Entropy, leafwise measures and invariance

Ping Ngai (Brian) Chung

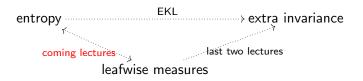
February 18, 2021

Brian Chung

We have seen that leafwise measures μ_x^T describe properties of the measure μ along the direction of *T*-leaves. For instance:

- μ_x^T is trivial (i.e. μ_x^T ∝ δ_e) a.e. if and only if there exists a measurable set B ⊂ X with μ(X \ B) = 0 such that x, tx ∈ B for some t ∈ T implies t = e (i.e. B is a global cross-section).
- μ_x^T is infinite a.e. if and only if μ is *T*-recurrent.
- μ_x^T is the left Haar measure on T a.e. if and only if μ is T-invariant.

Recap:



Throughout, we let

- $G \subset SL_n(\mathbb{R})$ be a closed connected real linear group.
- $\Gamma \subset G$ a discrete subgroup of G.
- X := G/Γ with Riemannian metric induced from a right-invariant metric on G.
- there is a G-left action on X by left multiplication $x \mapsto gx$.
- μ be a (Borel probability) measure on X.

Sometimes we specialize to the following special case:

Γ is a lattice if there is a G-invariant probability measure m_X (the Haar measure) on X.

Fix $a \in G$. Define the stable horospherical subgroup for a by

$$G^- := \{g \in G \mid a^n g a^{-n} \to e \text{ as } n \to \infty\}.$$

Similarly define the **unstable horospherical subgroup** G^+ for *a*. Note that for $x, gx \in X$ for some $g \in G^-$,

$$d(a^nx,a^ngx)=d(a^nx,(a^nga^{-n})a^nx)\leq d(e,a^nga^{-n})\rightarrow 0.$$

Thus we refer to G^-x as the stable manifold through x. Example: For $G := SL_3(\mathbb{R}), \Gamma := SL_3(\mathbb{Z})$ and $a := diag(e^t, e^s, e^r) \in G$ with t > s > r,

$$G^{-} = egin{bmatrix} 1 & 0 & 0 \ * & 1 & 0 \ * & * & 1 \end{bmatrix}, \qquad G^{+} = egin{bmatrix} 1 & * & * \ 0 & 1 & * \ 0 & 0 & 1 \end{bmatrix}$$

Theorem (Clay notes Thm. 7.6)

Fix $a \in G$. Let μ be an a-invariant probability measure on G/Γ . Let U be a closed subgroup of G^- normalized by a. Then

1 The entropy contribution of U at x

$$D_{\mu}(a, U)(x) := \lim_{n \to \infty} \frac{1}{n} \log \mu_x^U(a^{-n}B_1^Ua^n)$$

exists for μ -a.e. x and defines an a-invariant function on X.

- For μ-a.e. x we have D_μ(a, U)(x) ≤ h_{μ^ε_x}(a), with equality if U = G⁻. Here ε denotes the σ-algebra of a-invariant sets.
- So For μ -a.e. x we have $D_{\mu}(a, U)(x) = 0$ iff μ_x^U is finite iff μ_x^U is trivial.

Remark: we are NOT assuming: (i) *a* is diagonalizable, (ii) μ is *a*-ergodic (not even *A*-ergodic, which is what EKL assumes), (iii) Γ is a lattice in *G*.

From (b), we know that $D_{\mu}(a, G^{-})(x) \leq h_{\mu_{x}^{\mathcal{E}}}(a)$. From (c), we know that $D_{\mu}(a, G^{-})(x) = 0$ iff μ_{x}^{U} is finite. Therefore we have the corollary

Corollary

The measure μ is G^- -recurrent iff $h_{\mu_x^{\mathcal{E}}}(a) > 0$ a.e. Assuming μ is in addition a-ergodic, then μ is G^- -recurrent iff $h_{\mu}(a) > 0$.

Example

Let $G := SL_3(\mathbb{R}), \Gamma := SL_3(\mathbb{Z})$ and $a := diag(e^t, e^s, e^r) \in G$ with t > s > r. Let

$$U_1 := \begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \subset \quad U_2 := \begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & 0 & 1 \end{bmatrix} \quad \subset \quad U_3 := G^- = \begin{bmatrix} 1 & 0 & 0 \\ * & 1 & 0 \\ * & * & 1 \end{bmatrix}$$

Let $\mu := m_X$ be the Haar measure on X. Note that

$$a^{-1} \begin{bmatrix} 1 & 0 & 0 \\ x & 1 & 0 \\ y & z & 1 \end{bmatrix} a = \begin{bmatrix} 1 & 0 & 0 \\ xe^{t-s} & 1 & 0 \\ ye^{t-r} & ze^{s-r} & 1 \end{bmatrix}$$

