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Properties of Leafwise measures

We have seen that leafwise measures µTx describe properties of the
measure µ along the direction of T -leaves. For instance:

µTx is trivial (i.e. µTx ∝ δe) a.e. if and only if there exists a
measurable set B ⊂ X with µ(X \ B) = 0 such that x , tx ∈ B for
some t ∈ T implies t = e (i.e. B is a global cross-section).

µTx is infinite a.e. if and only if µ is T -recurrent.

µTx is the left Haar measure on T a.e. if and only if µ is T -invariant.
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Setting

Throughout, we let

G ⊂ SLn(R) be a closed connected real linear group.

Γ ⊂ G a discrete subgroup of G .

X := G/Γ with Riemannian metric induced from a right-invariant
metric on G .

there is a G -left action on X by left multiplication x 7→ gx .

µ be a (Borel probability) measure on X .

Sometimes we specialize to the following special case:

Γ is a lattice if there is a G -invariant probability measure mX (the
Haar measure) on X .
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Horospherical subgroup

Fix a ∈ G . Define the stable horospherical subgroup for a by

G− := {g ∈ G | anga−n → e as n→∞}.

Similarly define the unstable horospherical subgroup G+ for a.
Note that for x , gx ∈ X for some g ∈ G−,

d(anx , angx) = d(anx , (anga−n)anx) ≤ d(e, anga−n)→ 0.

Thus we refer to G−x as the stable manifold through x .
Example: For G := SL3(R), Γ := SL3(Z) and a := diag(et , es , er ) ∈ G
with t > s > r ,

G− =

1 0 0
∗ 1 0
∗ ∗ 1

 , G+ =

1 ∗ ∗
0 1 ∗
0 0 1

 .
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Entropy contribution: Theorem 7.6

Theorem (Clay notes Thm. 7.6)

Fix a ∈ G . Let µ be an a-invariant probability measure on G/Γ. Let U be
a closed subgroup of G− normalized by a. Then

1 The entropy contribution of U at x

Dµ(a,U)(x) := lim
n→∞

1

n
logµUx (a−nBU

1 an)

exists for µ-a.e. x and defines an a-invariant function on X .

2 For µ-a.e. x we have Dµ(a,U)(x) ≤ hµEx (a), with equality if U = G−.
Here E denotes the σ-algebra of a-invariant sets.

3 For µ-a.e. x we have Dµ(a,U)(x) = 0 iff µUx is finite iff µUx is trivial.

Remark: we are NOT assuming: (i) a is diagonalizable, (ii) µ is a-ergodic
(not even A-ergodic, which is what EKL assumes), (iii) Γ is a lattice in G .
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Characterization of recurrence using entropy

From (b), we know that Dµ(a,G−)(x) ≤ hµEx (a). From (c), we know that

Dµ(a,G−)(x) = 0 iff µUx is finite. Therefore we have the corollary

Corollary

The measure µ is G−-recurrent iff hµEx (a) > 0 a.e.
Assuming µ is in addition a-ergodic, then µ is G−-recurrent iff hµ(a) > 0.
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Example

Let G := SL3(R), Γ := SL3(Z) and a := diag(et , es , er ) ∈ G with
t > s > r . Let

U1 :=

1 0 0
∗ 1 0
0 0 1

 ⊂ U2 :=

1 0 0
∗ 1 0
∗ 0 1

 ⊂ U3 := G− =

1 0 0
∗ 1 0
∗ ∗ 1


Let µ := mX be the Haar measure on X . Note that

a−1

1 0 0
x 1 0
y z 1

 a =

 1 0 0
xet−s 1 0
yet−r zes−r 1

 .
Since µ = mX is invariant under G−, µUi

x is Haar on Ui a.e. for i = 1, 2, 3,
thus we can calculate

DmX
(a,U1)(x) := lim

n→∞

1

n
logµUx (a−nBU

1 an) = t − s,

Similarly DmX
(a,U2)(x) = (t − s) + (t − r), DmX

(a,G−)(x) = 2(t − r).
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Entropy contribution for Haar measure mX

In general, it can be computed that if µ = mX is Haar, then

DmX
(a,G−) = − log | detAda|g− |,

where Ada : g→ g is the adjoint representation defined by v 7→ ava−1.

