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Properties of Leafwise measures

We have seen that leafwise measures ;1] describe properties of the
measure u along the direction of T-leaves. For instance:

o u] is trivial (i.e. u1] oc 0) a.e. if and only if there exists a
measurable set B C X with (X \ B) = 0 such that x, tx € B for
some t € T implies t = e (i.e. B is a global cross-section).

e 4l is infinite a.e. if and only if y4 is T-recurrent.

o ;] is the left Haar measure on T a.e. if and only if 4 is T-invariant.
Recap:
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Throughout, we let

G C SLy(R) be a closed connected real linear group.

o [ C G a discrete subgroup of G.

e X := G/I' with Riemannian metric induced from a right-invariant
metric on G.

@ there is a G-left action on X by left multiplication x — gx.

@ 1 be a (Borel probability) measure on X.
Sometimes we specialize to the following special case:

o [ is a lattice if there is a G-invariant probability measure mx (the
Haar measure) on X.
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Horospherical subgroup

Fix a € G. Define the stable horospherical subgroup for a by
G ={geG|a"ga"—>e as n— oo}

Similarly define the unstable horospherical subgroup G+ for a.
Note that for x, gx € X for some g € G,

d(a"x,a"gx) = d(a"x, (a"ga ")a"x) < d(e,a"ga™") — 0.
Thus we refer to G~ x as the stable manifold through x.

Example: For G := SL3(R),I := SL3(Z) and a := diag(e*,e*,e") € G
with t > s >r,

1 00 1
G =1+ 1 0|, Gt =10
* x 1 0

O = ¥
=% %
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Entropy contribution: Theorem 7.6

Theorem (Clay notes Thm. 7.6)

Fix a € G. Let yu be an a-invariant probability measure on G/T'. Let U be
a closed subgroup of G~ normalized by a. Then

© The entropy contribution of U at x
.1 _
Du(a, U)(x) := lim —logp(a~"B{'a")

exists for p-a.e. x and defines an a-invariant function on X.

Q@ For pi-a.e. x we have Dy(a, U)(x) < h,e(a), with equality if U= G~.
Here £ denotes the o-algebra of a-invariant sets.

© For pi-a.e. x we have D,(a, U)(x) = 0 iff u¥ is finite iff u¥ is trivial.

Remark: we are NOT assuming: (i) a is diagonalizable, (ii) p is a-ergodic
(not even A-ergodic, which is what EKL assumes), (iii) I is a lattice in G.
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Characterization of recurrence using entropy

From (b), we know that D, (a, G™)(x) < h,s(a). From (c), we know that
D,(a, G7)(x) = 0 iff Y is finite. Therefore we have the corollary

Corollary

The measure v is G~ -recurrent iff h,s(a) >0 a.e.
Assuming pu is in addition a-ergodic, then 1 is G~ -recurrent iff h,(a) > 0.
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Let G := SL3(R), I := SL3(Z) and a := diag(e’, e®,e") € G with
t>s>r. Let

1 00 1 00 1 00
Uy=1|x 1 0 c U:=Ix 10 c U3 =G =1 10
0 01 * 0 1 * % 1

Let i := mx be the Haar measure on X. Note that

1 00 1 0 0
allx 1 0|a=|xets 1 0
y z 1 yet™" zeS™" 1

Since . = my is invariant under G, ,uf{" is Haaron U; a.e. fori=1,2,3,
thus we can calculate

1
Dmx(aa Ul)(X) = I|_>m ; IOguij(a_nBIUan) =t—s,

Similarly Dp,, (a, U2)(x) = (t —s) + (t — r),
Brian Chung

Dmy(a,G7)(x) =2(t —r).
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Entropy contribution for Haar measure my

In general, it can be computed that if 4 = mx is Haar, then
Dmy(a,G7) = —log]| det Ad,l,-|,
where Ad, : g — g is the adjoint representation defined by v — ava™!.

Clearly if uY is finite, then D,(a, U)(x) = 0.

