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Let G be a connected Lie group and Ã be a lattice in G; that is, Ã is a discrete sub-
group of G such that G/Ã admits a finite G-invariant measure. Let {gt}teP be a one-
parameter subgroup of G. The action of {gf} on G/T (on the left) induces a flow on
G/Ã. The ergodic theory of these flows is extensively studied and, at least from a certain
point of view, satisfactorily understood (cf. [6] and its references). Thus, for instance,
it is possible to determine, in terms of the position of {gt} in G relative to Ã, whether the
flow admits dense trajectories {gt ÷ Ã | t ̂  0}, where ÷ e G, and whether a generic trajectory
(either with respect to the measure or topologically) is dense in G/Ã. In general, however,
there exist exceptional trajectories which are not dense, but to describe their set is a
very difficult task; for an arbitrary one-parameter subgroup this is known only when G
is a nilpotent Lie group (cf. [18] for that case and [16] for results on horocycle flows).

In this paper we assume G/Ã to be non-compact and investigate a special class of
such exceptional trajectories: 'divergent' trajectories. A trajectory is said to be divergent
if eventually it leaves every compact subset of G/Ã (cf. § l for precise definition). In
§§ 2 and 3 we also get some results on bounded trajectories of certain flows.

It was proved by G. A. Margulis in [21] that if G = S£(«,/R) and r = SL(n,I)
and {gt} is a one-parameter subgroup consisting of unipotent elements then there are no
divergent trajectories (cf. [11] and [14] for stronger results). A similar Situation can be
seen to hold if all the eigenvalues of gp t e f l are of absolute value l (cf. Proposition 2. 6).
However if g1 (or any gp /ÖÏ) has some eigenvalue ë with \ë\ ö l then there exist at
least certain Obvious' divergent trajectories. For instance, if G = S£(2, IR), Ã = 5£(2, Z)
and gf = diag(e~f, e*), then the trajectory starting from any point of ÑÃ/Ã, where P is
the subgroup consisting of all upper triangul r matrices in G, is divergent for simple
geometric reasons. We call these degenerate divergent trajectories (cf. § 2 for details).
In §2 we also consider the one-parameter subgroups of G of the form

diagOr',...,*-', **...,**),
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56 D an i, Flows on homogeneous spaces and Diophantine approximation

(with G and Ã s above) and relate the divergence of their trajectories to a question
involving Diophantine approximation for certain Systems of linear forms; specifically, if

l , where L is a (n—p) ÷ p matrix (and / Stands for identity matrices of
L I /

appropriate sizes) then for the one-parameter subgroup s above, with l ^p^n — l and
/„ \

ë = , the trajectory of g Ã is divergent if and only if the System of (n — p) linear
P

forms in p variables is Singular. A classical result in number theory then implies that
while for n = 2 all the divergent trajectories are degenerate, for n ̂  3 there always exist
non-degenerate trajectories, at least for p = n — l (cf. Theorem 2. 7 and the subsequent
remark). For these one-parameter subgroups we also find that boundedness of the
trajectory of g Ã s above is equivalent to the System of linear forms corresponding to L
being badly approximable in the sense of [26]. By a result of W. Schmidt this implies
that the set of points on bounded trajectories has f ll Hausdorff dimension (equal to
that of the manifold) (cf. Corollary 2. 21).

If î = (îÀ9..., îp), where l^p^n — l and îÀ9.. .9îñ€Ñç is an irrational p-frame
(that is, îÀ9..., îñ are linearly independent and the subspace spanned by them does not
contain any non-zero rational vector) then there exists a sequence {yj in SL(n, /) such
that 7ßî —»0 (cf. [15] for stronger and general versions of this). In § 3 we relate
divergence/boundedness of trajectories on SL(n, P)/SL(n, Z) of the flows s above to
the speed of the convergence y£ —> 0 in terms of the sizes of yi (cf. Theorems 3. 4 and
3. 5). This in particular reproves a part of a recent result of S. Raghavan in that direc-
tion.

One of the author's motivations in investigating divergence of trajectories is its
application to orbits of horospherical subgroups (cf. § l for definition). Recently,
D. S. Ornstein and M. Ratner obtained a simpler proof in the particular case of
SL(2, R) of the present author's classification (cf. [12]) of invariant measures of
maximal horospherical flows. (The author is thankful to M. Ratner for communicating
the proof.) The idea of the proof can be employed to prove the following: Let G be a
Lie group, Ã a lattice, {gt} a one-parameter subgroup of G consisting of semisimple elements
and let U be the horospherical subgroup corresponding to gi (or any gr, />0). Suppose
that the t/-action on G/Ã is ergodic. Then for xe G, UxF/Ã is dense in G/Ã whenever
{gtxF\t^Q} is not a divergent trajectory (cf. Theorem 1. 6). It may be mentioned that
for a certain class of U s above it can be proved by a similar method that any ergodic
(/-invariant measure on G/Ã other than the G-invariant measure is supported on the
set of points whose trajectories under {gj are divergent.

Now let G be a connected linear semisimple Lie group and let Ã be an irreducible
lattice in G. The study of divergence of trajectories in the general case can be reduced to
this case (cf. § 4). In § 5 we develop a natural extension of the notion of degeneracy of a
divergent trajectory for flows induced by one-parameter subgroups of G on G/Ã. In § 6
we prove that if the "rank" of Ã is l then all the divergent trajectories are degenerate.
This enables us to apply Theorem l. 6 to determine for certain horospherical subgroups
precisely which orbits are dense in G/Ã (cf. Corollary 6. 3).
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As suggested by the rank l case it would be very nice if all divergent trajectories
were degenerate! However, in the concluding section we show that at least if Ã is of
maximal rank (equal to the P-rank of G) and the rank exceeds l then for any one-
parameter subgroup {gt} which admits any divergent trajectories at all, admits non-
degenerate divergent trajectories (cf. Theorem 7. 3).

Acknowledgement. The author would like to thank E. Bombieri whose comments
contributed greatly in understanding various points involved in the paper. Thanks are
also due to S. Raghavan, who by sending bis preprint, [24], inspired the application
of divergence and boundedness s in § 3. The author is also indebted to M. V. Nori
for a discussion relating to § 6.

