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Abstract

Wewill define discrete‐timeMartingales, and prove twoMartingale convergence theorems, as well as
discuss several of their applications in Measure Theory, Ergodic Theory and Probability Theory. The talk
will be roughly based on the book ”Ergodic theory with a view toward Number Theory”, by Einsiedler and
Ward.

1 Basic Definitions and Examples
Definition 1.1 (Filtration). Let (𝑋,B, 𝜇) be a measure space, A filtration is a sequence of sub‐𝜎‐algebras of
B, such that F1 ⊆ F2 ⊆ ... ⊆ B. We define:

F∞ ∶= 𝜎 ( ⋃
𝑛∈N

F𝑛) ⊆ B.

We will call (𝑋,B, 𝜇, (F𝑛)𝑛∈N) a filtered space.

Definition 1.2 (Martingale). Let (𝑋,B, 𝜇, (F𝑛)𝑛∈N) be a filtered space. A Martingale is a process 𝑀 =
(𝑀𝑛)𝑛∈N, relative to the filtration (F𝑛)𝑛∈N, and the measure 𝜇, which satisfies:

1. 𝑀𝑛 ∈ 𝐿1 (F𝑛), for every 𝑛 ∈ N. I.e., 𝑀𝑛 is integrable, and F𝑛 measurable.

2. E [𝑀𝑛+1 ∣ F𝑛] = 𝑀𝑛, for every 𝑛 ∈ N.

The next family of examples will be the general case for both of the theorems we will prove today.

Example 1.3. Let (𝑋,B, 𝜇, (F𝑛)𝑛∈N) be a filtered space. Let 𝑓 ∈ 𝐿1 (B). Define 𝑀𝑛 = E [𝑓 ∣ F𝑛]. Note
that (𝑀𝑛) is a Martingale relative to (F𝑛). Indeed:

• By the definition of the conditional expectation, the process 𝑀𝑛 is adapted to (F𝑛), and 𝑀𝑛 ∈ 𝐿1.

• By the tower property,

E [𝑀𝑛+1 ∣ F𝑛] = E [E [𝑓 ∣ F𝑛+1] ∣ F𝑛] = [𝑓 ∣ F𝑛] = 𝑀𝑛.

The following theorem, is the most general Martingale convergence theorem.
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Theorem 1.4 (Doob’s Martingale Convergence Theorem). Let (𝑀𝑛) be a Martingale relative to (F𝑛), and
suppose that 𝑀𝑛 is uniformly bounded in 𝐿1, I.e.,

sup
𝑛

‖𝑀𝑛‖ < ∞.

There exists a random variable 𝑀∞ ∈ 𝐿1 (F∞), such that:

𝑀𝑛
a.s.−−−→

𝑛→∞
𝑀∞.

Wewon’t prove Theorem 1.4 in this talk, but rather a theorem that holds only in the setting of Example 1.3.
The theorem that we prove, will give us also convergence in𝐿1 in addition to the almost surely convergence
we get by Theorem 1.4.
The next example will show us that in the settings of Theorem 1.4, we can’t assure convergence in 𝐿1.

Example 1.5. Let 𝑋 = [0, 1) and let 𝜇 be the Lebesgue measure. Define the filtration

F𝑛 = 𝜎 ({[ 1
𝑘 + 1, 1

𝑘) ∣ 1 ≤ 𝑘 ≤ 𝑛} ∪ {[0, 1
𝑛 + 1)}) ,

and the process 𝑀𝑛 = (𝑛 + 1)1[0, 1
𝑛+1 ), for every 𝑛 ∈ N.

Direct computation will show that 𝑀𝑛 is a Martingale, and that E [𝑀𝑛] = 1 for all 𝑛 ∈ N, and therefore
𝑀𝑛 is uniformly bounded in 𝐿1. Moreover, it is clear that 𝑀𝑛

𝑎.𝑠.−−−→
𝑛→∞

0. However,

lim
𝑛→∞

E [𝑀𝑛] = 1 ≠ 0 = E [0] ,

and therefore 𝑀𝑛 does not converge to 𝑀∞ in 𝐿1.

