Rudolph's x2 x3 Theorem

Plan of the talk

▶ On the theorem

Plan of the talk

- ▶ On the theorem
- ► The invertible extension

Plan of the talk

- On the theorem
- ► The invertible extension
- ▶ Certain conditional measures as translates of a measure on a group.

Theorem Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Theorem Let $\mathbb{T}\stackrel{\mathrm{def}}{=}\mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x)\stackrel{\mathrm{def}}{=}2x$ and $S_3(x)\stackrel{\mathrm{def}}{=}3x$. Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 ,

Let $\mathbb{T}\stackrel{\mathrm{def}}{=}\mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x)\stackrel{\mathrm{def}}{=}2x$ and $S_3(x)\stackrel{\mathrm{def}}{=}3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3)

Let $\mathbb{T}\stackrel{\mathrm{def}}{=}\mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x)\stackrel{\mathrm{def}}{=}2x$ and $S_3(x)\stackrel{\mathrm{def}}{=}3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu=m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu=m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu=m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on $\mathbb{T}.$

Remark.

Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu = m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Remark.

1. It actually holds that

 $h_{\mu}(S_2)>0 \iff h_{\mu}(S_3)>0 \iff h_{\mu}(S_2^mS_3^n)>0 \text{ for some } m,n\in\mathbb{N}.$ We will briefly explain how to show this later on

Let $\mathbb{T} \stackrel{\mathrm{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\mathrm{def}}{=} 2x$ and $S_3(x) \stackrel{\mathrm{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu = m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Remark.

1. It actually holds that

 $h_{\mu}(S_2)>0\iff h_{\mu}(S_3)>0\iff h_{\mu}(S_2^mS_3^n)>0 \text{ for some } m,n\in\mathbb{N}.$ We will briefly explain how to show this later on

2. The proof simplifies considerably if one assumes that μ is T_3 ergodic.

Let $\mathbb{T} \stackrel{\text{def}}{=} \mathbb{R}/\mathbb{Z}$ and consider the maps $S_2(x) \stackrel{\text{def}}{=} 2x$ and $S_3(x) \stackrel{\text{def}}{=} 3x$.

Assume that $\mu\in\mathcal{P}(\mathbb{T})$ invariant under S_2 and S_3 , satisfies $S_2^{-1}A=S_3^{-1}A=A$ if and only if $\mu(A)\in\{0,1\}$ (namely μ is ergodic for the joint action of S_2 and S_3) and $h_\mu(S_2)>0$.

Then $\mu = m_{\mathbb{T}}$ where $m_{\mathbb{T}}$ is the Haar measure on \mathbb{T} .

Remark.

1. It actually holds that

 $h_{\mu}(S_2)>0\iff h_{\mu}(S_3)>0\iff h_{\mu}(S_2^mS_3^n)>0 \text{ for some } m,n\in\mathbb{N}.$ We will briefly explain how to show this later on

2. The proof simplifies considerably if one assumes that μ is T_3 ergodic. **Open question (Furstenberg).** Is it true that the Haar measure of \mathbb{T} is the unique non-atomic measure invariant under S_2 and S_3 ?

Furstenberg proved the following topological version of the mentioned open question.

Furstenberg proved the following topological version of the mentioned open question.

Theorem. Assume that $A \subseteq \mathbb{T}$ is a forward invariant under S_2 and S_3 (namely $\forall x \in A, \ S_i x \in A$, for $i \in \{2,3\}$). Then either A is finite or A is dense.

Furstenberg proved the following topological version of the mentioned open question.

Theorem. Assume that $A \subseteq \mathbb{T}$ is a forward invariant under S_2 and S_3 (namely $\forall x \in A, S_i x \in A$, for $i \in \{2,3\}$). Then either A is finite or A is dense.

By Rudolph's theorem we obtain the following result which can give some insight (in some cases) that Furstenberg's result can't.

Corollary from Rudolph's theorem (Exercise 9.3.2. ELW book). Let μ be an S_3 invariant and ergodic probability measure with positive entropy. Then μ almost every $x \in \mathbb{R}/\mathbb{Z}$ has a dense orbit under S_2 .

Furstenberg proved the following topological version of the mentioned open question.

Theorem. Assume that $A \subseteq \mathbb{T}$ is a forward invariant under S_2 and S_3 (namely $\forall x \in A, S_i x \in A$, for $i \in \{2,3\}$). Then either A is finite or A is dense.

By Rudolph's theorem we obtain the following result which can give some insight (in some cases) that Furstenberg's result can't.

Corollary from Rudolph's theorem (Exercise 9.3.2. ELW book). Let μ be an S_3 invariant and ergodic probability measure with positive entropy. Then μ almost every $x \in \mathbb{R}/\mathbb{Z}$ has a dense orbit under S_2 .

Example. Consider the middle third cantor set

$$C = \left\{ \sum_{i=1}^{\infty} \frac{a_i}{3^i} \mid a_i \in \{0, 2\} \right\},$$

which is clearly S_3 invariant. The Bernoulli shift on two symbols gives C an S_3 invariant ergodic measure μ_C with positive entropy.

The invertible extension

We will change the setting to the space

$$X \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$$

which will allow us to understand the dynamics more clearly.

The invertible extension

We will change the setting to the space

$$X \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$$

which will allow us to understand the dynamics more clearly.

$$X \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\}$$

X is a closed subgroup of the compact group $\mathbb{T}^{\mathbb{Z}^2}$ hence X is a compact abelian group with respect to the induced topology τ_X .

$$X \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\}$$

X is a closed subgroup of the compact group $\mathbb{T}^{\mathbb{Z}^2}$ hence X is a compact abelian group with respect to the induced topology τ_X . Let $I \subset \mathbb{Z}^2$ be a finite set and for each $\mathbf{n} \in I$ let $E_{\mathbf{n}} \subset \mathbb{T}$ be an open set

Let $I\subseteq\mathbb{Z}^2$ be a finite set and for each $\mathbf{n}\in I$ let $E_{\mathbf{n}}\subseteq\mathbb{T}$ be an open set, and define

$$\left[E_{\mathbf{n}}\right]_{\mathbf{n}\subset I}\stackrel{\mathsf{def}}{=}\left\{x\in X\mid x_{\mathbf{n}}\in E_{\mathbf{n}},\ \mathbf{n}\in I\right\}.$$

Then the sets $\left[E_{\mathbf{n}}\right]_{\mathbf{n}\subset I}$ form a basis for $\tau_X.$

Cylindrical sets in view of coordinate projections

Let

$$\pi_{m,n}:X\to\mathbb{T},$$

be the projection to the (m,n) coordinate, namely $\pi_{m,n}(x)=x_{m,n}.$

Cylindrical sets in view of coordinate projections

Let

$$\pi_{m,n}: X \to \mathbb{T},$$

be the projection to the (m,n) coordinate, namely $\pi_{m,n}(x)=x_{m,n}$. Observe that for $I\subseteq\mathbb{Z}^2$ finite, if $m_0=\min_m\{(m,n)\in I\}$ and $n_0=\min_m\{(m,n)\in I\}$, then

$$\begin{split} [E_{\mathbf{n}}]_{\mathbf{n}\subseteq I} &= \left\{ x \in X \mid x_{m_0,n_0} \in \bigcap_{(m,n)\in I} S_2^{-(m-m_0)} S_3^{-(n-n_0)} E_{m,n} \right\} = \\ &\pi_{m_0,n_0}^{-1} \left(\bigcap_{(m,n)\in I} S_2^{-(m-m_0)} S_3^{-(n-n_0)} E_{m,n} \right). \end{split}$$

Cylindrical sets in view of coordinate projections

Let

$$\pi_{m,n}:X\to\mathbb{T},$$

be the projection to the (m,n) coordinate, namely $\pi_{m,n}(x)=x_{m,n}$. Observe that for $I\subseteq\mathbb{Z}^2$ finite, if $m_0=\min_m\{(m,n)\in I\}$ and $n_0=\min_m\{(m,n)\in I\}$, then

$$\begin{split} \left[E_{\mathbf{n}}\right]_{\mathbf{n}\subseteq I} &= \left\{x \in X \mid x_{m_0,n_0} \in \bigcap_{(m,n)\in I} S_2^{-(m-m_0)} S_3^{-(n-n_0)} E_{m,n}\right\} = \\ &\pi_{m_0,n_0}^{-1} \left(\bigcap_{(m,n)\in I} S_2^{-(m-m_0)} S_3^{-(n-n_0)} E_{m,n}\right). \end{split}$$

Hence $au_{m,n} \stackrel{\text{def}}{=} \pi_{m,n}^{-1} au_{\mathbb{T}}$ generate the topology, and moreover $au_{m-1,n} \supseteq au_{m,n}, \ au_{m,n-1} \supseteq au_{m,n}$. We conclude

$$\tau_{m,n} \nearrow \tau_X$$
.

Definition. Let $\mathcal{B}_{\mathbb{T}}$ be the borel σ -algebra on \mathbb{T} .

Definition. Let $\mathcal{B}_{\mathbb{T}}$ be the borel σ -algebra on \mathbb{T} .

The $\sigma\text{-algebra generated}$ by the $(m,n)\in\mathbb{Z}^2$ coordinate $\mathcal{B}_{m,n}$ is defined to be

$$\mathcal{B}_{m,n} \stackrel{\mathrm{def}}{=} \pi_{m,n}^{-1}(\mathcal{B}_{\mathbb{T}})$$

Definition. Let $\mathcal{B}_{\mathbb{T}}$ be the borel σ -algebra on \mathbb{T} .

The $\sigma\text{-algebra}$ generated by the $(m,n)\in\mathbb{Z}^2$ coordinate $\mathcal{B}_{m,n}$ is defined to be

$$\mathcal{B}_{m,n} \stackrel{\mathrm{def}}{=} \pi_{m,n}^{-1}(\mathcal{B}_{\mathbb{T}})$$

Then we conclude that $\mathcal{B}_{m-1,n}\supseteq\mathcal{B}_{m,n}$, $\mathcal{B}_{m,n-1}\supseteq\mathcal{B}_{m,n}$, and $\bigvee_{n=0}^{\infty}\bigvee_{m=0}^{\infty}\mathcal{B}_{-m,-n}=\mathcal{B}_{X}$, where \mathcal{B}_{X} is the Borel σ -algebra on X.

Definition. Let $\mathcal{B}_{\mathbb{T}}$ be the borel σ -algebra on \mathbb{T} .

The $\sigma\text{-algebra}$ generated by the $(m,n)\in\mathbb{Z}^2$ coordinate $\mathcal{B}_{m,n}$ is defined to be

$$\mathcal{B}_{m,n} \stackrel{\mathrm{def}}{=} \pi_{m,n}^{-1}(\mathcal{B}_{\mathbb{T}})$$

Then we conclude that $\mathcal{B}_{m-1,n}\supseteq\mathcal{B}_{m,n}$, $\mathcal{B}_{m,n-1}\supseteq\mathcal{B}_{m,n}$, and $\bigvee_{n=0}^{\infty}\bigvee_{m=0}^{\infty}\mathcal{B}_{-m,-n}=\mathcal{B}_{X}$, where \mathcal{B}_{X} is the Borel σ -algebra on X.

$$[x]_{\mathcal{B}_{m,n}}=\{y\in X\mid x_{a,b}=y_{a,b},\ \forall a\geq m,\ b\geq n\}$$

•

We consider the left shift map $T_2(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m+1,n)}$ and the down shift map $T_3(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m,n+1)}$ which are invertible and keep X invariant.

$$X \xrightarrow{T_2^m T_3^n} X$$

$$\pi_{m,n} \downarrow \qquad \qquad \downarrow^{\pi_{m,n}}$$

$$\mathbb{T} \xrightarrow{S_2^m S_3^n} \mathbb{T}$$

We consider the left shift map $T_2(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m+1,n)}$ and the down shift map $T_3(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m,n+1)}$ which are invertible and keep X invariant.

$$X \xrightarrow{T_2^m T_3^n} X$$

$$\pi_{m,n} \downarrow \qquad \qquad \downarrow^{\pi_{m,n}}$$

$$\mathbb{T} \xrightarrow{S_2^m S_3^n} \mathbb{T}$$

Lemma (without proof). Assume that μ is S_2 and S_3 invariant borel probability measure on \mathbb{T} .

We consider the left shift map $T_2(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m+1,n)}$ and the down shift map $T_3(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m,n+1)}$ which are invertible and keep X invariant.

$$X \xrightarrow{T_2^m T_3^n} X$$

$$\pi_{m,n} \downarrow \qquad \qquad \downarrow^{\pi_{m,n}}$$

$$\mathbb{T} \xrightarrow{S_2^m S_3^n} \mathbb{T}$$

Lemma (without proof). Assume that μ is S_2 and S_3 invariant borel probability measure on \mathbb{T} .

Then there exists a borel probability measure μ_X on X which is T_2 , T_3 invariant and $\left(\pi_{m,n}\right)_*\mu_X=\mu$ for all $(m,n)\in\mathbb{Z}^2$.