Since $\mu = m_X$ is invariant under G^- , $\mu_x^{U_i}$ is Haar on U_i a.e. for i = 1, 2, 3, thus we can calculate

$$D_{m_X}(a, U_1)(x) := \lim_{n \to \infty} \frac{1}{n} \log \mu_x^U(a^{-n}B_1^Ua^n) = t - s,$$

Similarly $D_{m_X}(a, U_2)(x) = (t - s) + (t - r), \quad D_{m_X}(a, G^-)(x) = 2(t - r).$

In general, it can be computed that if $\mu = m_X$ is Haar, then

$$D_{m_X}(a, G^-) = -\log |\det \operatorname{Ad}_a|_{\mathfrak{g}^-}|,$$

where $\operatorname{Ad}_a : \mathfrak{g} \to \mathfrak{g}$ is the adjoint representation defined by $v \mapsto ava^{-1}$. Clearly if μ_x^U is finite, then $D_\mu(a, U)(x) = 0$.

The calculation for general μ , however, is less clear.

Entropy contribution and Theorem 7.9

Fix $a \in G$. Define the **entropy contribution** of an *a*-normalized closed subgroup $U \subset G^-$.

$$h_\mu(a,U):=\int D_\mu(a,U)\ d\mu.$$

(Theorem 7.6(2) implies that $h_{\mu}(a, G^-) = h_{\mu}(a)$)

The next theorem in particular shows that the Haar measure m_X has maximal entropy contribution of G^- among *a*-invariant measures μ .

Theorem (Clay notes Thm. 7.9)

Let $U \subset G^-$ be an a-normalized closed subgroup of G^- , and $\mathfrak{u} := \operatorname{Lie}(U)$. Let μ be an a-invariant probability measure on $X = G/\Gamma$. Then

$$h_{\mu}(a, U) \leq -\log |\det \operatorname{Ad}_{a}|_{\mathfrak{u}}|,$$

and equality holds iff μ is U-invariant.

As a corollary of Theorem 7.9, one can show that in many cases, the Haar measure is the unique measure of maximal entropy.

Corollary (Clay notes Corollary 7.10)

Suppose Γ is a lattice in G, and let $X = G/\Gamma$. Suppose $a \in G$ is such that G is generated by G^+ and G^- .

Then m_X is the **unique** measure of maximal entropy for the a-action on X, i.e. if μ is an a-invariant probability measure on X with $h_{\mu}(a) = h_{m_X}(a)$, then $\mu = m_X$.

Note that the assumption on *a* is satisfied quite generally - for instance if *G* is a simple real Lie group and \mathfrak{g}^- is nontrivial.

To summarize, consider the case of $X = \mathrm{SL}_3(\mathbb{R})/\mathrm{SL}_3(\mathbb{Z})$ and $a = \mathrm{diag}(t, s, r) \in \mathrm{SL}_3(\mathbb{R})$ with t > s > r.

Let A be the full diagonal subgroup of $SL_3(\mathbb{R})$. Let m_X be Haar on X.

• Corollary 7.10 implies:

if μ is *a*-invariant and $h_{\mu}(a) = h_{m_X}(a)$, then $\mu = m_X$.

- High entropy method of Einsiedler-Katok (Thm. 9.5) implies: if μ is A-ergodic and $h_{\mu}(a) > \frac{1}{2}h_{m_X}(a)$, then $\mu = m_X$.
- High entropy method can also show (Problem 9.13) that:
 if μ is A-ergodic and all a ≠ e ∈ A satisfies h_μ(a) > 0, then μ = m_X.
- High+low entropy by Einsiedler-Katok-Lindenstrauss (Thm. 11.5): if μ is A-ergodic and for some {a_t} ⊂ A, h_μ(a₁) > 0, then μ = m_X.
 We write "A-ergodic" for A-invariant and A-ergodic.

Proofs

Starting the proofs: simplifying assumptions

Throughout, assume that

● *a* ∈ *G*,

• μ is an *a*-invariant probability measure on G/Γ ,

• $U \subset G^- := \{g \in G \mid a^n g a^{-n} \to e \text{ as } n \to \infty\}$ is normalized by a.

For the proofs presented here, we further assume that

• μ is *a*-ergodic (the precise reduction is in 7.19-7.24 of the Clay notes)

• This implies
$$\mu = \mu_x^{\mathcal{E}}$$
 for μ -a.e. x.

