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1 Conditional expectation

1.1 theorem

Let (X,B, µ) be a probability space, and let A ⊆ B be a sub σ-algebra. Then there is a map -

E(·|A) : L1(X,B, µ) → L1(X,A, µ)

called the conditional expectation, with for any f ∈ L1(X,B, µ), the image function E(f |A) holds

for any A ∈ A,
∫
A
E(f |A)dµ =

∫
A
fdµ, and E(f |A) is unique up to a null set.

1.2 example

if A = σ(A1, A2, ..., An) the σ-algebra generated by a finite partition, then

E(f |A)(x) = 1
µ(Ai)

·
∫
Ai
fdµ (for i s.t. x ∈ Ai)

1.3 example

let X = [0, 1]2, with Lebesgue measure, and A = B × {ϕ, [0, 1]} then,

E(f |A)(x1, x2) =
∫ 1

0
f(x1, t)dt
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1.4 proof of theorem

1.4.1 existence

suppose f ≥ 0, then µf (B) =
∫
B
fdµ is an absolutely continuous finite measure on (X,B) and µf |A is

absolutely continuous relatively to µ|A.

therefor there is a Radon-Nikodim derivative g ∈ L1(X,A, µ) which satisfies:

∀A ∈ A;
∫
A
fdµ = µf (A) =

∫
A
gdµ

this g is (a.e.) E(f |A) and satisfies property 1.

for a general f, we decomposite it to a positive and negative part and reach the same conclusion.

1.4.2 uniqueness

let there be g1, g2 that satisfy property 1. then A = {x ∈ X : g1(x) > g2(x)} ⊆ A and∫
A
g1dµ =

∫
A
fdµ =

∫
A
g2dµ

thus
∫
A
(g1 − g2)dµ = 0 ⇒ ∀ϵ > 0;µ({x ∈ X : g1(x)− g2(x) > ϵ}) = 0 ⇒ µ(A) = 0

and similarly, µ(g1 < g2) = 0, therefor g1 = g2 a.e.

1.5 properties

1. E(·|A) is a positive linear operator. (if f ≥ 0 a.e. then E(f |A) ≥ 0 a.e.)

2. for f ∈ L1(X,B, µ) and g ∈ L∞(X,A, µ), E(gf |A) = gE(f |A) a.e.

3. if A′ ⊆ A a sub σ-algebra, then E(E(f |A)|A′) = E(f |A′)

4. if f ∈ L1(X,A, µ), then E(f |A) = f a.e.

5. for any f ∈ L1(X,B, µ), |E(f |A)| ≤ E(|f ||A)

1.5.1 proof of properties

1. linearity stems from uniqueness, and linearity of integrals. positiveness- if f ≥ 0, and there is

A ∈ A with µ(A) > 0 s.t. E(f |A)|A < 0, then
∫
A
E(f |A)dµ < 0 ≤

∫
A
fdµ in contradiction to

the definition.
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2. this property clearly holds if g is an indicator, thus also for any simple function. the general case

follows by dominated convergence theorem.

3. this property stems from uniqueness, because E(E(f |A)|A′) satisfies

∀A ∈ A′;
∫
A
E(E(f |A)|A′)dµ =

∫
A
E(f |A)dµ =

∫
A
fdµ which is the definition of E(f |A).

4. this property stems from uniqueness as well,

because f also satisfies the definition if f ∈ L1(X,A, µ).

5. give f ∈ L1(X,B, µ) we may find g ∈ L∞(X,A, µ) with

∀x ∈ X, |g(x)| = 1 s.t. |E(f |A)| = g · E(f |A) then by property 2,

|E(f |A)| = E(g · f |A) so for any A ∈ A;∫
A
|E(f |A)|dµ =

∫
A
E(g · f |A)dµ =

∫
A
g · fdµ ≤

∫
A
|g · f |dµ =

∫
A
E(|f ||A)dµ.

