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Definition: Let (𝑋, ℬ, 𝜇, 𝑇) be a probability preserving system (𝑇∗𝜇 = 𝜇). A 

sequence of functions 𝑔𝑛: 𝑋 → ℝ of measurable functions is called subadditive, 

relative to 𝑓 if 𝑔𝑚+𝑛 ≤ 𝑔𝑚 + 𝑔𝑛 ∘ 𝑇𝑚 for all 𝑚, 𝑛 ≥ 1  

Examples: 1) If 𝑓: 𝑋 → ℝ is measurable, then the ergodic sum 𝑔𝑁 = ∑ 𝑓 ∘ 𝑇𝑛𝑁−1
𝑛=0  is 

an additive sequence, and particularly subadditive. 

2) Given a measurable 𝐴: 𝑋 → 𝐺𝐿𝑑ℝ, we define 𝐴𝑛 = (𝐴 ∘ 𝑓𝑛−1) ⋅ (𝐴 ∘ 𝑓𝑛−2) ⋅ … ⋅ 𝐴 

and 𝜑𝑛(𝑥) = log ||𝐴𝑛(𝑥)|| with the norm being the operator norm. This is 

subadditive since the operator norm satisfies ||𝐴𝐵|| < ||𝐴|| ⋅ ||𝐵|| for any two 

𝐴, 𝐵 ∈ 𝑀𝑑(ℝ). 

3) In the previous example if 𝑋 is a smooth manifold, then the differential map of 

𝑓, 𝐷𝑥(𝑓): 𝑇𝑥𝑋 → 𝑇𝑓(𝑥)𝑋 between tangent spaces satisfies 

𝐷𝑓𝑛(𝑥)(𝑓) = 𝐷𝑓𝑛−1(𝑥)(𝑓) ⋅ … ⋅ 𝐷𝑥(𝑓) 

Any 𝑓 with differential of full rank gives us a map 𝐷(𝑓): 𝑋 → 𝐺𝐿𝑑(ℝ), where 𝑑 =

dim 𝑋. 

Remark: A map 𝐹: 𝑋 × ℝ𝑑 → 𝑋 × ℝ𝑑  with 𝐹(𝑥, 𝑣) = (𝑓(𝑥), 𝐴(𝑥)𝑣) for 𝐴 as in 

example 2 is called a linear cocycle and 𝐹𝑛(𝑥, 𝑣) = (𝑓𝑛(𝑥), 𝐴𝑛(𝑥)𝑣) 

Theorem 1 (Kingman's subadditive ergodic theorem): Let (𝑋, ℬ, 𝜇, 𝑇) be a p.p.s. 

and 𝑔𝑛: 𝑋 → ℝ a subadditive sequence with 𝑔1
+ ∈ 𝐿1(𝑋, ℬ, 𝜇). Then the limit 𝑔 ≔

lim
𝑛→∞

1

𝑛
𝑔𝑛 exists 𝜇 −a.e. and it is an invariant function. Moreover, we have that 

∫ 𝑔𝑑𝜇 = lim
𝑛→∞

1

𝑛
∫ 𝑔𝑛𝑑𝜇 = inf

𝑛→∞

1

𝑛
∫ 𝑔𝑛𝑑𝜇. 

The following theorem is a direct consequence of the previous one (but was 

originally proved without using the subadditive ergodic theorem): 

 



 

Theorem 2 (Furstenberg, Kesten): Let 𝐴 be as above and assume that log+(𝐴±1) ∈

𝐿1 . Then the following limits exist: 

𝜆+(𝑥) = lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑥)‖,   𝜆−(𝑥) = lim

𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑥)−1‖−1 

and they are invariant and integrable with 

∫ 𝜆+  𝑑𝜇 = lim
𝑛→∞

1

𝑛
∫ log‖𝐴𝑛(𝑥)‖ 𝑑𝜇 

∫ 𝜆−  𝑑𝜇 = lim
𝑛→∞

1

𝑛
∫ log‖𝐴𝑛(𝑥)−1‖−1 𝑑𝜇 

𝜆±(𝑥) are called the extremal Lyapunov exponents  

The theorem of Furstenberg and Kesten provides us with growth rate for ||𝐴𝑛(𝑥)||. 