2 Increasing Martingale Theorem
In this section we prove the increasing Martingale theorem which sometimes referred as the Levy’s
’Upward’ Theorem.

Theorem 2.1. Let (𝑋,B, 𝜇, (F𝑛)𝑛∈N) be a filtered space. For every 𝑓 ∈ 𝐿1 (B),

E [𝑓 ∣ F𝑛] −−−→
𝑛→∞

E [𝑓 ∣ F∞] ,

almost everywhere and in 𝐿1.

In order to prove Theorem 2.1, we will use the next Lemma.

Lemma 2.2 (Doob’s inequality). Let 𝑓 ∈ 𝐿1 (B), and let (F𝑛)𝑛∈N be a filtration. Fix 𝜆 > 0 and let

𝐸 = {𝑥 ∈ 𝑋 ∣ sup
𝑛≥1

E [𝑓 ∣ F𝑛] > 𝜆} ,

Then
𝜇 (𝐸) ≤ 1

𝜆‖𝑓‖1.

2



Proof. Wemay assume without loss of generality that 𝑓 ≥ 0. Otherwise, we prove it for |𝑓| which can only
make 𝜇 (𝐸) larger. Let

𝐸𝑁 = {𝑥 ∈ 𝑋 ∣ max
1≤𝑖≤𝑁

E [𝑓 ∣ F𝑖] (𝑥) > 𝜆} ,

for every 𝑁 ∈ N, and for every 1 ≤ 𝑛 ≤ 𝑁 , let

𝐸𝑁
𝑛 = {𝑥 ∈ 𝑋 ∣ E [𝑓 ∣ F𝑛] (𝑥) > 𝜆 and E [𝑓 ∣ F𝑖] (𝑥) ≤ 𝜆 for 1 ≤ 𝑖 ≤ 𝑛 − 1} .

Note that 𝐸𝑁 = ⨄𝑁
𝑛=1 𝐸𝑁

𝑛 , and 𝐸𝑁
𝑛 ∈ F𝑛 since F1,F2, ...,F𝑛−1 ⊆ F𝑛. Thus,

𝜆𝜇 (𝐸𝑁) =
𝑁

∑
𝑛=1

𝜆𝜇 (𝐸𝑁
𝑛 ) =

𝑁
∑
𝑛=1

∫
𝐸𝑁𝑛

𝜆

≤
𝑁

∑
𝑛=1

∫
𝐸𝑁𝑛

E [𝑓 ∣ F𝑛]

=
𝑁

∑
𝑛=1

∫
𝐸𝑁𝑛

𝑓 = ∫
𝐸𝑁

𝑓 ≤ ‖𝑓‖1.

By measure continuity, we deduce

𝜇 (𝐸) = 𝜇 ( ⋃
𝑁∈N

𝐸𝑁) = lim
𝑁→∞

𝜇 (𝐸𝑁) ≤ 1
𝜆‖𝑓‖1.

Lemma 2.3. Let (𝑋,B, 𝜇, (F𝑛)𝑛∈N) be a filtered space. Then ⋃𝑛∈N 𝐿1 (F𝑛) is dense in 𝐿1 (F∞).
The proof of the lemma is left as an exercise. Prove the density for an indicator function, then simple
function and then any 𝐿1 function. The first part can be proved by showing that the collection

{𝐴 ∈ B ∣ ∀𝜀 > 0 ∃ (𝑚 ∈ N ∧ 𝐴𝑚 ∈ F𝑚) such that 𝜇 (𝐴△𝐴𝑚) < 𝜀} ,

is a 𝜎‐algebra that contains ⋃𝑛∈N F𝑛 and thus contains F∞.

