Martingale Convergence Theorem
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Abstract

We will define discrete-time Martingales, and prove two Martingale convergence theorems, as well as
discuss several of their applications in Measure Theory, Ergodic Theory and Probability Theory. The talk
will be roughly based on the book ”Ergodic theory with a view toward Number Theory”, by Einsiedler and
Ward.

1 Basic Definitions and Examples

Definition 1.1 (Filtration). Let (X, BB, i) be a measure space, A filtration is a sequence of sub-o-algebras of
B, such that F; C F, C ... C B. We define:

Foo ::a(Ufn> CB.

neN
We will call (X, B, u, (]:n)neN> a filtered space.

Definition 1.2 (Martingale). Let (X,B,u, <]:n)neN) be a filtered space. A Martingale is a process M =
(M, relative to the filtration (F, and the measure i, which satisfies:

")nEN’ n)nEN’
1. M, € L*(F,), foreveryn € N. Le., M, is integrable, and F, measurable.
2. E[M, | F,] =M,, foreveryn € N.

The next family of examples will be the general case for both of the theorems we will prove today.

Example 1.3. Let (X,B,u, (‘Fn)neN> be a filtered space. Let f € L' (B). Define M, = E|[f | F,,]. Note
that (M,,) is a Martingale relative to (F,,). Indeed:

* By the definition of the conditional expectation, the process M,, is adapted to (F,,), and M,, € L'.
e By the tower property,

The following theorem, is the most general Martingale convergence theorem.



Theorem 1.4 (Doob’s Martingale Convergence Theorem). Let (M,,) be a Martingale relative to (F,,), and
suppose that M, is uniformly bounded in L', I.e.,

sup[| M, || < oo.
n

There exists a random variable M__ € L' (F..), such that:

a.s.
M, —— M.

n—oo

We won’t prove Theorem 1.4 in this talk, but rather a theorem that holds only in the setting of Example 1.3.
The theorem that we prove, will give us also convergence in L' in addition to the almost surely convergence
we get by Theorem 1.4.

The next example will show us that in the settings of Theorem 1.4, we can’t assure convergence in L'.

Example 1.5. Let X = [0,1) and let j be the Lebesgue measure. Define the filtration

ee({feke ) e ))

and the process M,, = (n + 1) Lj, 1 ) foreveryn € N.
Direct computation will show that M, is a Martingale, and that E[M,] = 1 for all n € N, and therefore
M., is uniformly bounded in L. Moreover, it is clear that M, L 0. However,

n—oo

lim E[M,]=1+0=E[0],

n—oo

and therefore M, does not converge to M__ in L*.

2 Increasing Martingale Theorem

In this section we prove the increasing Martingale theorem which sometimes referred as the Levy’s
'Upward’ Theorem.

Theorem 2.1. Let (X, B, i, (F,,) be a filtered space. For every f € L' (B),

neN)

almost everywhere and in L.
In order to prove Theorem 2.1, we will use the next Lemma.
Lemma 2.2 (Doob’s inequality). Let f € L' (B), and let (}'n)neN be a filtration. Fix A > 0 and let
E:{xeX|supE[f}"n]>)\},
n>1

Then .
w(E) < <l



Proof. We may assume without loss of generality that f > 0. Otherwise, we prove it for | f| which can only
make 1 (E) larger. Let

N _
BV —{o e X | max EIf | 7] () > A},
forevery N € N, and foreveryl <n < N, let
EN={re X |E[f|F,)(x) > andE[f | F](z) < Afor1 <i<n—1}.

Note that BV = Lﬂivzl EN,and EY € F, since F, Fy, ..., F,,_; C F,. Thus,

N N
e (BY) = S (EN) =3 [
n=1 n=1 f:,
N
< E F
_;éyVA
N
— = <
Z;é%f [ r=im,

By measure continuity, we deduce

NeN

M@=M(Lﬂw>=y$u@MSlﬁh

Lemma 2.3. Let (X, B, u, (]:”)neN) be a filtered space. Then | _ L' (F,) is densein L* (F,).

The proof of the lemma is left as an exercise. Prove the density for an indicator function, then simple
function and then any L' function. The first part can be proved by showing that the collection

{AeB|Ve>03(meNAA, €F,)suchthat u (AAA,,) < e},

is a o-algebra that contains UneN F,, and thus contains F .

Proof of Theorem 2.1. Since E[E [f | F.] | F,,] = E[f | F,,], we may assume without loss of generality
that f is F_, measurable.