Oseledets theorem, also known as the multiplicative ergodic theorem, provides 

growth rates for ||𝐴𝑛(𝑥)𝑣|| for all 𝑣 ∈ ℝ𝑑 . Here we only give the statement of the 

general case and provide a proof of the 2-dimensional case: 

Theorem (Oseledets): Let (𝑋, ℬ, 𝜇, 𝑇) be a probability preserving system. And let 

𝐴: 𝑋 → 𝐺𝐿2 be a measurable function with log+ ||𝐴±1|| ∈ 𝐿1. For almost every 𝑥 ∈

𝑋 there exist 𝑘(𝑥) ∈ ℕ, numbers 𝜆1(𝑥) > ⋯ > 𝜆𝑘(𝑥), and a sequence of subspaces 

ℝ𝑑 = 𝑉𝑥
1 ⊃ ⋯ ⊃ 𝑉𝑥

𝑘(𝑥)
⊃ {0} such that for all 1 ≤ 𝑖 ≤ 𝑘: 

1) 𝑘(𝑇(𝑥)) = 𝑘(𝑥), 𝜆𝑖(𝑇(𝑥)) = 𝜆𝑖(𝑥), 𝐴(𝑥)𝑉𝑥
𝑖 = 𝑉𝑇(𝑥)

𝑖  

2) The maps 𝑘, 𝜆𝑖, 𝑉𝑥
𝑖 are measurable. 

3) For all 𝑣 ∈ 𝑉𝑥
𝑖 ∖ 𝑉𝑥

𝑖+1, 𝜆𝑖(𝑥) = lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑥)𝑣‖ 

Remarks: 1) When 𝜇 is ergodic, 𝑘(𝑥), 𝜆𝑖(𝑥), dim 𝑉𝑥
𝑖  are constant a.e. 

2) The result does not depend on the choice of norm or basis on each of the 

subspaces because all norms on the Euclidean space are equivalent and constants 

disappear. Change of basis is equivalent to taking another norm. 

Examples: 1) Take a matrix 𝐴 ∈ 𝑆𝐿𝑑ℝ and take the cocycle 𝐹: 𝑋 × ℝ𝑑 → 𝑋 × ℝ𝑑  

with 𝐹(𝑥, 𝑣) = (𝑓(𝑥), 𝐴𝑣) and 𝐹𝑛(𝑥, 𝑣) = (𝑓𝑛(𝑥), 𝐴𝑛𝑣). If 𝐴 is diagonalizable with 



eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 and eigenspaces ℝ𝑑 = 𝑉𝜆1 ⊕ … ⊕ 𝑉𝜆𝑑 , for every vector 

𝑣 with a component in 𝑉𝜆1  the norm ‖𝐴𝑛𝑣‖ grows like 𝜆𝑛‖𝑣‖. On the other hand, 

if 𝑣 ∈ 𝑉𝜆2 ⊕ … ⊕ 𝑉𝜆𝑑  then the norm has a different rate of growth. We can 

iteratively use the largest eigenvalue to determine the rate of growth outside the 

sum of the eigenspaces with smaller eigenvalues. The theorem approves this 

intuitive argument in a much general setting.  

2) Consider products of random matrices. Namely, take 𝐴0, 𝐴1 ∈ 𝐺𝐿𝑑ℝ , 𝑋 =

{𝐴0, 𝐴1}ℤ and 𝜇 = 𝜇𝑝
ℤ for some 𝑝 ∈ (0, 1). As usual, we take 𝑇: 𝑋 → 𝑋 to be the shift 

map. Also define 𝐴: 𝑋 → 𝐺𝐿𝑑ℝ by (𝑎𝑛) ↦ 𝑎0. Then the cocycle defined by 𝐴, 𝑇 is 

𝐹: 𝑋 × ℝ𝑑 → 𝑋 × ℝ𝑑  so that 𝐹𝑚((𝑎𝑛), 𝑣) = ((𝑎𝑛+𝑚), 𝑎𝑚−1 ⋅ … ⋅ 𝑎0𝑣). The theorem 

provides us with the "growth rate" of this random walk. 

