η(A)

, η2 = η(AC∩ · )
η(AC)

and observe that those are T -invariant measures

that minimize the operator, project to µ and exhibit η as a nontrivial convex

combination, with the same properties.)

Apply the Birkhoff ergodic theorem to f and the measure η, for η-a.e [v] ∈
P(V ):

1

N

N−1∑
m=0

f(Tm[v]) =
1

N
log

(
‖TNv‖
‖v‖

)
→
∫
P(V )

fdη =: λ

Let M ⊂ P(V ) the full measure set of vectors for which the above limit holds.

For ω ∈ π(M), let Mω = M ∩ P(Vω).

Observation 2.15. The following properties hold:

1. T -invariance: TMω = MTω for a.e ω

2. Mω is nonempty for a.e ω

3. E =
⋃
ω∈π(M) spanV {Mω} Is a T -invariant subbundle of V defined µ-

a.e.

Proof. 1. Notice that as Tω is invertible:

MTω = {[v′] ∈ P(VTω) :
1

N

N−1∑
m=0

f(Tm[v′])→ λ} =

{T [v] : [v] ∈ P(Vω),
1

N

N−1∑
m=0

f ◦ T (Tm[v])→ λ}
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Birkhoff averages of f ◦T converge to
∫
P(V )

f ◦T and as η is T -invariant,

this integral equals
∫
f = λ so MTω = TMω.

2. µ(π(M)) = η(π−1(π(M))) ≥ η(M) = 1

3. We can use an ergodicity argument to show that the dimension of

spanV {Mω} is some constant d′, a.e. Take a µ-positive measure set

K ⊂ Ω in which this dimension is constant. Denote τ : E → Ω the

projection. Observe that for m ≥ 0, all the fibers in T−mτ−1(K) has

the same constant dimension as the cocycle maps on the fibers are

invertible. By ergodicity, µ
⋃
m≥0 T−mK is a full measure set. For

local trivializations, reduce to an appropriate full measure Ω′ ⊂ Ω. For

ω in Ω′, take (U,ϕ) the local trivialization as an element of V , take

U ′ = U ∩ Ω′ and ϕ′ such that ϕ′−1 = ϕ−1|τ−1(U). Up to a composition

with a change of basis, ϕ′ is a homeomorphism U ′ × Rk′ → τ−1(U ′).

T-invariance follows from (1) extended to linear combinations.

If E is a proper subbundle of V , this is case 2 of the lemma. Suppose

E = V , in this case for a.e ω and every v ∈ Vω = spanV {Mω} is a linear

combination of vectors with growth rate λ. By triangle inequality, we get

that v grows at rate at most λ. To see that the growth rate is exactly λ,

uniformly on ‖v‖ = 1 on a fixed fiber, assume by contradiction that there

exists a µ-generic ω (ω for which the pointwise ergodic theorem’s result holds

for continuous functions), ε > 0 and a sequence [vi] ∈ P(Vω) such that:

lim sup
Ni→∞

1

Ni

log
(
‖TNivi‖

)
≤ λ− ε

Where ‖vi‖ = 1 and Ni is a sequence tending to ∞. Define the following

series of measures on P(V ):

ηi =
1

Ni

Ni−1∑
m=0

δTm[vi]
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Let ηε be one of their weak-* limits (there is a limit due to the fact that

the space of Borel measures on the projective space, denoted M(P(V )), is a

weak-* compact metrizable space, hence sequentially compact). There is a

standard method to show that ηε is T -invariant. Let ik such that ηik→ηε in

weak-* and observe that for φ measurable and continuous on every fiber:

|
∫
P(V )

φ ◦ Tdηik −
∫
P(V )

φdηik | =
1

Nik

|
∫ Nik

−1∑
m=1

(φ ◦ Tm+1 − φ ◦ Tm)δ[vi]| =

1

Nik

|
∫

(φ ◦ TNik − φ)dδ[vi]| ≤
2

Nik

‖f‖∞ → 0

so their limits
∫
φdηε =

∫
φ ◦ Tdηε. Moreover, ηε is projected to µ. Let

ϕ : Ω→ R continuous: ∫
P(V )