The calculation for general u, however, is less clear.
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Entropy contribution and Theorem 7.9

Fix a € G. Define the entropy contribution of an a-normalized closed
subgroup U C G™.

hu(a, U) := / D,(a,U) dp.

(Theorem 7.6(2) implies that h,(a, G7) = h,(a))
The next theorem in particular shows that the Haar measure mx has
maximal entropy contribution of G~ among a-invariant measures .

Theorem (Clay notes Thm. 7.9)

Let U C G~ be an a-normalized closed subgroup of G~, and u := Lie(U).
Let v be an a-invariant probability measure on X = G/I'. Then

h.(a, U) < —log|det Ad, |y,

and equality holds iff p is U-invariant.

v

Brian Chung Entropy and leafwise measures February 18, 2021 9/36



Corollary of Theorem 7.9: my is the unique MME

As a corollary of Theorem 7.9, one can show that in many cases, the Haar
measure is the unique measure of maximal entropy.

Corollary (Clay notes Corollary 7.10)

Suppose I is a lattice in G, and let X = G /. Suppose a € G is such that
G is generated by GT and G~.

Then myx is the unique measure of maximal entropy for the a-action on
X, i.e. if p is an a-invariant probability measure on X with

h.(a) = hmy(a), then p = mx.

Note that the assumption on a is satisfied quite generally - for instance if
G is a simple real Lie group and g~ is nontrivial.
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Entropy assumption = extra invariance

To summarize, consider the case of X = SL3(R)/SL3(Z) and
a = diag(t, s, r) € SL3(R) with t > s > r.
Let A be the full diagonal subgroup of SL3(R). Let mx be Haar on X.
@ Corollary 7.10 implies:
if p is a-invariant and h,(a) = hmy(a), then u = mx.
e High entropy method of Einsiedler-Katok (Thm. 9.5) implies:
if 11 is A-ergodic and hy(a) > Lhpm,(a), then = mx.
@ High entropy method can also show (Problem 9.13) that:
if pu is A-ergodic and all a # e € A satisfies h,(a) > 0, then ;1 = mx.
@ High+low entropy by Einsiedler-Katok-Lindenstrauss (Thm. 11.5):
if p is A-ergodic and for some {a;} C A, hu(a1) > 0, then p = mx.
We write “A-ergodic” for A-invariant and A-ergodic.
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Proofs
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Starting the proofs: simplifying assumptions

Throughout, assume that

@ ac G,

@ 4 is an a-invariant probability measure on G /T,

e UCG ={geG|a"ga " — easn— oo} is normalized by a.
For the proofs presented here, we further assume that

@ u is a-ergodic (the precise reduction is in 7.19-7.24 of the Clay notes)
o This implies = uf for p-a.e. x.
@ ais of “class A", i.e.

@ the eigenvalues of a as an element of SL,(R) are all in R.
@ 1 is the only eigenvalue of Ad, with absolute value 1.
© No two eigenvalues have the same absolute value.

For instance a = diag(e?, e*, e") € SL3(R) with t > s > r.
This implies that g = go & g— @ g, where

go := Lie(Cg(a)), g = Lie(G7), gy = Lie(G™).
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Proof of Theorem 7.6(i)

We first prove

Theorem (Clay notes Thm. 7.6(i))
© The entropy contribution of U at x

e [ 1 Ur,—npU_n
Du(a, U)(x) := lim —log u,(a~ "By a")

exists for y-a.e. x and defines an a-invariant function on X.

Outline:

© Assume normalization ;Y (BY) =1 for all x (wherever ;1 is well-defined).
Then

n—1
n(aBYa = [ nl (2 BLa)
i=0

@ Take log and apply the pointwise ergodic theorem (shows both
existence and a-invariance).
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Proof of Theorem 7.6(i)

Thus it suffices to show that given normalization pY(BY) = 1, we have

n—1
[T ni(a7'BYa) = ul(a"Bla"). (1)
i=0

We need the following fact from Weikun's lecture:

Lemma

Hax < (Conj,)upy/,

where Conj, : G — G is defined by conjugation by a: g + aga™*.