§. 1. Divergent trajectories and horospherical orbits

Let G be a connected Lie group and Ã be a lattice in G; that is, Ã is a discrete
subgroup such that G/Ã admits a finite G-invariant measure. A lattice Ã is said to be
uniform or non-uniform according to whether G/Ã is compact or non-compact,
respectively.

Let {gt}teFt be a one-parameter subgroup of G and consider its action on G/Ã
on the left. By a trajectory of {gt} on G/Ã we mean a curve of the form {gfgr|i^0},
where g e G. A trajectory {gtgr\t^0}, g e G is said to be divergent if given any compact
set C of G/Ã there exists Ã^Ï such that for t^. Ã, gtgF ö C or, equivalently, if for any
sequence {t{} in f?+ such that ^ — > oo the sequence {gt.gr} has no liniit point in G/Ã;
we often write this s gtgr-+ao. We note that for a divergent trajectory to exist,
G/Ã has to be non-compact.

1. 1. Proposition. Let he G be such that {gthg_t\t^0} is bounded (relatively com-
pact in G). Then {gtgr\t^Q}, where geG, is a divergent trajectory if and only if

^Q} is a divergent trajectory.

Proof. This is immediate from the equality gthgr = (gthg_t) (gtgT) for all f ̂ 0.

Thus, in particular, the set of points of G/Ã on divergent trajectories of {gt} is
invariant under the centralizer of gt (the set of elements which commute with gt). It is
also invariant under the "horospherical subgroup" corresponding to gl (or, equivalently
any gf, t>0).

1. 2. Definition. Let g e G. Then the subgroup

U={h E G\gjhg~j — *e s 7'—» 00}

where e is the identity, is called the horospherical subgroup corresponding to g.

The horospherical subgroup s above is also sometimes called the contracting
horospherical subgroup; the one corresponding to g"1 is called the expanding horo-
spherical subgroup. Any horospherical subgroup is a connected Lie subgroup of G
(cf. [9] § l, for instance). The group of 2x2 upper triangul r unipotent matrices, viz.

telR>, which defines the classical horocycle flow, is the horospherical sub-
P / j (ë

group in SL(2, IR) corresponding to l i ) for 0 < ë < 1.
\U /i
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1. 3. Remark. If G is a semisimple Lie group then a subgroup is horospherical
(corresponding to some element) if and only if it is the unipotent radical of a parabolic
subgroup of G. We also note that for such a G, and {gj consisting of semisimple
elements the subgroup (? = {Ae G\{gthg_t\t^0} is bounded} is a parabolic subgroup
and the horospherical subgroup corresponding to g1 (or any gt, t>0) is the unipotent
radical of . It may also be recalled here that a parabolic subgroup coincides with the
normalizer of its unipotent radical. Thus in this case Proposition 1. l can be stated s
follows: the set of points of G/T on divergent trajectories of {gt} is invariant under the
action of the normalizer of the horospherical subgroup corresponding to gv

1. 4. Definition. Let G be a connected Lie group and Ã be a lattice in G. The
commensurator C(F) of Ã is defined by

C(F) = {0 e G \ ÈÃÈ-1 ç Ã is of finite index in both Ã and ÈÃÈ'1}.

It is easy to see that C(F) is a subgroup of G.

1. S. Proposition. Let G be a connected Lie group and Ã be a lattice in G. Let
{gt} be a one-parameter subgroup of G. Let 0eC(F). Then for g E G, {gtgr\t^.O} is
a divergent trajectory if and only if {gtg0r\t^Q} is a divergent trajectory.

Proof. We first observe that if Ã' is any subgroup of finite index in Ã then for
any geG, {gtgr\t^0} is a divergent trajectory in G/T if and only if {gtgr'\t^Q}
is a divergent trajectory in G/Ã': this is because the canonical quotient map ç : G/Ã' —* G/T
is a continuous surjective map such that for any ye G/Ã. ç'1^) consists exactly of ã
points, where y is the index of JT" in Ã.

Now let è Å C(F). Then Ã' = Ã ç ÈÃÈ'1 is of finite index in both Ã and 0ÃÈ'1

and hence by the above observation {gtgF\t^O} is a divergent trajectory in G/Ã if
and only if {g^OrO'1 \t^0} is a divergent trajectory in G/ÏÃÈ"1. But observe that the
map W'.G/r-^G/ere-1, defined by Ø(÷Ã) = ÷ÃÈ~À = ÷è~é(ÈÃÈ~é\ is a homeo-
morphism. Hence the above assertion implies that {gtgr\t^.Q} is a divergent trajectory
if and only if the trajectory {gtg6r\t^0} is divergent.

As noted earlier, one of our motivations for studying divergence or otherwise of
trajectories is its application to the study of orbits of horospherical flows (actions of
horospherical subgroups) on G/Ã, and, dually, F-orbits under various linear actions
of G.

1. 6. Theorem. Let G be a connected Lie group and Ã be a lattice in G. Let {gt}
be a one-parameter subgroup of G such that Ad g,, t elR are diagonalisable over C. Let U
be the horospherical subgroup corresponding to gi (or any gt, t>0). Suppose that the
U-action on GIF is ergodic (with respect to the G-invariant probability measure on G/Ã).
Let geG be such that {gtgr\t^Q} is not a divergent trajectory. Then UgT/Ã, the
U-orbit of g Ã, is dense in G/Ã.