Proof of Theorem 2.1. Since E [E [𝑓 ∣ F∞] ∣ F𝑛] = E [𝑓 ∣ F𝑛], we may assume without loss of generality
that 𝑓 is F∞ measurable.
If there exists 𝑚 ∈ N such that 𝑓 isF𝑚 measurable, then [𝑓 ∣ F𝑛] is eventually constant sequence and thus
the theorem holds. From Lemma 2.3, for every 𝜀 > 0, there exists 𝑚 ∈ N and 𝑔 ∈ 𝐿1 (F𝑚) such that
‖𝑓 − 𝑔‖1 < 𝜀

2 . Thus, for every 𝑛 ≥ 𝑚,

‖E [𝑓 ∣ F𝑛] − 𝑓‖1 ≤ ‖E [𝑓 ∣ F𝑛] − E [𝑔 ∣ F𝑛]‖1 + ‖𝑓 − 𝑔‖1 + ‖E [𝑔 ∣ F𝑛] − 𝑔‖1⏟⏟⏟⏟⏟⏟⏟
=0

< 𝜀.
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For the almost everywhere convergence, we note that

𝜇 ({𝑥 ∈ 𝑋 ∣ lim sup
𝑛→∞

|E [𝑓 ∣ F𝑛] − 𝑓| (𝑥) > √𝜀})

= 𝜇 ({𝑥 ∈ 𝑋 ∣ lim sup
𝑛→∞

|E [𝑓 − 𝑔 ∣ F𝑛] (𝑥) − (𝑓 − 𝑔) (𝑥)| > √𝜀})

≤ 𝜇 ({𝑥 ∈ 𝑋 ∣ sup
𝑛∈N

E [|𝑓 − 𝑔| ∣ F𝑛] (𝑥) >
√𝜀
2 }) + 𝜇 ({𝑥 ∈ 𝑋 ∣ |𝑓 − 𝑔| (𝑥) >

√𝜀
2 })

𝐿𝑒𝑚𝑚𝑎 2.2
≤ 2√𝜀‖𝑓 − 𝑔‖1 + 2√𝜀‖𝑓 − 𝑔‖1 ≤ 2√𝜀.

Since 𝜀 is arbitrary, it follows that lim sup𝑛→∞ |E [𝑓 ∣ F𝑛] − 𝑓| = 0 almost everywhere.

3 Decreasing Martingale Theorem
In this section we prove the decreasing Martingale theorem which sometimes referred as the Levy’s
’Downward’ Theorem.

Definition 3.1 (Backward Martingale). Let (𝑋,B, 𝜇) be a probability space. Let (F−𝑛)𝑛∈N be a decreasing
sequence of 𝜎‐algebras. I.e.,

B ⊇ F−1 ⊇ F−2 ⊇ ... ⊇ ⋂
𝑛∈N

F−𝑛 ≕ F−∞.

A process (𝑀−𝑛)𝑛∈N is said to be backward Martingale, if:

1. 𝑀𝑛 ∈ 𝐿1 (F−𝑛), for every 𝑛 ∈ N.

2. E [𝑀−𝑛+1 ∣ F−𝑛] = 𝑀−𝑛, for every 𝑛 ∈ N.

Theorem 3.2. Let (𝑋,B, 𝜇) be a probability space, and let (F−𝑛)𝑛∈N be a decreasing sequence of
𝜎‐algebras. Define F−∞ ∶= ⋂𝑛 F−𝑛. For every 𝑓 ∈ 𝐿1 (B),

E [𝑓 ∣ F−𝑛] −−−→
𝑛→∞

E [𝑓 ∣ F−∞] ,

almost everywhere and in 𝐿1.

Proof. Let
𝑉𝑛 = {𝑔 ∈ 𝐿1 (B) ∣ E [𝑔 ∣ F−𝑛] = 0} ,

for every 𝑛 ∈ N ∪ {∞}. Note that from the tower property 𝑉1 ⊆ 𝑉2 ⊆ ... ⊆ 𝑉∞. Define

𝑉∗ = ⋃
𝑛∈N

𝑉𝑛.

We will prove that 𝑉∗ is dense in 𝑉∞. In order to prove it, we use two claims from functional analysis.

1. A corollary of the Hahn‐Banach theorem: If for every continuous linear functional Λ ∶ 𝐿1 (B) → R
such that 𝑉∗ ⊆ kerΛ, also 𝑉∞ ⊆ kerΛ, then 𝑉∗ is dense in 𝑉∞.