2 Conditional measure

The examples we have seen before seem to suggest that the quantity E(f |A)(x) should be an average

of the function f over a part of the measure space, where the part used in the averaging.

in ’nice enough’ spaces, this property is true, and can be reflected by the existence of a measure µA
x

with the property

∀f ∈ L1
µ;

∫
A
E(f |A)(x) =

∫
fdµA

x

2.1 example

lets reconsider example 1.2, it is already articulated in this way, if A = σ(A1, A2, ..., An) the σ-algebra

generated by a finite partition, then

E(f |A)(x) = 1
µ(Ai)

·
∫
Ai
fdµ (for i s.t. x ∈ Ai)

meaning µA
x (B) = µ(B ∪Ai) when (x ∈ Ai)

2.2 example

lets consider the conditions in example 1.3, then µA
(x1,x2)

= δx1
×m[0,1]

meaning the average on each horizontal line by the one dimensional Lebesgue measure.
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2.3 theorem

Let (X,B, µ) be a borel probability space, where X is a borel subset of a compact metric space X̄,

and A ⊆ B a σ-algebra. then there exists an A measurable X ′ ⊆ X with µ(X\X ′) = 0 and a system

{µA
x : x ∈ X ′} of measures on X, referred to as conditional measures where µA

x is a probability measure

on X with

∀f ∈ L1(X,B, µ); E(f |A)(x) =
∫
fdµA

x , µ-almost everywhere

and this property uniquely determines µA
x for a.e. x ∈ X.

2.4 Riesz representation theorem for measures

Let X be a locally compact Hausdorff space and ψ a positive linear functional on Cc(X) (compactly

supported continuous functions). Then there exists a Borel σ-algebra Σ on X and a unique positive

Borel measure µ on X such that-

∀f ∈ Cc(X); ψ(f) =
∫
fdµ

with the additional properties:

1. µ(K) <∞ for any compact K

2. µ is regular (both inner and outer)

3. (X,Σ, µ) is a complete measure space

we will not prove this theorem today, but we will use it.

2.5 proof of theorem (2.3)

we will proof it for a compact X, and if it is not we can simply complete it and make µ(X̄\X) = 0

The idea is to use Riesz representation theorem on E(·|A), but since it is only defined linear and

positive a.e. so we must do some work to create a fitting defined function with a single uniform null

set to set aside.
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2.5.1 Existence

Let F = {f0 = 1, f1, f2, f3, ...} ⊆ C(X) be a dense vector space over Q, for each i ∈ N choose

gi = E(fi,A), g0 = 1 now-

• gi(x) ≥ 0 a.e. if fi ≥ 0

• |gi(x)| ≤ ||f ||∞ a.e.

• if fi = αfj + βfk, then gi = αgj + βgk a.e.

let N be the union of all sets where those properties do not hold, it is null.

for any x /∈ N , define ∆x(fi) = gi(x), a positive Q-linear map from F to R, with ||∆x|| ≤ 1 thus it

extends uniquely to a continuous linear positive functional ∆x : C(X) → R

by the Riesz representation theorem for measures, there exists a measure µA
x on X with

∀f ∈ C(X); ∆x(f) =
∫
fdµA

x

moreover, ∆x(1) = 1 so µA
x is a probability measure.

by dominated convergence and some added construction, we can extend this for any f ∈ L1(X, (B), µ),

as shown thoroughly in page 139 in Einsiedler-Ward.

2.5.2 Uniqueness

if we have to sets of measures that satisfy the definition on a countable dense subset {fn} ∈ C(X),

then for each n ∈ N, and a.e. x ∫
fndρx = E(fn|A)(x) =

∫
fndνx

so there is a null set of all objects for which there is an n that this does not hold for, thus by dominated

convergence

∀f ∈ C(X),∀x /∈ N ;
∫
fdρx =

∫
fdνx

hence ∀x /∈ N ; ρx = νx.
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2.6 definition

An atom, is the smallest set in a σ-algebra containing a point, and is marked

[x]A =
⋂

x∈A∈A
A

notice how this is not necessarily maesurable because it might be an uncountable intersection, but in a

countably generated σ-algebra, any atom is measurable.

2.7 simple claim

if A is countably generated, then ∀x ∈ X ′ µ([x]A) = 1

moreover, for any x, y ∈ X ′; [x]A = [y]A ⇒ µA
x = µA

y .

proof:

we simply know µ([x]A) = E(χ
[x]A

|A)(x) = χ
[x]A

(x) = 1.

and for x, y as mentioned, any measurable set that contains one contains the other, thus all indicators

have an equal integral under the two measures, so they must be equal.
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