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P Certain conditional measures as translates of a measure on a group.
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Remark.

1. It actually holds that

h,(S3) >0 < h,(S3) >0 < h,(S3"55) > 0 for some m,n € N.
We will briefly explain how to show this later on

2. The proof simplifies considerably if one assumes that p is T} ergodic.
Open question (Furstenberg). Is it true that the Haar measure
of T is the unique non-atomic measure invariant under S5 and 557
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An implication of Rudolph’s theorem

Furstenberg proved the following topological version of the mentioned
open question.

Theorem. Assume that A C T is a forward invariant under S, and S,
(namely Vx € A, S;x € A, for i € {2,3}). Then either A is finite or A is
dense.

By Rudolph’s theorem we obtain the following result which can give some
insight (in some cases) that Furstenberg’s result can't.

Corollary from Rudolph’s theorem (Exercise 9.3.2. ELW
book). Let u be an S, invariant and ergodic probability measure with
positive entropy. Then p almost every x € R/Z has a dense orbit under
Ss.

Example. Consider the middle third cantor set

00 a,
C:{2§|a16{0,2}},

which is clearly S5 invariant. The Bernoulli shift on two symbols gives C
an S5 invariant ergodic measure p with positive entropy.
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x {.CC cTZ | Tpie, = 20 =3x,, Vn € ZQ}

n+e,

X is a closed subgroup of the compact group TZ® hence X is a compact
abelian group with respect to the induced topology 7.

Let 1 C 72 be a finite set and for each n € I let E_ C T be an open set,
and define

B, E{reX|z,€E, nel}.

Then the sets [E, ] _, form a basis for 7.
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Observe that for I C 72 finite, if my = min, {(m,n) € I} and
ny = min,, {(m,n) € I}, then

Enloc, = {x X |2y 0 € ) 52<mm0>53<””0>15m,n}

mo’no ( ﬂ S (m— mO (n— nO)Em,n> .

m n EI
H d—ef 1 te the topol d
ence T,, T.nTT €€nerate the topology, and moreover
Tr—1mn = Tm > Tmn-1 =2 Tm.n- We conclude

7-m,,n /( Tx-
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The borel o-algebra

Definition. Let B; be the borel o-algebra on T.
The o-algebra generated by the (m,n) € Z? coordinate Bn.n is defined
to be

Then we conclude that B,, , , 238, ., B, , 42 3B, ,, and
\/:,O:0 \/:::O B_pp.—n = Bx, where By is the Borel o-algebra on X.

Determined

[x]gm,n ={ye X| Tob = Yap Ya=m, b> n}
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Shift maps

We consider the left shift map T, (), aef T(;m+1,n) and the down shift
& (1 n+1) Which are invertible and keep X' invariant.

m,n)

map T3 <x>(m,n)

M1y

X ——X
lsmsnl 7
T =237

Lemma (without proof). Assume that p is S, and S invariant
borel probability measure on T.

Then there exists a borel probability measure 11y on X which is 15,75
invariant and (7, ,,) ux = u for all (m,n) € 22 .

Moreover, if p is ergodic for the joint 55,55 action, then py is ergodic
for the joint T, T} action.
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Consider the partition & def {10,%).[5.2),.-,[2,1)}, and
def

Ex = 775()(&)
Then h, (Ty,&x) = h, (S, &p).
In fact:
H, (\/ Ty (') = V Ty (55 76r))
i=0 T207T0:7T00S2

(70), Hx=H 1=0

By the same argument 1, (15,8{x) = h,(S3,&7).
Now & and &g are generators for both S, and S5, thus we get

Corollary. h, (T},&x) =h,(S;,&) = h,(S)), for I € {2,3}.
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The reduction of the problem

Assuming that py is 15,75 invariant and ergodic, such that
h, (T3,§x) >0, our goal will be to show

h,uX (T27 €X> — 10g<2>
This will finish our proof by the following assertion.
Lemma. £ ,(S,) =log(2) <= pu is the Haar measure.
Proof. Consider the generator £, & {[0, ), [5.1)} for S,.
The partition \/ji_ol S5 ¢ consists of 2V dyadic intervals

df . . .
I; n = [5% ng) of length 2LN Once we will show that u(l; ) = QLN for

all j < N and N € N, it will follow that = my.
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Assume for contradiction that there exists I,  such that |I; | # 5x.