Clearly if µUx is finite, then Dµ(a,U)(x) = 0.

The calculation for general µ, however, is less clear.
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Entropy contribution and Theorem 7.9

Fix a ∈ G . Define the entropy contribution of an a-normalized closed
subgroup U ⊂ G−.

hµ(a,U) :=

∫
Dµ(a,U) dµ.

(Theorem 7.6(2) implies that hµ(a,G−) = hµ(a))

The next theorem in particular shows that the Haar measure mX has
maximal entropy contribution of G− among a-invariant measures µ.

Theorem (Clay notes Thm. 7.9)

Let U ⊂ G− be an a-normalized closed subgroup of G−, and u := Lie(U).
Let µ be an a-invariant probability measure on X = G/Γ. Then

hµ(a,U) ≤ − log | detAda|u|,

and equality holds iff µ is U-invariant.
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Corollary of Theorem 7.9: mX is the unique MME

As a corollary of Theorem 7.9, one can show that in many cases, the Haar
measure is the unique measure of maximal entropy.

Corollary (Clay notes Corollary 7.10)

Suppose Γ is a lattice in G , and let X = G/Γ. Suppose a ∈ G is such that
G is generated by G+ and G−.
Then mX is the unique measure of maximal entropy for the a-action on
X , i.e. if µ is an a-invariant probability measure on X with
hµ(a) = hmX

(a), then µ = mX .

Note that the assumption on a is satisfied quite generally - for instance if
G is a simple real Lie group and g− is nontrivial.
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Entropy assumption =⇒ extra invariance

To summarize, consider the case of X = SL3(R)/SL3(Z) and
a = diag(t, s, r) ∈ SL3(R) with t > s > r .
Let A be the full diagonal subgroup of SL3(R). Let mX be Haar on X .

Corollary 7.10 implies:
if µ is a-invariant and hµ(a) = hmX

(a), then µ = mX .

High entropy method of Einsiedler-Katok (Thm. 9.5) implies:
if µ is A-ergodic and hµ(a) > 1

2hmX
(a), then µ = mX .

High entropy method can also show (Problem 9.13) that:
if µ is A-ergodic and all a 6= e ∈ A satisfies hµ(a) > 0, then µ = mX .

High+low entropy by Einsiedler-Katok-Lindenstrauss (Thm. 11.5):
if µ is A-ergodic and for some {at} ⊂ A, hµ(a1) > 0, then µ = mX .

We write “A-ergodic” for A-invariant and A-ergodic.
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Proofs
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Starting the proofs: simplifying assumptions

Throughout, assume that

a ∈ G ,

µ is an a-invariant probability measure on G/Γ,

U ⊂ G− := {g ∈ G | anga−n → e as n→∞} is normalized by a.

For the proofs presented here, we further assume that

µ is a-ergodic (the precise reduction is in 7.19-7.24 of the Clay notes)

This implies µ = µEx for µ-a.e. x .

a is of “class A”, i.e.
1 the eigenvalues of a as an element of SLn(R) are all in R.
2 1 is the only eigenvalue of Ada with absolute value 1.
3 No two eigenvalues have the same absolute value.

For instance a = diag(et , es , er ) ∈ SL3(R) with t > s > r .
This implies that g = g0 ⊕ g− ⊕ g+, where

g0 := Lie(CG (a)), g− := Lie(G−), g+ := Lie(G+).
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Proof of Theorem 7.6(i)

We first prove

Theorem (Clay notes Thm. 7.6(i))

1 The entropy contribution of U at x

Dµ(a,U)(x) := lim
n→∞

1

n
logµUx (a−nBU

1 an)

exists for µ-a.e. x and defines an a-invariant function on X .

Outline:
1 Assume normalization µUx (BU

1 ) = 1 for all x (wherever µU
x is well-defined).

Then

µUx (a−nBU
1 an) =

n−1∏
i=0

µUaix(a−1BU
1 a).