We consider the left shift map $T_2(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m+1,n)}$ and the down shift map $T_3(x)_{(m,n)}\stackrel{\mathrm{def}}{=} x_{(m,n+1)}$ which are invertible and keep X invariant.

$$X \xrightarrow{T_2^m T_3^n} X$$

$$\pi_{m,n} \downarrow \qquad \qquad \downarrow^{\pi_{m,n}}$$

$$\mathbb{T} \xrightarrow{S_2^m S_3^n} \mathbb{T}$$

Lemma (without proof). Assume that μ is S_2 and S_3 invariant borel probability measure on \mathbb{T} .

Then there exists a borel probability measure μ_X on X which is T_2 , T_3 invariant and $\left(\pi_{m,n}\right)_*\mu_X=\mu$ for all $(m,n)\in\mathbb{Z}^2$.

Moreover, if μ is ergodic for the joint S_2 , S_3 action, then μ_X is ergodic for the joint T_2 , T_3 action.

Consider the partition $\xi_{\mathbb{T}}\stackrel{\mathrm{def}}{=}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$, and $\xi_{X}\stackrel{\mathrm{def}}{=}\pi_{0,0}^{-1}(\xi_{\mathbb{T}}).$

Consider the partition $\xi_{\mathbb{T}} \stackrel{\mathrm{def}}{=} \{ \left[0, \frac{1}{6}\right), \left[\frac{1}{6}, \frac{2}{6}\right), ..., \left[\frac{5}{6}, 1\right) \}$, and $\xi_X \stackrel{\mathrm{def}}{=} \pi_{0,0}^{-1}(\xi_{\mathbb{T}})$. Then $h_{\mu_X}(T_2, \xi_X) = h_{\mu}(S_2, \xi_{\mathbb{T}})$.

Consider the partition $\xi_{\mathbb{T}}\stackrel{\mathrm{def}}{=}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$, and $\xi_{X}\stackrel{\mathrm{def}}{=}\pi_{0,0}^{-1}(\xi_{\mathbb{T}}).$ Then $h_{\mu_{X}}(T_{2},\xi_{X})=h_{\mu}(S_{2},\xi_{\mathbb{T}}).$ In fact:

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\left(\pi_0^{-1}\xi_{\mathbb{T}}\right)) \underbrace{=}_{T_2\circ\pi_0=\pi_0\circ S_2} H_{\mu_X}(\bigvee_{i=0}^n \pi_0^{-1}\left(S_2^{-i}\xi_{\mathbb{T}}\right))$$

Consider the partition $\xi_{\mathbb{T}} \stackrel{\mathrm{def}}{=} \{ \left[0, \frac{1}{6}\right), \left[\frac{1}{6}, \frac{2}{6}\right), ..., \left[\frac{5}{6}, 1\right) \}$, and $\xi_X \stackrel{\mathrm{def}}{=} \pi_{0,0}^{-1}(\xi_{\mathbb{T}})$. Then $h_{\mu_X}(T_2, \xi_X) = h_{\mu}(S_2, \xi_{\mathbb{T}})$. In fact:

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\left(\pi_0^{-1}\xi_{\mathbb{T}}\right)) \underbrace{=}_{T_2\circ\pi_0=\pi_0\circ S_2} H_{\mu_X}(\bigvee_{i=0}^n \pi_0^{-1}\left(S_2^{-i}\xi_{\mathbb{T}}\right))$$

$$\underbrace{=}_{(\pi_0)_* \mu_X = \mu} H_\mu(\bigvee_{i=0}^n S_2^{-i} \xi_{\mathbb{T}})$$

Consider the partition $\xi_{\mathbb{T}} \stackrel{\mathrm{def}}{=} \{ \left[0, \frac{1}{6}\right), \left[\frac{1}{6}, \frac{2}{6}\right), ..., \left[\frac{5}{6}, 1\right) \}$, and $\xi_X \stackrel{\mathrm{def}}{=} \pi_{0,0}^{-1}(\xi_{\mathbb{T}})$. Then $h_{\mu_X}(T_2, \xi_X) = h_{\mu}(S_2, \xi_{\mathbb{T}})$. In fact:

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\left(\pi_0^{-1}\xi_{\mathbb{T}}\right)) \underbrace{=}_{T_2\circ\pi_0=\pi_0\circ S_2} H_{\mu_X}(\bigvee_{i=0}^n \pi_0^{-1}\left(S_2^{-i}\xi_{\mathbb{T}}\right))$$

$$\underset{(\pi_0)_*\mu_X=\mu}{\underbrace{=}} H_{\mu}(\bigvee_{i=0}^n S_2^{-i}\xi_{\mathbb{T}})$$

By the same argument $h_{\mu_X}(T_3,\xi_X)=h_{\mu}(S_3,\xi_{\mathbb{T}}).$

Consider the partition $\xi_{\mathbb{T}} \stackrel{\mathrm{def}}{=} \{ \left[0, \frac{1}{6}\right), \left[\frac{1}{6}, \frac{2}{6}\right), ..., \left[\frac{5}{6}, 1\right) \}$, and $\xi_X \stackrel{\mathrm{def}}{=} \pi_{0,0}^{-1}(\xi_{\mathbb{T}})$. Then $h_{\mu_X}(T_2, \xi_X) = h_{\mu}(S_2, \xi_{\mathbb{T}})$. In fact:

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\left(\pi_0^{-1}\xi_{\mathbb{T}}\right)) \underbrace{=}_{T_2\circ\pi_0=\pi_0\circ S_2} H_{\mu_X}(\bigvee_{i=0}^n \pi_0^{-1}\left(S_2^{-i}\xi_{\mathbb{T}}\right))$$

$$\underset{(\pi_0)_*\mu_X=\mu}{\underbrace{=}} H_{\mu}(\bigvee_{i=0}^n S_2^{-i}\xi_{\mathbb{T}})$$

By the same argument $h_{\mu_X}(T_3,\xi_X)=h_{\mu}(S_3,\xi_{\mathbb{T}}).$ Now ξ_X and $\xi_{\mathbb{T}}$ are generators for both S_2 and S_3 , thus we get Corollary. $h_{\mu_X}(T_l,\xi_X)=h_{\mu}(S_l,\xi_{\mathbb{T}})=h_{\mu}(S_l),$ for $l\in\{2,3\}.$

Assuming that μ_X is T_2,T_3 invariant and ergodic, such that $h_{\mu_X}(T_2,\xi_X)>0,$ our goal will be to show

$$h_{\mu_X}(T_2, \xi_X) = \log(2).$$

Assuming that μ_X is T_2,T_3 invariant and ergodic, such that $h_{\mu_X}(T_2,\xi_X)>0,$ our goal will be to show

$$h_{\mu_X}(T_2, \xi_X) = \log(2).$$

This will finish our proof by the following assertion.

Assuming that μ_X is T_2,T_3 invariant and ergodic, such that $h_{\mu_X}(T_2,\xi_X)>0,$ our goal will be to show

$$h_{\mu_X}(T_2, \xi_X) = \log(2).$$

This will finish our proof by the following assertion.

Lemma. $h_{\mu}(S_2) = \log(2) \iff \mu$ is the Haar measure.

Assuming that μ_X is T_2 , T_3 invariant and ergodic, such that $h_{\mu_X}(T_2,\xi_X)>0$, our goal will be to show

$$h_{\mu_X}(T_2, \xi_X) = \log(2).$$

This will finish our proof by the following assertion.

Lemma. $h_{\mu}(S_2) = \log(2) \iff \mu$ is the Haar measure.

Proof. Consider the generator $\xi_0 \stackrel{\text{def}}{=} \{[0, \frac{1}{2}), [\frac{1}{2}, 1)\}$ for S_2 .

Assuming that μ_X is T_2,T_3 invariant and ergodic, such that $h_{\mu_X}(T_2,\xi_X)>0$, our goal will be to show

$$h_{\mu_X}(T_2, \xi_X) = \log(2).$$

This will finish our proof by the following assertion.

Lemma. $h_{\mu}(S_2) = \log(2) \iff \mu$ is the Haar measure.

Proof. Consider the generator $\xi_0 \stackrel{\text{def}}{=} \{[0, \frac{1}{2}), [\frac{1}{2}, 1)\}$ for S_2 .

The partition $\bigvee_{i=0}^{N-1} S_2^{-i} \xi_{\mathbb{T}}$ consists of 2^N dyadic intervals

 $I_{j,N}\stackrel{\mathrm{def}}{=} [rac{j}{2^N},rac{j+1}{2^N})$ of length $rac{1}{2^N}.$ Once we will show that $\mu(I_{j,N})=rac{1}{2^N}$ for all $j\leq N$ and $N\in\mathbb{N}$, it will follow that $\mu=m_{\mathbb{T}}.$

Assume for contradiction that there exists $I_{j,N}$ such that $|I_{j,N}| \neq \frac{1}{2^N}$.

Assume for contradiction that there exists $I_{j,N}$ such that $|I_{j,N}| \neq \frac{1}{2^N}$. Now recall that in general, if ξ is a partition of N elements then $H_{\nu}(\xi) \leq \log N$ and

$$H_{\nu}(\xi) = \log N \iff \nu(P) = \frac{1}{N}, \ \forall P \in \xi.$$

Assume for contradiction that there exists $I_{j,N}$ such that $|I_{j,N}| \neq \frac{1}{2^N}$. Now recall that in general, if ξ is a partition of N elements then $H_{\nu}(\xi) \leq \log N$ and

$$H_{\nu}(\xi) = \log N \iff \nu(P) = \frac{1}{N}, \ \forall P \in \xi.$$

Hence

$$\frac{1}{N} H_{\mu} \left(\bigvee_{i=0}^{N-1} S_2^{-i} \xi_{\mathbb{T}} \right) < \frac{1}{N} \log(2^N) = \log(2).$$

Assume for contradiction that there exists $I_{j,N}$ such that $|I_{j,N}| \neq \frac{1}{2^N}$. Now recall that in general, if ξ is a partition of N elements then $H_{\nu}(\xi) \leq \log N$ and

$$H_{\nu}(\xi) = \log N \iff \nu(P) = \frac{1}{N}, \ \forall P \in \xi.$$

Hence

$$\frac{1}{N} H_{\mu} \left(\bigvee_{i=0}^{N-1} S_2^{-i} \xi_{\mathbb{T}} \right) < \frac{1}{N} \log(2^N) = \log(2).$$

and since $h_\mu(S_2)=h_\mu(S_2,\xi_0)=\inf_{n\geq 1}\frac{1}{n}H_\mu\left(\bigvee_{i=0}^{n-1}S_2^{-i}\xi_\mathbb{T}\right)$, we have a contradiction.

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

Lemma. For each $n \in \mathbb{N}$ we have

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}=\xi_X\vee\mathcal{A}_1$$

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

Lemma. For each $n \in \mathbb{N}$ we have

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}=\xi_X\vee\mathcal{A}_1$$

Proof. We are trying to show $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}.$

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

Lemma. For each $n \in \mathbb{N}$ we have

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}=\xi_X\vee\mathcal{A}_1$$

Proof. We are trying to show $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}=\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ Note that $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}\subseteq\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ So to prove equality it suffices to show that $\exists \epsilon>0$ such that any interval of length smaller then ϵ is in $S_3^{-n}\xi_{\mathbb{T}}\vee S_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}},$ where $\xi_{\mathbb{T}}=\{[0,1/6),..,[5/6,1)\}.$

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

Lemma. For each $n \in \mathbb{N}$ we have

$$\left(T_3^{-n}\xi_X\right)\vee\mathcal{A}_1=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}=\xi_X\vee\mathcal{A}_1$$

Proof. We are trying to show $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}=\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ Note that $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}\subseteq\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ So to prove equality it suffices to show that $\exists \epsilon>0$ such that any interval of length smaller then ϵ is in $S_3^{-n}\xi_{\mathbb{T}}\vee S_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}},$ where $\xi_{\mathbb{T}}=\{[0,1/6),..,[5/6,1)\}.$ Proof by picture

$$\mathcal{A}_1 \stackrel{\mathrm{def}}{=} \bigvee_{i=1}^{\infty} T_2^{-i} \xi_X = T_2^{-1} \pi_0^{-1} \mathcal{B}_{\mathbb{T}}.$$

Lemma. For each $n \in \mathbb{N}$ we have

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\pi_{\mathbf{0}}^{-1}\mathcal{B}_{\mathbb{T}}=\xi_X\vee\mathcal{A}_1$$

Proof. We are trying to show $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}=\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ Note that $T_3^{-n}\xi_X\vee T_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}}\subseteq\pi_0^{-1}\mathcal{B}_{\mathbb{T}}.$ So to prove equality it suffices to show that $\exists \epsilon>0$ such that any interval of length smaller then ϵ is in $S_3^{-n}\xi_{\mathbb{T}}\vee S_2^{-1}\pi_0^{-1}\mathcal{B}_{\mathbb{T}},$ where $\xi_{\mathbb{T}}=\{[0,1/6),..,[5/6,1)\}.$ Proof by picture

Proof of the picture: Note that if $|x-a|<\frac{1}{2\cdot 3^{n+1}}$ and $x\in(a,b)$ such that $b-a=\frac{1}{2\cdot 3^{n+1}}$ then its impossible that $x+\frac{1}{2}\in(a+\frac{j}{3^n},b+\frac{j}{3^n}).$ In fact, if we assume the contrary, then

$$\frac{1}{2 \cdot 3^n} - \frac{1}{2 \cdot 3^{n+1}} \leq \left| \frac{1}{2} - \frac{j}{3^n} \right| - |x - a| \leq \left| \left(x + \frac{1}{2} \right) - \left(a + \frac{j}{3^n} \right) \right| < b - a = \frac{1}{2 \cdot 3^{n+1}},$$

which is a contradiction.