As stated in the introduction our proof of this is motivated by certain ideas of
Ornstein and Ratner for horocycle flows on SL(29 R)/Ã by which they reprove, in the
particular case, the present author's classification theorem for invariant measures. One
may expect the ideas to yield a similar classification for arbitrary horospherical flows
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(cf. [10] and [12] for such results). However, there seem to be several difficulties in
doing that in general. Firstly, the proof seems to involve the fact that the action of

'ë o \ . Ë . „ Ã/1 t"
1 l , where 0 < A < l contracts the orbits of < ( )> "uniformly"; thus it is not

U ë / (\() 0/J
clear whether it would work for the action of a horospherical subgroup corresponding
to an element g in a semisimple group G (even SL(n, )R), «^ 3) such that Ad g has more
than one eigenvalue with distinct absolute values each less than l. Secondly, and perhaps
more importantly, unlike in the case of SX(2, /R) when G is a semisimple Lie group of
P-rank ^2 and Ã is a lattice of maximal rank (e.g. G = SL(n, R), n ̂  3 and Ã = SL(n, Z))
the set of points on divergent trajectories is rather complicated: there are "non-degenerate
divergent trajectories" (cf. Theorem 7. 3) which are outside all the "geometrically nice"
subsets which account for the invariant measures of at least the maximal horospherical
flows (cf. [10] and [12]).

However, the idea does yield a proof of Theorem 1. 6 s above. We include the
details in the Appendix. In the cases when we have a good description of the divergent
trajectories the theorem can be used to study the orbits of horospherical flows (cf.
Corollaries 2. 18 and 6. 3 for some applications). It may be worthwhile to note here
that similar results were obtained by a different method in [15], §4; in the Situation
studied there those results are stronger than can be obtained by the present method.

§ 2. Trajectories in lattice spaces and number theory

In this and the next section we discuss divergence and boundedness of trajectories
of certain flows and lattice spaces in relation to certain notions in number theory.

(2. 1) Let «S?n be the space of lattices in Rn
9 where n ̂  2, of determinant l (that is,

the Lebesgue measure of a fundamental domain is 1). We denote by AQ the lattice Z".
The space &n can be identified with the homogeneous space SL(n, IR)jSL(n, Z) via the
correspondence gSL(n, Z) «-* g(A0) for all g e SL(n, /R), which can be easily checked to be
a well-defmed bijection. We note also that the correspondence is a SL(n, £?)-equivariant
homeomorphism when J5?n is equipped with the usual topology (cf. [25], Chapter 1) and
SL(n,IR)/SL(n9Z) is equipped with the quotient space topology. The following is a
consequence of the well-known Mahler criterion (cf. [25], Corollary 10. 9).

2. 2. Proposition. Let {gj be a sequence in SL(n, /R). Then the sequence {gitSL(n, Z)}
diverges (that is, has no limit point in SL(n, R)/SL(n9 Z)) if and only iffor each neighbour-
hood Ù o/O in IR" there exists iQ such that for i^>i0 the lattice g^A^) contains a non-zero
element belonging to Ù.

(2. 3) It is well-known that SL(n, R}jSL(n, Z), or equivalently &n admits a finite
SL(n, )R)-invariant measure (cf. [25], Chapter 10). Let {gj be a one-parameter subgroup
of SL(n, /R). Then the action of {gj on gn is ergodic if and only if {gj is not contained
in any compact subgroup of SL(n,R)\ further the action is mixing whenever it is
ergodic. These assertions follow from a theorem of C. C. Moore (cf. [23], Theorem 1)
and the fact that S L (n, £?) is a simple Lie group with finite center. The results in partic-
ular imply the following.
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2; 4. Proposition. Lei {gt} be a one-parameter subgroup of SL(n, ft) which is not
contained in any compact subgroup. Lei {t^ be a sequence in R such that ti — > oo.
Then for almost all Ae^n (with respect to the SL(n, R}-invariant probability measure],

,{gti(A)} is dense in &n.

We remark here that this proposition in particular implies the main theorem of
W. Schmidt in [27], when we choose gf = diag(e~f, e~\. . ., e~\ e(n~i}t) (diag(...) de-
notes the diagonal matrix with the parenthetical entries along the diagonal). We also
remark that in fact for any sequence {gj in SL(n, ft) which has no limit point in
SL(n, f?), {gt(A)} is dense in $£n for almost all A. This can be deduced from Theorem
5. 2 in [30] or the (stronger) results in [19].

The significance of the proposition for the subject at band is the following.

2. 5. Corollary. Lei {gt} be a one-parameter subgroup s in Proposition 2. 4. Then
the sei of Ae&n such that the trajectory {gt(A)\t^O} is either divergent or bounded
is of zero measure.

While in general the description of the sets of bounded or divergent trajectories
is a difflcult task, thanks to a theorem of G. A. Margulis we have the following simple
criterion for the latter set to be non-empty.

2. 6. Proposition. Let {gt} be a one-parameter subgroup of S L (n, IR). Then there
exists A E <£n such that {gt(A)\t^.O} is a divergent trajectory if and only if g^ (or any gt,
1 ÖÏ) has an eigenvalue ë (possible complex) such that \ë\ Ö 1.

Proof. If {gf} is a unipotent one-parameter subgroup (that is, if all eigenvalues
of gi? teR are 1) then a theorem of G. A. Margulis (cf. [21] and also [11] and [14]
for stronger results in a different direction) asserts that the trajectory {gt(A)\t^O} is
never divergent. Now let {gt} be such that all eigenvalues of gt, t e Ft are of absolute
value 1. By Jordan decomposition gt, t e f t can be expressed s gt = ctut where {ut} is a
one-parameter subgroup consisting of unipotent elements, {ct} is a one-parameter sub-
group contained in a compact subgroup and ct, teR and ut, t e IR commute with each
other. The above special case together with boundedness of {ct} now implies that
{gt(A)\t^O} is never divergent.

Conversely, suppose that {gj is a one-parameter subgroup such that gi (or any
gp ßöÏ) has an eigenvalue ë such that |Á|Ö1; since g1eSL(n,Ft) we may choose ë
so that |A|<1. Put

(2.7) W({gt}) = {velRn\gt(v)-^0 s *->oo}.

It is a positive dimensional subspace of P". Let Ë e ?n be such that Ë n W({gt}} Ö (0),
say it contains ÃÖÏ. Then gt(v)egt(A) and g,^)— > 0 s f — » oo. Hence by Proposition
2. 2, {gt(A)\t^O} is a divergent trajectory, which proves the proposition.