3) Applying the theorem in the context given in example 3 from the previous 

discussion gives us a direction on the tangent space for which the cocycle has 

exponential growth rate of  𝜆, and determines the rate for all the other directions 

(This is my intuition for the 2-dimensional case). 

Before we get to the proof of the 2-dimensional case, we prove a lemma: 

Lemma 1: Let (𝑋, ℬ, 𝜇, 𝑇) be a p.p.s. and 𝑓 ∈ 𝐿1 then for 𝜇-a.e. 𝑥 ∈ 𝑋, 

lim
𝑛→∞

1

𝑛
𝑓(𝑇𝑛(𝑥)) = 0 

Proof: Let 𝜀 > 0 and denote 𝐴𝑛 = {𝑥 ∈ 𝑋: |𝑓(𝑇𝑛(𝑥))| ≥ 𝑛𝜀}. Therefore, 

𝜇(𝐴𝑛(𝜀)) = 𝜇({𝑥 ∈ 𝑋: |𝑓(𝑥)| > 𝑛𝜀}) = ∑ 𝜇 ({𝑥 ∈ 𝑋: 𝑘 ≤
|𝑓(𝑥)|

𝜀
< 𝑘 + 1})

∞

𝑘=𝑛

 

∑ 𝜇(𝐴𝑛(𝜀))

∞

𝑛=1

= ∑ 𝑘

∞

𝑘=1

𝜇 ({𝑥 ∈ 𝑋: 𝑘 ≤
|𝑓(𝑥)|

𝜀
< 𝑘 + 1}) ≤ ∫

|𝑓|

𝜀
𝑑𝜇

𝑋

< ∞ 

By Borel-Cantelli 𝜇(limsup𝐴𝑛(𝜀)) = 0. For every 𝑥 ∉ limsup𝐴(𝜀) there is some 

𝑝 > 1 such that for every 𝑛 ≥ 𝑝 such that |𝑓(𝑇𝑛(𝑥))| < 𝑛𝜀. To conclude the proof, 

notice that 𝐴 = ⋃ limsup𝐴 (
1

𝑖
)𝑖≥1  has measure zero and lim

𝑛→∞

1

𝑛
𝑓(𝑇𝑛(𝑥)) = 0 on its 

complement. 



Theorem: Let (𝑋, ℬ, 𝜇, 𝑇) be a probability preserving system. And let 𝐴: 𝑋 → 𝐺𝐿2 

be a measurable function with log+ ||𝐴±1|| ∈ 𝐿1. Then for 𝜇-a.e. 𝑥 ∈ 𝑋 one of the 

following holds: 

1) 𝜆−(𝑥) = 𝜆+(𝑥) and for all 𝑣 ∈ ℝ2 ∖ {0}, 𝜆±(𝑥) = lim
𝑛→∞

1

𝑛
log||𝐴𝑛(𝑥)𝑣|| 

2) 𝜆+(𝑥) > 𝜆−(𝑥) and there exists a 1-dimensional subspace 𝐸𝑥 ⊂ ℝ2 such 

that: 

lim
𝑛→∞

1

𝑛
log||𝐴𝑛(𝑥)𝑣|| = {

𝜆−(𝑥), 𝑣 ∈ 𝐸𝑥 ∖ {0}

𝜆+(𝑥), 𝑣 ∈ ℝ2 ∖ 𝐸𝑥
 

And 𝐴(𝑥)𝐸𝑥 = 𝐸𝑇(𝑥) 

Note that the existence of 𝜆±(𝑥) follows of the theorem of Furstenberg-Kesten. 

