
Breiman’s Law of Large Numbers

Itamar Cohen-Matalon

December 4, 2018

1 Introduction

This seminar will follow the proof of Breiman’s Law of Large Numbers from [Bre60] and [BQ16a]. We’ll begin

with introducing the conceptually similar Birkhoff Ergodic Theorem (Compact Metric, Uniquely Ergodic

case) with proof from [EW11].

2 Birkhoff - Uniquely Ergodic Case

Recall the Birkhoff Ergodic Theorem, and the Ergodic case:

Theorem 1 (Birkhoff Ergodic Theorem). Let (X,B, µ, T ) be a p.p.s., f ∈ L1 (X,B, µ). Then for µ-a.e.

x ∈ X:

f∗ (x) = lim
N→∞

1

N

N−1∑
n=0

f (Tnx) (1)

The limit exists, f∗ ∈ L1, f∗ = f∗ ◦ T . Denote by E ⊆ B the set of T invariant subsets. Then, ∀A ∈ E:∫
A

f∗ dµ =

∫
A

f dµ (2)

Note: f∗ = E (f | E)

Corollary 1 (Pointwise Ergodic Theorem). If T is ergodic, then E is trivial, and then ∀f ∈ L1 and for

µ-a.e. x ∈ X:

lim
N→∞

1

N

N−1∑
n=0

f (Tnx) =

∫
f dµ (3)

Now we shall continue to an even more specific case, when the space X is a compact metric space, and T

is uniquely ergodic (recall, a uniquely ergodic transformation is one that admits a single invariant probability

measure).

Theorem 2 (Birkhoff - Uniquely Ergodic Case). Let (X,B, µ, T ) be a p.p.s., where X is a compact metric

space and T is uniquely ergodic. The for every x ∈ X:

lim
N→∞

1

N

N−1∑
n=0

f (Tnx) =

∫
f dµ (4)

And this convergence is uniform across X.

We will need the following lemma (see appendix - 4.1 for proof):

Lemma 1. Let (X,B, µ, T ) be a p.p.s., where X is a compact metric space. Then the space of probability

measures: Prob (X) is weak-* sequentially compact. It is characterized by:

µn → µ⇔ ∀f ∈ C (X)

∫
X

f dµn →
∫
X

f dµ (5)
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We’ll start by proving another lemma:

Lemma 2. Let T : X → X be a continuous map of a compact metric space X, and (νn) be a sequence in

Prob (X). Then any weak-* limit point of the sequence (µn) defined by µn = 1
n

∑n−1
j=0 T

j
∗ νn is in ProbT (X)

(the space of T invariant probability measures).

Note: since by Lemma 1, ProbT (X) is weak-* compact, the sequence must have some limit point.

Proof. Notice: ‖f‖∞ = sup
x∈X
|f | <∞ by compactness of X and continuity of f .

Let µnk
→ µ be a converging subsequence. We’d like to show that µ is T invariant, i.e. ∀f ∈ C (X):∫

X

f dµ =

∫
X

f ◦ T dµ (6)

Recall, that by convergence we have:

µnk
→ µ⇒ ∀g ∈ C (X)

∫
X

g dµnk
→
∫
X

g dµ (7)

So we observe:

0 ≤
∣∣∣∣∫
X

f dµnk
−
∫
X

f ◦ T dµnk

∣∣∣∣ =

∣∣∣∣∣∣ 1

nk

nk−1∑
j=0

∫
X

f ◦ T j−1 dνnk
− 1

nk

nk−1∑
j=0

∫
X

f ◦ T j dνnk

∣∣∣∣∣∣ =

∣∣∣∣ 1

nk

(∫
X

f dνnk
−
∫
X

f ◦ Tnk dνnk

)∣∣∣∣ ≤ 1

nk
2 ‖f‖∞ → 0 (8)

And so we must have that
∫
X
f dµ =

∫
X
f ◦ T dµ as required, so µ ∈ ProbT (X).

Proof of Theorem 2. Denote by µ the unique invariant measure. Take the sequence (δx) and apply Lemma

2 (i.e. in the notation of the lemma, we have: µn = 1
n

∑n−1
j=0 δT jx).