- a is of "class A", i.e.
 - **(**) the eigenvalues of *a* as an element of $SL_n(\mathbb{R})$ are all in \mathbb{R} .
 - **2** 1 is the only eigenvalue of Ad_a with absolute value 1.
 - In two eigenvalues have the same absolute value.

For instance $a = \operatorname{diag}(e^t, e^s, e^r) \in \operatorname{SL}_3(\mathbb{R})$ with t > s > r.

This implies that $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_- \oplus \mathfrak{g}_+$, where

$$\mathfrak{g}_0 := \operatorname{Lie}(\mathcal{C}_G(a)), \qquad \mathfrak{g}_- := \operatorname{Lie}(G^-), \qquad \mathfrak{g}_+ := \operatorname{Lie}(G^+)$$

Proof of Theorem 7.6(i)

We first prove

Theorem (Clay notes Thm. 7.6(i))

1 The entropy contribution of U at x

$$D_{\mu}(a, U)(x) := \lim_{n \to \infty} \frac{1}{n} \log \mu_x^U(a^{-n}B_1^Ua^n)$$

exists for μ -a.e. x and defines an a-invariant function on X.

Outline:

• Assume normalization $\mu_x^U(B_1^U) = 1$ for all x (wherever μ_x^U is well-defined). Then

$$\mu_{x}^{U}(a^{-n}B_{1}^{U}a^{n}) = \prod_{i=0}^{n-1} \mu_{a^{i}x}^{U}(a^{-1}B_{1}^{U}a).$$

Take log and apply the pointwise ergodic theorem (shows both existence and *a*-invariance).

Brian Chung

Proof of Theorem 7.6(i)

Thus it suffices to show that given normalization $\mu_x^U(B_1^U) = 1$, we have

$$\prod_{i=0}^{n-1} \mu_{a^{i_X}}^U(a^{-1}B_1^Ua) = \mu_x^U(a^{-n}B_1^Ua^n).$$
(1)

We need the following fact from Weikun's lecture:

Lemma

 $\mu_{ax}^U \propto (\operatorname{Conj}_a)_* \mu_x^U,$

where $\operatorname{Conj}_a : G \to G$ is defined by conjugation by $a: g \mapsto aga^{-1}$.

Proof of (1): By Lemma,

$$\frac{\mu_{a^{i}x}^{U}(a^{-1}B_{1}^{U}a)}{\mu_{a^{i}x}^{U}(B_{1}^{U})} = \frac{(\operatorname{Conj}_{a^{i}})_{*}\mu_{x}^{U}(a^{-1}B_{1}^{U}a)}{(\operatorname{Conj}_{a^{i}})_{*}\mu_{x}^{U}(B_{1}^{U})} = \frac{\mu_{x}^{U}(a^{-i-1}B_{1}^{U}a^{i+1})}{\mu_{x}^{U}(a^{-i}B_{1}^{U}a^{i})}.$$
Now use $\mu_{a^{i}x}^{U}(B_{1}^{U}) = 1$ and take product $0 \le i \le n-1$ yields (1). 7.6(i) \checkmark

To show the other statements, we need the construction of a suitable σ -algebra \mathcal{A} . We say that

A is subordinate to U if for μ-a.e. x, there exists δ = δ(x) > 0 such that

$$B^U_{\delta}(x) \subset [x]_{\mathcal{A}} \subset B^U_{\delta^{-1}}(x).$$

• \mathcal{A} is *a*-descending if $a^{-1}\mathcal{A} \subset \mathcal{A}$.

Lemma ("Good" σ -algebra)

There exists a countably generated σ -algebra A on G/Γ that is subordinate to U and a-descending.

For now on, assume the lemma and fix one such "good" σ -algebra \mathcal{A} . Also, by *a*-ergodicity, $D_{\mu}(a, U)(x)$ is constant μ -a.e. - let it be $h_{\mu}(a, U)$.

Proposition

Suppose A is a countably generated σ -algebra subordinate to U and a-descending. Then $h_{\mu}(a, U) = H_{\mu}(A \mid a^{-1}A)$, or equivalently,

$$\lim_{n\to\infty}\frac{1}{n}\log\mu_x^U(a^{-n}B_1^Ua^n)=\int-\log\mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}})\ d\mu(x).$$

Outline:

Show that

$$\lim_{n\to\infty}-\frac{1}{n}\log\mu_x^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}})=H_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A}).$$

② Use the fact that A is subordinate to U to get some set $Y \subset G/\Gamma$ with $\mu(Y) > 0$ and some $\delta > 0$ such that for all $x \in Y$, we have

$$\mu_x^U(a^{-n}B^U_{\delta}a^n) \leq c(x)\mu_x^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}})^{-1} \leq \mu_x^U(a^{-n}B^U_{\delta^{-1}}a^n).$$

Solution Take log and let n→∞, noting that in the definition of D_µ(a, U)(x) we can replace the radius 1 by any r > 0.