2 Take log and apply the pointwise ergodic theorem (shows both
existence and a-invariance).
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Proof of Theorem 7.6(i)

Thus it suffices to show that given normalization µUx (BU
1 ) = 1, we have

n−1∏
i=0

µUaix(a−1BU
1 a) = µUx (a−nBU

1 an). (1)

We need the following fact from Weikun’s lecture:

Lemma

µUax ∝ (Conja)∗µ
U
x ,

where Conja : G → G is defined by conjugation by a: g 7→ aga−1.

Proof of (1): By Lemma,

µU
aix

(a−1BU
1 a)

µU
aix

(BU
1 )

=
(Conjai )∗µ

U
x (a−1BU

1 a)

(Conjai )∗µ
U
x (BU

1 )
=
µUx (a−i−1BU

1 ai+1)

µUx (a−iBU
1 ai )

.

Now use µU
aix

(BU
1 ) = 1 and take product 0 ≤ i ≤ n− 1 yields (1). 7.6(i) X
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Interlude

To show the other statements, we need the construction of a suitable
σ-algebra A. We say that

A is subordinate to U if for µ-a.e. x , there exists δ = δ(x) > 0 such
that

BU
δ (x) ⊂ [x ]A ⊂ BU

δ−1(x).

A is a-descending if a−1A ⊂ A.

Lemma (“Good” σ-algebra)

There exists a countably generated σ-algebra A on G/Γ that is
subordinate to U and a-descending.

For now on, assume the lemma and fix one such “good” σ-algebra A.
Also, by a-ergodicity, Dµ(a,U)(x) is constant µ-a.e. - let it be hµ(a,U).
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Proposition

Suppose A is a countably generated σ-algebra subordinate to U and
a-descending. Then hµ(a,U) = Hµ(A | a−1A), or equivalently,

lim
n→∞

1

n
logµUx (a−nBU

1 an) =

∫
− logµa

−1A
x ([x ]A) dµ(x).

Outline:

1 Show that

lim
n→∞

−1

n
logµa

−nA
x ([x ]A) = Hµ(A | a−1A).

2 Use the fact that A is subordinate to U to get some set Y ⊂ G/Γ
with µ(Y ) > 0 and some δ > 0 such that for all x ∈ Y , we have

µUx (a−nBU
δ a

n) ≤ c(x)µa
−nA

x ([x ]A)−1 ≤ µUx (a−nBU
δ−1a

n).

3 Take log and let n→∞, noting that in the definition of Dµ(a,U)(x)
we can replace the radius 1 by any r > 0.
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Step 1

We first show that for Iµ(A | a−1A)(x) := − logµa
−1A

x ([x ]A),

lim
n→∞

−1

n
logµa

−nA
x ([x ]A) = Hµ(A | a−1A):=

∫
Iµ(A | a−1A) dµ(x).

Proof: Recall by the compatibility property of conditional measures and
a−1A ⊂ A, we have

µa
−iA

x ([x ]A)

µa−i+1A
x ([x ]A)

= µa
−iA

x ([x ]a−i+1A).

Also µAax = a∗µ
a−1A
x . Take log on both side and sum over 1 ≤ i ≤ n, we

get by pointwise ergodic theorem that

−1

n
logµa

−nA
x ([x ]A) = −1

n

n∑
i=1

logµa
−iA

x ([x ]a−i+1A)

=
1

n

n∑
i=1

Iµ(A | a−1A)(ai−1x)→ Hµ(A | a−1A).
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Step 2: Squeeze argument

Since A is subordinate to U, there exists δ > 0 such that the set

Y := {x | BU
δ (x) ⊂ [x ]A ⊂ BU

δ−1(x)}

has positive µ-measure. By pointwise ergodic theorem (and a-ergodicity of
µ), there is a sequence nj →∞ such that anj x ∈ Y . For these n = nj , we
have

a−nBU
δ a

nx ⊂ [x ]a−nA = a−n[anx ]A ⊂ a−nBU
δ−1a

nx .