Proof: We begin with a reduction to the case where 𝐴 takes values in 𝑆𝐿2. We justify 

this step by checking that for any 𝐴(𝑥) ∈ 𝐺𝐿𝑑  we can normalize 𝐴(𝑥) to obtain a 

matrix 𝐵(𝑥) ∈ 𝑆𝐿𝑑. If the integrability assumptions hold for 𝐴(𝑥), then they also 

hold for 𝐵(𝑥). Also, the corresponding one-dimensional lines specified by the 

theorem are the same for both cocycles, and the Lyapunov exponents of the one 

are just a shift of the exponents of the other by some additive constant dependent 

on 𝑥. 

We show an equivalent definition for the operator norm taken with respect to the 

𝐿2 norm on ℝ𝑛 

Proposition: ‖𝐴‖=√𝜆 where 𝜆 is the largest eigen value of 𝐴𝑡𝐴 

Proof: 𝐴𝑡𝐴 is symmetric and hence has an orthonormal basis of eigenvectors 

{𝑒1, … 𝑒𝑛}. Let 𝜆1 ≥ ⋯ ≥ 𝜆𝑛be the corresponding eigenvalues. Then for any 𝑥 ∈

ℝ𝑛 ∖ {0}  if 𝑥 = ∑ 𝛼𝑖𝑒𝑖
𝑛
𝑖=1  we have  ‖𝐴(𝑥)‖2 = ∑ 𝜆𝑖𝑎𝑖

2𝑛
𝑖=1 ≤ 𝜆1 ⋅ ‖𝑥‖, so ‖𝐴‖ ≤ √𝜆1. 

We also have ‖𝐴‖2 ≥ ‖𝐴𝑒1‖2 = 𝜆1 which ends the proof. 

We prove two preliminary claims about 𝑆𝐿2: 

Claim 1: For any 𝐴 ∈ 𝑆𝐿2, ‖𝐴‖ = ||𝐴−1|| where the operator norm is taken with 

respect to Euclidean 𝐿2 norm on ℝ2. 



Proof: The characteristic polynomial of 𝐴𝑡𝐴 is 𝑥2 − 𝑡𝑟(𝐴𝑡𝐴)𝑥 + det 𝐴𝑡𝐴 and it is 

easy to see that the same polynomial is obtained for (𝐴−1)𝑡(𝐴−1) for 𝐴 ∈ 𝑆𝐿2. From 

the previous proposition we the equality of the norms. 

Claim 2: Let 𝐴 ∈ 𝑆𝐿2, then there exist vectors 𝑠, 𝑢 ∈ ℝ2 such that ||𝐴𝑠|| = ||𝐴||
−1

 

and ||𝐴𝑢|| = ||𝐴||. If ‖𝐴‖ ≠ 1 then 𝑢, 𝑣 are orthogonal and unique up to sign. 

Proof: Existence of both vectors follows from the fact that the continuous function 

𝑥 ↦ ||𝐴𝑥|| achieves maximal and minimal values on the compact set 𝑆1. Let 𝑠 ∈ ℝ2 

be the most contracted vector. Pick some unit vector 𝑢 ∈ ℝ2 orthogonal to 𝑠. Then, 

for every 𝑥 ∈ ℝ2, 𝑥 = 𝛼1𝑠 + 𝛼2𝑢 with |𝛼1|2 + |𝛼2|2 = 1. 

We have ||𝐴𝑥|| ≤ |𝛼1|||𝐴𝑠|| + |𝛼2|||𝐴𝑢|| ≤ (|𝛼1| + |𝛼2|) ⋅ ||𝐴𝑢|| ≤ ||𝐴𝑢||. 

Therefore, ||𝐴|| = ||𝐴𝑢|| as required. 

Now, fix some 𝑥 ∈ 𝑋 for which theorem 2 holds.  

Notice that 𝜆+(𝑥) + 𝜆−(𝑥) = lim
𝑛→∞

1

𝑛
log(‖𝐴𝑛(𝑥)‖ ⋅ ‖𝐴𝑛(𝑥)−1‖−1) = 0.Therefore, 

we denote 𝜆(𝑥): = 𝜆+(𝑥) = −𝜆−(𝑥). 

We prove that of 𝜆(𝑥) = 0 then (1) holds and if 𝜆(𝑥) > 0 then (2) holds. 