The proof of the converse part above shows that when W({gt}), s defined by
(2. 7) is non-zero there are certain too obvious divergent trajectories ; viz. those of
Ae<gn such that Ë ç ^(^})Ö(0). Á moment's reflection also suggests the following
divergent trajectories to be almost s obvious:
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Let IRn be equipped with the usual inner product. Also let any non-zero subspace V
of R* be equipped with the Lebesgue measure lv such that a (any) parallelopiped
{Ó^ßÉÏ^ß^É} where {yj is an orthonormal basis of V has measure 1. If Ó is a
lattice in F let d(Z) = lv(F), where F is a (any) fundamental domain for Ó in V. Now
tet {&} be a one-parameter subgroup of SL(n, R) and let Ë e J5fn be such that for some
non-zero subgroup Ó of Ë, d(gt(f))-+Q s i—>oo . Then, by Minkowski's theorem
(cf. [8], for instance), given any neighbourhood Ù of 0 there exists t0 such that for /^ f0,
g,(Z) n Ù Ö (0). Hence by Proposition 2. 2, {gf (Ë) 1 1 ̂  0} is a divergent trajectory. Observe
that when Ó is the cyclic subgroup generated by an element of W({gt}} this coincides
with the examples s before. However, it is not difficult to construct, for various one-
parameter subgroups {gj, examples of lattices Ë which contain subgroups Ó of rank ^2
such that d(gt(Z)) -> 0, but Ë n W({gt}) = (0); e.g. if gf = diag(e«>', e^\ e^) e SL(3, P),
where á 1 <0<á 2 <á 3 and á1Ç-á2 + á3=0, then this happens for any lattice Ë in )R3

which intersects the plane of el and e2 in a lattice but does not contain any non-zero
multiple of el9 [el9 e2, e3} being the Standard basis of f?3.

2. 8. Definition. Let {gj be a one-parameter subgroup of SL(n9 P) and let Ë e JS?„
be such that (gt(A) 1 1 ̂ 0} is a divergent trajectory. If there exists a non-zero subgroup Ó
of Ë such that d(gt(Ó)) —> 0 s i —* oo we say that {gf (Ë) 1 1 ̂  0} is a degenerate divergent
trajectory; otherwise it is said to be a non-degenerate divergent trajectory.

2. 9. Proposition. Let {gt} be a one-parameter subgroup in SL(n, P). Let Ë e &n.
Then {gt(A) 1 1 ̂  0} is a degener ate divergent trajectory if and only if there exist g e SL(n P)
and l^p^n—l such that gA0 = A and /\p(gtg) (el Ëâ 2 Ë ··· Ëâñ)-^0 s t—> oo, where
ei,e2,...,en is the Standard basis of IRn. (/\ Stands for exterior products.)

Proof. The "if" part follows from the fact that if we put Z = g(Z0), where Z0 is
the subgroup generated by el9 e2,..., ep, then the condition s in Definition 2.8 is
satisfied; indeed J(gi(Z))= \\/\p(gtg) (el Ë ··· Ëâñ)|| for a suitable norm on the space of
exteriors (cf. [11], Lemma 1.4). Conversely, suppose that there exists ÓáË such that
d(gt^} —> 0. By replacing it by the largest subgroup of /\ generating the same subspace,
we can assume that there exists a basis {vl9..., vn] of Ë such that {vi9 v2,..., vp} is a
basis of Ó. Adjusting vn suitably (up to sign) we may assume that there exists g 6 SL(n, P)
such that g(€j) = Vj for all7 = l, 2,. . . , n. Then evidently g has the required properties.

In § 5 we extend the notion of degenerate divergent trajectories to homogeneous
spaces of arbitrary Lie groups and show that if the homogeneous space is of "rank l"
all divergent trajectories are degenerate, while in the general case there exist non-
degenerate divergent trajectories. In the rest of the present section we restrict to a special
class of one-parameter subgroups of S L (n, P) and relate their orbit behaviour to certain
number theoretic notions.

(2. 10). For concreteness we view P* s the space of w-rowed column vectors with
real entries. Let e{, / = l , 2 , . . . , w be the column vector with l in the ith row and 0
elsewhere. Let p be an index between l and n — l and let Dp(t) be the diagonal matrix

such that D (t) ei = e~tei if l^i^p and D (t) ei — e^ei i f /> + l^ i'Siw, where ë = - -.
(n—p)

Then {D (t)} is a one-parameter subgroup of SL(n, P).
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(2.11) Any matrix geSL(n,IR) can be expressed in the form

A B\ (I

where A, B, D and L are matrices of sizes p xp, p x (n —/?), (n —p) ÷ (n — p) and (n —p) ÷ ñ
respectively, / and 0 stand for identity and zero matrices of appropriate sizes and
ó eSX(«,£?) is such that a(et) e {±e-|l^y'S n}; that is, ó is a "permutation matrix"

(A B\
except for signs. Note that for a matrix h of the form l l , {Dp(t) hDp(-t)\t^0}

is bounded. Therefore in view of Proposition 1. l and the fact that ó e SL(n, Z), we get
the following.

2. 12. Proposition. Lei g e S L ( n , f f ) be expressed s in (2.11). Then

is a divergent (or respectively bounded) trajectory if and only if \Dp(i) l l (A^) | / ̂
is a divergent (resp. bounded) trajectory. ^ v /

In view of the proposition in studying divergence or boundedness of a trajectory of

(Dp(t)} we may restrict to orbits of A of the form ( l (A0). We relate this to certain
\L //

number theoretic properties of L, or more precisely of the set (or System) of linear
forms corresponding to L. Here and in the sequel by the set (or System) of linear forms
corresponding to L we mean the n—p linear forms S'y*/> /= l, 2 , . . . , «—/? , where

In the rest of § 2 we use the following notation: For any t e R let

p(t) — min{\t—n\ \ n integer} and v(t) = min{n \ \t—n\ = p(t)}.

Observe that for any t, t-v(t)= ±p(t). For any x = \x^..., xn) eRn (' Stands for
"transpose of) we denote max^x,·! 1 l_ i /^ n} by |jc|. A vector x = f(jc1,..., xn) is said
to be integral if xl9 x2>..., x„ are integers.