Now recall that in general, if £ is a partition of N elements then
H,(&) <logN and

H,(¢) =logN < v(P)=—, VP et

1
N

Hence

1 N-1 y 1 N
NH“ Syr | < N]og(Q ) = log(2).
i=0
and since h ,(Sy) = h,,(5;,&y) = i“fn21%H/,L (\/::01 SQ_Z{T), we have a
contradiction.
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By the future formula for entropy h, (T5,{x) = H, ({x | A;), where

o0

def —q ~1_-1
1=1

Lemma. For each n € N we have
(Ty"ex) VA =o' By =Ex VA,

Proof. We are trying to show T5 "¢ V Ty tmg ' By = mp' By

Note that T; "¢y V Ty 'mg 1 By C m'By. So to prove equality it suffices to
show that Je > 0 such that any interval of length smaller then € is in
Sym&r vV Syt By, where & = {[0,1/6),..,[5/6,1)}.

Proof by picture

Proof of the picture: Note that if | — a| < 551 and z € (a,b) such that
b—a = 5507 then its impossible that z + 3 € (a + 3&,b+ 2&). In fact, if we

assume the contrary, then
1 ' 1
—|x—a|§‘<x+§)—<a+—‘7 >’<b—a:

1 1 |1
2.3n  92.3n+l — |9  3n 3n 2. 3n+1’

which is a contradiction.
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(T3 ") VA =Ex VA = ExVTITA =15 (Ex V A)

For n > 0 we get
h,uX<T2a£X> = H,LLX<£X | Al) =

H, (T3¢x | T3'A,) =
H, (T3&x VT3 A | T5Ay) =
H, (ExVT3A [T3A) =

Hy, (x| T3 Ay).

Let 4% \/ZO:0 T3 Ay, which is the o-algebra generated by the

coordinates in the right-half plane {(m,n) € Z? | m > 0}.
Then T3' A, /' A and

th(Tme) = HMX(EX | Ay) = n11_>n010 HMX(SX | T3 A) = Hux(fx | A).

—-End of first talk—
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We consider the space

def 2
X = {:B €T | Tyyo, =27, Ty =3%,, VNE 22},

with a borel probability measure 15 which is invariant and jointly ergodic
under the shift to the left T}, and the shift to the down T}

and h, (Ty,&x) >0, where £ = m5 g ({[0,5),[5,2), - [2.1)}).
We came to the conclusion that

h',LLX<T27€X) — HMX<£X | "4)7

where A is the o-algebra generated by the coordinates (m,n) € N x Z,
namely

Adef\/T”T (mo.b(B \/7r

where 7, , : X — T, is the projection to the coordinate.
Once we show H, ({x | A) = log(2) we are done.
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Recall that

H, (6x | A) = / —tog( (12l ave, ) dula),

so we should understand the conditional measures u7' and the atoms

[x]_/l\/é‘x :
We now show that A V {5 = 15 A4, where T, A = \/ZO To L (Br) is the
o-algebra generated by the coordinates (m,n) € N U {O} X 7.

Ex VTPTy ™ (m50(By)) = T3 (Ex V Ty 'y o(By)) =

Lemma from last time

T5'm, 0<BTT) = T, n(BTT>

which gives

Ex VA= fXV\/Tnﬂl \/w
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On the atoms of A and T,.A4

Proposition. It holds that

Gdéf[O]A:{xEX|xm’n:0, V(m,n) € N x Z} is a closed

subgroup of X and [0]; 4 = TG < G of index 2.

Moreover, [z] 4, =2+ G and [z]; 4 =2+ T,G.

Proof. Note that = € 0], if and only if z,, ,, = 0, for all m > 0 and
n € N.

Hence if we consider the continuous projection

— ()

<x>(m,n)622 (m,n)eENXZ"’

then G = [0] ,
Next, since {5 V A =T5A,

is the kernel, which is a closed subgroup, hence also

[Zle va = (@l = TolTy ' 2] 4, = 2 + TG

Now z € G <= xo,n:()foraIInEZora:O,n:%foraIInEZ,
and x € 1,G <G < =z, =0foralln € Z Hence T,G is of index 2.
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Intro to leafwise measures
Consider the probability measure supported on GG defined by

v,(B) € if(z + B), B € B,

namely v, = —x + pt.

In the rest of the proof we will aim to show that for iy almost every

x € X it holds that v, = m, where m, is the Haar probability measure
on G.