Assume that 𝜆(𝑥) = 0, (𝜆+(𝑥) = 𝜆−(𝑥)) then for any 𝑣 ∈ ℝ2, 

‖𝐴𝑛(𝑥)‖−1‖𝑣‖ = ‖𝐴𝑛(𝑥)−1‖−1‖𝑣‖ ≤ ‖𝐴𝑛(𝑥)𝑣‖ ≤ ‖𝐴𝑛(𝑥)‖‖𝑣‖ 

because ‖𝐴𝑛(𝑥)−1‖ = sup {
‖𝑢‖

‖𝐴𝑛(𝑥)𝑢‖
: 𝑢 ∈ ℝ2 ∖ {0}} ≥

‖𝑣‖

‖𝐴𝑛(𝑥)‖
 

And hence  

1

𝑛
log‖𝐴𝑛(𝑥)‖−1‖𝑣‖ ≤

1

𝑛
log‖𝐴𝑛(𝑥)𝑣‖ ≤

1

𝑛
log‖𝐴𝑛(𝑥)‖‖𝑣‖ 

Which shows the result for the first case in the theorem. 

Now, assume that 𝜆(𝑥) > 0, then for 𝑛 large enough ‖𝐴𝑛(𝑥)‖ > 1. By claim 2 we 

can choose 𝑢𝑛(𝑥), 𝑠𝑛(𝑥) ∈ ℝ2 such that ‖𝐴𝑛(𝑥)𝑠𝑛(𝑥)‖ = ‖𝐴𝑛(𝑥)‖−1 and 

‖𝐴𝑛(𝑥)𝑢𝑛(𝑥)‖ = ‖𝐴𝑛(𝑥)‖. We proceed with the following lemmas: 

Lemma 2: limsup
1

𝑛
log|sin ∠(𝑠𝑛(𝑥), 𝑠𝑛+1(𝑥))| < −2𝜆(𝑥) 



Proof: We denote 𝛼𝑛 = ∠(𝑠𝑛(𝑥), 𝑠𝑛+1(𝑥)) and decompose  

𝑠𝑛(𝑥) = sin 𝛼𝑛 𝑢𝑛+1(𝑥) + cos 𝛼𝑛 𝑠𝑛+1(𝑥) 

Then we use the properties of 𝑢𝑛(𝑥), 𝑠𝑛(𝑥) to get: 

|sin 𝛼𝑛| ⋅ ‖𝐴𝑛+1(𝑥)‖ ≤ ‖𝐴𝑛+1(𝑥)𝑠𝑛(𝑥)‖ ≤ ‖𝐴(𝑇𝑛(𝑥))‖‖𝐴𝑛(𝑥)‖−1 

Which implies 

1

𝑛
log|sin(𝛼𝑛)| ≤

1

𝑛
log‖𝐴(𝑇𝑛(𝑥))‖ −

1

𝑛
log‖𝐴𝑛(𝑥)‖ −

1

𝑛
log‖𝐴𝑛+1(𝑥)‖ 

After taking limsup of both sides, the definition of 𝜆(𝑥) and lemma 1 complete 

the proof. 

Lemma 3: The sequence (𝑠𝑛(𝑥))
𝑛

 is a Cauchy sequence. 

Proof: Using the previous lemma, we obtain ‖𝑠𝑛(𝑥) − 𝑠𝑛+1(𝑥)‖ ≤ 2|sin 𝛼𝑛| ≤

2𝑒𝑛(−2𝜆(𝑥)+𝜀) for all 𝜀 > 0 such that −2𝜆(𝑥) + 𝜀 < 0. Therefore, using the triangle 

inequality we can bound the differences between elements of the sequence: 

‖𝑠𝑛(𝑥) − 𝑠𝑛+𝑘(𝑥)‖ ≤ 𝐶𝑒𝑛(−2𝜆(𝑥)+𝜀) 

For a suitable constant 𝐶 > 0 and for arbitrary large enough 𝑛, 𝑘 > 0. 