Proof of (1): By Lemma,
1yx(a'Ba)  (Conjy).uf(a'Bla)  pf(a'BYa"Y)
Y (BY) (Conj)«u¥(BY) pd(a'BYal)
Now use ,ug,-X(BIU) =1 and take product 0 </ < n— 1 yields (1). 7.6(i) v
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Interlude

To show the other statements, we need the construction of a suitable
o-algebra A. We say that

e A is subordinate to U if for p-a.e. x, there exists § = §(x) > 0 such
that

BY(x) C [x]a € BZ1(x).
o Ais a-descending if a1 A C A.

Lemma (“Good” o-algebra)

There exists a countably generated o-algebra A on G /T that is
subordinate to U and a-descending.

For now on, assume the lemma and fix one such “good” o-algebra A.
Also, by a-ergodicity, D, (a, U)(x) is constant p-a.e. - let it be h,(a, U).
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Proposition
Suppose A is a countably generated o-algebra subordinate to U and
a-descending. Then hy(a, U) = H,(A | a~1A), or equivalently,

im 1 logY(a"8Ya") = [ ~logu (1) du(x).

n—oo N

Outline:
@ Show that
im — log 2 "([x14) = Hu(A | a1 A).

n—o0
@ Use the fact that A is subordinate to U to get some set Y C G/I
with (Y) > 0 and some ¢ > 0 such that for all x € Y, we have
pe (@ "By a") < c(x)ug H(xla) 7t < pl (a7 "B a").

© Take log and let n — oo, noting that in the definition of D,(a, U)(x)
we can replace the radius 1 by any r > 0.
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We first show that for /,(A | a1 A)(x) := — log 12 A([x]4),

n—o0

lim —flog,ux "A([x]4) = Hu(A|a—1A);://#(Aya—1A) dpu(x).

Proof: Recall by the compatibility property of conditional measures and
a A cC A we have

T A aiA(

W [X]a-i+1.4)-

Also u;‘i = a*,uf’(_IA. Take log on both side and sum over 1 < j < n, we
get by pointwise ergodic theorem that

1
——log i, "([x]4) ——*Zlogux ([X]a-i+1.4)

= Z IL(A|atA)(a1x) = H (A ] a tA).

i=1
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Step 2: Squeeze argument

Since A is subordinate to U, there exists § > 0 such that the set
Y = {x|BY(x) C [x]a C B 1(x)}

has positive p-measure. By pointwise ergodic theorem (and a-ergodicity of
i), there is a sequence nj — oo such that a"ix € Y. For these n = nj, we
have

a "BYa"x C [x],-nq = a "[a"x]a C a "B a"x.

Let Vi C U so that [x]4 = Vix and a="[a"x]4 = a~"Vanka"x. Then
pd(a="Bya") < pl(a "Vankad") = pnd (Vi)pud "([x]a) < pul(a "BLaa")

Now proceed to Step 3: take log average and limit n; — oo, we get
n—oo

1 1 —n
lim ~logu/(a™"By'a") = lim —~log i "([x]a) = Hu(A |2 A).

Thus D,(a, U)(x) = Hu(A | a71A).
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Proof of Theorem 7.6(iii)

Now we are ready to prove Theorem 7.6(iii).

Theorem (Clay notes Thm. 7.6(iii))
© For pi-a.e. x we have h,(a, U) = 0 iff u¥ is finite iff pY is trivial. J

Proof: Clearly pY is trivial = pY is finite = h,(a, U) = 0.
It remains to show that hy(a, U) = 0 implies Y o< de a.e.
By Proposition,

[ 1081 (1) dito) = Hl(A | 372 4) = (e U) = 0.