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) =$$

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n \xi_X \mid T_3^n \mathcal{A}_1) =$$

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n \xi_X \mid T_3^n \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X\mid \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n\xi_X\mid T_3^n\mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$H_{\mu_X}(\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n \xi_X \mid T_3^n \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$H_{\mu_X}(\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$H_{\mu_X}(\xi_X\mid T_3^n\mathcal{A}_1).$$

Let $\mathcal{A} \stackrel{\mathrm{def}}{=} \bigvee_{n=0}^\infty T_3^n \mathcal{A}_1$, which is the σ -algebra generated by the coordinates in the right-half plane $\left\{(m,n)\in\mathbb{Z}^2\mid m>0\right\}$.

$$(T_3^{-n}\xi_X)\vee\mathcal{A}_1=\xi_X\vee\mathcal{A}_1\implies \xi_X\vee T_3^n\mathcal{A}_1=T_3^n\left(\xi_X\vee\mathcal{A}_1\right)$$

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n \xi_X \mid T_3^n \mathcal{A}_1) =$$

$$H_{\mu_X}(T_3^n\xi_X\vee T_3^n\mathcal{A}_1\mid T_3^n\mathcal{A}_1)=$$

$$H_{\mu_X}(\xi_X \vee T_3^n \mathcal{A}_1 \mid T_3^n \mathcal{A}_1) =$$

$$H_{\mu_X}(\xi_X \mid T_3^n \mathcal{A}_1).$$

Let $\mathcal{A} \stackrel{\mathsf{def}}{=} \bigvee_{n=0}^\infty T_3^n \mathcal{A}_1$, which is the σ -algebra generated by the coordinates in the right-half plane $\left\{(m,n) \in \mathbb{Z}^2 \mid m>0\right\}$. Then $T_3^n \mathcal{A}_1 \nearrow \mathcal{A}$ and

$$h_{\mu_X}(T_2,\xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}_1) = \lim_{n \to \infty} H_{\mu_X}(\xi_X \mid T_3^n \mathcal{A}_1) = H_{\mu_X}(\xi_X \mid \mathcal{A}).$$

--- End of first talk-

We consider the space

$$X \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$$

We consider the space

 $X \stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n} + \mathbf{e}_1} = 2x_n, \ x_{\mathbf{n} + \mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$ with a borel probability measure μ_X which is invariant and jointly ergodic under the shift to the left T_2 and the shift to the down T_3

We consider the space

$$\begin{split} X &\stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n}+\mathbf{e}_1} = 2x_n, \ x_{\mathbf{n}+\mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\}, \\ \text{with a borel probability measure } \mu_X \text{ which is invariant and jointly ergodic under the shift to the left } T_2 \text{ and the shift to the down } T_3 \\ \text{and } h_{\mu_X}(T_2, \xi_X) > 0 \text{, where } \xi_X = \pi_{0,0}^{-1} \left(\left\{ \left[0, \frac{1}{6}\right), \left[\frac{1}{6}, \frac{2}{6}\right), ..., \left[\frac{5}{6}, 1\right) \right\} \right). \end{split}$$

We consider the space

 $X \stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n}+\mathbf{e}_1} = 2x_n, \ x_{\mathbf{n}+\mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$ with a borel probability measure μ_X which is invariant and jointly ergodic under the shift to the left T_2 and the shift to the down T_3 and $h_{\mu_X}(T_2,\xi_X) > 0$, where $\xi_X = \pi_{0,0}^{-1}\left(\left\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\right\}\right).$ We came to the conclusion that

$$h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

We consider the space

 $X \stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n}+\mathbf{e}_1} = 2x_n, \ x_{\mathbf{n}+\mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$ with a borel probability measure μ_X which is invariant and jointly ergodic under the shift to the left T_2 and the shift to the down T_3 and $h_{\mu_X}(T_2,\xi_X) > 0$, where $\xi_X = \pi_{0,0}^{-1}\left(\left\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\right\}\right).$ We came to the conclusion that

$$h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

where $\mathcal A$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb N\times\mathbb Z$, namely

$$\mathcal{A} \stackrel{\mathrm{def}}{=} \bigvee_{n=0}^{\infty} T_3^n T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) = \bigvee_{n=0}^{\infty} \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}),$$

where $\pi_{a,b}:X\to\mathbb{T},$ is the projection to the coordinate.

We consider the space

 $X \stackrel{\mathrm{def}}{=} \left\{ x \in \mathbb{T}^{\mathbb{Z}^2} \mid x_{\mathbf{n}+\mathbf{e}_1} = 2x_n, \ x_{\mathbf{n}+\mathbf{e}_2} = 3x_n, \ \forall \mathbf{n} \in \mathbb{Z}^2 \right\},$ with a borel probability measure μ_X which is invariant and jointly ergodic under the shift to the left T_2 and the shift to the down T_3 and $h_{\mu_X}(T_2,\xi_X) > 0$, where $\xi_X = \pi_{0,0}^{-1}\left(\left\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\right\}\right).$ We came to the conclusion that

$$h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

where $\mathcal A$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb N\times\mathbb Z$, namely

$$\mathcal{A} \stackrel{\mathrm{def}}{=} \bigvee_{n=0}^{\infty} T_3^n T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) = \bigvee_{n=0}^{\infty} \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}),$$

where $\pi_{a,b}:X\to\mathbb{T},$ is the projection to the coordinate. Once we show $H_{\mu_X}(\xi_X\mid\mathcal{A})=\log(2)$ we are done.

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

so we should understand the conditional measures $\mu_x^{\mathcal{A}}$ and the atoms $[x]_{\mathcal{A}\vee\xi_X}$.

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

so we should understand the conditional measures $\mu_x^{\mathcal{A}}$ and the atoms $[x]_{\mathcal{A}\vee\xi_X}$.

We now show that $\mathcal{A}\vee\xi_X=T_2\mathcal{A}$, where $T_2\mathcal{A}=\bigvee_{n=0}^\infty\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}})$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb{N}\cup\{0\}\times\mathbb{Z}.$

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

so we should understand the conditional measures $\mu_x^{\mathcal{A}}$ and the atoms $[x]_{\mathcal{A}\vee\xi_x}$.

We now show that $\mathcal{A}\vee\xi_X=T_2\mathcal{A}$, where $T_2\mathcal{A}=\bigvee_{n=0}^\infty\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}})$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb{N}\cup\{0\}\times\mathbb{Z}$.

$$\xi_X \vee T_3^n T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) \underbrace{=}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \underbrace{\left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)$$

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

so we should understand the conditional measures $\mu_x^{\mathcal{A}}$ and the atoms $[x]_{\mathcal{A}\vee\xi_x}$.

We now show that $\mathcal{A}\vee\xi_X=T_2\mathcal{A}$, where $T_2\mathcal{A}=\bigvee_{n=0}^\infty\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}})$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb{N}\cup\{0\}\times\mathbb{Z}.$

$$\xi_X \vee T_3^n T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) \underbrace{\equiv}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \frac{1}{2} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)$$

$$T_3^n\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})=\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}}),$$

which gives

Recall that

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

so we should understand the conditional measures $\mu_x^{\mathcal{A}}$ and the atoms $[x]_{\mathcal{A}\vee\xi_{\,\mathbf{x}}}$.

We now show that $\mathcal{A}\vee\xi_X=T_2\mathcal{A}$, where $T_2\mathcal{A}=\bigvee_{n=0}^\infty\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}})$ is the σ -algebra generated by the coordinates $(m,n)\in\mathbb{N}\cup\{0\}\times\mathbb{Z}.$

$$\xi_X \vee T_3^n T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) \underbrace{\equiv}_{\text{Lemma from last time}} T_3^n \left(\xi_X \vee T_2^{-1} \pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right) = \frac{1}{2} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})\right)$$

$$T_3^n\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}})=\pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}}),$$

which gives

$$\xi_X \vee \mathcal{A} = \xi_X \vee \bigvee_{n=0}^{\infty} T_3^n \mathcal{A}_1 = \bigvee_{n=0}^{\infty} \pi_{0,-n}^{-1}(\mathcal{B}_{\mathbb{T}}).$$

Proposition. It holds that

$$\begin{split} G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} &= \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \ \mathrm{i} \ \mathrm{s} \ \mathrm{a} \ \mathrm{closed} \\ \mathrm{subgroup} \ \mathrm{of} \ X \ \mathrm{and} \ [0]_{\xi_X \vee \mathcal{A}} &= T_2 G \leq G \ \mathrm{of} \ \mathrm{index} \ 2. \end{split}$$

Proposition. It holds that

$$\begin{split} G &\stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} = \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \ \mathrm{i} \ \mathrm{s} \ \mathrm{a} \ \mathrm{closed} \\ \mathrm{subgroup} \ \mathrm{of} \ X \ \mathrm{and} \ [0]_{\xi_X \vee \mathcal{A}} = T_2 G \leq G \ \mathrm{of} \ \mathrm{index} \ 2. \\ \mathrm{Moreover,} \ [x]_{\mathcal{A}} = x + G \ \mathrm{and} \ [x]_{\xi_X \vee \mathcal{A}} = x + T_2 G. \end{split}$$

Proposition. It holds that

$$\begin{split} G &\stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} = \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \text{ i s a closed subgroup of } X \text{ and } [0]_{\xi_X \vee \mathcal{A}} = T_2 G \leq G \text{ of index 2.} \\ &\text{Moreover, } [x]_{\mathcal{A}} = x + G \text{ and } [x]_{\xi_X \vee \mathcal{A}} = x + T_2 G. \end{split}$$

Proof. Note that $x \in [0]_{\mathcal{A}}$ if and only if $x_{m,n} = 0$, for all m > 0 and $n \in \mathbb{N}$.

Proposition. It holds that

 $G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} = \left\{ x \in X \mid x_{m,n} = 0, \ \forall \, (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \text{ i s a closed }$ subgroup of X and $[0]_{\xi_X\vee\mathcal{A}}=T_2G\leq G$ of index 2. Moreover, $[x]_{\mathcal{A}}=x+G$ and $[x]_{\xi_X\vee\mathcal{A}}=x+T_2G$.

Proof. Note that $x \in [0]_{\mathcal{A}}$ if and only if $x_{m,n} = 0$, for all m > 0 and $n \in \mathbb{N}$.

Hence if we consider the continuous projection

$$(x)_{(m,n)\in\mathbb{Z}^2}\mapsto (x)_{(m,n)\in\mathbb{N}\times\mathbb{Z}}\,,$$

then $G=\left[0\right]_{\mathcal{A}}$ is the kernel, which is a closed subgroup, hence also $[x]_{\mathcal{A}} = x + \tilde{G}.$

Proposition. It holds that

 $G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} = \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \ \mathrm{is \ a \ closed}$ subgroup of X and $[0]_{\xi_X\vee\mathcal{A}}=T_2G\leq G$ of index 2. Moreover, $[x]_{\mathcal{A}}=x+G$ and $[x]_{\xi_X\vee\mathcal{A}}=x+T_2G$.

Proof. Note that $x \in [0]_{\mathcal{A}}$ if and only if $x_{m,n} = 0$, for all m > 0 and $n \in \mathbb{N}$.

Hence if we consider the continuous projection

$$(x)_{(m,n)\in\mathbb{Z}^2}\mapsto (x)_{(m,n)\in\mathbb{N}\times\mathbb{Z}}\,,$$

then $G = [0]_{\mathcal{A}}$ is the kernel, which is a closed subgroup, hence also $[x]_{\mathcal{A}} = x + \check{G}.$

Next, since $\xi_X \vee \mathcal{A} = T_2 \mathcal{A}$,

$$[x]_{\xi_X \vee \mathcal{A}} = [x]_{T_2 \mathcal{A}} = T_2 [T_2^{-1} x]_{\mathcal{A}} = x + T_2 G.$$

Proposition. It holds that

$$\begin{split} G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} &= \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \ \mathrm{is \ a \ closed} \\ \mathrm{subgroup \ of} \ X \ \mathrm{and} \ [0]_{\xi_X \vee \mathcal{A}} &= T_2 G \leq G \ \mathrm{of \ index} \ 2. \end{split}$$

Moreover, $[x]_{\mathcal{A}} = x + G$ and $[x]_{\xi_X \vee \mathcal{A}} = x + T_2G$.

Proof. Note that $x \in [0]_{\mathcal{A}}$ if and only if $x_{m,n} = 0$, for all m > 0 and $n \in \mathbb{N}$.

Hence if we consider the continuous projection

$$(x)_{(m,n)\in\mathbb{Z}^2}\mapsto (x)_{(m,n)\in\mathbb{N}\times\mathbb{Z}}\,,$$

then $G = [0]_{\mathcal{A}}$ is the kernel, which is a closed subgroup, hence also $[x]_{\mathcal{A}} = x + G$.