Lemma. Assume that for 1 almost every x € X it holds that

v, = mg, then H, (§x | A)=1og(2).

Proof. Note that I, (£x | A)(z) = —log(uf! ([a]ave, ).
and

DO | =

pyt ([x]ﬂvg)() = 7! (2 + ThG) = mg(T,G) =

index 2

Finally

H, (64 | A) = / I, (€x | A)@)dpy(x) = log(2).
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Invariance

The plan (roughly) to show that v, = m, is to first prove that v, are
the Haar measures on a certain subgroup G, and then to use ergodicity
and entropy assumption to prove that v, = m for a.e. z.

Lemma. (A4 measurability gives invariance) Assume that the map

x = v, is measurable w.r.t A.

Then for iy a.e. x the measure v, is the Haar measure on the closed

subgroup
Stab(v,) ={9€G|v, +g=vr,}.

Proof. We may assume that the measures ;% are defined for all

v € X\N and p/(N) =0, Vo € X\N.

Since z — v, is A measurable, and since z — ,uf is A measurable (by
the theorem about conditional measures), we get that for all y € [z] ,\ IV

_ A _ A
Vx_ygp :ua: _luy'

(since then for all f € C(X), ¢(: ) v(f) is a real A measurable
function and [z] ;, C gbf (v, (f)) which implies v, (f) = v, (f) for all
y € lxly )
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vy =~ i =+ =

Tty —ytp =y —aty, =

y—x+v,.

We claim that v, =g+ v, for v, a.e. g € G.
In fact, note that v (N — ) = u*(IN) = 0, hence
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Therefore for all y € [x] ,\N

vy =~ i =+ =

Tty —ytp =y —aty, =

y—x+v,.

We claim that v, =g+ v, for v, a.e. g € G.

In fact, note that v (N — ) = pu*(N) = 0, hence
vy — o |y € [a] J\N} = 1.

It remains to verify that

Stab(v,) = Support(v,),
~—————
Closed subgroup

where the support of a measure is the smallest set of points of which any
nbhd has a positive measure.
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To prove that
Stab(v,) O Support(v,)

let y € Support(v,,),
then since v, = g+v, for v, a.e. g € G, for every nbhd U, of y, we have

0<v, (U, = l/x(Uy N Stab(v,))

Yy

which shows that there exists {g,,} C Stab(v,), g
By continuity we obtain v, =y 4+ v,.
To prove

n

Stab(v,,) C Support(v,,),

let y € Stab(v,)and let U, be a nbhd of y.
Pick z € Stab(v,) N Support(v,,).
Then

v,(U,) =—2+y+v,(U,)=v,(U,—y+z) > 0.
nbhd of z
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How to show A measurability

To show A-measurability of x — v, we will show that z = v/, is
measurable with respect to the Pinsker o-algebra of T5,.

By a theorem which we will not prove (its a long detour, see Theorem
2.29 in ELW book), it follows that

Py =\ T () V) T3 ()

k>0 n=01=n

and the right hand side is contained in A.

We will first prove that x = v, is measurable with respect to the Pinsker
o-algebra of T and then we will show that the Pinsker algebras of T,
and 75 are the same!
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The group [0] , and Z,
Recall G =[0], ={z € X |x,, =0, V(mn)eNxZ}. Wewil
show that G = Z, where Z, are the 2-adic integers.

keN

We note that a convenient way to indentifty Z, elements is by formal
sums Z;’io a;27 where a; € {0,1} (the identification is
o0

Zj:O ;20 = (ag+2Z,ay + 20, + 2°Z, ...)).
Lemma. G is (naturally) isomorphic to the group of 2-adic integers

Z, = {Za,ﬂi | a; € {0,1}} :
1=0

and
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Proof. We first note that the entries of € G in the coordinates
(—m,0), m € NU {0} determines = by the following pictures:

Figure: Knowledge of 2y and 3y modulo 1 determines a unique y modulo 1

1Y 34

®
L

Figure: entries of x € GG in the coordines (—m,0), m € NU {0} determine x
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Since x_,,, o = 5wy and 2x_,,, 1 g+ Z =2_,, o+ Z the map

(1 g+ Zxg0+2) = (220 + 27, 22x_, o +2°7, ....)

defines a homomorphism ¢ : G — Z,. To show that ¢ is an isomorphism

we note a more explicit form.