As the limit of every converging subsequence must be invariant (by the lemma) then by uniqueness it

must be µ. By compactness there are converging subsequences, and as the limit is unique we must have

that:

µn =
1

n

n−1∑
j=0

δT jx → µ (9)

This is convergence in weak-* topology, so we have that for every f ∈ C (X):

1

n

n−1∑
j=0

f
(
T jx

)
→
∫
X

f dµ (10)

And so we have everywhere convergence.

Now assume this convergence is not uniform. Denote: E [f ] =
∫
X
f dµ. So there is some f ∈ C (X),

ε > 0 and (Nk), such that Nk →∞ and for every Nk exists xNk
∈ X such that:∣∣∣∣∣∣ 1

Nk

Nk−1∑
j=0

f
(
T jxNk

)
− E [F ]

∣∣∣∣∣∣ > ε (11)

Taking the sequence
(
δxNk

)
and in a similar manner to that of Lemma 2, we conclude that:

µk =
1

Nk

Nk−1∑
j=0

δT jxNk
→ µ (12)

And so: ∫
X

f dµk →
∫
X

f dµ = E [f ] (13)
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But by (11), notice that for all Nk:

∣∣∣∣∫
X

f dµk − E [F ]

∣∣∣∣ =

∣∣∣∣∣∣ 1

Nk

Nk−1∑
j=0

f
(
T jxNk

)
− E [F ]

∣∣∣∣∣∣ > ε (14)

And so the limit must be ≥ ε - a contradiction. Therefore we must have uniform convergence.

3 Breiman’s Law of Large Numbers

We will observe a Markov random walk on a compact metric space (Ω,B), determined by the transition

probabilities, P (A | x) from x into A ∈ B, or alternatively defined by a Borel map from Ω to to Prob (Ω),

x 7→ Px.

We observe the space
(
ΩN,BN

)
the space of infinite sequences with coordinates in Ω, describing the

random walk, and denote by Xn the random variable which describes the position at the n-th step, where

X0 is the starting point of the random walk. For each x ∈ Ω, we define a probability νx on
(
ΩN,BN

)
induced

by P when X0 = x.

We shall consider only Markov-Feller processes: If T is the action defined on functions as:

Tφ (x) =

∫
Ω

φ dPx = E (φ (X1) | X0 = x) (15)

Notice that T is a bounded operator w.r.t. the sup norm (as an operator on bounded functions): for every

point, the value is an average of the original function over some set, and therefore not greater then the sup

of the original function. Therefore, ‖T (f)‖∞ ≤ ‖f‖∞, i.e. T is bounded. Note that as our space is compact

metric, all continuous functions are bounded.

A Markov process is a Markov-Feller process if T acts on continuous functions (i.e. T (f) is continuous

if f is). Note: This is equivalent to the map x 7→ Px being continuous w.r.t. the weak-* topology. Denote

this map by M (x) = Px: In one direction, assume T acts on continuous functions. Notice that if xn → x,

then for every f ∈ C (ω), as Tf is continuous:

M (xn) (f) = Pxn (f) =

∫
Ω

f dPxn = Tφ (xn)→ Tφ (x) =

∫
Ω

f dPx = Px (f) = M (x) (f) (16)

And so M is continuous w.r.t. to weak-*, as the integrals converge for every continuous f .

Now assume that M is continuous. Then for every f ∈ C (ω), xn → x:

Tφ (xn) =

∫
Ω

f dPxn
= Pxn

(f) = M (xn) (f)→M (x) (f) = Px (f) =

∫
Ω

f dPx = Tφ (x) (17)

And so Tf is continuous as required.

Example 1. (Group Action) Consider the case where we have a random walk on a compact metric space

(Ω,B), determined by a (continuous) group action of G on Ω, where choice of G action is determined by a

compactly supported probability measure on G, µG.

This is a Markov-Feller operator, as we can see that for φ ∈ C (Ω):

Tφ (x) =

∫
Ω

φ dPx =

∫
G

φ (gx)µG (g) (18)

Here we have that Px is the push forward of µG under the map g 7→ gx.