Next, since $\xi_X \vee \mathcal{A} = T_2 \mathcal{A}$,

$$[x]_{\xi_X \vee \mathcal{A}} = [x]_{T_2 \mathcal{A}} = T_2 [T_2^{-1} x]_{\mathcal{A}} = x + T_2 G.$$

Now $x \in G \iff x_{0,n} = 0$ for all $n \in \mathbb{Z}$ or $x_{0,n} = \frac{1}{2}$ for all $n \in \mathbb{Z}$,

Proposition. It holds that

$$\begin{split} G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} &= \left\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \right\} \ \mathrm{is \ a \ closed} \\ \mathrm{subgroup \ of} \ X \ \mathrm{and} \ [0]_{\xi_X \vee \mathcal{A}} &= T_2 G \leq G \ \mathrm{of \ index} \ 2. \end{split}$$

Moreover, $[x]_{\mathcal{A}} = x + \hat{G}$ and $[x]_{\xi_X \vee \mathcal{A}} = x + T_2 G$.

Proof. Note that $x \in [0]_{\mathcal{A}}$ if and only if $x_{m,n} = 0$, for all m > 0 and $n \in \mathbb{N}$.

Hence if we consider the continuous projection

$$(x)_{(m,n)\in\mathbb{Z}^2}\mapsto (x)_{(m,n)\in\mathbb{N}\times\mathbb{Z}}\,,$$

then $G = [0]_{\mathcal{A}}$ is the kernel, which is a closed subgroup, hence also $[x]_{\mathcal{A}} = x + G$.

Next, since $\xi_X \vee \mathcal{A} = T_2 \mathcal{A}$,

$$[x]_{\xi_X \vee \mathcal{A}} = [x]_{T_2 \mathcal{A}} = T_2 [T_2^{-1} x]_{\mathcal{A}} = x + T_2 G.$$

Now $x\in G\iff x_{0,n}=0$ for all $n\in\mathbb{Z}$ or $x_{0,n}=\frac{1}{2}$ for all $n\in\mathbb{Z}$, and $x\in T_2G\le G\iff x_{0,n}=0$ for all $n\in\mathbb{Z}$. Hence T_2G is of index 2.

Consider the probability measure supported on ${\cal G}$ defined by

$$\nu_x(B) \stackrel{\mathrm{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}.$

Consider the probability measure supported on ${\cal G}$ defined by

$$\nu_x(B) \stackrel{\mathrm{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}.$

In the rest of the proof we will aim to show that for μ_X almost every $x\in X$ it holds that $\nu_x=m_G,$ where m_G is the Haar probability measure on G.

Consider the probability measure supported on ${\cal G}$ defined by

$$\nu_x(B) \stackrel{\mathrm{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}.$

In the rest of the proof we will aim to show that for μ_X almost every $x\in X$ it holds that $\nu_x=m_G,$ where m_G is the Haar probability measure on G.

Lemma. Assume that for μ almost every $x \in X$ it holds that $\nu_x = m_G$, then $H_{\mu_X}(\xi_X \mid \mathcal{A}) = \log(2)$.

Consider the probability measure supported on G defined by

$$\nu_x(B) \stackrel{\mathsf{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}$.

In the rest of the proof we will aim to show that for μ_X almost every $x\in X$ it holds that $\nu_x=m_G,$ where m_G is the Haar probability measure on G.

Lemma. Assume that for μ almost every $x \in X$ it holds that $\nu_x = m_G$, then $H_{\mu_X}(\xi_X \mid \mathcal{A}) = \log(2)$.

Consider the probability measure supported on G defined by

$$\nu_x(B) \stackrel{\mathsf{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}.$

In the rest of the proof we will aim to show that for μ_X almost every $x\in X$ it holds that $\nu_x=m_G,$ where m_G is the Haar probability measure on G.

Lemma. Assume that for μ almost every $x \in X$ it holds that $\nu_x = m_G$, then $H_{\mu_X}(\xi_X \mid \mathcal{A}) = \log(2)$.

$$\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A}\vee\xi_X}\right) = \mu_x^{\mathcal{A}}\left(x + T_2G\right) = m_G(T_2G) \underset{\text{index 2}}{\underbrace{=}} \frac{1}{2}$$

Consider the probability measure supported on G defined by

$$\nu_x(B) \stackrel{\mathsf{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G,$$

namely $\nu_x = -x + \mu_x^{\mathcal{A}}.$

In the rest of the proof we will aim to show that for μ_X almost every $x\in X$ it holds that $\nu_x=m_G,$ where m_G is the Haar probability measure on G.

Lemma. Assume that for μ almost every $x \in X$ it holds that $\nu_x = m_G$, then $H_{\mu_X}(\xi_X \mid \mathcal{A}) = \log(2)$.

Proof. Note that $I_{\mu_X}(\xi_X \mid \mathcal{A})(x) = -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A}\vee\xi_X}\right)),$ and

$$\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A}\vee\xi_X}\right) = \mu_x^{\mathcal{A}}\left(x + T_2G\right) = m_G(T_2G) \underset{\text{index 2}}{\underbrace{=}} \frac{1}{2}$$

Finally

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int I_{\mu_X}(\xi_X \mid \mathcal{A})(x) d\mu_X(x) = \log(2).$$

The plan (roughly) to show that $\nu_x=m_G$ is to first prove that ν_x are the Haar measures on a certain subgroup G_x , and then to use ergodicity and entropy assumption to prove that $\nu_x=m_G$ for a.e. x.

The plan (roughly) to show that $\nu_x=m_G$ is to first prove that ν_x are the Haar measures on a certain subgroup G_x , and then to use ergodicity and entropy assumption to prove that $\nu_x=m_G$ for a.e. x. Lemma. ($\mathcal A$ measurability gives invariance) Assume that the map $x\mapsto \nu_x$ is measurable w.r.t $\mathcal A$.

The plan (roughly) to show that $\nu_x=m_G$ is to first prove that ν_x are the Haar measures on a certain subgroup G_x , and then to use ergodicity and entropy assumption to prove that $\nu_x=m_G$ for a.e. x.

Lemma. (\mathcal{A} measurability gives invariance) Assume that the map $x\mapsto \nu_x$ is measurable w.r.t \mathcal{A} .

Then for μ_X a.e. x the measure ν_x is the Haar measure on the closed subgroup

$$\mathsf{Stab}(\nu_x) = \left\{g \in G \mid \nu_x + g = \nu_x\right\}.$$

The plan (roughly) to show that $\nu_x=m_G$ is to first prove that ν_x are the Haar measures on a certain subgroup G_x , and then to use ergodicity and entropy assumption to prove that $\nu_x=m_G$ for a.e. x.

Lemma. ($\mathcal A$ measurability gives invariance) Assume that the map $x\mapsto \nu_x$ is measurable w.r.t $\mathcal A$.

Then for μ_X a.e. x the measure ν_x is the Haar measure on the closed subgroup

$$\mathsf{Stab}(\nu_x) = \left\{g \in G \mid \nu_x + g = \nu_x\right\}.$$

Proof. We may assume that the measures $\mu_x^{\mathcal{A}}$ are defined for all $x \in X \backslash N$ and $\mu_x^{\mathcal{A}}(N) = 0, \ \forall x \in X \backslash N$.

The plan (roughly) to show that $\nu_x=m_G$ is to first prove that ν_x are the Haar measures on a certain subgroup G_x , and then to use ergodicity and entropy assumption to prove that $\nu_x=m_G$ for a.e. x.

Lemma. (\mathcal{A} measurability gives invariance) Assume that the map $x \mapsto \nu_x$ is measurable w.r.t \mathcal{A} .

Then for μ_X a.e. x the measure ν_x is the Haar measure on the closed subgroup

$$\mathsf{Stab}(\nu_x) = \left\{g \in G \mid \nu_x + g = \nu_x\right\}.$$

Proof. We may assume that the measures $\mu_x^{\mathcal{A}}$ are defined for all $x \in X \backslash N$ and $\mu_x^{\mathcal{A}}(N) = 0, \ \forall x \in X \backslash N$.

Since $x \mapsto \nu_x$ is \mathcal{A} measurable, and since $x \mapsto \mu_x^{\mathcal{A}}$ is \mathcal{A} measurable (by the theorem about conditional measures), we get that for all $y \in [x]_{\mathcal{A}} \backslash N$

$$\nu_x = \nu_y, \quad \mu_x^{\mathcal{A}} = \mu_y^{\mathcal{A}}.$$

(since then for all $f\in C(X)$, $\phi_f(\cdot)\stackrel{\mathsf{def}}{=} \nu_\cdot(f)$ is a real $\mathcal A$ measurable function and $[x]_{\mathcal A}\subseteq \phi_f^{-1}(\nu_x(f))$ which implies $\nu_x(f)=\nu_y(f)$ for all $y\in [x]_{\mathcal A}$).

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$-x+y-y+\mu_y^{\mathcal{A}}=y-x+\nu_y=$$

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$-x+y-y+\mu_y^{\mathcal{A}}=y-x+\nu_y=$$

$$y - x + \nu_x$$
.

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$-x+y-y+\mu_y^{\mathcal{A}}=y-x+\nu_y=$$

$$y-x+\nu_x$$
.

We claim that $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G.$

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$-x+y-y+\mu_y^{\mathcal{A}}=y-x+\nu_y=$$

$$y-x+\nu_x$$
.

We claim that $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G.$ In fact, note that $\nu_x(N-x)=\mu_x^{\mathcal{A}}(N)=0,$ hence $\nu_x\{y-x\mid y\in [x]_{\mathcal{A}}\backslash N\}=1.$

$$\nu_x = -x + \mu_x^{\mathcal{A}} = -x + \mu_y^{\mathcal{A}} =$$

$$-x+y-y+\mu_y^{\mathcal{A}}=y-x+\nu_y=$$

$$y-x+\nu_x$$
.

We claim that $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G.$ In fact, note that $\nu_x(N-x)=\mu_x^{\mathcal{A}}(N)=0,$ hence $\nu_x\{y-x\mid y\in [x]_{\mathcal{A}}\backslash N\}=1.$ It remains to verify that

$$\underbrace{\mathsf{Stab}(\nu_x)}_{\mathsf{Closed\ subgroup}} = \mathsf{Support}(\nu_x),$$

where the support of a measure is the smallest set of points of which any nbhd has a positive measure.

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x)\text{,}$

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

let $y\in {\sf Support}(\nu_x)$, then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y, we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x)\text{,}$

then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y, we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

which shows that there exists $\{g_n\}\subseteq \operatorname{Stab}(\nu_x)$, $g_n\to y.$

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x)\text{,}$

then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y, we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

which shows that there exists $\{g_n\}\subseteq \mathrm{Stab}(\nu_x)$, $g_n\to y.$ By continuity we obtain $\nu_x=y+\nu_x.$

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x),$

then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y, we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

which shows that there exists $\{g_n\}\subseteq {\rm Stab}(\nu_x)$, $g_n\to y.$ By continuity we obtain $\nu_x=y+\nu_x.$ To prove

$$\mathsf{Stab}(\nu_x) \subseteq \mathsf{Support}(\nu_x),$$

 $\text{let } y \in \operatorname{Stab}(\nu_x) \text{and let } U_y \text{ be a nbhd of } y.$

To prove that

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x)\text{,}$

then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y , we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

which shows that there exists $\{g_n\}\subseteq {\rm Stab}(\nu_x),\ g_n\to y.$ By continuity we obtain $\nu_x=y+\nu_x.$ To prove

$$\mathsf{Stab}(\nu_x) \subseteq \mathsf{Support}(\nu_x),$$

 $\begin{array}{l} \text{let } y \in \operatorname{Stab}(\nu_x) \text{and let } U_y \text{ be a nbhd of } y. \\ \operatorname{Pick } z \in \operatorname{Stab}(\nu_x) \cap \operatorname{Support}(\nu_x). \end{array}$

To prove that

$$\mathsf{Stab}(\nu_x) \supseteq \mathsf{Support}(\nu_x)$$

 $\mathsf{let}\ y \in \mathsf{Support}(\nu_x)\text{,}$

then since $\nu_x=g+\nu_x$ for ν_x a.e. $g\in G$, for every nbhd U_y of y , we have

$$0<\nu_x(U_y)=\nu_x(U_y\cap\operatorname{Stab}(\nu_x))$$

which shows that there exists $\{g_n\}\subseteq {\rm Stab}(\nu_x)$, $g_n\to y.$ By continuity we obtain $\nu_x=y+\nu_x.$ To prove

$$\mathsf{Stab}(\nu_x) \subseteq \mathsf{Support}(\nu_x),$$

 $\begin{array}{l} \text{let } y \in \operatorname{Stab}(\nu_x) \text{and let } U_y \text{ be a nbhd of } y. \\ \operatorname{Pick } z \in \operatorname{Stab}(\nu_x) \cap \operatorname{Support}(\nu_x). \end{array}$

Then

$$\nu_x(U_y) = -z + y + \nu_x(U_y) = \nu_x(\underbrace{U_y - y}_{\text{nbhd of }z} + z) > 0.$$

To show $\mathcal{A}\text{-measurability}$ of $x\mapsto \nu_x$, we will show that $x\mapsto \nu_x$ is measurable with respect to the Pinsker $\sigma\text{-algebra}$ of T_2 .

To show \mathcal{A} -measurability of $x\mapsto \nu_x$, we will show that $x\mapsto \nu_x$ is measurable with respect to the Pinsker σ -algebra of T_2 . By a theorem which we will not prove (its a long detour, see Theorem 2.29 in ELW book), it follows that

$$\mathcal{P}(T_2) \underset{\mu_X}{=} \bigvee_{k \geq 0} T_3^k \bigcap_{n=0}^{\infty} \bigvee_{i=n}^{\infty} T_2^{-i}(\xi_X)$$

and the right hand side is contained in \mathcal{A} .