If v € G thenz_,, (= Z;ZO i +7,a; €{0,1} and

2" o =0a9+ a2+ ...+ a, 2™+ 27 | It is now easy to check
that ¢ has a trivial kernel and any 2-adic integer Zzio a,2% is attained.
Finally we note that (T5z) ,, o =7_,, 1 = 3z_,, ¢ and since the map ¢
is a group homomorphism, we get ¢(T5x) = 3¢(x).
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Measurability w.r.t. Pinsker o-algebra of 5.

Proposition. The map x v, is measurable w.r.t. the Pinsker

o-algebra of 1.
Remarks before the proof.
1. Recall that a map z = v, is measurable with respect a o-algebra if for

a dense subset {f,}°°; C C(X), each of the real maps

n=1
Uy () = v, (f,) is measurable.

2. A particular type of functions f : X — R which are measurable w.r.t
the pinsker algebra of an invertible system (5(, Zé, 5, [L) are §—periodic
functions, namely f o Sk = f.

This follows since periodicity implies for ¢ > 0 that

g—if—1<U> — §—i(modk)f—1<U>,

hence the join

y SN, X\fFHU)}

is simply a finite partition, which implies

ha (S, {FHU), X\fH(U)}) = 0.
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Proof. For k € Z and [ € N we denote by B;(k) C G the image of
{reZy||v—kl, <27}

More explicitly, if we write k = ay + a2 + ... + a2 and

T = ZZio b, 2%, then |z — k|, < 27! if and only if

ag + a2+ ..+ a2t = by + b2+ .+ b2

and in particular B;(k) = B,(k’) whenever k = k’(mod 2').

Now we note that the characteristic functions x,cz._|jo—kl, <21} * £2 = R
are continuous and span dense set in C'(Z,), hence x g () span a dense
set in C(G).

Therefore, it is sufficient to show

gk:,l(x> = v, (B(k)).

are measurable w.r.t. the Pinsker algebra of Tj.
We will show that g, ; are T periodic.
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It holds that

gk:,l(Tia_lx> = VT§1w<Bl<k>> = Mﬁ—lw (T5 2 + By(k))

{1
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It holds that
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pushforward formula

(o))

= ((T5"), 1a"") (T3 + By(k)) = u" (2 + T3 By (k) =

——
pushforward definition

= i (x + By(3k)) = I3k (T)-
Ty A=A

We note that 3 is invertible modulo 2¢,
hence there exists m € N such that 3™k =k mod 2! which gives

ggmk,z@) = gk:,l<x)'

Thus
I (T3Mx) = g ().
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Beginning of the arguments that Pinsker algebras of T,

and T3 are the same
We note that £ is not a generator for T,, nevertheless we have the
following
Lemma. It holds that h, (T5,&x) =h
but we don't need it.)

correction- we do need h, (T5,€x) = by (T5) and moreover we need for every T, T

i (T3) (the same is true for Tj

invariant o algebra & that h,  (T;,{x | §) = h,, , (T; | S). The following scheme of proof shows

all of that.
Proof.
Consider
def ;
€= (&x)™ \/ Tyt

and observe that € = \/;; 7 o(Br), (this is the o-algebra generated by
the coordinates in the upper-half plane).
In particular we see that 75"C ~ By.
Hence by Kolmogorov-sinai theorem for sequences we obtain
hyy (Ty) = lim hy, (T5, T5"Ex ).

m—o0
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Finally we note that

th<T27T3€X> - th<T27€X>7

since 75 is a measure preserving isomorphism commuting with 75,
so that

HMX(\/ , ' (T56x)) \/ Ty(T5*¢x))

H, (Ts(\/ Ty'Ex)) = HMX<\/ T5*Ex)-
1=0 i=0



hMX<T2) = lim Py (T, T5"Ex).

m—o00 'y

Finally we note that

th <T2> T3€X> = th <T27 £x),

since 75 is a measure preserving isomorphism commuting with 75,
so that

HMX(\/ , ' (T56x)) \/ Ty(T5*¢x))

H, (Ts(\/ Ty'Ex)) = Hux<\/ T5*Ex)-
1=0 i=0

Hence b, (T3) =h, (T5,&x).
-End of second talk-
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Reminder from last times