Let Vx ⊂ U so that [x ]A = Vxx and a−n[anx ]A = a−nVanxa
nx . Then

µUx (a−nBU
δ a

n) ≤ µUx (a−nVanxa
n) = µUx (Vx)µa

−nA
x ([x ]A)−1 ≤ µUx (a−nBU

δ−1a
n).

Now proceed to Step 3: take log average and limit nj →∞, we get

lim
n→∞

1

n
logµUx (a−nBU

1 an) = lim
n→∞

−1

n
logµa

−nA
x ([x ]A) = Hµ(A | a−1A).

Thus Dµ(a,U)(x) = Hµ(A | a−1A).
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Proof of Theorem 7.6(iii)

Now we are ready to prove Theorem 7.6(iii).

Theorem (Clay notes Thm. 7.6(iii))

3 For µ-a.e. x we have hµ(a,U) = 0 iff µUx is finite iff µUx is trivial.

Proof: Clearly µUx is trivial ⇒ µUx is finite ⇒ hµ(a,U) = 0.
It remains to show that hµ(a,U) = 0 implies µUx ∝ δe a.e.
By Proposition,∫

− logµa
−1A

x ([x ]A) dµ(x) = Hµ(A | a−1A) = hµ(a,U) = 0.

Thus µa
−1A

x ([x ]A) = 1 a.e. ⇒ µa
−mA

x ([x ]amA) = 1 a.e.
This implies µUx (V−m,x \ Vm,x) = 0 a.e. where [x ]amA =: Vm,xx .
Yet V−m,x ↗ U and Vm,x ↘ {e} as m→∞, therefore µUx ∝ δe . 7.6(iii) X
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Left to show

Theorem

7.6(ii): We have hµ(a,U) ≤ hµ(a), with equality if U = G−.
7.9: hµ(a,U) ≤ − log | detAda|u|, and equality holds iff µ is U-invariant.

We used the following “good” σ-algebra to prove Theorem 7.6 (iii).

Lemma (“Good” σ-algebra)

There exists a countably generated σ-algebra A on G/Γ that is
a-descending and subordinate to U. Then hµ(a,U) = Hµ(A | a−1A).

To show Theorem 7.6 (ii), we need the construction of a “good” partition.

Proposition (“Good” partition (Clay notes Prop. 7.43))

There exists a countable partition P of G/Γ with finite entropy such that

P is a generator of a mod µ,

σ-algebra A :=
∨

n≥0 a
−nP is a-descending and subordinate to G−.
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Proof of Theorem 7.6(ii)

Assume there exists a countable partition P of G/Γ with finite entropy
such that (a): P is a generator of a mod µ, and (b): σ-algebra
A :=

∨
n≥0 a

−nP is a-descending and subordinate to G−.

Theorem (Clay notes Thm. 7.6(ii))

2 We have hµ(a,U) ≤ hµ(a), with equality if U = G−.

Outline:

1 hµ(a,G−)
(b)
= Hµ(A | a−1A) = hµ(a,P)

(a)
= hµ(a).

2 Construct PU such that (c): AU :=
∨

n≥0 a
−nPU is subordinate to U,

(d): A ⊂ AU , and (e): A ∨ a−1AU = AU mod µ.

3 Use the “good” σ-algebra AU to show that hµ(a,U) ≤ hµ(a,G−):

hµ(a,U)
(c)
= Hµ(AU | a−1AU)

(e)
= Hµ(A | a−1AU)

(d)

≤ Hµ(A | a−1A) = hµ(a,G−).
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Step 2 in the proof of Theorem 7.6(ii)

Claim

One can construct PU from P such that:

1 AU :=
∨

n≥0 a
−nPU is subordinate to U,

2 A ⊂ AU , and A ∨ a−1AU = AU mod µ.

Proof sketch (detailed in Clay notes 7.38):