To show \mathcal{A} -measurability of $x\mapsto \nu_x$, we will show that $x\mapsto \nu_x$ is measurable with respect to the Pinsker σ -algebra of T_2 . By a theorem which we will not prove (its a long detour, see Theorem 2.29 in ELW book), it follows that

$$\mathcal{P}(T_2) \underset{\mu_X}{=} \bigvee_{k \geq 0} T_3^k \bigcap_{n=0}^{\infty} \bigvee_{i=n}^{\infty} T_2^{-i}(\xi_X)$$

and the right hand side is contained in \mathcal{A} .

We will first prove that $x\mapsto \nu_x$ is measurable with respect to the Pinsker σ -algebra of T_3 and then we will show that the Pinsker algebras of T_2 and T_3 are the same!

The group $\left[0\right]_{\mathcal{A}}$ and \mathbb{Z}_2

Recall $G = [0]_{\mathcal{A}}^{\mathcal{A}} = \big\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \big\}.$ We will show that $G \cong \mathbb{Z}_2$ where \mathbb{Z}_2 are the 2-adic integers.

$$\mathbb{Z}_2 = \lim_{\stackrel{\longleftarrow}{k \in \mathbb{N}}} \mathbb{Z}/2^k \mathbb{Z} = \left\{ (x_1, x_2, \ldots) \mid x_j \in \mathbb{Z}/2^j \mathbb{Z}, \ x_{j+1} = x_j \mod 2^j \right\}$$

Recall $G = [0]_{\mathcal{A}}^{\mathcal{T}} = \big\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \big\}.$ We will show that $G \cong \mathbb{Z}_2$ where \mathbb{Z}_2 are the 2-adic integers.

$$\mathbb{Z}_2 = \lim_{\stackrel{\longleftarrow}{k \in \mathbb{N}}} \mathbb{Z}/2^k \mathbb{Z} = \left\{ (x_1, x_2, \ldots) \mid x_j \in \mathbb{Z}/2^j \mathbb{Z}, \ x_{j+1} = x_j \mod 2^j \right\}$$

We note that a convenient way to indentifty \mathbb{Z}_2 elements is by formal sums $\sum_{j=0}^\infty a_j 2^j$ where $a_j \in \{0,1\}$ (the identification is $\sum_{j=0}^\infty a_j 2^j \mapsto (a_0 + 2\mathbb{Z}, a_0 + 2a_1 + 2^2\mathbb{Z}, \ldots)$).

Recall $G=[0]_{\mathcal{A}}^{\mathcal{T}}=\left\{x\in X\mid x_{m,n}=0,\ \forall\,(m,n)\in\mathbb{N}\times\mathbb{Z}\right\}$. We will show that $G\cong\mathbb{Z}_2$ where \mathbb{Z}_2 are the 2-adic integers.

$$\mathbb{Z}_2 = \lim_{\stackrel{\longleftarrow}{k \in \mathbb{N}}} \mathbb{Z}/2^k \mathbb{Z} = \left\{ (x_1, x_2, \ldots) \mid x_j \in \mathbb{Z}/2^j \mathbb{Z}, \ x_{j+1} = x_j \mod 2^j \right\}$$

We note that a convenient way to indentifty \mathbb{Z}_2 elements is by formal sums $\sum_{j=0}^\infty a_j 2^j$ where $a_j \in \{0,1\}$ (the identification is $\sum_{j=0}^\infty a_j 2^j \mapsto (a_0 + 2\mathbb{Z}, a_0 + 2a_1 + 2^2\mathbb{Z}, \ldots)$).

Lemma. G is (naturally) isomorphic to the group of 2-adic integers

$$\mathbb{Z}_2 = \left\{ \sum_{i=0}^{\infty} a_i 2^i \mid a_i \in \{0,1\} \right\},\,$$

Recall $G=[0]_{\mathcal{A}}^{\mathcal{T}}=\left\{x\in X\mid x_{m,n}=0,\ \forall\,(m,n)\in\mathbb{N}\times\mathbb{Z}\right\}$. We will show that $G\cong\mathbb{Z}_2$ where \mathbb{Z}_2 are the 2-adic integers.

$$\mathbb{Z}_2 = \lim_{\stackrel{\longleftarrow}{k \in \mathbb{N}}} \mathbb{Z}/2^k \mathbb{Z} = \left\{ (x_1, x_2, \ldots) \mid x_j \in \mathbb{Z}/2^j \mathbb{Z}, \ x_{j+1} = x_j \mod 2^j \right\}$$

We note that a convenient way to indentifty \mathbb{Z}_2 elements is by formal sums $\sum_{j=0}^{\infty}a_j2^j$ where $a_j\in\{0,1\}$ (the identification is $\sum_{j=0}^{\infty}a_j2^j\mapsto(a_0+2\mathbb{Z},a_0+2a_1+2^2\mathbb{Z},...)$).

Lemma. G is (naturally) isomorphic to the group of 2-adic integers

$$\mathbb{Z}_2 = \left\{ \sum_{i=0}^{\infty} a_i 2^i \mid a_i \in \{0, 1\} \right\},\,$$

and

$$G \longrightarrow \mathbb{Z}_2$$

$$T_3 \downarrow \qquad \qquad \downarrow \times 3$$

$$G \longrightarrow \mathbb{Z}_2$$

Proof. We first note that the entries of $x \in G$ in the coordinates $(-m,0), m \in \mathbb{N} \cup \{0\}$ determines x by the following pictures:

Proof. We first note that the entries of $x \in G$ in the coordinates $(-m,0), m \in \mathbb{N} \cup \{0\}$ determines x by the following pictures:

Figure: Knowledge of 2y and 3y modulo 1 determines a unique y modulo 1

Proof. We first note that the entries of $x \in G$ in the coordinates $(-m,0), m \in \mathbb{N} \cup \{0\}$ determines x by the following pictures:

Figure: Knowledge of 2y and 3y modulo 1 determines a unique y modulo 1

Figure: entries of $x \in G$ in the coordines $(-m,0), m \in \mathbb{N} \cup \{0\}$ determine x

Since
$$x_{-m,0}=\frac{q}{2^{m+1}}$$
 and $2x_{-m-1,0}+\mathbb{Z}=x_{-m,0}+\mathbb{Z}$ the map
$$(...,x_{-1,0}+\mathbb{Z},x_{0,0}+\mathbb{Z})\mapsto \left(2x_{0,0}+2\mathbb{Z},\ 2^2x_{-1,0}+2^2\mathbb{Z},....\right)$$

defines a homomorphism $\phi:G\to\mathbb{Z}_2.$ To show that ϕ is an isomorphism we note a more explicit form.

Since
$$x_{-m,0}=\frac{q}{2^{m+1}}$$
 and $2x_{-m-1,0}+\mathbb{Z}=x_{-m,0}+\mathbb{Z}$ the map
$$(...,x_{-1,0}+\mathbb{Z},x_{0,0}+\mathbb{Z})\mapsto \left(2x_{0,0}+2\mathbb{Z},\ 2^2x_{-1,0}+2^2\mathbb{Z},....\right)$$

defines a homomorphism $\phi:G\to\mathbb{Z}_2.$ To show that ϕ is an isomorphism we note a more explicit form.

If $x\in G$ then $x_{-m,0}=\sum_{j=0}^m\frac{a_{m-j}}{2^{j+1}}+\mathbb{Z}$, $a_i\in\{0,1\}$ and $2^{m+1}x_{-m,0}=a_0+a_12+\ldots+a_m2^m+2^{m+1}\mathbb{Z}$. It is now easy to check that ϕ has a trivial kernel and any 2-adic integer $\sum_{k=0}^\infty a_k2^k$ is attained.

Since
$$x_{-m,0}=\frac{q}{2^{m+1}}$$
 and $2x_{-m-1,0}+\mathbb{Z}=x_{-m,0}+\mathbb{Z}$ the map
$$(...,x_{-1,0}+\mathbb{Z},x_{0,0}+\mathbb{Z})\mapsto \left(2x_{0,0}+2\mathbb{Z},\ 2^2x_{-1,0}+2^2\mathbb{Z},....\right)$$

defines a homomorphism $\phi:G\to\mathbb{Z}_2$. To show that ϕ is an isomorphism we note a more explicit form.

If $x\in G$ then $x_{-m,0}=\sum_{j=0}^m\frac{a_{m-j}}{2^{j+1}}+\mathbb{Z}$, $a_i\in\{0,1\}$ and $2^{m+1}x_{-m,0}=a_0+a_12+\ldots+a_m2^m+2^{m+1}\mathbb{Z}$. It is now easy to check that ϕ has a trivial kernel and any 2-adic integer $\sum_{k=0}^\infty a_k2^k$ is attained. Finally we note that $(T_3x)_{-m,0}=x_{-m,1}=3x_{-m,0}$ and since the map ϕ is a group homomorphism, we get $\phi(T_3x)=3\phi(x)$.

Proposition. The map $x\mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Proposition. The map $x\mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Remarks before the proof.

Proposition. The map $x\mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Remarks before the proof.

1. Recall that a map $x\mapsto \nu_x$ is measurable with respect a σ -algebra if for a dense subset $\{f_n\}_{n=1}^\infty\subseteq C(X)$, each of the real maps $\Psi_{f_n}(x)\stackrel{\mathrm{def}}{=} \nu_x(f_n)$ is measurable.

Proposition. The map $x \mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Remarks before the proof.

- 1. Recall that a map $x\mapsto \nu_x$ is measurable with respect a σ -algebra if for a dense subset $\{f_n\}_{n=1}^\infty\subseteq C(X)$, each of the real maps $\Psi_{f_n}(x)\stackrel{\mathsf{def}}{=} \nu_x(f_n)$ is measurable.
- 2. A particular type of functions $f: \tilde{X} \to \mathbb{R}$ which are measurable w.r.t the pinsker algebra of an invertible system $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{S}, \tilde{\mu})$ are \tilde{S} -periodic functions, namely $f \circ \tilde{S}^k = f$.

Proposition. The map $x \mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Remarks before the proof.

- 1. Recall that a map $x\mapsto \nu_x$ is measurable with respect a σ -algebra if for a dense subset $\{f_n\}_{n=1}^\infty\subseteq C(X)$, each of the real maps $\Psi_{f_n}(x)\stackrel{\mathsf{def}}{=} \nu_x(f_n)$ is measurable.
- 2. A particular type of functions $f: \tilde{X} \to \mathbb{R}$ which are measurable w.r.t the pinsker algebra of an invertible system $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{S}, \tilde{\mu})$ are \tilde{S} -periodic functions, namely $f \circ \tilde{S}^k = f$.

This follows since periodicity implies for $i\geq 0$ that $\tilde{S}^{-i}f^{-1}(U)=\tilde{S}^{-i(\mathrm{mod}k)}f^{-1}(U),$

Proposition. The map $x \mapsto \nu_x$ is measurable w.r.t. the Pinsker σ -algebra of T_3 .

Remarks before the proof.

- 1. Recall that a map $x\mapsto \nu_x$ is measurable with respect a σ -algebra if for a dense subset $\{f_n\}_{n=1}^\infty\subseteq C(X)$, each of the real maps $\Psi_{f_n}(x)\stackrel{\mathsf{def}}{=} \nu_x(f_n)$ is measurable.
- 2. A particular type of functions $f: \tilde{X} \to \mathbb{R}$ which are measurable w.r.t the pinsker algebra of an invertible system $(\tilde{X}, \tilde{\mathcal{B}}, \tilde{S}, \tilde{\mu})$ are \tilde{S} -periodic functions, namely $f \circ \tilde{S}^k = f$.

This follows since periodicity implies for $i \geq 0$ that $\tilde{S}^{-i} f^{-1}(U) = \tilde{S}^{-i(\text{mod}k)} f^{-1}(U)$,

hence the join

$$\bigvee_{i=0}^{\infty} \tilde{S}^{-i}\{f^{-1}(U), X\backslash f^{-1}(U)\}$$

is simply a finite partition, which implies $h_{\tilde{\mu}}(\tilde{S},\{f^{-1}(U),X\backslash f^{-1}(U)\})=0.$

Proof. For $k\in\mathbb{Z}$ and $l\in\mathbb{N}$ we denote by $B_l(k)\subseteq G$ the image of $\{x\in\mathbb{Z}_2\mid |x-k|_2\leq 2^{-l}\}.$

More explicitly, if we write $k=a_0+a_12+\ldots+a_N2^N$ and $x=\sum_{k=0}^\infty b_k2^k$, then $|x-k|_2\leq 2^{-l}$ if and only if

$$a_0 + a_1 2 + \ldots + a_l 2^{l-1} = b_0 + b_1 2 + \ldots + b_l 2^{l-1},$$

Proof. For $k \in \mathbb{Z}$ and $l \in \mathbb{N}$ we denote by $B_l(k) \subseteq G$ the image of $\{x \in \mathbb{Z}_2 \mid |x-k|_2 \leq 2^{-l}\}.$

More explicitly, if we write $k=a_0+a_12+\ldots+a_N2^N$ and $x=\sum_{k=0}^\infty b_k2^k$, then $|x-k|_2\leq 2^{-l}$ if and only if

$$a_0 + a_1 2 + \ldots + a_l 2^{l-1} = b_0 + b_1 2 + \ldots + b_l 2^{l-1},$$

and in particular $B_l(k) = B_l(k')$ whenever $k = k' \pmod{2^l}$.