We consider
A = \/71_1— \/Tn > (m0.6(By)))
n=0

and we aim to compute

H, (6x | A) = / —tog(? ([2] ave,, ))dps(),

def _
where £ = m0{[0,5) . [5.8) - [5:1)}
We saw that [ ]/z =z +G and [z]; 4 =+ T,G, where G < X is the closed
subgroup G £ 0] ,={zeX|x,,=0 V(mmn)eNxZ}
We consider the probability measures v, = —z + p! (namely,
v (B) € p#(z + B), B € B,) which are supported on G.
So we have

H, (6| A) = / ~log(v,(TyG))dpu(x).
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We proved that = = v, is measurable w.r.t the pinsker o-algebra of 7.
If we show that x = v, is also measurable w.r.t the pinsker o-algebra of
T,, then x = v, is measurable w.r.t. A which implies that v, are Haar
measures on their support (which is a subgroup of G).

We will now show that the pinsker o-algebras of 75, and T’ are the same.
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h, (T, €x | S)=h, (T;|S), for i € {1,2} (which we proved last time-see
correction before the proof).

Proposition (entropy formula-key to pinsker
meausrability). Let S be a o-algebra invariant under T, and Tj,
then

log 2
h (TS | 5)7

h, (T |S) =
MX<2|) 10g3 Hx

and in particular h, (1) = igig%(%)-

Proof. We first note the following fact - if £, and &, are partitions of a
space X and any P € & intersects at most N elements of &,, then

Hu<f1 | &) <log N

In fact,

51 | &) = Z p(P Hy, (&) < Z p(P)log(N) = log(N)

Pcg, Peg,
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If & and &, partitions of T comprised of intervals of length [, and [,
correspondingly such that

i<l2

<N
N = 3

“I

then each interval P € £ intersects at-most N + 1 intervals of &, and

vice-versa.
Now observe that\/ Sy Z{[ —) [£,2),...,[3,1)} is composed of
0

intervals of length 12( ) = == \/ SH[0,3).[3,2), . [3,1)} is
composed of intervals of length l3( ) = 2§m.

Assume that m = Uggg J then 2™ < 3" < 21 which yields

21,(m) < l3(n) < 31,(n). Hence

n—1 m—1 m—1 n—1
H X(\/ T5"¢x | \/ T5%¢x), H, ( \/ T3¢ | \/ T5"€x) < log(3)
1=0 1=0 1=0 1=0
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\/TZ§X|S )+ H, ., \/T"5‘X|S\/\/TZ£X
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n—1 n—1 m—1
1=0 1=0 1=0

m—1 m—1 n—1
H, ( \/ Ty'ex | 8)+ H, \/ Ty'6x | SV \/ T3'€x) <
1=0 1=0 1=0

m—1 ‘ m—1 ' n—1 .
H, ( \/ TyEx | S)+H, \/ Ty'Ex | \/ T3'Ex) -
1=0 1=0 1=0

<log(3)

Hence

1 n—1 m 1 m—1 .

5HMX(\/ Tytex | 8) = — —Hy \/ Ty%x | 8) +o(1)

1=0 1=0
and we get
log(3)
P (T | 8) < oo (T2 ] 8).

Reversing the role of T and T5, we obtain the opposite inequality and conclude the

result.
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Entropy formula4+-Abramov-Rokhlin formula imply Pinsker
algebras are the same

Corollary. The maps T}, and T; of (X, By, j1x) have the same Pinsker
algebra.

Proof. We first prove that P(T,) C P(Ty) modulo s y.

Note that P(7T5) is a strictly invariant sub-o algebra of 75, namely

T?)_lgo(T2) = P(T).

In fact, since T, and T are commuting and T preserves py we have
h, (TIy,{B,X\B})=h,_ (T,, T3 '{B, X\B})

hence h, (T, {B,X\B}) =0 <> h, (T, T;'{B,X\B}) = 0.
Since Ty is invertible, we get T3 1 P(Ty) = P(T,).
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We recall that a strictly invariant sub-o algebra of a transformation
corresponds to a factor.

Namely, here we deduce that there exists a space (Y, By, v,S) and a
factor map ¢ : X — Y (measurable preserving map such that

¢oTy =S5 0¢)such that ¢~ (By) = P(Ty) modulo py.

We will show now that A, (S) = 0.