Step 1

We first show that for $I_{\mu}(\mathcal{A} \mid a^{-1}\mathcal{A})(x) := -\log \mu_{x}^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}})$,

$$\lim_{n\to\infty}-\frac{1}{n}\log\mu_x^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}})=H_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A}):=\int I_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A})\ d\mu(x).$$

Proof: Recall by the compatibility property of conditional measures and $a^{-1}\mathcal{A}\subset \mathcal{A}$, we have

$$\frac{\mu_{\mathsf{x}}^{\mathsf{a}^{-i}\mathcal{A}}([\mathsf{x}]_{\mathcal{A}})}{\mu_{\mathsf{x}}^{\mathsf{a}^{-i+1}\mathcal{A}}([\mathsf{x}]_{\mathcal{A}})} = \mu_{\mathsf{x}}^{\mathsf{a}^{-i}\mathcal{A}}([\mathsf{x}]_{\mathsf{a}^{-i+1}\mathcal{A}}).$$

Also $\mu_{ax}^{\mathcal{A}} = a_* \mu_x^{a^{-1}\mathcal{A}}$. Take log on both side and sum over $1 \le i \le n$, we get by pointwise ergodic theorem that

$$\begin{aligned} -\frac{1}{n}\log\mu_{x}^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}}) &= -\frac{1}{n}\sum_{i=1}^{n}\log\mu_{x}^{a^{-i}\mathcal{A}}([x]_{a^{-i+1}\mathcal{A}})\\ &= \frac{1}{n}\sum_{i=1}^{n}I_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A})(a^{i-1}x) \to H_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A}). \end{aligned}$$

Step 2: Squeeze argument

Since \mathcal{A} is subordinate to U, there exists $\delta > 0$ such that the set

$$Y := \{x \mid B^U_\delta(x) \subset [x]_\mathcal{A} \subset B^U_{\delta-1}(x)\}$$

has positive μ -measure. By pointwise ergodic theorem (and *a*-ergodicity of μ), there is a sequence $n_j \to \infty$ such that $a^{n_j}x \in Y$. For these $n = n_j$, we have

$$a^{-n}B^U_{\delta}a^nx \subset [x]_{a^{-n}\mathcal{A}} = a^{-n}[a^nx]_{\mathcal{A}} \subset a^{-n}B^U_{\delta^{-1}}a^nx.$$

Let $V_x \subset U$ so that $[x]_{\mathcal{A}} = V_x x$ and $a^{-n}[a^n x]_{\mathcal{A}} = a^{-n} V_{a^n x} a^n x$. Then

$$\mu_{x}^{U}(a^{-n}B_{\delta}^{U}a^{n}) \leq \mu_{x}^{U}(a^{-n}V_{a^{n}x}a^{n}) = \mu_{x}^{U}(V_{x})\mu_{x}^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}})^{-1} \leq \mu_{x}^{U}(a^{-n}B_{\delta^{-1}}^{U}a^{n})$$

Now proceed to **Step 3**: take log average and limit $n_j \rightarrow \infty$, we get

$$\lim_{n\to\infty}\frac{1}{n}\log\mu_x^U(a^{-n}B_1^Ua^n)=\lim_{n\to\infty}-\frac{1}{n}\log\mu_x^{a^{-n}\mathcal{A}}([x]_{\mathcal{A}})=H_{\mu}(\mathcal{A}\mid a^{-1}\mathcal{A}).$$

Thus $D_{\mu}(a, U)(x) = H_{\mu}(\mathcal{A} \mid a^{-1}\mathcal{A}).$

Now we are ready to prove Theorem 7.6(iii).

Theorem (Clay notes Thm. 7.6(iii))

So For μ -a.e. x we have $h_{\mu}(a, U) = 0$ iff μ_x^U is finite iff μ_x^U is trivial.