Proof. For $k\in\mathbb{Z}$ and $l\in\mathbb{N}$ we denote by $B_l(k)\subseteq G$ the image of $\{x\in\mathbb{Z}_2\mid |x-k|_2\leq 2^{-l}\}.$

More explicitly, if we write $k=a_0+a_12+\ldots+a_N2^N$ and $x=\sum_{k=0}^\infty b_k2^k$, then $|x-k|_2\leq 2^{-l}$ if and only if

$$a_0 + a_1 2 + \ldots + a_l 2^{l-1} = b_0 + b_1 2 + \ldots + b_l 2^{l-1},$$

and in particular $B_l(k)=B_l(k')$ whenever $k=k' \pmod{2^l}$. Now we note that the characteristic functions $\chi_{\{x\in\mathbb{Z}_2||x-k|_2\leq 2^{-l}\}}:\mathbb{Z}_2\to\mathbb{R}$ are continuous and span dense set in $C(\mathbb{Z}_2)$, hence $\chi_{B_l(k)}$ span a dense set in C(G).

Proof. For $k \in \mathbb{Z}$ and $l \in \mathbb{N}$ we denote by $B_l(k) \subseteq G$ the image of $\{x \in \mathbb{Z}_2 \mid |x-k|_2 \leq 2^{-l}\}.$

More explicitly, if we write $k=a_0+a_12+\ldots+a_N2^N$ and $x=\sum_{k=0}^\infty b_k2^k$, then $|x-k|_2\leq 2^{-l}$ if and only if

$$a_0 + a_1 2 + \ldots + a_l 2^{l-1} = b_0 + b_1 2 + \ldots + b_l 2^{l-1},$$

and in particular $B_l(k)=B_l(k')$ whenever $k=k' \pmod{2^l}$. Now we note that the characteristic functions $\chi_{\{x\in\mathbb{Z}_2||x-k|_2\leq 2^{-l}\}}:\mathbb{Z}_2\to\mathbb{R}$ are continuous and span dense set in $C(\mathbb{Z}_2)$, hence $\chi_{B_l(k)}$ span a dense set in C(G).

Therefore, it is sufficient to show

$$g_{k,l}(x) \stackrel{\mathsf{def}}{=} \nu_x(B_l(k)).$$

are measurable w.r.t. the Pinsker algebra of T_3 .

Proof. For $k \in \mathbb{Z}$ and $l \in \mathbb{N}$ we denote by $B_l(k) \subseteq G$ the image of $\{x \in \mathbb{Z}_2 \mid |x-k|_2 \leq 2^{-l}\}.$

More explicitly, if we write $k=a_0+a_12+...+a_N2^N$ and $x=\sum_{k=0}^\infty b_k2^k$, then $|x-k|_2\leq 2^{-l}$ if and only if

$$a_0 + a_1 2 + \ldots + a_l 2^{l-1} = b_0 + b_1 2 + \ldots + b_l 2^{l-1},$$

and in particular $B_l(k)=B_l(k')$ whenever $k=k' \pmod{2^l}$. Now we note that the characteristic functions $\chi_{\{x\in\mathbb{Z}_2||x-k|_2\leq 2^{-l}\}}:\mathbb{Z}_2\to\mathbb{R}$ are continuous and span dense set in $C(\mathbb{Z}_2)$, hence $\chi_{B_l(k)}$ span a dense set in C(G).

Therefore, it is sufficient to show

$$g_{k,l}(x) \stackrel{\mathsf{def}}{=} \nu_x(B_l(k)).$$

are measurable w.r.t. the Pinsker algebra of T_3 . We will show that $g_{k,l}$ are T_3 periodic.

It holds that

$$g_{k,l}(T_3^{-1}x) = \nu_{T_3^{-1}x}(B_l(k)) = \mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x + B_l(k)\right) \underbrace{\equiv}_{\text{pushforward formula}}$$

$$g_{k,l}(T_3^{-1}x) = \nu_{T_3^{-1}x}(B_l(k)) = \mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x + B_l(k)\right) \underbrace{=}_{\text{pushforward formula}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+B_l(k)\right)\underset{\text{pushforward definition}}{=}\mu_x^{T_3\mathcal{A}}\left(x+T_3B_l(k)\right)=$$

$$g_{k,l}(T_3^{-1}x) = \nu_{T_3^{-1}x}(B_l(k)) = \mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x + B_l(k)\right) \underbrace{=}_{\text{pushforward formula}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+B_l(k)\right)\underbrace{=}_{\text{pushforward definition}}\mu_x^{T_3\mathcal{A}}\left(x+T_3B_l(k)\right)=$$

$$\underset{T_{3}\overset{}{\widetilde{\mathcal{A}}=\mathcal{A}}}{=} \mu_{x}^{\mathcal{A}}\left(x+B_{l}(3k)\right)=g_{3k,l}(x).$$

We note that 3 is invertible modulo 2^l ,

$$g_{k,l}(T_3^{-1}x) = \nu_{T_3^{-1}x}(B_l(k)) = \mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x + B_l(k)\right) \underbrace{=}_{\text{pushforward formula}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+B_l(k)\right)\underset{\text{pushforward definition}}{=}\mu_x^{T_3\mathcal{A}}\left(x+T_3B_l(k)\right)=$$

$$\underbrace{=}_{T_3 \overset{\mathcal{A}}{\mathcal{A}} = \mathcal{A}} \mu_x^{\mathcal{A}} \left(x + B_l(3k) \right) = g_{3k,l}(x).$$

We note that 3 is invertible modulo 2^l , hence there exists $m\in\mathbb{N}$ such that $3^mk=k\mod 2^l$ which gives

$$g_{3^m k,l}(x) = g_{k,l}(x).$$

$$g_{k,l}(T_3^{-1}x) = \nu_{T_3^{-1}x}(B_l(k)) = \mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x + B_l(k)\right) \underbrace{=}_{\text{pushforward formula}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+B_l(k)\right)\underset{\text{pushforward definition}}{=}\mu_x^{T_3\mathcal{A}}\left(x+T_3B_l(k)\right)=$$

$$\underbrace{=}_{T_3 \overset{\mathcal{A}}{\mathcal{A}} = \mathcal{A}} \mu_x^{\mathcal{A}} \left(x + B_l(3k) \right) = g_{3k,l}(x).$$

We note that 3 is invertible modulo 2^l , hence there exists $m\in\mathbb{N}$ such that $3^mk=k\mod 2^l$ which gives

$$g_{3^m k, l}(x) = g_{k, l}(x).$$

Thus

$$g_{k,l}(T_3^{-m}x)=g_{k,l}(x).$$

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

correction- we do need $h_{\mu_X}(T_3,\xi_X)=h_{\mu_X}(T_3)$ and moreover we need for every T_2 , T_3 invariant σ algebra $\mathcal S$ that $h_{\mu_X}(T_i,\xi_X\mid\mathcal S)=h_{\mu_X}(T_i\mid\mathcal S).$ The following scheme of proof shows all of that.

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

correction- we do need $h_{\mu_X}(T_3,\xi_X)=h_{\mu_X}(T_3)$ and moreover we need for every T_2 , T_3 invariant σ algebra $\mathcal S$ that $h_{\mu_X}(T_i,\xi_X\mid\mathcal S)=h_{\mu_X}(T_i\mid\mathcal S).$ The following scheme of proof shows all of that.

Proof.

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

correction- we do need $h_{\mu_X}(T_3,\xi_X)=h_{\mu_X}(T_3)$ and moreover we need for every T_2 , T_3 invariant σ algebra $\mathcal S$ that $h_{\mu_X}(T_i,\xi_X\mid\mathcal S)=h_{\mu_X}(T_i\mid\mathcal S).$ The following scheme of proof shows all of that.

Proof.

Consider

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \left(\xi_X\right)_{-\infty}^{\infty} = \bigvee_{i=-\infty}^{\infty} T_2^{-i} \xi_X$$

and observe that $\mathcal{C} = \bigvee_{j=1}^{\infty} \pi_{-j,0}^{-1}(\mathcal{B}_{\mathbb{T}})$, (this is the σ -algebra generated by the coordinates in the upper-half plane).

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

correction- we do need $h_{\mu_X}(T_3,\xi_X)=h_{\mu_X}(T_3)$ and moreover we need for every T_2 , T_3 invariant σ algebra $\mathcal S$ that $h_{\mu_X}(T_i,\xi_X\mid\mathcal S)=h_{\mu_X}(T_i\mid\mathcal S).$ The following scheme of proof shows all of that.

Proof.

Consider

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \left(\xi_X\right)_{-\infty}^{\infty} = \bigvee_{i=-\infty}^{\infty} T_2^{-i} \xi_X$$

and observe that $\mathcal{C} = \bigvee_{j=1}^\infty \pi_{-j,0}^{-1}(\mathcal{B}_{\mathbb{T}})$, (this is the σ -algebra generated by the coordinates in the upper-half plane). In particular we see that $T_3^m \mathcal{C} \nearrow \mathcal{B}_X$.

We note that ξ_X is not a generator for T_2 , nevertheless we have the following

Lemma. It holds that $h_{\mu_X}(T_2,\xi_X)=h_{\mu_X}(T_2)$ (the same is true for T_3 but we don't need it.)

correction- we do need $h_{\mu_X}(T_3,\xi_X)=h_{\mu_X}(T_3)$ and moreover we need for every T_2 , T_3 invariant σ algebra $\mathcal S$ that $h_{\mu_X}(T_i,\xi_X\mid\mathcal S)=h_{\mu_X}(T_i\mid\mathcal S).$ The following scheme of proof shows all of that.

Proof.

Consider

$$\mathcal{C} \stackrel{\mathrm{def}}{=} \left(\xi_X\right)_{-\infty}^{\infty} = \bigvee_{i=-\infty}^{\infty} T_2^{-i} \xi_X$$

and observe that $\mathcal{C} = \bigvee_{j=1}^{\infty} \pi_{-j,0}^{-1}(\mathcal{B}_{\mathbb{T}})$, (this is the σ -algebra generated by the coordinates in the upper-half plane).

In particular we see that $T_3^m\mathcal{C}\nearrow\mathcal{B}_X$.

Hence by Kolmogorov-sinai theorem for sequences we obtain

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2, T_3 \xi_X) = h_{\mu_X}(T_2, \xi_X),$$

since ${\cal T}_3$ is a measure preserving isomorphism commuting with ${\cal T}_2$,

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2,T_3\xi_X) = h_{\mu_X}(T_2,\xi_X),$$

since ${\cal T}_3$ is a measure preserving isomorphism commuting with ${\cal T}_2$, so that

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}(T_3\xi_X)) = H_{\mu_X}(\bigvee_{i=0}^n T_3(T_2^{-i}\xi_X)) =$$

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2,T_3\xi_X) = h_{\mu_X}(T_2,\xi_X),$$

since ${\cal T}_3$ is a measure preserving isomorphism commuting with ${\cal T}_2$, so that

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}(T_3\xi_X)) = H_{\mu_X}(\bigvee_{i=0}^n T_3(T_2^{-i}\xi_X)) =$$

$$H_{\mu_X}(T_3(\bigvee_{i=0}^n T_2^{-i}\xi_X)) = H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\xi_X).$$

$$h_{\mu_X}(T_2) = \lim_{m \to \infty} h_{\mu_X}(T_2, T_3^m \xi_X).$$

$$h_{\mu_X}(T_2,T_3\xi_X) = h_{\mu_X}(T_2,\xi_X),$$

since ${\cal T}_3$ is a measure preserving isomorphism commuting with ${\cal T}_2$, so that

$$H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}(T_3\xi_X)) = H_{\mu_X}(\bigvee_{i=0}^n T_3(T_2^{-i}\xi_X)) =$$

$$H_{\mu_X}(T_3(\bigvee_{i=0}^n T_2^{-i}\xi_X)) = H_{\mu_X}(\bigvee_{i=0}^n T_2^{-i}\xi_X).$$

Hence $h_{\mu_X}(T_2)=h_{\mu_X}(T_2,\xi_X).$

-End of second talk-

We consider

$$\mathcal{A} = \bigvee_{n=0}^\infty \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}) = \bigvee_{n=0}^\infty T_3^n \left(T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) \right),$$

We consider

$$\mathcal{A} = \bigvee_{n=0}^\infty \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}) = \bigvee_{n=0}^\infty T_3^n \left(T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) \right),$$

and we aim to compute

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

where $\xi_X\stackrel{\mathrm{def}}{=}\pi_{0,0}^{-1}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}.$

We consider

$$\mathcal{A} = \bigvee_{n=0}^\infty \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}) = \bigvee_{n=0}^\infty T_3^n \left(T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) \right),$$

and we aim to compute

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

$$\begin{split} &\text{where } \xi_X \stackrel{\text{def}}{=} \pi_{0,0}^{-1}\{\left[0,\tfrac{1}{6}\right),\left[\tfrac{1}{6},\tfrac{2}{6}\right),...,\left[\tfrac{5}{6},1\right)\}. \\ &\text{We saw that } [x]_{\mathcal{A}} = x + G \text{ and } [x]_{\xi_X\vee\mathcal{A}} = x + T_2G \text{, where } G \leq X \text{ is the closed subgroup } G \stackrel{\text{def}}{=} [0]_{\mathcal{A}} = \left\{x \in X \mid x_{m,n} = 0, \ \forall \, (m,n) \in \mathbb{N} \times \mathbb{Z}\right\}. \end{split}$$

We consider

$$\mathcal{A} = \bigvee_{n=0}^\infty \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}) = \bigvee_{n=0}^\infty T_3^n \left(T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) \right),$$

and we aim to compute

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

where $\xi_X \stackrel{\mathrm{def}}{=} \pi_{0,0}^{-1}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}.$ We saw that $[x]_{\mathcal{A}} = x + G$ and $[x]_{\xi_X \vee \mathcal{A}} = x + T_2G$, where $G \leq X$ is the closed subgroup $G \stackrel{\mathrm{def}}{=} [0]_{\mathcal{A}} = \left\{x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z}\right\}.$ We consider the probability measures $\nu_x = -x + \mu_x^{\mathcal{A}}$ (namely, $\nu_x(B) \stackrel{\mathrm{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G)$ which are supported on G.