2. 13. Definition. Let L19 L2,..., Lk be a System of k linear forms in / variables.
It is said to be Singular if for every å>0 there exists N0 such that for all N^N0 the set
of inequalities

p(Li(x)}<zN~\ 1 = 1,2,...,*;
and

\x\<N

have a (common) non-zero integral solution x. The System is said to be regul r if it is
not singular. The System is said to be badly approximable if there exists c>0 such that

1
I5axt(p(Li(x))>c|xf1

for all non-zero integral vectors
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The reader may refer to [7] and [26] for discussions pertaining to these notions.

2. 14. Theorem. Lei L be a (n— p) ÷ p matrix, where 1^ñ^=·ç — 19 and let

L19 L2, . . . , L(n_p) be the corresponding System of linear forms. Let A = l \ (A^). Then
\L I)

{Dp(t) (A) \ t^O} is a divergent trajectory if and only if {Ll5 L2?. . ., L(n_p)} is Singular.

Proof. Suppose that {Ll5 L2,. . ., L(n_p}} is Singular. For i = l, 2,. . ., n let

For any ä > 0 let

Âä = {Óîß*é\\îß\<ä for all i= l, 2,. ..,«}.

In view of Proposition 2. 2 it is enough to show that for any ä > 0 there exists T such
that for all t^T, Dp(t) (Ë) ç 5^Ö(0). Let 1><5>0 be given and choose å such that
0<å<<5". Since {Ll5. . ., L(n_p)} is singular there exists N0 such that for N^N0 the
inequalities

p(Li(x))<sN~^\ i=l,29...9(n-p)

and

\x\<N

have a common non-zero integral solution. Fix N^N0 and let x = '(xl9 x2,. . ., xp) be
such a solution. For 7'= l, 2,. . . , («—/?) put xp+J = v( — ̂ (jc)) so that

Then
ð ñ ç — ñ

= Ó ÷é/é= Ó *!«(+ Ó

is an element of Ë and Dp(t) (y) e fia whenever

e~'N< and

where s before ë = . Let IN be the open interval (log —, ë 1 log ) , which
(n-p) \ ä å /

is non-empty since å<äç. Then we have Dp(t) (A) n B63=( ) for all teIN, which is true
for all N^N0. Again since å<<5ð , for all sufficiently large N9 IN and /N+1 overlap and
consequently U IN contains an interval of the form [Ã, oo). Hence Dp(t) (A) n l
for all t ̂  T s required.

Conversely, suppose that (Dp(t) (A) | i^O} is not divergent. Then there exists <5>0
and a sequence {tk} such that tk-+ao and DpOk) (Ë) ç Âä = (0) for all fc = l, 2, ---- Let
Nk = v( etk) = etk±p(detk). Let x = i(x1? x2>- - ., ^p) be an integral vector such that

(2.15) \x\<Nk and p(Li(x))<2';lOA^A for all i=l,29. ..,(n-p)

and put xp+J. = í(-^.(÷)) (= -Lj(x)±p(Lj(x)) for ally= l,. ..9(n-p). Let

= Ó ^/f= Ó ^ß^+ Ó ñ(£÷÷))âñ^6 Ë.
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Then by (2. 15) we have Dp(tk) (y) e Âä. Since Dp(tk) (Ë) ç ^ = (0) we conclude that
y — Q or equivalently ;c = 0. Thus the inequalities (2. 15) have no non-zero integral
solution for any Nk. Since Nk-^> oo this means that {Ll5 L2?. . ., L(n_p}} is not singular.

2. 16. Remark. It is straightforward to verify that for the one-parameter subgroup
Ai-i(0 a divergent trajectory {Dn_1(t)(A) U^O} is a degenerate divergent trajectory
if and only if Ë n W({DH^i(t)})^(Q) (notation s in (2. 7)); (if every non-zero element

of Ë is of the form Ó £iei w h ^w + O* then for any k^n — l and x1, x2,. . ., xk e

je1 A j c 2 A · · · Ë×* is not contained in W (ff Ai-i(0))> unless it is zero). For Ë s in the
theorem (with /? = « — !) this happens if and only if the subgroup generated by the
coefficients of the corresponding (single) linear form L± does not contain any rational
element; in other words, if and only if /15 /2,. . ., / w _ j and l are linearly independent
over 0, /!, /2,· · ·, /„-i being the coefficients of LA (or entries of L). Thus in this case
Theorem 14 of [7] implies the following.

2. 17. Theorem. For n = 2, /Ae degenerate divergent trajectories are the only divergent
trajeetories for the ow on j*?2 induced by {Di(t)}. However,for n ̂ 3 /Aer
yl e JSf n 5McA /Ááß {£)„_!(/) (A) \ t^Q} is a non-degenerate divergent trajectory.

In SL(2,/R), up to conjugacy and scaling (linear change in f) {Dl(t)} is the only
one-parameter subgroup for which not all eigenvalues under the adjoint action are of
absolute value 1. Thus Proposition 2. 6 together with the first part of Theorem 2. 17
constitute a complete description of divergent trajectories of actions of one-parameter
subgroups of SX(2, f?) on ?2. We shall achieve a similar description for all flows on
homogeneous spaces of "rank l" (cf. Corollary 6. 2).

The discussion on p. 94 of [7] does not seem to imply the second part of Theorem
2. 17 for {Dp(t)}, p<n — \ (in the place of n — 1) since in that case analogue of Remark
2. 16 is not valid. However, interpreting the ideas in the proof of Theorem 14 in [7]
geometrically, we shall uphold existence of non-degenerate divergent trajectories on all
homogeneous spaces of rank ^ 2 (cf. Theorem 7. 3).

Combining Theorem 1. 6 and Proposition 2. 12 we get the following.

2. 18. Corollary. Lei G = SL(n, R), Ã = SL(n, Z) and

× á ñ ÷ (n —p) matrix >
and

(A JS\ // 0

DJ\L ÉÃ

the latter being a decomposition s in (2. 11). Suppose that the System {L19..., L(n_p)}
of linear forms corresponding to L is regul r. Then UgF/Ã is dense in GIF.