Notice that because Ω is compact, φ is equicontinuous. Choose some ε > 0, and ε1 = ε (ε) > 0 that exists

by equicontinuity of φ s.t. if |x− y| < ε1, then |φ (x)− φ (y)| < ε. Each g is also equicontinuous, with a

corresponding εg s.t. if |x− y| < εg then |gx− gy| < ε1
2 . For each g we can take the neighborhood where

the difference is < ε1
4 by the sup norm, and this gives an open cover, so by compactness we have a finite

subcover. Note that for g we have that if h is in it’s neighborhood, then if |x− y| < εg then |gx− gy| < ε1.
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Taking the minimum over the εg for the g’s chosen for the subcover, we get some ε2 > 0 such that for all

g, if |x− y| < ε2 then |gx− gy| < ε1. And so |φ (gx)− φ (gy)| < ε, so integrating (against the probability

measure µG) gives us that |Tφ (y)− Tφ (x)| < ε - i.e. we have continuity.

Definition 1. (Stationary Measure) A measure π on Ω shall be called stationary if ∀A ∈ B:

π (A) =

∫
Ω

P (A | x) dπ (x) (19)

Note that in Example 1, we have that this translates to: ∀A ∈ B:

π (A) =

∫
Ω

P (A | x) dπ (x) =

∫
G

∫
Ω

1A (gx) dπ (x) dµG(g) = µG ∗ π (A) (20)

I.e., π is stationary if π = µG ∗ π, where µG ∗ π is convolution of the two measures, which is defined by:

µG ∗ π (A) =

∫
G

∫
Ω

1A (gx) dπ (x) dµG(g) (21)

We shall see that in our setting, a stationary measure always exists. Recall we have the operator

T : C → C defined by:

Tφ (x) =

∫
Ω

φ dPx = E (φ (X1) | X0 = x) (22)

We have:
(
T kφ

)
(x) = E (φ (Xk) | X0 = x). We’ve shown that T is bounded, with ‖Tf‖∞ ≤ ‖f‖∞, so∥∥T kf∥∥∞ ≤ ‖f‖∞ too.

In addition denote: T̄Nφ = 1
N

∑N
n=1 T

nφ.

Proposition 1. Observe a Markov-Feller random walk on Ω. Let (νn) be a sequence in Prob (Ω). Then any

weak-* limit point of the sequence (µn) defined by µn = 1
n

∑n−1
j=0 T

j
∗ νn is stationary.

Proof. Proof is somewhat similar to that of Lemma 2.

Denote a limit point of a subsequence by µ. We would like to show that is is a stationary measure, i.e.

that for all measurable A:

µ (A) =

∫
Ω

P (A | x) dµ =

∫
Ω

E (1A (X1) | X0 = x) dµ = (T∗µ) (A) (23)

So we would like to show that µ = T∗µ. It would suffice to prove for each f ∈ C (Ω) that:∫
Ω

f dµ =
(?)

∫
Ω

f d (T∗µ) =

∫
Ω

Tf dµ (24)

But as f ∈ C (Ω) we have that Tf ∈ C (Ω), so by weak-* convergence of the subsequence (µnk
), we have:∫

Ω

f dµnk
→
∫

Ω

f dµ and

∫
Ω

Tf dµnk
→
∫

Ω

Tf dµ (25)

Observe that that:

0 ≤
∣∣∣∣∫

Ω

f dµnk
−
∫

Ω

Tf dµnk

∣∣∣∣ =

∣∣∣∣∣∣ 1

nk

nk−1∑
j=0

∫
Ω

T j−1f dνnk
− 1

nk

nk−1∑
j=0

∫
Ω

T jf dνnk

∣∣∣∣∣∣ =

∣∣∣∣ 1

nk

(∫
Ω

f dνnk
−
∫

Ω

Tnkf dνnk

)∣∣∣∣ ≤ 1

nk

(
‖f‖∞ +

∥∥T kf∥∥∞) ≤ 2

nk
‖f‖∞ → 0 (26)

And therefore we must have that the limits are equal as required, and µ is stationary.