1 Let P ∈ P small enough. Lift P ⊂ G/Γ to G and cut P into pieces of
U-orbits and push back down to G/Γ.

2 Let PU be the σ-algebra whose elements are unions of such pieces of
U-orbits. Then P ⊂ PU ⇒ A ⊂ AU .

3 A is subordinate to G− ⇒ AU is subordinate to U.

4 Show [x ]A ∩ [x ]a−1AU

µ
= [x ]AU

for µ-a.e. x by construction. 7.6(ii)X

Remark: (1): This also shows the existence of a “good” σ-algebra AU .
(2): With more care one can show for a-normalized subgroups
U ⊂ V ⊂ G− (see Clay notes 7.40), hµ(a,U) ≤ hµ(a,V ).
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Proof of Theorem 7.9

Theorem (Clay notes Thm. 7.9)

hµ(a,U) ≤ − log | detAda|u|=: J, and equality holds iff µ is U-invariant.

The main idea is to compare leafwise measures w.r.t µ with those w.r.t.
Haar, and then use strict convexity of log. Let m be Haar on G/Γ, and mU

be Haar on U. Let A be a σ-algebra subordinate to U and a-descending.
Outline:

1 Note that: mU(a−1Ba) = eJmU(B) for any measurable B ⊂ U.
2 Write [x ]A =: Vxx and [x ]a−1A = a−1[ax ]A = a−1Vaxax . Then

ma−1A
x ([x ]A) =

mU(Vx)

mU(a−1Vaxa)
=

mU(Vx)

mU(Vax)
e−J .

3 Take log and apply the pointwise ergodic theorem∫
logma−1A

x ([x ]A) dµ(x) = −J
(

cf.

∫
− logµa

−1A
x ([x ]A) dµ = hµ(a,U).

)
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Outline continued

Outline (cont’d):
4 Since A refines a−1A, both subordinate to U, for µ-a.e. x ,

[x ]a−1A = Nx ∪
∞⋃
i=0

[xi ]A

where Nx is µa
−1A

x -null but not necessarily ma−1A
x -null.

5 By convexity of log,∫
logma−1A

x ([x ]A)− logµa
−1A

x ([x ]A) dµa
−1A

x

=
∞∑
i=0

log

(
ma−1A

x ([xi ]A)

µa−1A
x ([xi ]A)

)
µa
−1A

x ([xi ]A)

≤ log
∞∑
i=0

(
ma−1A

x ([xi ]A)

µa−1A
x ([xi ]A)

)
µa
−1A

x ([xi ]A)

≤ 0.
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Outline continued

Outline (cont’d):
5 ∫

logma−1A
x ([x ]A)− logµa

−1A
x ([x ]A) dµa

−1A
x

=
∞∑
i=0

log

(
ma−1A

x ([xi ]A)

µa−1A
x ([xi ]A)

)
µa
−1A

x ([xi ]A)

≤ log
∞∑
i=0

(
ma−1A

x ([xi ]A)

µa−1A
x ([xi ]A)

)
µa
−1A

x ([xi ]A)

≤ 0.

6 Thus by integrating over all G/Γ,

−J + hµ(a,U) =

∫
logma−1A

x ([x ]A)− logµa
−1A

x ([x ]A) dµ(x) ≤ 0.

7 Equality iff Nx are ma−1A
x -null and ma−1A

x ([xi ]A) = µa
−1A

x ([xi ]A) µ-a.s.
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Outline for equality case

Outline for equality implies U-invariance:

7 Equality iff Nx are ma−1A
x -null and ma−1A

x ([xi ]A) = µa
−1A

x ([xi ]A) µ-a.s.

8 Similarly, we have ma−`A
x ([xi ]akA) = µa

−`A
x ([xi ]akA) µ-a.s.

9 For fixed `, the atoms of akA for all k ≥ 0 generate the Borel
σ-algebra of each a−`A-atom.

10 Thus µa
−`A

x = ma−`A
x for µ-a.e. x .

11 Use this for all `, we see that µUx = mU
x = mU for µ-a.e. x .

12 This implies µ is U-invariant. 7.9 X

It remains to show the existence of a “good” partition P.
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“Good” partition

It remains to show

Proposition (Clay notes Prop. 7.43)

There exists a countable partition P of G/Γ with finite entropy such that

P is a generator of a mod µ,

σ-algebra A :=
∨

n≥0 a
−nP is a-descending and subordinate to G−.