4



2. Every continuous linear functional Λ ∶ 𝐿1 (B) → R is of the form

Λℎ (𝑔) = ∫
𝑋

𝑔 ⋅ ℎ𝑑𝜇,

for ℎ ∈ 𝐿∞ (B).
Suppose that 𝑉𝑛 ⊆ kerΛℎ, for every 𝑛 ∈ N. Then it follows that

∫
𝑋

(𝑔 − E [𝑔 ∣ F−𝑛]) ℎ𝑑𝜇 = 0,

for every 𝑔 ∈ 𝐿1 (B) and 𝑛 ∈ N. In particular, since 𝐿∞ (B) ⊆ 𝐿1 (B), it holds for 𝑔 = ℎ. Thus,

∫
𝑋

(ℎ − E [ℎ ∣ F−𝑛]) ℎ𝑑𝜇 = 0.

Furthermore,

∫
𝑋

(ℎ − E [ℎ ∣ F−𝑛])E [ℎ ∣ F−𝑛] 𝑑𝜇

= ∫
𝑋

ℎE [ℎ ∣ F−𝑛] 𝑑𝜇 − ∫
𝑋
E [ℎ ∣ F−𝑛]E [ℎ ∣ F−𝑛] 𝑑𝜇

= ∫
𝑋

ℎE [ℎ ∣ F−𝑛] 𝑑𝜇 − ∫
𝑋
E [E [ℎ ∣ F−𝑛] ℎ ∣ F−𝑛] 𝑑𝜇

= ∫
𝑋

ℎE [ℎ ∣ F−𝑛] 𝑑𝜇 − ∫
𝑋
E [ℎ ∣ F−𝑛] ℎ𝑑𝜇 = 0.

Subtracting the two equations will give us

0 = ∫
𝑋

(ℎ − E [ℎ ∣ F−𝑛]) ℎ𝑑𝜇 − ∫
𝑋

(ℎ − E [ℎ ∣ F−𝑛])E [ℎ ∣ F−𝑛] 𝑑𝜇

= ∫
𝑋

((ℎ − E [ℎ ∣ F−𝑛]) ℎ − (ℎ − E [ℎ ∣ F−𝑛])E [ℎ ∣ F−𝑛]) 𝑑𝜇

= ∫
𝑋

(ℎ2 − 2ℎE [ℎ ∣ F−𝑛] + (E [ℎ ∣ F−𝑛])2) 𝑑𝜇

= ∫
𝑋

(ℎ − E [ℎ ∣ F−𝑛])2 𝑑𝜇.

Thus, ℎ = E [ℎ ∣ F−𝑛] ∈ 𝐿∞ (F−𝑛) for every 𝑛 ∈ N and so ℎ ∈ 𝐿∞ (F−∞). Finally, let 𝑔 ∈ 𝑉∞,

∫
𝑋

𝑔ℎ𝑑𝜇 = ∫
𝑋
E [𝑔ℎ ∣ F−∞] 𝑑𝜇 = ∫

𝑋
ℎE [𝑔 ∣ F−∞]⏟⏟⏟⏟⏟

=0
𝑑𝜇 = 0.

Note that since every 𝑔 ∈ 𝐿1 (B) can be written as 𝑔 = E [𝑔 ∣ F−∞] + (𝑔 − E [𝑔 ∣ F−∞]), we conclude that
𝐿1 (B) = 𝐿1 (F−∞) + 𝑉∞. Therefore, 𝐿1 (F−∞) + 𝑉∗ is dense in 𝐿1 (B).
The theorem clearly holds for functions in 𝐿1 (F−∞) + 𝑉∗. The rest of the proof is similar to the proof of
Theorem 2.1, and will be left as an exercise (the full proof can be found in pages 131 − 132 in [1]).
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4 Corollaries
In this section, we will use the two main theorems that we proved, in order to prove some corollaries in
measure theory, ergodic theory and probability theory.