Denote 𝑠(𝑥) = lim
𝑛→∞

𝑠𝑛(𝑥) 

Lemma 3: lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑥)𝑠(𝑥)‖ = −𝜆(𝑥) 

Proof: Denote 𝛽𝑛 = ∠(𝑠(𝑥), 𝑠𝑛(𝑥)). We have 𝑠(𝑥) = cos 𝛽𝑛 𝑠𝑛(𝑥) + sin 𝛽𝑛 𝑢𝑛(𝑥). 

And hence  

limsup
1

𝑛
log‖𝐴𝑛(𝑥)𝑠(𝑥)‖

≤ max {limsup
1

𝑛
log(|cos 𝛽𝑛|‖𝐴𝑛(𝑥)𝑠𝑛(𝑥)‖) , limsup

1

𝑛
log(|sin 𝛽𝑛|‖𝐴𝑛(𝑥)𝑢𝑛(𝑥)‖) }

≤ max {
limsup

1

𝑛
log(‖𝐴𝑛(𝑥)‖−1) ,

limsup
1

𝑛
log(|sin 𝛽𝑛|) + limsup

1

𝑛
log(‖𝐴𝑛(𝑥)𝑢𝑛(𝑥)‖) 

}

≤ max{−𝜆(𝑥), −2𝜆(𝑥) + 𝜆(𝑥) } = −𝜆(𝑥) 



as required. 

It remains to deal with vectors that are not on the line generated by 𝑠(𝑥). 

Lemma 4: For any 𝑣 ∈ ℝ2 ∖ 𝑆𝑝𝑎𝑛(𝑠(𝑥)), lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑥)𝑣‖ = 𝜆(𝑥) 

Proof: 𝑣, 𝑠(𝑥) are not collinear, therefore, if 𝛾𝑛 = ∠(𝑣, 𝑠𝑛(𝑥)) then |sin 𝛾𝑛| > 0 for 

𝑛 large enough. Again, we decompose to get 𝑣 = cos 𝛾𝑛 𝑠𝑛(𝑥) + sin 𝛾𝑛 𝑢𝑛(𝑥). Then, 

a lower bound is ‖𝐴𝑛(𝑥)𝑣‖ ≥ |sin 𝛾𝑛|‖𝐴𝑛(𝑥)𝑢𝑛(𝑥)‖ − |cos 𝛾𝑛|‖𝐴𝑛𝑠𝑛(𝑥)‖. Using 

the fact that for any two real sequences 𝑎𝑛, 𝑏𝑛,  

liminf
1

𝑛
log(𝑎𝑛 + 𝑏𝑛) ≥ max {liminf

1

𝑛
log 𝑎𝑛  , liminf

1

𝑛
log 𝑏𝑛 } 

we obtain liminf
1

𝑛
log‖𝐴𝑛(𝑥)𝑣‖ ≥ 𝜆(𝑥). On the other hand, 

limsup
1

𝑛
log‖𝐴𝑛(𝑥)𝑣‖ ≤ 𝜆(𝑥) , which end the proof. 

We now show that the line spanned by 𝑠(𝑥) is invariant under the action: 

Claim: 𝐴(𝑥)𝑠(𝑥) and 𝑠(𝑇(𝑥)) are collinear. 

Proof: By the previous lemma, it suffices to check that  

lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑇(𝑥)) ⋅ 𝐴(𝑥)𝑠(𝑥)‖ ≠ 𝜆(𝑓(𝑥)) 

And indeed, by lemma 3, 

lim
𝑛→∞

1

𝑛
log‖𝐴𝑛(𝑓(𝑥)) ⋅ 𝐴(𝑥)𝑠(𝑥)‖ = lim

𝑛→∞

1

𝑛 + 1
log‖𝐴𝑛+1(𝑥)𝑠(𝑥)‖ = −𝜆(𝑥) 

From the invariance and positiveness of 𝜆 we gat that 𝜆(𝑇(𝑥)) = 𝜆(𝑥) ≠ −𝜆(𝑥). 

This finishes the proof for the 2-dimensional case.  