Proof: Clearly μ_x^U is trivial $\Rightarrow \mu_x^U$ is finite $\Rightarrow h_\mu(a, U) = 0$. It remains to show that $h_\mu(a, U) = 0$ implies $\mu_x^U \propto \delta_e$ a.e. By Proposition,

$$\int -\log \mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) \ d\mu(x) = H_{\mu}(\mathcal{A} \mid a^{-1}\mathcal{A}) = h_{\mu}(a, U) = 0.$$

Thus $\mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) = 1$ a.e. $\Rightarrow \qquad \mu_x^{a^{-m}\mathcal{A}}([x]_{a^m\mathcal{A}}) = 1$ a.e. This implies $\mu_x^U(V_{-m,x} \setminus V_{m,x}) = 0$ a.e. where $[x]_{a^m\mathcal{A}} =: V_{m,x}x$. Yet $V_{-m,x} \nearrow U$ and $V_{m,x} \searrow \{e\}$ as $m \to \infty$, therefore $\mu_x^U \propto \delta_e$. 7.6(iii) \checkmark

Left to show

Theorem

7.6(ii): We have $h_{\mu}(a, U) \leq h_{\mu}(a)$, with equality if $U = G^{-}$. 7.9: $h_{\mu}(a, U) \leq -\log |\det Ad_{a}|_{u}|$, and equality holds iff μ is U-invariant.

We used the following "good" σ -algebra to prove Theorem 7.6 (iii).

Lemma ("Good" σ -algebra)

There exists a countably generated σ -algebra \mathcal{A} on G/Γ that is a-descending and subordinate to U. Then $h_{\mu}(a, U) = H_{\mu}(\mathcal{A} \mid a^{-1}\mathcal{A})$.

To show Theorem 7.6 (ii), we need the construction of a "good" partition.

Proposition ("Good" partition (Clay notes Prop. 7.43))

There exists a countable partition ${\mathcal P}$ of G/Γ with finite entropy such that

- \mathcal{P} is a generator of a mod μ ,
- σ -algebra $\mathcal{A} := \bigvee_{n \geq 0} a^{-n} \mathcal{P}$ is a-descending and subordinate to G^- .

Proof of Theorem 7.6(ii)

Assume there exists a countable partition \mathcal{P} of G/Γ with finite entropy such that (a): \mathcal{P} is a generator of $a \mod \mu$, and (b): σ -algebra $\mathcal{A} := \bigvee_{n \ge 0} a^{-n} \mathcal{P}$ is a-descending and subordinate to G^- .

Theorem (Clay notes Thm. 7.6(ii))

3 We have $h_{\mu}(a, U) \leq h_{\mu}(a)$, with equality if $U = G^{-}$.

Outline:

Step 2 in the proof of Theorem 7.6(ii)

Claim

One can construct \mathcal{P}_U from \mathcal{P} such that:

•
$$\mathcal{A}_U := \bigvee_{n>0} a^{-n} \mathcal{P}_U$$
 is subordinate to U ,

 $\ \ \, {\cal A} \subset {\cal A}_U, \qquad \ \ \, {\rm and} \qquad \quad {\cal A} \vee {\it a}^{-1} {\cal A}_U = {\cal A}_U \ {\rm mod} \ \mu.$

Proof sketch (detailed in Clay notes 7.38):

- Let P ∈ P small enough. Lift P ⊂ G/Γ to G and cut P into pieces of U-orbits and push back down to G/Γ.
- 2 Let P_U be the σ-algebra whose elements are unions of such pieces of U-orbits. Then P ⊂ P_U ⇒ A ⊂ A_U.
- **③** \mathcal{A} is subordinate to $G^- \Rightarrow \mathcal{A}_U$ is subordinate to U.

Show [x]_A ∩ [x]_{a⁻¹A_U} ^μ = [x]_{A_U} for μ-a.e. x by construction. 7.6(ii)√
 Remark: (1): This also shows the existence of a "good" σ-algebra A_U.
 (2): With more care one can show for *a*-normalized subgroups U ⊂ V ⊂ G⁻ (see Clay notes 7.40), h_µ(a, U) ≤ h_µ(a, V).

Theorem (Clay notes Thm. 7.9)

 $h_{\mu}(a, U) \leq -\log |\det \operatorname{Ad}_{a}|_{\mathfrak{u}}| =: J$, and equality holds iff μ is U-invariant.

The main idea is to compare leafwise measures w.r.t μ with those w.r.t. Haar, and then use strict convexity of log. Let *m* be Haar on G/Γ , and m_U be Haar on *U*. Let \mathcal{A} be a σ -algebra subordinate to *U* and *a*-descending. Outline:

Note that: m_U(a⁻¹Ba) = e^Jm_U(B) for any measurable B ⊂ U.
Write [x]_A =: V_xx and [x]_{a⁻¹A} = a⁻¹[ax]_A = a⁻¹V_{ax}ax. Then
m_x^{a⁻¹A}([x]_A) = m_U(V_x)/m_U(a⁻¹V_{ax}a) = m_U(V_x)/m_U(V_{ax})e^{-J}.