Thus 2 A([x]4) =1 ae. = 12 "A([X]ama) =1 ace.
This implies MQ(V,,,,,X\ Vmx) =0 a.e. where [x],ma =: Vi xx.
Yet V_px /U and Vi, N\ {e} as m — oo, therefore ¥ o< §e. 7.6(iii) v/
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Theorem

7.6(ii): We have hy(a, U) < h,(a), with equality if U= G~.
7.9: hy(a, U) < —log|det Ad,|y|, and equality holds iff ju is U-invariant.

We used the following “good” o-algebra to prove Theorem 7.6 (iii).

Lemma (“Good” o-algebra)

There exists a countably generated o-algebra A on G /T that is
a-descending and subordinate to U. Then hy(a, U) = H,(A | a~1A).

To show Theorem 7.6 (ii), we need the construction of a “good” partition.

Proposition (“Good" partition (Clay notes Prop. 7.43))

There exists a countable partition P of G /T with finite entropy such that
@ P is a generator of a mod 1,

o o-algebra A:=\/ .,a "P is a-descending and subordinate to G™.
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Proof of Theorem 7.6(ii)

Assume there exists a countable partition P of G/I' with finite entropy
such that (a): P is a generator of a mod p, and (b): o-algebra
A:=\/,50a "P is a-descending and subordinate to G~

Theorem (Clay notes Thm. 7.6(ii))
@ We have hy,(a, U) < h,(a), with equality if U= G~ . J

Outline:
b a
0 h.(a,6) 2 Hy(A] a14) = hu(a,P) D h(a).
@ Construct Py such that (c): Ay :=\/,5qa "Py is subordinate to U,
(d): AcC Ay, and (e): AVatAy= Ay mod p.
© Use the “good" o-algebra Ay to show that h,(a, U) < h,(a, G7):
hu(a,U) L Hy(Au | a2 A0) < Hu(A] a7 Ay)

)
< Hy(A]a~tA) = hu(a, G7).
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Step 2 in the proof of Theorem 7.6(ii)

Claim
One can construct Py from P such that:
Q Ay = \/n20 a~"Py is subordinate to U,
Q AcC Ay, and AVatAy = Ay mod .

Proof sketch (detailed in Clay notes 7.38):

@ Let P € P small enough. Lift P C G/T to G and cut P into pieces of
U-orbits and push back down to G/T.

@ Let Py be the o-algebra whose elements are unions of such pieces of
U-orbits. Then P C Py = A C Ay.
© A is subordinate to G~ = Ay is subordinate to U.
Q Show [x]4 N [x],-1.4, £ [x].4, for p-a.e. x by construction. 7.6(ii)v
Remark: (1): This also shows the existence of a “good” o-algebra Ay .
(2): With more care one can show for a-normalized subgroups
U C V C G~ (see Clay notes 7.40), hu(a, U) < hu(a, V).
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Proof of Theorem 7.9

Theorem (Clay notes Thm. 7.9)
hu.(a, U) < —log|det Ad,|u|=: J, and equality holds iff j1 is U-invariant. J

The main idea is to compare leafwise measures w.r.t p with those w.r.t.
Haar, and then use strict convexity of log. Let m be Haar on G/I', and my
be Haar on U. Let A be a g-algebra subordinate to U and a-descending.
Outline:
@ Note that:  my(a—'Ba) = e/my(B) for any measurable B C U.
© Write [x]4 =: Vix and [x],-14 = a }ax]4 = a ! Vaax. Then

a1 _ mU(Vx) . mU(Vx) _
my A([X]A) - mU(a*1 Vaxa) = mU(VaX) J

© Take log and apply the pointwise ergodic theorem

[ 108 A(a) ) = ( [ —togsz A0l di = hu(a.0)

Brian Chung Entropy and leafwise measures February 18, 2021 24 /36



Outline continued

Outline (cont'd):

@ Since A refines a~1 A, both subordinate to U, for p-a.e. x,

x4 = N U [ Jxila
i=0

where Ny is 2~ A-null but not necessarily m2 A-null.
© By convexity of log,

Brian Chung

/ log m? " A([x].a) — log 52 A([x].a) dpd A
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Outline continued

Outline (cont'd):
o

/ log m?"A([x].4) — log 112 A([x].a) dpd A
N my Abala) | i »
=3 g(@ A ))ux (bx)
<log (’”a 1A(([[j']]““))

<0.