Proof. U s above is indeed the horospherical subgroup corresponding to Dp(t)
for any f >0. Hence the result follows from Theorem 1. 6 and Proposition 2. 12.
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2. 19. Remark. Let the notation be s in Corollary 2. 18. It is easy to see that if

is such that (Dp(f) h Ã \ f^O} is a degenerate divergent trajectory then

UhF l Ã is not dense in G/Ã. Since by Theorem 2. 17 for n = 2 all divergent trajectories
of {/>!(*)} are degenerate, Theorems 1. 6 and 2. 17 constitute a necessary and sufficient
condition for density of the [7-orbit. (See Corollary 6. 3 for a more general result.)

2. 20. Theorem. Let L be a (n— p) ÷ ñ matrix, where i^p^n — l, and let

L15 L2, . . . , £(„-p) be the corresponding System of linear forms. Let Ë — ( \ (Ë). Then
\L I)

the trajectory (Dp(t) (A) \ t^O} is bounded if and only if {L1? L2,... , L(n_p}} is badly
approximable.

Proof. Suppose that the System {L1?..., L(n_p)} is badly approximable. Let

0<c<- be such that

i max_p(p(Li(x)))>c|xrA

for all non-zero integral x, where s before ë = - -. Choose <5>0 so that <5(1 + A)<c.
(n-p)

Let y e A and suppose that Dp(t') (y) e Âä for some f'g:0. Then y can be expressed s
P n-p

y — yl +y2 where yi = Ó xtet and y2 = Ó (LJ(X) + XJ) ep+j, with xl9 x2,..., xn integers.

Observe that \Dp(t) (y[)\* \Dp(t) (y2)\ = }y^ \y2\ for all i^O. As Dp(t') (y) e Âä we see
that Dp(t') (yj and Dp(t') (y2) belong to Âä and consequently

\íé\ë \y2\ = \
Also since Dp(t'}(y2)eÂä, \Lj(x)-\-Xj\<e~^ ä^ä and consequently \Lj(x) + Xj\=i
Hence 1^^ \y2\ = \÷\ë max (p(Lj(x)))< (i + ̂ <c which contradicts the choice of c

unless x = 0; in the latter case y = Q. Hence Dp(t) (A) n Âä = (0) for all i^O. By Propo-
sition 2. 2 this implies that (Dp(t) (A) | i^O} is bounded.

Conversely, suppose that the trajectory (Dp(t) (A) \ t^Q} is bounded. By Proposi-
tion 2.2 there exists <5>0 such that Dp(t) (A) n Bd = ( ) for all i^O. Now let
x = t(xl,.. .,xp) be an integral p-tuple, xp+j = v(-L:(x))= -Lj(x)±p(Lj(x}} for all

j = l, 2, . . . , (« -/?) and ^ = Ó ^i/f e A where /f = ( J ef. Then Z)p(0 (>;) £ 5^ for any
\L I)

ä
''2'

)^ä for some i'=l, 2,..., (n-p). In other words,

^M+A

^O. Choose rto be such that e~'\x\=-. Since ¿ñ(ß)^)öÂä we must have

maxp(Li(x))>2(^J |x|-A>c|x| ë

for a suitable c>0. Thus {Ll5..., L(n_p)} is badly approximable.
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In view of Corollary 2. 5 and Proposition 2. 12, the theorem implies the well-known
fact that the set of badly approximable Systems of (n —p) linear forms in p variables
is of zero measure in the p (n—p) dimensional vector space of all Systems of (n — p} linear
forms in p variables. More interestingly, arguing the other way and using a theorem of
W. Schmidt (cf. [26]) together with Proposition 2. 12 we conclude the following.

2. 21. Corollary. The Hausdorff dimension of the set

{Ëå&ç\ {Dp(t) (A)\t^0} is a bounded trajectory]

is n2 —i (viz. the dimension of «£?„).

2. 22. Remark. For n = 2 the result involved in the above corollary is classical
(cf. [26] for details). Also, in that case the flow is the geodosic flow associated to the
surface K\SL(2, R)/SL(291) with respect to the Poincare metric, where K is the subgroup
of SX(2, R) consisting of all rotations. Thus the set of points whose (forward) trajectories
under the geodesic flow ( s above) is of Hausdorff dimension 3. One may ask whether a
similar assertion holds for the geodesic flow associated to any surface of constant
negative curvature and finite area. We note however that for the horocycle flows
associated to these surfaces, by a theorem of Hedlund (cf. [16] for reference and a
stronger result), the set of points on bounded trajectories is a two dimensional sub-
manifold.

§ 3. Orbits of Euclidean frames

A p-tuple (îé9î2,..·,îñ), where l^p^«-l, and îÀ9 î29..., îñåÑ* is called a
p-frame if îÀ9 î29..., îñ are linearly independent. A p-frame (î19 î29..., îñ) is said to be
irrational if the subspace spanned by {îß9 î29..., îñ} does not contain any integral
vector. We shall view a ñ-frame î = (îÀ9 î2,..., îñ) also s an n ÷ ñ matrix in the obvious
way (with î. s the ith column). For any matrix è we denote by \\è\\ the maximum of the
absolute values of its entries.

The classical Kronecker theorem implies that if { is an irrational p-frame and
å>0 there exists an integral row matrix jc = (jc1,..., xn) such that \\÷î\\ <å. In [15] we
proved a matrix analogue of the theorem: for î s above and å>0 there exists
yeSL(«, Z) such that ||y£||<6. In fact it is shown that there exist sequences {yj in
SL(n,Z) and A f 6 / R + such that y ^ — > 0 and A,· y ,·£—»/ where ç is a p-frame (the latter
condition means that the sequence {yj does not totally suppress the "shape of £")· This
was applied to deduce the inhomogeneous form of the above assertion; viz. if î is a
p-frame then the SL(n, Z)-orbit of î (componentwise action) is dense in the space of
p-frames, viewed s a subspace of Rn x f t n ÷ ··· ÷/R" (p copies). Thus any p-frame can be
approximated by p-frames of the form ã î with yeSL(n,Z). (A similar result is also
proved for Sp(2n, Z).)