4.1 Measure Theory
Theorem 4.1 (A Version of Lebesgue Density Theorem). Let (𝑋,B, 𝜇) be a probability space, where 𝑋 =
[0, 1)𝑑, B is the Borel 𝜎‐algebra and 𝜇 is the Lebesgue measure. Define the partition

𝜉𝑛 = {
𝑑

∏
𝑖=1

[ 𝑗𝑖
2𝑛 , 𝑗𝑖 + 1

2𝑛 ) ∣ 0 ≤ 𝑗𝑖 ≤ 2𝑛 − 1∀1 ≤ 𝑖 ≤ 𝑑} ,

for every 𝑛 ∈ N. Let 𝐵𝑛 (𝑥) be the atom of 𝜉𝑛that contains 𝑥, for every 𝑥 ∈ 𝑋. Let 𝐴 ∈ B, then

𝜇 (𝐴 ∩ 𝐵𝑛 (𝑥))
𝜇 (𝐵𝑛 (𝑥)) −−−→

𝑛→∞
1𝐴 (𝑥) ,

for almost every 𝑥 ∈ 𝑋.

Proof. DefineF𝑛 = 𝜎 (𝜉𝑛) for every 𝑛 ∈ N. Let 𝜂 = 1𝐴. Note that, E [𝜂 ∣ F𝑛] is constant on every 𝐶 ∈ 𝜉𝑛,
and

E [𝜂 ∣ F𝑛] (𝑥) = 𝜇 (𝐴 ∩ 𝐵𝑛 (𝑥))
𝜇 (𝐵𝑛 (𝑥)) .

Thus, by Theorem 2.1,

𝜇 (𝐴 ∩ 𝐵𝑛 (𝑥))
𝐵𝑛 (𝑥) = E [𝜂 ∣ F𝑛] (𝑥) 𝑎.𝑒.−−−→

𝑛→∞
E [𝜂 ∣ B] (𝑥) = 𝜂 (𝑥) = 1.

Remark. The same proof holds for every increasing sequence of partitions, and probability measure, as long
as the union of all the partitions generates the Borel 𝜎‐algebra.

4.2 Ergodic Theory
Theorem 4.2. Let 𝐺 be a LCSC group. Suppose that there’s a sequence of finite subgroups 𝐺1 ⊆ 𝐺2 ⊆ ... ⊆
⋃∞

𝑛=1 𝐺𝑛 ≕ 𝐺∞ ⊆ 𝐺, such that 𝐺∞ is dense in 𝐺.
Let (𝑋,B, 𝜇) be a probability space (𝑋 is compact), and suppose that 𝐺 ↷ 𝑋 continuously, and measure
preserving. Let G be the 𝜎‐algebra of 𝐺∞‐invariant sets which are weakly 𝐺‐invariant. Then for every
𝑓 ∈ 𝐿1 (B),

𝑓𝑛 (𝑥) ∶= 1
|𝐺𝑛| ∑

ℎ∈𝐺𝑛

𝑓 (ℎ𝑥) −−−→
𝑛→∞

E [𝑓 ∣ G] ,

almost everywhere and in 𝐿1.

Remark. A good example for a group of this form to keep inmindwill be a countable product of finite groups,
where 𝐺𝑛 is the product of the first 𝑛 groups.
Another example is 𝐺 = ([0, 1) , + (mod 1)), with 𝐺𝑛 = ⟨2−𝑛⟩.
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Proof. Define F−𝑛 ⊆ B to be the 𝜎‐algebra of 𝐺𝑛‐invariant sets. Note that 𝑓𝑛 is F−𝑛 measurable.
Moreover, for every 𝐴 ∈ F−𝑛,

∫
𝐴

𝑓𝑛 (𝑥) 𝑑𝜇 (𝑥) = 1
|𝐺𝑛| ∑

ℎ∈𝐺𝑛

∫
𝐴

𝑓 (ℎ𝑥) 𝑑𝜇 (𝑥) = [𝑦 = ℎ𝑥]

= 1
|𝐺𝑛| ∑

ℎ∈𝐺𝑛

∫
ℎ−1𝐴

𝑓 (𝑦) 𝑑𝜇 (𝑦) =

= 1
|𝐺𝑛| ∑

ℎ∈𝐺𝑛

∫
𝐴

𝑓 (𝑦) 𝑑𝜇 (𝑦) = ∫
𝐴

𝑓 (𝑦) 𝑑𝜇 (𝑦) .