) 12 A([xa)

@ Thus by integrating over all G/T,

St (3, U) = [togm2 A([xla) ~ log sl (b dn(x) <0

@ Equality iff Ny are m? A-null and m2 A([xi]4) = 12 A([xi]4) p-as.
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Outline for equality case

Outline for equality implies U-invariance:
@ Equality iff Ny are m? A-null and m2 " A([xi]4) = 12 A([xi]a) p-as.
@ Similarly, we have miieA([Xi]akA) = ,uf(%A([x;]akA) p-a.s.
@ For fixed ¢, the atoms of ak A for all k >0 generate the Borel
o-algebra of each a—‘A-atom.

@ Thus 2 A =m? A for prae. x.
@ Use this for all ¢, we see that uY = mY = my for p-a.e. x.
@ This implies y is U-invariant. 7.9 v

It remains to show the existence of a “good” partition P.
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It remains to show

Proposition (Clay notes Prop. 7.43)

There exists a countable partition P of G /I with finite entropy such that
o P is a generator of a mod ,
e o-algebra A:=\/ -,a "P is a-descending and subordinate to G

We will first construct such a partition P (in fact a finite partition) in the
case when

e G/I' is compact, and

@ ais expansive (i.e. there exists 0 > 0 such that for all x # y € G/T,
there exists n € Z such that d(a"x, a"y) > 4.)

For instance a hyperbolic toral automorphism a on T” (i.e. a € SL,(Z)
such that all eigenvalues have absolute value # 1).
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G /T compact and a is expansive

In the case when G /I is compact and a is expansive, the following are
clear: For any partition P whose atoms have small enough diameter,

O (Generating) P is generator for a,
@ (a-descending) A =\/",a "P is a-descending.
© (Upper bound) For pi-a.e. x, there exists 6 = §(x) > 0 such that

[xla C B4 (x).

It remains to show the lower bound: for p-a.e. x, for some § = §(x) > 0,

By (x) C [x]a.

This is not true for every partition P as the boundaries of the atoms may
have nontrivial p-mass.
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p-thin boundary

Therefore we need a general assumption quantifying that having mass at
boundary is the main obstruction.

Let X be a locally compact metric space, © a Radon measure on X. For
measurable B C X, let

0sB =1y € X| inf d(y,2) + 2'2'; d(y,z) <d}.

Definition
We say that B C X has u-thin boundary if there exists ¢ > 0 such that
for all small § > 0, we have u(9sB) < cd.

Proposition (Clay notes Lemma 7.31)

Suppose P is a finite partition of X such that each atom has u-thin
boundary. Then for u-a.e. x € X, there exists 0 = 0(x) > 0 such that

By (x) C [xla-
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Proposition (Clay notes Lemma 7.31)

Suppose P is a finite partition of G/ with p-thin boundary. Then for
p-a.e. x € G/T, there exists § = 6(x) > 0 such that BE ™ (x) C [x] .

Outline:

© Lemma: There exists @ > 0 and C > 0 such that for all r € (0,1)
and n > 1, we have

a"(Bf )a~" C BE, e,

@ Ford>0and n>1, let E5(6) := a~"Oce—nasP.

© By construction, u(lU,>g En(9)) < cC(>_,50 ™ ")0.

© Thus for p-a.e. x, there exists §(x) > 0 such that x ¢ Unso En(9).

@ Assume the contrary that hx € B (x) and hx ¢ [x] 4.

@ There exists n > 0 such that a”x and a"hx are in distinct atoms of P.

@ By Step 1, d(a"x,a"hx) < Ce™"%J, thus a"x and a"hx are in
Oce—nasP, i.e. x € E5(0), a contradiction.
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Existence of partition with p-thin boundary

How do we know that G/I' admits a finite partition P with u-thin
boundary? We have the following general lemma: Let X be a locally
compact metric space, p be a Radon measure on X.