By Abramov-Rokhlin formula, we get

th(TfS) — hu<S> + th<T3 | 'SD(T2)>7

and by the previous Proposition

log 2
th<T3 | ?(T2>) — @hu}((Tz | ?(T2>) —

log 2
h (T,) =
log 3 px (T2)

h’,uX <T3>

hence h,(S) = 0.
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So if A€ P(Ty), then A = ¢_1(A) and we have
By (T, {4, X\A}) = h, (S, {4, X\A}) = 0

which proves A € P(T5).



So if A€ P(Ty), then A = ¢_1(A) and we have

h, (T3, {A, X\A}) = h,(S, {4, X\A}) = 0

N

which proves A € P(T5).
The other inclusion follows by the same arguments after we exchange 3
with 2.
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Last arguments - proof that v, = m for a.e. x

Consider the set B = {x |1, (x| A)(z) > O} :
We will first show that for z € B we have that v, = m (the Haar

measure on G).
We have for x € B

0 <1, (Ex | A)(@) = —log (17 ([t]e va)) = —log (uf(x + T,G)) =

—log(v, (T5(G)).

Namely T, (G) & Support(v,, ).

Now if & € Support(v,)\T,(G) then the image of Z in Z, is of the form
1+> " ;2%

Such elements generate a dense (cyclic) subgroup of Z,.

Hence we obtain that a dense subset of G stabilizes v, which implies

that Vm = mG
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It is left to prove that B = X modulo px, and for that ergodicity and
the entropy positivity assumption comes into play.
First, since

0< th<T27€X) — HMX<€X ‘ A)a

we get iy (B) > 0.
The following proves that B is T, invariant:

—
pushforward formula

,LL"T‘ZS_lm (T 'z + T,G) —

T3 A
= pa®" (2 + TTHG) =
pushforward definition

= ((T57), 1) (T3t + THG)

= p (x+ ToG).



It is left to prove that B = X modulo px, and for that ergodicity and
the entropy positivity assumption comes into play.
First, since

0< th<T27€X) — HMX<€X ‘ A)a

we get iy (B) > 0.
The following proves that B is T, invariant:

Mﬁ—lm (T5 'z + T,G)

{1

pushforward formula

)

- <<T3_1)* :“?’A) (T3 'z + T,G) e (z + T3T,G) =

—
pushforward definition

= pt(z +T,G).

which shows I, (&x | A)(T5'z) > 0if 2 € B
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The following proves that B is 75 invariant:

it (Tye + T,G)

{1

pushforward formula

[ )

= ((T3Y), 1*") (T3 '3 + TuG) pe (2 + Ty (T,G))

N
pushforward definition
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The following proves that B is 75 invariant:

i, (Ty'2 + T,G)

{1

pushforward formula

[ )

= (), i) (T e+ 0,6) = et e+ T (16)

pushforward definition

T, A
X

note that = + G (which the support of u:*) is composed of two atoms of

since T,G is of index 2 in G.
Hence if x € B

Now we note the double conditioning formula (u!) *" = 122 and we



The following proves that B is 75 invariant:

wia, (T 'z + T,G) =

pushforward formula

_ ToA T5A
= ((15Y), na*™) (T35 2 + T,G) = et (@ + Ty (T,G))
pushforward definition

T, A
Now we note the double conditioning formula (7’ ) 2% = 422 and we
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since T,G is of index 2 in G.
Hence if x € B
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The following proves that B is 75 invariant:

wia, (T 'z + T,G) =

pushforward formula

_ T, A T, A
= (131, 1) (Te + 0,6) = e’ @+ T (10))
pushforward definition
TyA T5A
Now we note the double conditioning formula (7’ ) =pa”, and we

note that = + G (which the support of u:*) is composed of two atoms of
since T,G is of index 2 in G.

Hence if r € B

me(T5(15(G)) 1

= 7 | A (z +1LT5(G)) = me(Ty(G)) =5

A

()

which proves that I, ({x | A)(Ty x) > 0.



The following proves that B is 75 invariant:

wia, (T 'z + T,G) =

pushforward formula

_ T, A T, A
= (131, 1) (Te + 0,6) = e’ @+ T (10))
pushforward definition
TyA T5A
Now we note the double conditioning formula (7’ ) =pa”, and we

note that = + G (which the support of u:*) is composed of two atoms of
since T,G is of index 2 in G.

Hence if r € B

me(T5(15(G)) 1

= 7 | A (z +1LT5(G)) = me(Ty(G)) =5

A

()

which proves that I, ({x | A)(Ty x) > 0.
The end :)