Take log and apply the pointwise ergodic theorem

$$\int \log m_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) \ d\mu(x) = -J\left({}_{\mathrm{cf.}} \int -\log \mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) \ d\mu = h_\mu(a, U)\right)$$

Outline continued

Outline (cont'd):

Since \mathcal{A} refines $a^{-1}\mathcal{A}$, both subordinate to U, for μ -a.e. x,

$$[x]_{a^{-1}\mathcal{A}} = N_x \cup \bigcup_{i=0}^{\infty} [x_i]_{\mathcal{A}}$$

where N_x is $\mu_x^{a^{-1}A}$ -null but not necessarily $m_x^{a^{-1}A}$ -null. So By convexity of log,

$$\int \log m_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) - \log \mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) d\mu_x^{a^{-1}\mathcal{A}}$$
$$= \sum_{i=0}^{\infty} \log \left(\frac{m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}{\mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})} \right) \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})$$
$$\leq \log \sum_{i=0}^{\infty} \left(\frac{m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}{\mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})} \right) \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})$$
$$< 0.$$

Brian Chung

Outline continued

Outline (cont'd):

5

$$\int \log m_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) - \log \mu_x^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) d\mu_x^{a^{-1}\mathcal{A}}$$
$$= \sum_{i=0}^{\infty} \log \left(\frac{m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}{\mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}\right) \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})$$
$$\leq \log \sum_{i=0}^{\infty} \left(\frac{m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}{\mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})}\right) \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}})$$
$$\leq 0.$$

• Thus by integrating over all G/Γ ,

$$-J+h_{\mu}(a,U)=\int \log m_{x}^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}})-\log \mu_{x}^{a^{-1}\mathcal{A}}([x]_{\mathcal{A}}) \ d\mu(x)\leq 0.$$

• Equality iff N_x are $m_x^{a^{-1}\mathcal{A}}$ -null and $m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}}) = \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}}) \mu$ -a.s.

Outline for equality implies U-invariance:

- Equality iff N_x are $m_x^{a^{-1}\mathcal{A}}$ -null and $m_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}}) = \mu_x^{a^{-1}\mathcal{A}}([x_i]_{\mathcal{A}}) \mu$ -a.s.
- Similarly, we have $m_x^{a^{-\ell}\mathcal{A}}([x_i]_{a^k\mathcal{A}}) = \mu_x^{a^{-\ell}\mathcal{A}}([x_i]_{a^k\mathcal{A}}) \mu$ -a.s.
- For fixed ℓ, the atoms of a^kA for all k ≥ 0 generate the Borel σ-algebra of each a^{-ℓ}A-atom.

1 Thus
$$\mu_x^{a^{-\ell}\mathcal{A}} = m_x^{a^{-\ell}\mathcal{A}}$$
 for μ -a.e. x.

- **(**) Use this for all ℓ , we see that $\mu_x^U = m_x^U = m_U$ for μ -a.e. x.
- 🔮 This implies μ is U-invariant. 7.9 🗸

It remains to show the existence of a "good" partition $\mathcal{P}.$

It remains to show

Proposition (Clay notes Prop. 7.43)

There exists a countable partition ${\mathcal P}$ of G/Γ with finite entropy such that

- \mathcal{P} is a generator of a mod μ ,
- σ -algebra $\mathcal{A} := \bigvee_{n>0} a^{-n} \mathcal{P}$ is a-descending and subordinate to G^- .

We will first construct such a partition ${\mathcal P}$ (in fact a finite partition) in the case when

- G/Γ is compact, and
- a is expansive (i.e. there exists δ > 0 such that for all x ≠ y ∈ G/Γ, there exists n ∈ Z such that d(aⁿx, aⁿy) > δ.)

For instance a hyperbolic toral automorphism *a* on \mathbb{T}^n (i.e. $a \in SL_n(\mathbb{Z})$ such that all eigenvalues have absolute value $\neq 1$).

In the case when G/Γ is compact and *a* is expansive, the following are clear: For any partition \mathcal{P} whose atoms have small enough diameter,

- **(Generating)** \mathcal{P} is generator for *a*,
- **a** (*a*-descending) $\mathcal{A} = \bigvee_{n=0}^{\infty} a^{-n} \mathcal{P}$ is *a*-descending.
- **(Upper bound)** For μ -a.e. x, there exists $\delta = \delta(x) > 0$ such that

$$[x]_{\mathcal{A}} \subset B^{G^-}_{\delta^{-1}}(x).$$

It remains to show the **lower bound**: for μ -a.e. x, for some $\delta = \delta(x) > 0$,

$$B^{G^-}_{\delta}(x) \subset [x]_{\mathcal{A}}.$$

This is not true for every partition \mathcal{P} as the boundaries of the atoms may have nontrivial μ -mass.