Motivated by the recent quantitative versions of the usual Kronecker theorem
(cf. [29]) one may ask how fast the sequences {yj in the above discussions have to
grow (in terms of the approximation achieved). We shall not directly concern ourselves
with this question; but rather, relate the rates of growth of optimally chosen sequences
to the behaviour of certain trajectories of (Dp(t)} s defined in the last section: The
question itself has been studied in a recent preprint [24] by S. Raghavan. Our results
overlap with those of [24] for a class of p-frames (specifically, when the index s defined
in [24] is zero, which incidentally is the case when the results are optimal).
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In the sequel we consider p fixed. We denote by î0 the frame (el9 e2,..., ep),
where s before [ei9 e29..., en} is the Standard basis of /R". Observe that any /J-frame î
can be expressed s g£0. Also, s before, through the rest of this section we put

, P
(«-/o'

3. 1. Proposition. Lei î = gî0be a p-frame, where g e SL(n, <R). Lei K be a compact
subset of !£n. Then there exists a constant C>0 such that the following holds: if {t}} is a
sequence in f?+ such that t(—> oo and Dp(ti)g~1(A0)e K for all i, then there exists a
sequence {y;} in SL(n,I) such that for all large i, \\yt\\^ Ceili and \\y^\\ <Ce~^ and
further, there exists a subsequence of {e''y^} which converges to a p-frame ç.

Proof. Letg~1 =
¢ 5\/7 0
0 D)\L I

ó be the decomposition s in § 2. 11 for g 1 in
7 0

the place of g. Then for />0, Dp(t) g'1 (A)) e K only if Dp(t) ( (Ë0) e K' where
\ JL l

A B
0

ã € SL(n, Z) and / > 0 we have

— t)\t^Q[ -Kis a compact set. On the other hand if for some

<Ce~' then we have

.-i

/
-L

/

7

,~L r

<n\\A-i\\Ce~t

7/VO D

.A'1
l 0

-L 7

In view of these observations it is evident that it is enough to prove the Proposition

only for g of the form ( ) where L is an (n—p) ÷ p matrix; hence we shall suppose
L I

o· —
I 0
L I

Recall that 5£n can be identified with SL(n, f>)/SL(n, /). Thus there exists a compact
subset KI of SL(n, ft) such that K=K1SL(n, l)/SL(n, Z). Put

which is finite in view of compactness of Kv Now let ti—^ oo be a sequence such that
Dp(t^ g-1(yl0) e K for all i. In view of the above, this means that there exists a sequence
{yj in SL(n, Z) such that Dp(tt) g~iy^1 e K± for all i. In view of the compactness of K±
it is enough to show that the conclusion of the Proposition holds for the subsequences
of {yj for which Dp(ti)g'iy^i converges. In other words, we may assume Dp(t^g~ly^1

to be convergent; say D^t^ g"1 yf x — > h e Kv Then ¾&Ïñ(-ß^ -» A"1 e K^1. Comparing
the first p columns of this convergence (or, equivalently, operating the sequence and
the limit on the frame £0) we conclude that etiyiî-^ç where ç is the p-frame formed
by the first p columns of A"1. Since ||if||^ H/T1!! <C the convergence also implies that
for all large i, \\y£\\<Ce~ti. Comparing the last (n— p) columns we conclude that for
all large /, \\7ßî°\\ <2\\h~l\\ e*, where î° is the (n-p)-frame (ep^ ep+2,. . ., en).

BroXght to \oX b\ _ ETH-Bibliothek Z�rich
AXthenticated

DoZnload Date _ 11/9/19 4:53 PM
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Since g = l l and consequently î = ( l we see that yi·,î = y£ î0 + y^°L for all i.
\L // \L/

Hence

É À 7 ß ^ ï É É = llyi£0£li + É É ? ß £ É É = (n~P) ll^ll lly;£0ll + ll7i£ll = 2«||L|| HA"1!! e^+^y^^Ce***

for all large i, since y^—>0. Hence ||y£|| =max{||7i<^0||, Hy^0!!}^ CeAii.

A proof of the second part is evidently contained in the above.

Before considering applications of the above to special trajectories we shall prove a
(stronger) converse. As before, for any ä > 0 let Âä = {£á,£; l |á,·| < ä | for all é = l, 2, . . . , ç}.
Recall also that Ë^ = Æç.

3. 2. Lemma. There exists a constant â depending only on n such that the following
holds: if heSL(n, IR) and ä>0 are such that hBdr\AQ^(G) then th~1Bd-l does not
contain n linearly independent elements oj

Proof. The set hBd is a parallelopiped and th~1B0-i is its reciprocal (polar)
body. Hence the result follows from Theorem 4 A of [28].

3. 3. Proposition. Let æ=gî0 be a p-frame, where geSL(n,IR). Let {/J be a
sequence in f?+, such that t{ —> oo. Suppose that there exists a constant C^l and a
sequence {yj in SL(n,Z) such that \\y^\\^ e~li and ||y£||^ Ce*\ Then (D^t^ g~l(AQ}} is
contained in a compact subset o/J5fw.

Proof. As in the proof of Proposition 3. l, without loss of generality we may
// 0\

assume g = l l , where L is a (n—p) ÷ ñ matrix. Suppose that the conclusion in the
\L //

proposition is not true. By passing to a subsequence we may assume that (Dp(ti)g'l(A0)}
o

has no limit point. Put ä = —— where â is s in Lemma 3. 2. In view of Proposition 2. 2
2* \^

our assumption implies that for all large z, say i'*£i'0, Dp(ti)g~l(A0) n 55Ö(0), hence
gDp( — t^ Âä ç Ë0Ö(0). Using Lemma 3. 2 and substituting for ä we conclude that for
i^/0, '(g^Dpi — O)"1 ^ic does not contain n linearly independent elements of Ë0. But
observe that

so that \\*(gDp( -1J 'yjl ̂  C. Consequently \gDp( -1.) tyi(ek) 6 B2C for all k = l, 2 , . . . ,« .
Hence tyi(ek)e

t(gDp(—ti))~
1B2C for all fc = l , . . . ,w . But since for any /, ^1(^)5

fc=l,...,w are n linearly independent elements of Ë0, this contradicts our earlier
observation, for all i^i0. Hence Dp(ti)g"1(AO) must have a limit point in J§?„.