ϕ ◦ πdηε =

lim
k→∞

1

Nik

Nik
−1∑

m=0

∫
P(V )

ϕ ◦ πdδTm[vi] =

lim
k→∞

1

Nik

Nik
−1∑

m=0

ϕ(Tmω)
?
=

∫
Ω

ϕdµ

And ? results from ω being a µ-generic point. So ηε ∈ M1(P(V ), µ)T

Applying the assumption to f we get lim sup
∫
P(V )

fdηik ≤ λ − ε therefor∫
P(V )

fdηε ≤ λ − ε which contradicts the definition of λ being the minimal

value achieved on M1(P(V ), µ)T .

Proof. (of lemma 2.11) Let 0→ E ↪→ V
p→ F → 0 a short exact sequence of

vector bundles. Note that by definition E can be identified with a T -invariant

subbundle of V . Choose a lift σ0 : F → V (A vector bundle morphism with

p◦σ0 = IdF , since we have a metric on V a possible choice is the identification

F ' E⊥) such that V = E ⊕ σ0(F ). Under this identification, the cocycle

map takes the form of the block matrix:

T =

[
TE U

0 TF

]
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With linear maps:

TE,ω : Eω → ETω

TF,ω : Fω → FTω

Uω : Fω → ETω

Any other lift σ : F → V differs from σ0 by a map τ : F → E. To justify

that, let τ = σ − σ0 : F → V , so τ has image in E = ker p:

p ◦ τ = p ◦ (σ − σ0) = 0

We look for a σ = τ + σ0 for which the decomposition V = E ⊕ σ(F ) is

T -invariant (Tωσ(F ) = σ(F )Tω a.e). For

[
e

f

]
∈ σ(F ) ⊂ E ⊕ σ0(F ) (working

in the σ0 decomposition) we present a condition for T

[
e

f

]
to be in σTω(F )

and show that there is a lift σ that fulfills this condition. For

[
e

f

]
∈ σ(F )

we can write e = τ(f) and apply T :

T

[
τ(f)

f

]
=

[
TE,ω ◦ τω(f) + Uω(f)

TF,ω(f)

]
∈ VTω

The condition for this vector to be in σTω(F ) is:

TE,ω ◦ τω(f) + Uω(f) = τTω ◦ TF,ω(f)

This condition is an equality of linear maps Fω → ETω, equivalently:

τω = T−1
E.ω ◦ τTω ◦ TF,ω − T

−1
E,ω ◦ Uω

And it is enough to show it for a normal basis of Fω. A formal solution of

this equation is given by:

τω = −
∞∑
n=0

(T n+1
E,ω )−1 ◦ UTnω ◦ T nF,ω

17



The assumption that λF − λE < 0 is used to show that the sum converges

like a sum of an exponentially convergent sequence. For a bound on the

contribution of the middle term, apply Birkhoff theorem on log ‖Uω‖op (

log+ ‖Uω‖op ∈ L1) to achieve:

‖UTnω‖op = eo(n)

Further, Observe that:

∀v1 ∈ Eω ; ‖T n+1
E,ω v1‖ = enλE+o(n)‖v1‖

So going backwards we have:

∀v2 ∈ ETn+1ω ; ‖(T n+1
E,ω )−1v2‖ = e−nλE+o(n)‖v2‖

Let v ∈ Fω; ‖v‖ = 1:

‖T nF,ωv‖ = enλf+o(n)

Recalling that the growth rates are uniform over unit circles in the respective

vector bundle fibers, the o(n) terms obey the uniform convergence. The term

in the formal sum is bounded by an exponentially convergent series:

‖(T n+1
E,ω )−1 ◦ UTnω ◦ T nF,ωv‖ ≤ en(λF−λE)+o(n)

And the sum converge uniformly. Hence choosing a basis for Fω we have that

τω such that σ(F ) is T -invariant is well defined.
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