Corollary 2. In the setting of a Markov-Feller random walk on a compact metric base space (Ω,B), a

stationary measure always exists.
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Proof. Take an arbitrary sequence of measures (νn) in Prob (Ω), and observe the sequence (µn) as defined in

Proposition 1. By Lemma 1, Prob (Ω) is sequentially compact, so (µn) has a converging subsequence to some

µ. By Proposition 1 this limit is stationary, and so a stationary probability measure exists, as required.

From here on, we shall assume that there exists a unique stationary measure.

Theorem 3 (Breiman’s Law of Large Numbers). In the setting of a Markov-Feller random walk on a compact

metric base space (Ω,B) with a unique stationary measure π, we have that ∀φ ∈ C (Ω), then for any x ∈ Ω

for νx a.e. sequence (XN ):

1

N

N∑
n=1

φ (Xn)→
∫

Ω

φ (x) dπ (x) (27)

Note the similarities to the Birkhoff theorem: the time averages converge to the space average, for any

starting point, and almost every path.

Proposition 2. For any φ ∈ C (Ω), T̄N (φ) converges uniformly to π (φ) =
∫

Ω
φ dπ.

Proof. Proof is somewhat similar to that of Theorem 2. Let (νn) be a sequence in Prob (Ω). Then any

weak-* limit point of the sequence (µn) defined by µn = 1
n

∑n−1
j=0 T

j
∗ νn is stationary by Proposition 1, and

therefore π. By compactness, this is the limit of the entire sequence (µn).

As φ is continuous, we get that taking νxn = δx gives us everywhere convergence, i.e.:

T̄n (φ) (x) =

∫
Ω

φ dµxn →
∫

Ω

φ dπ (28)

Now assume this convergence is not uniform. Denote: E [φ] =
∫
ω
φ dµ. So there is some f ∈ C (Ω), ε > 0

and (Nk), such that Nk →∞ and for every Nk exists xNk
∈ Ω such that:∣∣∣∣∣∣ 1

Nk

Nk−1∑
j=0

T jf (xNk
)− E [F ]

∣∣∣∣∣∣ > ε (29)

Taking the sequence
(
δxNk

)
we get:

µk =
1

Nk

Nk−1∑
j=0

T j∗ δxNk
→ π (30)

And so: ∫
Ω

f dµk →
∫

Ω

f dπ = E [f ] (31)

But by (29), notice that for all Nk:∣∣∣∣∫
Ω

f dµk − E [F ]

∣∣∣∣ =

∣∣∣∣∣∣ 1

Nk

Nk−1∑
j=0

T jf (xNk
)− E [F ]

∣∣∣∣∣∣ > ε (32)

And so the limit must be ≥ ε - a contradiction. Therefore we must have uniform convergence.

The following lemma is a derivative of Doob’s martingale convergence theorem, and a proof can be found

in 4.2.

Lemma 3. Let (Yn)n≥1 be a sequence of random variables which are uniformly bounded in L2 (i.e. ∃M <∞
s.t. for all n ≥ 1, E

(
Y 2
n

)
< M), and such that:

E (Yn | Y1, ..., Yn−1) = 0 ∀n ≥ 1 (33)

Then the sequence 1
n

∑n
k=1 Yk converges to 0 almost surely and in L2.
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Proposition 3. Let φ ∈ C (Ω), x ∈ Ω. Let (Xn)n≥1 be distributed according to νx and define:

Z1
n =

{
φ (Xn)− E (φ (Xn) | Xn−1) n > 1

0 n ≤ 1

Zkn =

{
E (φ (Xn) | Xn−k+1)− E (φ (Xn) | Xn−k) n > k

0 n ≤ k

(34)

Then 1
N

∑N
n=1 Z

k
n → 0 a.s. νx.

Proof. To prove we would like to use Lemma 3. First note that clearly as Zkn ≤ 2 ‖φ‖∞, we have that

E
((
Zkn
)2) ≤ 4 ‖φ‖2∞ <∞ for all n, k.