Thus, 𝑓𝑛 = E [𝑓 ∣ F−𝑛]. By Theorem 3.2,

𝑓𝑛 (𝑥) −−−→
𝑛→∞

E [𝑓 ∣ F−∞] ,

almost everywhere and in 𝐿1, where F−∞ = ⋂𝑛∈N F−𝑛. It remains to show that F−∞ = G.
Let 𝐴 ∈ F−∞ and let 𝑔 ∈ 𝐺. Let 𝜀 > 0, fix 𝑓 ∈ 𝐶 (𝑋) such that ‖𝑓 − 1𝐴‖1 < 𝜀. Let ℎ ∈ 𝐺∞ such that
∥𝑓 (𝑔ℎ−1𝑥) − 𝑓 (𝑥)∥1 < 𝜀, given by the density of𝐺∞ in𝐺, the continuity of the action of𝐺, the continuity
of 𝑓 and the dominated convergence theorem. Then,

𝜇 (𝐴△𝑔𝐴) = 𝜇 (𝐴△𝑔ℎ−1ℎ𝐴⏟
=𝐴

) = 𝜇 (𝐴△𝑔ℎ−1𝐴)

= ∫
𝑋

∣1𝐴 (𝑥) − 1𝐴 (ℎ𝑔−1𝑥)∣ 𝑑𝜇 (𝑥)

≤ ∫
𝑋

|1𝐴 (𝑥) − 𝑓 (𝑥)| 𝑑𝜇 (𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

<𝜀

+ ∫
𝑋

|1𝐴 (ℎ𝑔−1𝑥) − 𝑓 (ℎ𝑔−1𝑥)| 𝑑𝜇 (𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

<𝜀

+ ∫
𝑋

∣𝑓 (𝑥) − 𝑓 (ℎ𝑔−1𝑥)∣ 𝑑𝜇 (𝑥)

[𝑦=ℎ𝑔−1𝑥]
< 2𝜀 + ∫

𝑋
|𝑓 (𝑔ℎ−1𝑦) − 𝑓 (𝑦)| 𝑑𝜇 (𝑦)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
<𝜀

< 3𝜀.

Since 𝜀 is arbitrary, 𝜇 (𝐴△𝑔𝐴) = 0, and thus 𝐴 is weakly 𝐺‐invariant.

Another corollary is the following theorem about conditional measures.

Theorem 4.3. Let (𝑋,B, 𝜇, (F𝑛)𝑛∈N) be a filtered space (respectively, let (F−𝑛)𝑛∈N be a decreasing
sequence of 𝜎‐algebra). Suppose 𝑋 is an LCSC space. Then

𝜇F𝑛𝑥
𝑤∗

−−−→
𝑛→∞

𝜇F∞𝑥 (respectively, 𝜇F−𝑛𝑥
𝑤∗

−−−→
𝑛→∞

𝜇F−∞𝑥 ),

for 𝜇‐almost every 𝑥 ∈ 𝑋.

Proof. Wewill prove the increasing case. The decreasing case has the same proof, replacing 𝑛 with −𝑛 and
∞ with −∞.
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Let (𝑓𝑘)𝑘 ∈ N be a dense subset of 𝐶𝑐 (𝑋). In order to prove that 𝜇F𝑛𝑥
𝑤∗

−−−→
𝑛→∞

𝜇F∞𝑥 , it is sufficient to show
that for every 𝑘 ∈ N,

∫
𝑋

𝑓𝑘𝑑𝜇F𝑛𝑥 − ∫
𝑋

𝑓𝑘𝑑𝜇F∞𝑥 −−−→
𝑛→∞

0.

For every 𝑘 ∈ N, let 𝐸𝑘 be a null set, such that for every 𝑥 ∈ 𝑋\𝐸𝑘:

1. E [𝑓𝑘 ∣ F𝑛] (𝑥) −−−→
𝑛→∞

E [𝑓𝑘 ∣ F∞] (𝑥) .

2. E [𝑓𝑘 ∣ F𝑛] (𝑥) = ∫𝑋 𝑓𝑘𝑑𝜇F𝑛𝑥 , for every 𝑛 ∈ N ∪ {∞}.

Define 𝑋′ = 𝑋\ (⋃𝑘∈N 𝐸𝑘). For every 𝑥 ∈ 𝑋′ and for every 𝑘 ∈ N,

∫
𝑋

𝑓𝑘𝑑𝜇F𝑛𝑥 − ∫
𝑋

𝑓𝑘𝑑𝜇F∞𝑥 = E [𝑓𝑘 ∣ F𝑛] (𝑥) − E [𝑓𝑘 ∣ F∞] (𝑥) −−−→
𝑛→∞

0,

and 𝜇F𝑛𝑥
𝑤∗

−−−→
𝑛→∞

𝜇F∞𝑥 .