μ -thin boundary

Therefore we need a general assumption quantifying that having mass at boundary is the main obstruction.

Let X be a locally compact metric space, μ a Radon measure on X. For measurable $B \subset X$, let

$$\partial_{\delta}B := \{y \in X \mid \inf_{z \in B} d(y, z) + \inf_{z \notin B} d(y, z) < \delta\}.$$

Definition

We say that $B \subset X$ has μ -thin boundary if there exists c > 0 such that for all small $\delta > 0$, we have $\mu(\partial_{\delta}B) \leq c\delta$.

Proposition (Clay notes Lemma 7.31)

Suppose \mathcal{P} is a finite partition of X such that each atom has μ -thin boundary. Then for μ -a.e. $x \in X$, there exists $\delta = \delta(x) > 0$ such that

$$B^{G^-}_{\delta}(x) \subset [x]_{\mathcal{A}}.$$

Proposition (Clay notes Lemma 7.31)

Suppose \mathcal{P} is a finite partition of G/Γ with μ -thin boundary. Then for μ -a.e. $x \in G/\Gamma$, there exists $\delta = \delta(x) > 0$ such that $B_{\delta}^{G^-}(x) \subset [x]_{\mathcal{A}}$.

Outline:

• Lemma: There exists $\alpha > 0$ and C > 0 such that for all $r \in (0, 1)$ and $n \ge 1$, we have

$$a^n(B^{G^-}_r)a^{-n}\subset B^G_{Ce^{-nlpha}r}.$$

- **3** For $\delta > 0$ and $n \ge 1$, let $E_n(\delta) := a^{-n} \partial_{Ce^{-n\alpha}\delta} \mathcal{P}$.
- By construction, $\mu(\bigcup_{n\geq 0} E_n(\delta)) \leq cC(\sum_{n\geq 0} e^{-n\alpha})\delta$.
- Thus for μ -a.e. x, there exists $\delta(x) > 0$ such that $x \notin \bigcup_{n \ge 0} E_n(\delta)$.
- Solution Sector Assume the contrary that $hx \in B^{G^-}_{\delta}(x)$ and $hx \notin [x]_{\mathcal{A}}$.
- There exists $n \ge 0$ such that $a^n x$ and $a^n h x$ are in distinct atoms of \mathcal{P} .
- By **Step 1**, $d(a^n x, a^n h x) \leq Ce^{-n\alpha}\delta$, thus $a^n x$ and $a^n h x$ are in $\partial_{Ce^{-n\alpha}\delta}\mathcal{P}$, i.e. $x \in E_n(\delta)$, a contradiction.

How do we know that G/Γ admits a finite partition \mathcal{P} with μ -thin boundary? We have the following general lemma: Let X be a locally compact metric space, μ be a Radon measure on X.

Lemma (Clay notes Leamm 7.27)

For every $x \in X$, and Lebesgue-a.e. r > 0, there exists c = c(x, r) > 0such that $\mu(\partial_{\delta}B_r(x)) \le c\delta$.

Now cover the compact G/Γ by finitely many such balls with μ -thin boundary, and let \mathcal{P} be the resulting partition.

For compact G/Γ and a expansive \checkmark

In the construction we can specify a universal upper bound R > 0 on the atoms (will be useful).

General case

In general, one needs to handle noncompact G/Γ (say $SL_3(\mathbb{R})/SL_3(\mathbb{Z})$) and nonexpansive a (say $a = \operatorname{diag}(e^t, e^s, e^r)$).

We construct a countable partition \mathcal{P} with finite entropy in 4 steps.

- Fix an open subset Ω ⊂ G/Γ of compact closure, positive μ-measure and μ-thin boundary. (with also assume the diameter of Ω is at most r/16, where r is the injectivity radius of Ω.)
- 2 Let Q := {Ω, X \ Ω}. Ω has μ-thin boundary, so we have the lower bound: for μ-a.e. x, there exists δ > 0 with B^{G-}_δ(x) ⊂ [x]_{V_{x>0} a⁻ⁿQ}.
- Define a partition $\widetilde{Q} := \{Q_i \mid i = 0, 1, 2, ...\}$ as follows: $Q_0 := X \setminus \Omega$, and for $i \ge 1$,

 $Q_i := \{x \in \Omega \mid i \text{ is the first return time of } x \text{ to } \Omega\}.$

Note that $\widetilde{\mathcal{Q}} \subset \bigvee_{n \geq 0} a^{-n} \mathcal{Q}$ (since $Q_i = (\Omega \setminus \bigcup_{k=1}^{i-1} a^{-k} \Omega) \cap a^{-i} \Omega$). Thus $\bigvee_{n \geq 0} a^{-n} \mathcal{Q} = \bigvee_{n \geq 0} a^{-n} \widetilde{\mathcal{Q}}$, which implies the **lower bound** for $\widetilde{\mathcal{Q}}$.