If there exists m € Nsuch that f is F,, measurable, then [f | F,,] is eventually constant sequence and thus
the theorem holds. From Lemma 2.3, for every € > 0, there exists m € Nand g € ! (F,,,) such that
If —gll, < 5. Thus, for every n > m,

=0



For the almost everywhere convergence, we note that
p({z e X imsup EIf |7, - f12) > VE})
n—oo

— i ({o e X fimsup [ELf — 9] ] (@)~ (/ ~ 9) (2)] > VE})

S/t({xeXlilégEHf—gl fn]($)>\f}) +p ({xeXl If—g(m)>\f}>

Lemma 2.2 9 2

< %Hf —gl, + ﬁl\f —gl, <2ve

Since ¢ is arbitrary, it follows that lim sup [E[f | F,] — f| = 0almost everywhere. O

n—oo

3 Decreasing Martingale Theorem

In this section we prove the decreasing Martingale theorem which sometimes referred as the Levy’s
‘Downward’ Theorem.

Definition 3.1 (Backward Martingale). Let (X, BB, i) be a probability space. Let (‘7:—”)neN be a decreasing
sequence of o-algebras. l.e.,

BOF 2F 2.2 F =7

neN

A process (M_,,) _ is said to be backward Martingale, if:

neN

1. M, € L*(F_,), foreveryn € N.
2 E[M

nat | Fopl = M_,, foreveryn € N.

Theorem 3.2. Let (X,B,u) be a probability space, and let (]—"_n)nEN be a decreasing sequence of
o-algebras. Define F_ :=(\ F_,. Forevery f € L' (B),

almost everywhere and in L.

Proof. Let
V,={9e L' (B)|E[g|F_]=0},

for every n € N U {co}. Note that from the tower property V; C V, C ... C V. Define

V.=V

neN
We will prove that V, is dense in V. In order to prove it, we use two claims from functional analysis.

1. A corollary of the Hahn-Banach theorem: If for every continuous linear functional A : L' (B) — R
such that V, C ker A, also V_ C ker A, then V, is densein V.



2. Every continuous linear functional A : L! (B) — R is of the form
A.(9) = [ g+ i,
X

for h € L™ (B).

Suppose that V,, C ker A;,, for every n € N. Then it follows that
/ (9—Elg| F_.]) hdp =0,
X
forevery g € L' (B) and n € N. In particular, since L> (B) C L' (B), it holds for g = h. Thus,
/ (h—E[h]|F_,]) hdu = 0.
X
Furthermore,

(h=E[h| F))E[R]F_,]dp

e

I
—

HE[h | F_,] d,u—/]E[h \F_IE[R | F_]du

WE[h | F,] dp— / E[E[h| F o Jh| F.dp
X

:/hE[h | ]—",n]d,u—/]E[h | F T hdp = 0.
X X
Subtracting the two equations will give us

o=/X<h—E[h|f_n}>hdu—/x<h—1mh|f_n1>E[hmdu

(h=E[h|F )h—(h=E[h| F_ )E[h|F_])du
(h? —2hE[h | F_ )+ (E[h | FL))?) dp

(h—E[h| F_,)) dp.

I

~

Thus, h=E[h| F_,] € L> (F_,) foreveryn € Nandsoh € L (F__,). Finally,letg € V,

T

ghip = [ Elgh| 7 Jdu= | hElg| F Jdu=0.
x R

Note that since every g € L' (B) canbe writtenasg =E[g | F_ ]+ (¢ — E[g | F_.]), we conclude that
L' (B) = L* (F__.) + V.. Therefore, L' (F__ ) + V, isdense in L' (B).

The theorem clearly holds for functions in L' (F___) + V,. The rest of the proof is similar to the proof of
Theorem 2.1, and will be left as an exercise (the full proof can be found in pages 131 — 132 in [1]). O



4 Corollaries

In this section, we will use the two main theorems that we proved, in order to prove some corollaries in
measure theory, ergodic theory and probability theory.

4.1 Measure Theory

Theorem 4.1 (A Version of Lebesgue Density Theorem). Let (X, BB, ) be a probability space, where X =
[0, 1)d, B is the Borel o-algebra and 11 is the Lebesgue measure. Define the partition

T ldi Gitl
5”:{1_[1[2;“ T )IOSji£2”—1v1gigd},

foreveryn € N. Let B,, (x) be the atom of {, that contains x, for every x € X. Let A € B, then

1(AN B, (2))
W(B, (a) o

]]‘A (l’) )

for almost every x € X.

Proof. Define F,, = o (§,,) foreveryn € N. Letp = 1 4. Note that, E [y | F,,] is constanton every C € £,

" (AN B, (@)
_ M n \&

Thus, by Theorem 2.1,
B 2nl Ry | Fol(0) = Bl | B (2) = n(2) = 1.

O

Remark. The same proof holds for every increasing sequence of partitions, and probability measure, as long
as the union of all the partitions generates the Borel o-algebra.

4.2 Ergodic Theory

Theorem 4.2. Let G be a LCSC group. Suppose that there’s a sequence of finite subgroups G; C G, C ... C
UZ; G,, =: G, C G, such that G is dense in G.
Let (X, B, ) be a probability space (X is compact), and suppose that G ~ X continuously, and measure
preserving. Let G be the o-algebra of G -invariant sets which are weakly G-invariant. Then for every
felL"(B),

1

fo () = m

> f(ha) —E[f ]G],

heG,

almost everywhere and in L.