We will first construct such a partition P (in fact a finite partition) in the
case when

G/Γ is compact, and

a is expansive (i.e. there exists δ > 0 such that for all x 6= y ∈ G/Γ,
there exists n ∈ Z such that d(anx , any) > δ.)

For instance a hyperbolic toral automorphism a on Tn (i.e. a ∈ SLn(Z)
such that all eigenvalues have absolute value 6= 1).
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G/Γ compact and a is expansive

In the case when G/Γ is compact and a is expansive, the following are
clear: For any partition P whose atoms have small enough diameter,

1 (Generating) P is generator for a,

2 (a-descending) A =
∨∞

n=0 a
−nP is a-descending.

3 (Upper bound) For µ-a.e. x , there exists δ = δ(x) > 0 such that

[x ]A ⊂ BG−

δ−1(x).

It remains to show the lower bound: for µ-a.e. x , for some δ = δ(x) > 0,

BG−
δ (x) ⊂ [x ]A.

This is not true for every partition P as the boundaries of the atoms may
have nontrivial µ-mass.

Brian Chung Entropy and leafwise measures February 18, 2021 29 / 36



µ-thin boundary

Therefore we need a general assumption quantifying that having mass at
boundary is the main obstruction.
Let X be a locally compact metric space, µ a Radon measure on X . For
measurable B ⊂ X , let

∂δB := {y ∈ X | inf
z∈B

d(y , z) + inf
z /∈B

d(y , z) < δ}.

Definition

We say that B ⊂ X has µ-thin boundary if there exists c > 0 such that
for all small δ > 0, we have µ(∂δB) ≤ cδ.

Proposition (Clay notes Lemma 7.31)

Suppose P is a finite partition of X such that each atom has µ-thin
boundary. Then for µ-a.e. x ∈ X , there exists δ = δ(x) > 0 such that

BG−
δ (x) ⊂ [x ]A.
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Proposition (Clay notes Lemma 7.31)

Suppose P is a finite partition of G/Γ with µ-thin boundary. Then for
µ-a.e. x ∈ G/Γ, there exists δ = δ(x) > 0 such that BG−

δ (x) ⊂ [x ]A.

Outline:

1 Lemma: There exists α > 0 and C > 0 such that for all r ∈ (0, 1)
and n ≥ 1, we have

an(BG−
r )a−n ⊂ BG

Ce−nαr .

2 For δ > 0 and n ≥ 1, let En(δ) := a−n∂Ce−nαδP.

3 By construction, µ(
⋃

n≥0 En(δ)) ≤ cC (
∑

n≥0 e
−nα)δ.

4 Thus for µ-a.e. x , there exists δ(x) > 0 such that x /∈
⋃

n≥0 En(δ).

5 Assume the contrary that hx ∈ BG−
δ (x) and hx /∈ [x ]A.

6 There exists n ≥ 0 such that anx and anhx are in distinct atoms of P.

7 By Step 1, d(anx , anhx) ≤ Ce−nαδ, thus anx and anhx are in
∂Ce−nαδP, i.e. x ∈ En(δ), a contradiction.
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Existence of partition with µ-thin boundary

How do we know that G/Γ admits a finite partition P with µ-thin
boundary? We have the following general lemma: Let X be a locally
compact metric space, µ be a Radon measure on X .

Lemma (Clay notes Leamm 7.27)

For every x ∈ X , and Lebesgue-a.e. r > 0, there exists c = c(x , r) > 0
such that µ(∂δBr (x)) ≤ cδ.

Now cover the compact G/Γ by finitely many such balls with µ-thin
boundary, and let P be the resulting partition.

For compact G/Γ and a expansive X

In the construction we can specify a universal upper bound R > 0 on the
atoms (will be useful).
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General case

In general, one needs to handle noncompact G/Γ (say SL3(R)/SL3(Z))
and nonexpansive a (say a = diag(et , es , er )).
We construct a countable partition P with finite entropy in 4 steps.