We have the partition Q̃ := {Q_i | i = 0, 1, 2, ...} where Q₀ := X \ Ω, and for i ≥ 1, Q_i := {x ∈ Ω | i is the first return time of x to Ω}. So far we know that Q̃ has the lower bound. Can also compute that Q̃ has finite entropy: H_μ(Q̃) < ∞ (see Clay notes 7.50).

4 We construct a refinement \mathcal{P} of $\widetilde{\mathcal{Q}}$ as follows:

• Lemma: There exists $\alpha = \alpha(G, a) > 0$ such that for all r > 0 and $n \in \mathbb{Z}$, we have $a^n(B^G_{e^{-|n|\alpha_r}})a^{-n} \subset B^G_r$ ($\alpha \approx \text{top exponent of Ad}_a$).

For $i \ge 1$, define a partition of Q_i by $\mathcal{P}_i := \{P_{ij} \mid 1 \le j \le N(i)\}$ such that P_{ij} has diameter $\le e^{-\alpha i}r/8$. Here r = injectivity radius of Ω .

Let countable partition $\mathcal{P} := \{X \setminus \Omega\} \cup \{P_{ij} \mid i \ge 1, 1 \le j \le N(i)\}.$

Can show finite entropy: $H_{\mu}(\mathcal{P}) = H_{\mu}(\widetilde{\mathcal{Q}}) + H_{\mu}(\mathcal{P} \mid \widetilde{\mathcal{Q}}) < \infty$ (by showing that one can take $N(i) \leq O(e^{\kappa i})$, see Clay notes 7.46 and 7.52).

Upper bound on ${\mathcal P}$

It remains to show that \mathcal{P} has the **upper bound**: $[x]_{\bigvee_{n\geq 0} a^{-n}\mathcal{P}} \subset B^{G^-}_{\delta^{-1}}(x)$. The argument in the compact G/Γ and expansive *a* case only gives for μ -a.e. $x \in \Omega$,

$$[x]_{\bigvee_{n\geq 0}a^{-n}\mathcal{P}}\subset B^{G^{-}}_{r/2}B^{G^{0}}_{r/2}(x),$$

(recall $G^0 := C_G(a)$ is the centralizer of a in G.)

Eliminate G⁰: let x ∈ Ω, and g-g₀x ∈ [x]_{V_{n≥0} a⁻ⁿP} with g- ∈ B^{G-}_{r/2} and g₀ ∈ B^{G0}_{r/2}. Suppose μ(Q_{n0}) > 0 for infinitely many n₀ ≥ 1. see Clay notes 7.53 if this fails. Then aⁿx ∈ Q_{n0} for infinitely many n ≥ 0. Now d(aⁿg-g₀x, aⁿx) ≤ e^{-αn₀r/8} as they are in the same P-atom. The displacement is aⁿg-g₀a⁻ⁿ = (aⁿg-a⁻ⁿ)g₀ ∈ B^{G-}<sub>Ce<sup>-αn₀r</sub>g₀. Thus g₀ ∈ B^G<sub>2Ce<sup>-αn₀r</sub>. Since this holds for infinitely many n₀, g₀ = e.
Extend to μ-a.e. x ∈ G/Γ: for μ-a.e. x ∈ G/Γ, ∃n ≥ 0 with aⁿx ∈ Ω and [aⁿx]_A ⊂ B^{G-}_raⁿx. Then [x]_A = a⁻ⁿ[aⁿx]_A ⊂ B^{G-}_s(x) for some s = s(n) > 0. good P ✓
</sub></sup></sub></sup>

- ... not quite done yet. By refining $\widetilde{\mathcal{Q}}$ we have destroyed the **lower bound**!
- The remedy is to "thicken" each atom P_{ij} in Q_i in the G^- -direction.
- More precisely, replace each P_{ij} by $B_{r/4}^{G^-}P_{ij}$, then intersects with Q_i and remove overlaps to get a partition P_{ij}^{\prime} of each Q_i .
- Each P'_{ij} still has diameter $\leq e^{-\alpha i}r/8$ in the G^0G^+ direction, so the **upper bound** argument still works, and we have preserved the **lower bound**. details: Clay notes 7.54. good $\mathcal{P} \checkmark \checkmark$