We consider

$$\mathcal{A} = \bigvee_{n=0}^\infty \pi_{1,-n}^{-1}(\mathcal{B}_{\mathbb{T}}) = \bigvee_{n=0}^\infty T_3^n \left(T_2^{-1} \left(\pi_{0,0}^{-1}(\mathcal{B}_{\mathbb{T}}) \right) \right),$$

and we aim to compute

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\mu_x^{\mathcal{A}}\left([x]_{\mathcal{A} \vee \xi_X}\right)) d\mu(x),$$

where $\xi_X \stackrel{\mathsf{def}}{=} \pi_{0,0}^{-1}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}.$

We saw that $[x]_{\mathcal{A}} = x + G$ and $[x]_{\xi_X \vee \mathcal{A}} = x + T_2 G$, where $G \leq X$ is the closed subgroup $G \stackrel{\mathsf{def}}{=} [0]_{\mathcal{A}} = \big\{ x \in X \mid x_{m,n} = 0, \ \forall \ (m,n) \in \mathbb{N} \times \mathbb{Z} \big\}.$

We consider the probability measures $\nu_x = -x + \mu_x^{\mathcal{A}}$ (namely,

 $\nu_x(B) \stackrel{\mathrm{def}}{=} \mu_x^{\mathcal{A}}(x+B), \ B \in \mathcal{B}_G) \ \text{which are supported on } G.$

So we have

$$H_{\mu_X}(\xi_X \mid \mathcal{A}) = \int -\log(\nu_x(T_2G)) d\mu(x).$$

We proved that $x\mapsto \nu_x$ is measurable w.r.t the pinsker $\sigma\text{-algebra}$ of $T_3.$

We proved that $x\mapsto \nu_x$ is measurable w.r.t the pinsker σ -algebra of T_3 . If we show that $x\mapsto \nu_x$ is also measurable w.r.t the pinsker σ -algebra of T_2 , then $x\mapsto \nu_x$ is measurable w.r.t. $\mathcal A$ which implies that ν_x are Haar measures on their support (which is a subgroup of G).

We proved that $x\mapsto \nu_x$ is measurable w.r.t the pinsker σ -algebra of $T_3.$ If we show that $x\mapsto \nu_x$ is also measurable w.r.t the pinsker $\sigma\text{-algebra}$ of T_2 , then $x\mapsto \nu_x$ is measurable w.r.t. $\mathcal A$ which implies that ν_x are Haar measures on their support (which is a subgroup of G).

We will now show that the pinsker $\sigma\text{-algebras}$ of T_2 and T_3 are the same.

Proposition (entropy formula-key to pinsker meausrability). Let $\mathcal S$ be a σ -algebra invariant under T_2 and T_3 , then

Proposition (entropy formula-key to pinsker meausrability). Let $\mathcal S$ be a σ -algebra invariant under T_2 and T_3 , then

$$h_{\mu_X}(T_2 \mid \mathcal{S}) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3 \mid \mathcal{S}),$$

Proposition (entropy formula-key to pinsker meausrability). Let $\mathcal S$ be a σ -algebra invariant under T_2 and T_3 , then

$$h_{\mu_X}(T_2 \mid \mathcal{S}) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3 \mid \mathcal{S}),$$

and in particular $h_{\mu_X}(T_2) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3).$

Proposition (entropy formula-key to pinsker meausrability). Let $\mathcal S$ be a σ -algebra invariant under T_2 and T_3 , then

$$h_{\mu_X}(T_2 \mid \mathcal{S}) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3 \mid \mathcal{S}),$$

and in particular $h_{\mu_X}(T_2) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3).$

Proof. We first note the following fact - if ξ_1 and ξ_2 are partitions of a space X and any $P \in \xi_1$ intersects at most N elements of ξ_2 , then

$$H_{\mu}(\xi_1 \mid \xi_2) \le \log N$$

Proposition (entropy formula-key to pinsker meausrability). Let $\mathcal S$ be a σ -algebra invariant under T_2 and T_3 , then

$$h_{\mu_X}(T_2 \mid \mathcal{S}) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3 \mid \mathcal{S}),$$

and in particular $h_{\mu_X}(T_2) = \frac{\log 2}{\log 3} h_{\mu_X}(T_3).$

Proof. We first note the following fact - if ξ_1 and ξ_2 are partitions of a space X and any $P \in \xi_1$ intersects at most N elements of ξ_2 , then

$$H_{\mu}(\xi_1 \mid \xi_2) \le \log N$$

In fact,

$$H_{\mu}(\xi_1 \mid \xi_2) = \sum_{P \in \mathcal{E}_1} \mu(P) H_{\mu|_P}(\xi_2) \leq \sum_{P \in \mathcal{E}_1} \mu(P) \log(N) = \log(N)$$

If ξ_1 and ξ_2 partitions of $\mathbb T$ comprised of intervals of length l_1 and l_2 correspondingly such that

$$\frac{1}{N} \le \frac{l_2}{l_1} \le N,$$

then each interval $P \in \xi_1$ intersects at-most N+1 intervals of ξ_2 and vice-versa.

If ξ_1 and ξ_2 partitions of $\mathbb T$ comprised of intervals of length l_1 and l_2 correspondingly such that

$$\frac{1}{N} \le \frac{l_2}{l_1} \le N,$$

then each interval $P \in \xi_1$ intersects at-most N+1 intervals of ξ_2 and vice-versa.

Now observe that $\bigvee_{i=0}^n S_2^{-i}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$ is composed of intervals of length $l_2(n)=\frac{1}{3\cdot 2^n}$ and $\bigvee_{i=0}^m S_3^{-i}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$ is composed of intervals of length $l_3(m)=\frac{1}{2\cdot 3^m}$.

If ξ_1 and ξ_2 partitions of $\mathbb T$ comprised of intervals of length l_1 and l_2 correspondingly such that

$$\frac{1}{N} \le \frac{l_2}{l_1} \le N,$$

then each interval $P \in \xi_1$ intersects at-most N+1 intervals of ξ_2 and vice-versa.

Now observe that $\bigvee_{i=0}^{n} S_{2}^{-i}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$ is composed of intervals of length $l_{2}(n)=\frac{1}{3\cdot 2^{n}}$ and $\bigvee_{i=0}^{m} S_{3}^{-i}\{\left[0,\frac{1}{6}\right),\left[\frac{1}{6},\frac{2}{6}\right),...,\left[\frac{5}{6},1\right)\}$ is composed of intervals of length $l_{3}(m)=\frac{1}{2\cdot 3^{m}}$.

Assume that $m=\left\lfloor\frac{\log 3}{\log 2}n\right\rfloor$, then $2^m\leq 3^n\leq 2^{m+1},$ which yields $\frac{1}{2}l_2(m)\leq l_3(n)\leq \frac{3}{2}l_2(n).$ Hence

$$H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\mid\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X),\ H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X)\leq \log(3)$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\vee\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) =$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\vee\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) =$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) + H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}\vee\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X) \leq$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i}\xi_X \mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i}\xi_X \vee \bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) =$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) + H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}\vee \bigvee_{i=0}^{n-1}T_3^{-i}\xi_X) \leq$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) + \underbrace{H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \bigvee_{i=0}^{n-1} T_3^{-i}\xi_X)}_{\leq \log(3)}.$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\vee\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) =$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) + H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}\vee \bigvee_{i=0}^{n-1}T_3^{-i}\xi_X) \leq$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) + \underbrace{H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \bigvee_{i=0}^{n-1} T_3^{-i}\xi_X)}_{\leq \log(3)}.$$

Hence

$$\frac{1}{n} H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i} \xi_X \mid \mathcal{S}) \leq \frac{m}{n} \frac{1}{m} H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i} \xi_X \mid \mathcal{S}) + o(1)$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1}T_3^{-i}\xi_X\vee\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) =$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) + H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}\vee \bigvee_{i=0}^{n-1}T_3^{-i}\xi_X) \leq$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) + \underbrace{H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \bigvee_{i=0}^{n-1} T_3^{-i}\xi_X)}_{\leq \log(3)}.$$

Hence

$$\frac{1}{n} H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i} \xi_X \mid \mathcal{S}) \leq \frac{m}{n} \frac{1}{m} H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i} \xi_X \mid \mathcal{S}) + o(1)$$

and we get

$$h_{\mu_X}(T_3 \mid \mathcal{S}) \leq \frac{\log(3)}{\log(2)} h_{\mu_X}(T_2 \mid \mathcal{S}).$$

$$H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i}\xi_X \mid \mathcal{S}) \leq H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i}\xi_X \vee \bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) = 0$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}) + H_{\mu_X}(\bigvee_{i=0}^{m-1}T_2^{-i}\xi_X\mid \mathcal{S}\vee \bigvee_{i=0}^{n-1}T_3^{-i}\xi_X) \leq$$

$$H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \mathcal{S}) + \underbrace{H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i}\xi_X \mid \bigvee_{i=0}^{n-1} T_3^{-i}\xi_X)}_{\leq \log(3)}.$$

Hence

$$\frac{1}{n} H_{\mu_X}(\bigvee_{i=0}^{n-1} T_3^{-i} \xi_X \mid \mathcal{S}) \leq \frac{m}{n} \frac{1}{m} H_{\mu_X}(\bigvee_{i=0}^{m-1} T_2^{-i} \xi_X \mid \mathcal{S}) + o(1)$$

and we get

$$h_{\mu_X}(T_3 \mid \mathcal{S}) \leq \frac{\log(3)}{\log(2)} h_{\mu_X}(T_2 \mid \mathcal{S}).$$

Reversing the role of ${\cal T}_3$ and ${\cal T}_2$ we obtain the opposite inequality and conclude the result.

Corollary. The maps T_2 and T_3 of (X,\mathcal{B}_X,μ_X) have the same Pinsker algebra.

Corollary. The maps T_2 and T_3 of (X,\mathcal{B}_X,μ_X) have the same Pinsker algebra.

Proof. We first prove that $\mathcal{P}(T_2) \subseteq \mathcal{P}(T_3)$ modulo μ_X .

Corollary. The maps T_2 and T_3 of (X,\mathcal{B}_X,μ_X) have the same Pinsker algebra.

Proof. We first prove that $\mathcal{P}(T_2)\subseteq \mathcal{P}(T_3)$ modulo μ_X . Note that $\mathcal{P}(T_2)$ is a strictly invariant sub- σ algebra of T_3 , namely

$$T_3^{-1}\mathcal{P}(T_2)=\mathcal{P}(T_2).$$

Corollary. The maps T_2 and T_3 of (X,\mathcal{B}_X,μ_X) have the same Pinsker algebra.

Proof. We first prove that $\mathcal{P}(T_2)\subseteq \mathcal{P}(T_3)$ modulo μ_X . Note that $\mathcal{P}(T_2)$ is a strictly invariant sub- σ algebra of T_3 , namely

$$T_3^{-1}\mathcal{P}(T_2)=\mathcal{P}(T_2).$$

In fact, since ${\cal T}_2$ and ${\cal T}_3$ are commuting and ${\cal T}_3$ preserves μ_X we have

$$h_{\mu_X}(T_2, \{B, X \backslash B\}) = h_{\mu_X}(T_2, T_3^{-1}\{B, X \backslash B\})$$

 $\text{hence } h_{\mu_X}(T_2,\{B,X\backslash B\})=0 \iff h_{\mu_X}(T_2,T_3^{-1}\{B,X\backslash B\})=0.$

Corollary. The maps T_2 and T_3 of (X,\mathcal{B}_X,μ_X) have the same Pinsker algebra.

Proof. We first prove that $\mathcal{P}(T_2)\subseteq \mathcal{P}(T_3)$ modulo μ_X . Note that $\mathcal{P}(T_2)$ is a strictly invariant sub- σ algebra of T_3 , namely

$$T_3^{-1}\mathcal{P}(T_2)=\mathcal{P}(T_2).$$

In fact, since ${\cal T}_2$ and ${\cal T}_3$ are commuting and ${\cal T}_3$ preserves μ_X we have

$$h_{\mu_X}(T_2, \{B, X \backslash B\}) = h_{\mu_X}(T_2, T_3^{-1}\{B, X \backslash B\})$$

hence $h_{\mu_X}(T_2,\{B,X\backslash B\})=0 \iff h_{\mu_X}(T_2,T_3^{-1}\{B,X\backslash B\})=0.$ Since T_3 is invertible, we get $T_3^{-1}\mathcal{P}(T_2)=\mathcal{P}(T_2).$

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X .