1 Fix an open subset Ω ⊂ G/Γ of compact closure, positive µ-measure
and µ-thin boundary. (with also assume the diameter of Ω is at most r/16,

where r is the injectivity radius of Ω.)

2 Let Q := {Ω,X \ Ω}. Ω has µ-thin boundary, so we have the lower
bound: for µ-a.e. x , there exists δ > 0 with BG−

δ (x) ⊂ [x ]∨
n≥0 a

−nQ.

3 Define a partition Q̃ := {Qi | i = 0, 1, 2, . . .} as follows: Q0 := X \ Ω,
and for i ≥ 1,

Qi := {x ∈ Ω | i is the first return time of x to Ω}.

Note that Q̃ ⊂
∨

n≥0 a
−nQ (since Qi = (Ω \ ∪i−1

k=1a
−kΩ) ∩ a−iΩ). Thus∨

n≥0 a
−nQ =

∨
n≥0 a

−nQ̃, which implies the lower bound for Q̃.
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3 We have the partition Q̃ := {Qi | i = 0, 1, 2, . . .} where Q0 := X \ Ω,
and for i ≥ 1, Qi := {x ∈ Ω | i is the first return time of x to Ω}.
So far we know that Q̃ has the lower bound. Can also compute that
Q̃ has finite entropy: Hµ(Q̃) <∞ (see Clay notes 7.50).

4 We construct a refinement P of Q̃ as follows:

Lemma: There exists α = α(G , a) > 0 such that for all r > 0 and
n ∈ Z, we have an(BG

e−|n|αr
)a−n ⊂ BG

r (α ≈ top exponent of Ada).

For i ≥ 1, define a partition of Qi by Pi := {Pij | 1 ≤ j ≤ N(i)} such
that Pij has diameter ≤ e−αi r/8. Here r = injectivity radius of Ω.

Let countable partition P := {X \ Ω} ∪ {Pij | i ≥ 1, 1 ≤ j ≤ N(i)}.

Can show finite entropy: Hµ(P) = Hµ(Q̃) + Hµ(P | Q̃) <∞
(by showing that one can take N(i) ≤ O(eκi ), see Clay notes 7.46 and 7.52).
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Upper bound on P

It remains to show that P has the upper bound: [x ]∨
n≥0 a

−nP ⊂ BG−

δ−1(x).

The argument in the compact G/Γ and expansive a case only gives for
µ-a.e. x ∈ Ω,

[x ]∨
n≥0 a

−nP ⊂ BG−

r/2B
G0

r/2(x),

(recall G 0 := CG (a) is the centralizer of a in G .)

1 Eliminate G 0: let x ∈ Ω, and g−g0x ∈ [x ]∨
n≥0 a

−nP with g− ∈ BG−

r/2

and g0 ∈ BG0

r/2. Suppose µ(Qn0) > 0 for infinitely many n0 ≥ 1.
see Clay notes 7.53 if this fails. Then anx ∈ Qn0 for infinitely many n ≥ 0.
Now d(ang−g0x , a

nx) ≤ e−αn0r/8 as they are in the same P-atom.
The displacement is ang−g0a

−n = (ang−a
−n)g0 ∈ BG−

Ce−αn0 r
g0.

Thus g0 ∈ BG
2Ce−αn0 r

. Since this holds for infinitely many n0, g0 = e.

2 Extend to µ-a.e. x ∈ G/Γ:
for µ-a.e. x ∈ G/Γ, ∃n ≥ 0 with anx ∈ Ω and [anx ]A ⊂ BG−

r anx .
Then [x ]A = a−n[anx ]A ⊂ BG−

s (x) for some s = s(n) > 0. good P X
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Lower bound on P

... not quite done yet. By refining Q̃ we have destroyed the lower bound!

The remedy is to “thicken” each atom Pij in Qi in the G−-direction.

More precisely, replace each Pij by BG−

r/4Pij , then intersects with Qi and

remove overlaps to get a partition P ′ij of each Qi .

Each P ′ij still has diameter ≤ e−αi r/8 in the G 0G+ direction, so the upper
bound argument still works, and we have preserved the lower bound.
details: Clay notes 7.54. good P XX
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