Next we must check that: E
(
Zkn | Zkn−1, ..., Z

k
1

)
= 0. Note that Zkn−1, ..., Z

k
1 are random variables in the

σ-algebra of Xn−k, ..., X1, so:

E
(
Zkn | Zkn−1, ..., Z

k
1

)
= E

(
E
(
Zkn | Xn−k, ..., X1

)
| Zkn−1, ..., Z

k
1

)
(35)

Notice that by the Markov property:

E
(
Zkn | Xn−k, ..., X1

)
= E

(
Zkn | Xn−k

)
=

E (E (φ (Xn) | Xn−k+1) | Xn−k)− E (φ (Xn) | Xn−k) =

E (E (φ (Xn) | Xn−k+1, Xn−k) | Xn−k)− E (φ (Xn) | Xn−k) =

E (φ (Xn) | Xn−k)− E (φ (Xn) | Xn−k) = 0 (36)

And so we have all that is required in order to use Lemma 3, which gives us the desired result.

Proof. (Breiman’s Law of Large Numbers)

To prove the theorem, we first notice that for n > k:

φ (Xn)− E (φ (Xn) | Xn−k) =

k∑
i=1

Zin (37)

By Proposition 3, we have that for (Xn) a.e.-νx (notice that we are neglecting k bounded terms when

comparing to
∑k
i=1

∑N
n=1 Z

i
n, but in the limit these are negligible - as we take k to be constant, and we have

the 1
N normalization): ∣∣∣∣∣ 1

N

N∑
n=1

φ (Xn)− 1

N

N∑
n=k+1

E (φ (Xn) | Xn−k)

∣∣∣∣∣→ 0 (38)

Again neglecting at most k bounded (by ‖φ‖∞) terms, we get:∣∣∣∣∣ 1

N

N∑
n=1

φ (Xn)− 1

N

N∑
n=1

E (φ (Xn+k) | Xn)

∣∣∣∣∣→ 0 (39)

Summing up this limit for k ≤M for some fixed M (and dividing by M) we get get:∣∣∣∣∣ 1

N

N∑
n=1

φ (Xn)− 1

N

N∑
n=1

1

M

M∑
k=1

E (φ (Xn+k) | Xn)

∣∣∣∣∣→ 0 (40)

By Proposition 2, for any ε > 0, we can choose an M , s.t. for all n:∣∣∣∣∣ 1

M

M∑
k=1

E (φ (Xn+k) | Xn)− π (φ)

∣∣∣∣∣ < ε (41)
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As we have uniform convergence.

For such a choice of M , we get via substituting in (40) that νx-a.e.:

lim
N

∣∣∣∣∣ 1

N

N∑
n=1

φ (Xn)− π (φ)

∣∣∣∣∣ ≤ ε (42)

As ε is arbitrary, taking a countable sequence going to 0 will give us the required result, that νx-a.e.:

lim
N

∣∣∣∣∣ 1

N

N∑
n=1

φ (Xn)− π (φ)

∣∣∣∣∣ = 0 (43)

4 Appendix

4.1 Proof of Lemma 1

The space of signed measures (linear functionals), M is the dual of C0 (X). As X is compact, we have

C0 (X) = Cb (X) = C (X). By Banach-Alaoglu, the unit ball B in M is sequentially compact w.r.t. the

weak-* topology. Notice that Prob (X) ⊆ B, and that it is closed, as if µn → µ for µn ∈ Prob (X), then µ

must still be a positive functional (as µn are), and as 1X ∈ Cb (X) = C0 (X), we have that:

1 = µn (X) = 〈1X , µn〉 → 〈1X , µ〉 = µ (X) (44)

And so µ (X) = 1 (and is a positive functional), and therefore µ ∈ Prob (X). Therefore Prob (X) is a closed

subset of a sequentially compact set (the unit ball in M), and is therefore sequentially compact w.r.t. the

weak-* topology.

4.2 Proof of Lemma 3

See [BQ16b], Corollary A.8.
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