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

By Abramov-Rokhlin formula, we get

$$h_{\mu_X}(T_3) = h_{\nu}(S) + h_{\mu_X}(T_3 \mid \mathcal{P}(T_2)),$$

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

By Abramov-Rokhlin formula, we get

$$h_{\mu_X}(T_3) = h_{\nu}(S) + h_{\mu_X}(T_3 \mid \mathcal{P}(T_2)),$$

and by the previous Proposition

$$h_{\mu_X}(T_3\mid \mathcal{P}(T_2)) = \frac{\log 2}{\log 3} h_{\mu_X}(T_2\mid \mathcal{P}(T_2)) =$$

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

By Abramov-Rokhlin formula, we get

$$h_{\mu_X}(T_3) = h_{\nu}(S) + h_{\mu_X}(T_3 \mid \mathcal{P}(T_2)),$$

and by the previous Proposition

$$h_{\mu_X}(T_3\mid \mathcal{P}(T_2)) = \frac{\log 2}{\log 3} h_{\mu_X}(T_2\mid \mathcal{P}(T_2)) =$$

$$\frac{\log 2}{\log 3}h_{\mu_X}(T_2) =$$

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

By Abramov-Rokhlin formula, we get

$$h_{\mu_X}(T_3) = h_{\nu}(S) + h_{\mu_X}(T_3 \mid \mathcal{P}(T_2)),$$

and by the previous Proposition

$$h_{\mu_X}(T_3\mid \mathcal{P}(T_2)) = \frac{\log 2}{\log 3} h_{\mu_X}(T_2\mid \mathcal{P}(T_2)) =$$

$$\frac{\log 2}{\log 3}h_{\mu_X}(T_2) =$$

$$h_{\mu_X}(T_3)$$
.

Namely, here we deduce that there exists a space (Y,\mathcal{B}_Y,ν,S) and a factor map $\phi:X\to Y$ (measurable preserving map such that $\phi\circ T_3=S\circ\phi$) such that $\phi^{-1}(\mathcal{B}_Y)=\mathcal{P}(T_2)$ modulo μ_X . We will show now that $h_{\nu}(S)=0$.

By Abramov-Rokhlin formula, we get

$$h_{\mu_X}(T_3) = h_{\nu}(S) + h_{\mu_X}(T_3 \mid \mathcal{P}(T_2)),$$

and by the previous Proposition

$$h_{\mu_X}(T_3\mid \mathcal{P}(T_2)) = \frac{\log 2}{\log 3} h_{\mu_X}(T_2\mid \mathcal{P}(T_2)) =$$

$$\frac{\log 2}{\log 3}h_{\mu_X}(T_2) =$$

$$h_{\mu_X}(T_3)$$
.

hence $h_{\nu}(S) = 0$.

So if $A\in \mathcal{P}(T_2)\text{, then }A=\phi^{-1}(\tilde{A})$ and we have

$$h_{\mu_X}(T_3,\{A,X\backslash A\})=h_{\nu}(S,\{\tilde{A},X\backslash \tilde{A}\})=0$$

which proves $A \in \mathcal{P}(T_3)$.

So if $A\in \mathcal{P}(T_2)\text{, then }A=\phi^{-1}(\tilde{A})$ and we have

$$h_{\mu_X}(T_3,\{A,X\backslash A\})=h_{\nu}(S,\{\tilde{A},X\backslash \tilde{A}\})=0$$

which proves $A \in \mathcal{P}(T_3)$.

The other inclusion follows by the same arguments after we exchange 3 with 2.

Last arguments - proof that $\nu_x=m_G$ for a.e. \boldsymbol{x}

Last arguments - proof that $\nu_x=m_G$ for a.e. \boldsymbol{x}

Consider the set $B = \left\{ x \mid I_{\mu_X}(\xi_X \mid \mathcal{A})(x) > 0 \right\}.$

Consider the set $B=\left\{x\mid I_{\mu_X}(\xi_X\mid\mathcal{A})(x)>0\right\}$. We will first show that for $x\in B$ we have that $\nu_x=m_G$ (the Haar measure on G).

Consider the set $B = \left\{ x \mid I_{\mu_X}(\xi_X \mid \mathcal{A})(x) > 0 \right\}.$

We will first show that for $x\in B$ we have that $\nu_x=m_G$ (the Haar measure on G).

We have for $x \in B$

$$\begin{split} 0 < I_{\mu_X}(\xi_X \mid \mathcal{A})(x) &= -\log\left(\mu_x^{\mathcal{A}}([x]_{\xi_X \vee \mathcal{A}})\right) = -\log\left(\mu_x^{\mathcal{A}}(x + T_2G)\right) = \\ &-\log(\nu_x(T_2(G)). \end{split}$$

Namely $T_2(G) \subsetneq \mathsf{Support}(\nu_x)$.

Consider the set $B = \left\{ x \mid I_{\mu_X}(\xi_X \mid \mathcal{A})(x) > 0 \right\}.$

We will first show that for $x \in B$ we have that $\nu_x = m_G$ (the Haar measure on G).

We have for $x \in B$

$$\begin{split} 0 < I_{\mu_X}(\xi_X \mid \mathcal{A})(x) &= -\log\left(\mu_x^{\mathcal{A}}([x]_{\xi_X \vee \mathcal{A}})\right) = -\log\left(\mu_x^{\mathcal{A}}(x + T_2G)\right) = \\ &-\log(\nu_x(T_2(G)). \end{split}$$

 $\mathsf{Namely}\ T_2(G) \varsubsetneqq \mathsf{Support}(\nu_x).$

Now if $\tilde{x} \in \text{Support}(\nu_x) \backslash T_2(G)$ then the image of \tilde{x} in \mathbb{Z}_2 is of the form $1 + \sum_{i=1}^\infty a_i 2^i$.

Consider the set $B = \left\{ x \mid I_{\mu_X}(\xi_X \mid \mathcal{A})(x) > 0 \right\}.$

We will first show that for $x \in B$ we have that $\nu_x = m_G$ (the Haar measure on G).

We have for $x \in B$

$$\begin{split} 0 < I_{\mu_X}(\xi_X \mid \mathcal{A})(x) = -\log\left(\mu_x^{\mathcal{A}}([x]_{\xi_X \vee \mathcal{A}})\right) = -\log\left(\mu_x^{\mathcal{A}}(x + T_2G)\right) = \\ -\log(\nu_x(T_2(G)). \end{split}$$

 $\mathsf{Namely}\ T_2(G) \varsubsetneqq \mathsf{Support}(\nu_x).$

Now if $\tilde{x} \in \operatorname{Support}(\nu_x) \backslash T_2(G)$ then the image of \tilde{x} in \mathbb{Z}_2 is of the form $1 + \sum_{i=1}^\infty a_i 2^i$.

Such elements generate a dense (cyclic) subgroup of \mathbb{Z}_2 .

Consider the set $B = \left\{ x \mid I_{\mu_X}(\xi_X \mid \mathcal{A})(x) > 0 \right\}.$

We will first show that for $x \in B$ we have that $\nu_x = m_G$ (the Haar measure on G).

We have for $x \in B$

$$\begin{split} 0 < I_{\mu_X}(\xi_X \mid \mathcal{A})(x) &= -\log\left(\mu_x^{\mathcal{A}}([x]_{\xi_X \vee \mathcal{A}})\right) = -\log\left(\mu_x^{\mathcal{A}}(x + T_2G)\right) = \\ &-\log(\nu_x(T_2(G)). \end{split}$$

Namely $T_2(G) \subsetneq \mathsf{Support}(\nu_x)$.

Now if $\tilde{x} \in \mathsf{Support}(\nu_x) \backslash T_2(G)$ then the image of \tilde{x} in \mathbb{Z}_2 is of the form $1 + \sum_{i=1}^\infty a_i 2^i$.

Such elements generate a dense (cyclic) subgroup of \mathbb{Z}_2 .

Hence we obtain that a dense subset of G stabilizes ν_x , which implies that $\nu_x=m_G.$

It is left to prove that B=X modulo μ_X , and for that ergodicity and the entropy positivity assumption comes into play.

It is left to prove that B=X modulo μ_X , and for that ergodicity and the entropy positivity assumption comes into play. First, since

$$0 < h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

we get $\mu_X(B) > 0$.

$$0 < h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

we get $\mu_X(B) > 0$.

The following proves that B is T_3 invariant:

$$\mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\overset{}{=}}$$

$$0 < h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

we get $\mu_X(B) > 0$.

The following proves that B is T_3 invariant:

$$\mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\overset{}{=}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_x^{T_3\mathcal{A}}\left(x+T_3T_2G\right)=$$

$$0 < h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

we get $\mu_X(B) > 0$.

The following proves that B is T_3 invariant:

$$\mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\overset{}{=}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_x^{T_3\mathcal{A}}\left(x+T_3T_2G\right)=$$

$$\underbrace{=}_{T_{3}\mathcal{A}=\mathcal{A},\ T_{3}G=G}\mu_{x}^{\mathcal{A}}\left(x+T_{2}G\right).$$

$$0 < h_{\mu_X}(T_2, \xi_X) = H_{\mu_X}(\xi_X \mid \mathcal{A}),$$

we get $\mu_X(B) > 0$.

The following proves that B is T_3 invariant:

$$\mu_{T_3^{-1}x}^{\mathcal{A}}\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\overset{}{=}}$$

$$=\left(\left(T_3^{-1}\right)_*\mu_x^{T_3\mathcal{A}}\right)\left(T_3^{-1}x+T_2G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_x^{T_3\mathcal{A}}\left(x+T_3T_2G\right)=$$

$$\underbrace{=}_{T_{3}\mathcal{A}=\mathcal{A},\ T_{3}G=G}\mu_{x}^{\mathcal{A}}\left(x+T_{2}G\right).$$

which shows $I_{\mu_X}(\xi_X\mid \mathcal{A})(T_3^{-1}x)>0$ if $x\in B.$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underbrace{=}}$$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

Now we note the double conditioning formula $(\mu_x^{\mathcal{A}})_x^{T_2\mathcal{A}} = \mu_x^{T_2\mathcal{A}}$, and we note that x+G (which the support of $\mu_x^{\mathcal{A}}$) is composed of two atoms of since T_2G is of index 2 in G.

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

Now we note the double conditioning formula $(\mu_x^{\mathcal{A}})_x^{T_2\mathcal{A}} = \mu_x^{T_2\mathcal{A}}$, and we note that x+G (which the support of $\mu_x^{\mathcal{A}}$) is composed of two atoms of since T_2G is of index 2 in G.

Hence if $x \in B$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

Now we note the double conditioning formula $\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{T_2\mathcal{A}}$, and we note that x+G (which the support of $\mu_x^{\mathcal{A}}$) is composed of two atoms of since T_2G is of index 2 in G.

Hence if $x \in B$

$$\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{\mathcal{A}}\mid_{[x]_{T_2\mathcal{A}}} (x + T_2T_2(G)) = \frac{m_G(T_2(T_2(G)))}{m_G(T_2(G))} = \frac{1}{2},$$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

Now we note the double conditioning formula $\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{T_2\mathcal{A}}$, and we note that x+G (which the support of $\mu_x^{\mathcal{A}}$) is composed of two atoms of since T_2G is of index 2 in G.

Hence if $x \in B$

$$\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{\mathcal{A}}\mid_{[x]_{T_2\mathcal{A}}} (x + T_2T_2(G)) = \frac{m_G(T_2(T_2(G))}{m_G(T_2(G))} = \frac{1}{2},$$

which proves that $I_{\mu_X}(\xi_X\mid \mathcal{A})(T_2^{-1}x)>0.$

$$\mu_{T_2^{-1}x}^{\mathcal{A}}\left(T_2^{-1}x+T_2G\right)\underset{\text{pushforward formula}}{\underline{=}}$$

$$=\left(\left(T_{2}^{-1}\right)_{*}\mu_{x}^{T_{2}\mathcal{A}}\right)\left(T_{2}^{-1}x+T_{2}G\right)\underset{\text{pushforward definition}}{\underbrace{=}}\mu_{x}^{T_{2}\mathcal{A}}\left(x+T_{2}\left(T_{2}G\right)\right)$$

Now we note the double conditioning formula $\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{T_2\mathcal{A}}$, and we note that x+G (which the support of $\mu_x^{\mathcal{A}}$) is composed of two atoms of since T_2G is of index 2 in G.

Hence if $x \in B$

$$\left(\mu_x^{\mathcal{A}}\right)_x^{T_2\mathcal{A}} = \mu_x^{\mathcal{A}}\mid_{[x]_{T_2\mathcal{A}}} (x + T_2T_2(G)) = \frac{m_G(T_2(T_2(G))}{m_G(T_2(G))} = \frac{1}{2},$$

which proves that $I_{\mu_X}(\xi_X\mid \mathcal{A})(T_2^{-1}x)>0.$ The end :)