4.3 Probability Theory
These corollaries won’t be shown in the seminar.

Theorem 4.4 (Kolmogorov 0 − 1 Law). Let (𝑋,B, 𝜇) be a probability space. Let (𝑓𝑛)𝑛∈N be a sequence of
independent random variables. Define F𝑛 = 𝜎 (𝑓1, ..., 𝑓𝑛) and T𝑛 = 𝜎 (𝑓𝑛+1, 𝑓𝑛+2, ...) for every 𝑛 ≥ 0
(where F0 = {∅, 𝑋}). Let T = ⋂𝑛∈N T𝑛. Then 𝜇 (𝐴) ∈ {0, 1}, for every 𝐴 ∈ T .

Proof. Let 𝐴 ∈ T . Since 𝐴 ∈ T0 = F1, we know that 𝐴 ∈ 𝜎 (F∞) = 𝜎 (⋃𝑛∈N F𝑛).
Define 𝜂 = 1𝐴. Notice that since 𝜂 is T𝑛 measurable, and the random variables are independent, 𝜂 is
independent of F𝑛, for every 𝑛 ∈ N. Therefore, by Theorem 2.1,

𝜂 = E [𝜂 ∣ F∞] = lim
𝑛→∞

E [𝜂 ∣ F𝑛] = lim
𝑛→∞

E [𝜂] = 𝜇 (𝐴) ,

almost surely. The result follows since 𝜂 only takes values in {0, 1}.
Theorem 4.5 (The Strong Law of Large Numbers). Let (𝑋,B, 𝜇) be a probability space. Let (𝑓𝑛)𝑛∈N ⊆ 𝐿1

be a sequence of IID random variables. Let 𝑀 = E [𝑓1]. Define

𝑆𝑛 = 𝑓1 + ... + 𝑓𝑛.

Then 𝑆𝑛
𝑛 −−−→

𝑛→∞
𝑀 almost everywhere and in 𝐿1.

Remark. The usual proof of this theorem gives us only the almost everywhere convergence. This proof will
add the convergence in 𝐿1.

Proof. Define F−𝑛 = 𝜎 (𝑓𝑛, 𝑓𝑛+1, ...) for every 𝑛 ∈ N, and F−∞ = ⋂𝑛∈N F−𝑛. Since 𝑆𝑛 is F−𝑛
measurable, E [𝑆𝑛 ∣ F−𝑛] = 𝑆𝑛 almost everywhere. By symmetry, E [𝑓1 ∣ F−𝑛] = 𝑆𝑛

𝑛 almost surely.
Hence, by Theorem 3.2,

𝐿 = lim
𝑛→∞

E [𝑓1 ∣ F−𝑛] = lim
𝑛→∞

𝑆𝑛
𝑛 ,
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exists almost everywhere and in 𝐿1. Moreover,

E [𝐿] = lim
𝑛→∞

E [𝑆𝑛
𝑛 ] = 𝑀.

Note that

lim sup
𝑛→∞

𝑓𝑘+1 + ... + 𝑓𝑘+𝑛
𝑛 = lim sup

𝑛→∞

𝑓1 + ... + 𝑓𝑘+𝑛
𝑛 − 𝑓1 + ... + 𝑓𝑘

𝑛

= lim sup
𝑛→∞

𝑛 + 𝑘
𝑛 ⋅ 𝑓1 + ... + 𝑓𝑘+𝑛

𝑛 + 𝑘 − 𝑓1 + ... + 𝑓𝑘
𝑛 = 𝐿,

almost surely and in𝐿1. Thus, 𝐿 isF−𝑘 measurable for every 𝑘 ∈ N. By Kolmogorov 0−1 law, 𝐿 is constant
almost everywhere, and therefore 𝐿 = 𝑀 almost everywhere.
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