Lemma (Clay notes Leamm 7.27)

For every x € X, and Lebesgue-a.e. r > 0, there exists ¢ = c(x,r) > 0
such that p(09sB,(x)) < cé.

Now cover the compact G/I" by finitely many such balls with u-thin
boundary, and let P be the resulting partition.

For compact G/I" and a expansive v/
In the construction we can specify a universal upper bound R > 0 on the

atoms (will be useful).
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General case

In general, one needs to handle noncompact G/I" (say SL3(R)/SL3(Z))
and nonexpansive a (say a = diag(et, e®, e")).
We construct a countable partition P with finite entropy in 4 steps.

@ Fix an open subset Q C G/I" of compact closure, positive p-measure
and p-thin boundary. (with also assume the diameter of Q is at most /16,

where r is the injectivity radius of Q.)

Q Let Q:={Q, X\ Q}. Q has pu-thin boundary, so we have the lower
bound: for yi-a.e. x, there exists § > 0 with B (x) C Xl om0

@ Define a partition Q :={Q; | i =0,1,2,...} as follows: Qp := X\ Q,
and for i > 1,

Qi := {x € Q| i is the first return time of x to Q}.

Note that O C \/n20 a~"Q (since @ = (Q\U,_1a "Q)na'Q). Thus
\/nZO a"g= \/,720 a*”é, which implies the lower bound for é
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@ We have the partition Q := {Q; | i =0,1,2,...} where Qo := X \ ,
and for i > 1, Qi := {x € Q[ i is the first return time of x to Q}.
So far we know that Q has the lower bound. Can also compute that
Q has finite entropy: HM(Q) < 00 (see Clay notes 7.50).

@ We construct a refinement P of Q as follows:

o Lemma: There exists & = o(G, a) > 0 such that for all r > 0 and
n € Z, we have a”(BeG_‘,,‘ar)a*” - B,G (a = top exponent of Ad,).

For i > 1, define a partition of Q; by P; := {P;; | 1 <j < N(i)} such
that Pj; has diameter < efo"'r/B. Here r = injectivity radius of Q.

Let countable partition P := {X\ Q}U{P; |i>1,1<j<N(i)}.

Can show finite entropy: H,(P) = H.(Q) + Hu.(P | Q) <
(by showing that one can take N(i) < O(e"™), see Clay notes 7.46 and 7.52).
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Upper bound on P

It remains to show that P has the upper bound: [x]y, _ ,-wp C B(SG_Z (x).

The argument in the compact G/I' and expansive a case only gives for
p-a.e. x € Q,

[Xly,.pa=nP C BY Br/2( x),
(recall G° := Cg(a) is the centralizer of a in G.)
@ Eliminate G°: let x € Q, and g_gox € [x]\/n a-np With g_ € Br/2

and gy € Br/2 Suppose (1(Qp,) > 0 for infinitely many ng > 1.

see Clay notes 7.53 if this fails.  Then a"x € Qp, for infinitely many n > 0.
Now d(a"g_gox,a"x) < e~*™'/8 as they are in the same P-atom.
The displacement is a"g_goa™" = (a"g_a~")go € Bge:QHOrgo.

Thus gp € Bzc “ang,- Since this holds for infinitely many ng, go = e.

@ Extend to p-a.e. x € G/I:
for y-a.e. x € G/T, 3n > 0 with a"x € Q and [a"x]4 C B a"x.
Then [x]4 = a "[a"x]4 C BE (x) for some s = s(n) > 0. good P v’
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Lower bound on P

. not quite done yet. By refining O we have destroyed the lower bound!

The remedy is to “thicken” each atom Pj in Q; in the G -direction.

More precisely, replace each Pj; by Br% Pj;, then intersects with Q; and

remove overlaps to get a partition P,fj of each Q;.
Each P; still has diameter < e %r/8 in the GOG™ direction, so the upper

bound argument still works, and we have preserved the lower bound.
details: Clay notes 7.54. good P v'v'
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