Remark. A good example for a group of this form to keep in mind will be a countable product of finite groups,
where G, is the product of the first n groups.

Another example is G = ([0, 1), + )), with G,, = (27™).

mod 1



Proof. Define F_, C B to be the o-algebra of GG -invariant sets. Note that f,, is F_,, measurable.
Moreover, for every A € F_,,

/f )dp(z

- |h€ZGj/f<hm)du<> ly = hal

by e
5w o

Thus, f, =E[f | F_,]- By Theorem 3.2,

almost everywhere and in L', where F___ = ﬂneN F_,,- It remains to show that 7___ = G.
let A€ F_andletg € G. Lete >0, fix f € C'(X)suchthat |f —T4[, <e. Leth € G, such that

|f (gh~tz) — f (x)”l < ¢, given by the density of G__ in G, the continuity of the action of G, the continuity
of f and the dominated convergence theorem. Then,

1 (AAGA) = p (AAghlfgzjl) = n(AAgh™'A)
=A

_ / 1, (z) — 14 (hg )| dp (x)

< [ @)~ f@ldu)+ [ 1Ly 1) — F (g ) s (o)
<e
+ 15w~ 1 (hg ) e
[y=hg'a]
< 26+/\f ghty) — F ()l di () < 3.
<e
Since ¢ is arbitrary, u (AAgA) = 0, and thus A is weakly G-invariant. O

Another corollary is the following theorem about conditional measures.

Theorem 4.3. Let <X,B,u, (]-"n)"eN) be a filtered space (respectively, let (F_,), _ be a decreasing

sequence of o-algebra). Suppose X is an LCSC space. Then
F F.
" —> me (respectively, ,ux /—> Uz %),

for u-almost every x € X.

Proof. We will prove the increasing case. The decreasing case has the same proof, replacing n with —n and
00 with —oo.



Let (f},), € N be a dense subset of C, (X). In order to prove that uf" #} ,uf“’, it is sufficient to show

that forevery k € N,
[ sl = [ sn?= o,
X X n—oo
Forevery k € N, let E;, be a null set, such that for every z € X\ E:
L E[f | F) (0) — E[fy | Focl (@)

2. Efy | Ful (@) = [; frdui™, for every n € NU {oc}.

Define X' = X\ (UkeN Ek). For every z € X’ and for every k € N,

n—oo

/ frdpl — / Fedpi= = E[fy | Fl (2) — E[fy | Fou) () —— 0,
X X
and /fo" ﬁ ,uf” O

4.3 Probability Theory
These corollaries won’t be shown in the seminar.

Theorem 4.4 (Kolmogorov 0 — 1 Law). Let (X, BB, 1) be a probability space. Let (fn)neN be a sequence of

independent random variables. Define F,, = o (fy,..., f,) and T,, = o (fr 11+ frnios.-.) foreveryn > 0
(where Fo = {0, X}). Let T =, T Then 1 (A) € {0,1}, forevery A € T.

Proof. Let A€ T.Since Ae Ty =F,,weknowthat Aco(F,)=0 (UneN }'n>.
Define n = 1,. Notice that since 7 is 7,, measurable, and the random variables are independent, 7 is
independent of F,,, for every n € N. Therefore, by Theorem 2.1,

n=El|F]= lim Eln|F,]= lim Elg] =u(A),

n—oo

almost surely. The result follows since 7 only takes values in {0, 1}. O

Theorem 4.5 (The Strong Law of Large Numbers). Let (X, BB, i) be a probability space. Let (fn)neN cL!
be a sequence of IID random variables. Let M = E[f,]. Define

Then %" —— M almost everywhere and in L.
n—oo

Remark. The usual proof of this theorem gives us only the almost everywhere convergence. This proof will
add the convergence in L'.

Proof. Define F_, = o ([, fni1,-) foreveryn € N, and 7 = () _F_,. Since S, is F_,
measurable, E[S,, | F_,,] = S,, almost everywhere. By symmetry, E [f, | F_,,] = %” almost surely.
Hence, by Theorem 3.2,
S
L= limE[f,|F_]= lim ==&,
n—oo

n—oo M



exists almost everywhere and in L'. Moreover,

E[[] = lim E {i} Y
n—00 n
Note that
“mSUp fk+1 + ... +fk;+n — IimSUp fl + ... +fk+n B fl + ... +fk
n=0e0 n n—00 n n
:l|m5upn+ f1+ +fk+n_f1+ +fk:L7
n—o00 n n+k n

almost surely and in L. Thus, Lis F_;, measurable for every k € N. By Kolmogorov 0 —1 law, L is constant
almost everywhere, and therefore L = M almost everywhere. O
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