We now apply the propositions to divergent and bounded trajectories.

3. 4. Theorem. Let î=gî0 be a p-frame. Then the following conditions are equiva-
lent:

i) {Dp(i)g~l(A^ | i^O} is not a divergent trajectory.

ii) There exists a constant C">0 and a sequence {yj in SL(n,Z) such that
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(iii) There exist a' constant C">0 and sequences {yj inSL(n,Z) and {AJ in ft +

such that \\Ji\\ ̂  C'\\y^\\~* for all i, A j — » oo and ë^{î — + ç, where ç is a p-frame.

Proof. i) => iii) Since the trajectory is not divergent there exists a compact subset
K of JS?„ and a sequence {/t} such that Dp(t^ g~l(A^) E K for all i. Let C be the constant
and {yj be the sequence in SL(n, Z) given by Proposition 3. l corresponding to the
above data. Then for all large i we have ||yf||^ CeXti<C2\\y£\\~x. This, together with
the last part of the conclusion of Proposition 3. l, implies that iii) holds when we
replace {yj s above by a suitable subsequence.

iii) => ii) is trivial.

ii) => i) Let t{ = - log \\y£\\ then tt -> oo and we have ||y |̂| ̂  e~i{ and \\yt\\ ̂  C'e^.
Hence by Proposition 3. 3, {Dp(tt) g~i(A0)} is contained in a compact subset; in other
words {Dp(t) g~l(A0) | f^O} is not a divergent trajectory.

3. 5. Theorem. Let î = gîQ be a p-frame where ge SL(n, f ). Then the following
conditions are equivalent:

0 {Dp(i)g~l(A<>) U^°} w a bounded trajectory in 5fn.

ii) There exists a constant C such that for any å>0 there exists y e SL(n, I) such
that \\y\\ <€å~ë and

iii) There exists a constant C' such that given a sequence {ej, where å^Ï, there
exists a sequence {yj in SL(n,I) such that ||7,·||̂  C'ej~A, ||7ßß||<å£ and for a suitable
sequence {/IJ of positive real numbers ë^,-î— >ç9 á p-frame.

Proof. i) => iii) Let Kbe the closure of the bounded trajectory {Dp(t)g
 1(Ë0) \t^(

and let C>0 be the constant given by Proposition 3. l for the compact set K. Choose

— ) . Then the condition of Proposition 3. l holds. Let {yj be a sequence in

SL(n, Z) for which the conclusion of that proposition holds. Then HyJI^ =
and Hy^H < Ce~ti = si. The last part follows from the corresponding assertion in Proposi-
tion 3. 1.

iii) => ii) is trivial.

ii) => i) If the trajectory is not bounded there exists a sequence t{ such that
ij-*oo and the sequence {Dp(ti) g~l(AQ)} has no limit point in &n. But since by ii)
there exists y f e SL(n, Z) such that \\y^\\^e~tl and Ib^H^ Ce*', Proposition 3. 3 implies
that the sequence must have a limit point. Hence i) must hold.

Combining Theorems 3. 4 and 3. 5 with Theorems 2. 14 and 2. 20 of the last section,
in particular, we get the following.

3. 6. Theorem. Let L be an ( n — p ) x p matrix and let {Ll5 L2,..., L(n_p)} be the

corresponding System of linear forms. Let î = \ ] where 7 is the pxp identity matrix.

Recall that ë = . Then we have the following.
(n-p)
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i) There exist a constant C>0 and a sequence {yj in SL(n,I) such that
Itoill -+0 and \\^\\^€\^î\Ãë for all i ifandonly if{Li9 L2,. . ., L(n.p)} is regul r.

ii) There exists a constant C>0 such that for any å>0 the inequalities ||y£||<e
and ||y||?i €å~ë have a solution ã e SL(n9 1) if and only if {L19 L2,. . ., L(H_p)] is badly
approximable.

One of the implications in ii), viz. badly approximable => existence of the solution ã
for the inequalities, overlaps with a recent result of S. Raghavan (cf. [24], Theorem 4).
There the author allows a weaker condition than badly approximable and concludes the
existence of a constant C such that for all å>0 there exists yeSL(n,Z) for which
||y£||<e and ||y|| <Ce~A~*, where <5^0 is the "proper index" of the System. We note
however that like badly approximable Systems the Systems satisfying the weaker condi-
tion involved in the above also form a set of measure zero in the p (n— /?)-dimensional
vector space of all Systems of all (n —p) linear forms in p variables. It would be inter-
esting to know whether the weaker condition or solvability of the above (weaker) system
of inequalities signifles something about the trajectory {Dp(t)g~1(A0) \ t*zQ}9 where
geSL(n,R) is such that î = gî0.

Since, for n^3 there exist Singular Systems of linear forms (cf. Theorem 2. 17),
there exist /?-frames î for which there exists no constant C such that ¾ßî-^à and
II y i II < ^ É À 7 ß ^ É Ã ë for a suitable sequence {yj in SL(n, Z). It was shown to the author by
E. Bombieri that, in fact, given any monotonically increasing function ù(ß) on f t + there
exists an (n — l)-frame î such that there is no sequence (yj in SL(n,Z) satisfying
7j{— »0 and \\yt\\ <ù(\\ãßî\\~

1) for all i; the proof is based on Theorem 14 from [7]
and Theorem 4 A from [28]. As in the previous paragraph it would be interesting to
know if this phenomenon signifles something about the dynamics of the trajectories
involved.

§ 4. Divergent trajectories on homogeneous spaces

Let G be a connected Lie group and Ã be a lattice in G. Let {gt} be a (continuous)
one-parameter subgroup of G. In the remaining sections we shall discuss the divergent
trajectories of the flow induced by {gt} on G/F.

As G is a connected Lie group, the class of closed (not necessarily connected)
normal subgroups of G which do not contain any non-compact semisimple subgroup has a
unique maximal element M. G/ M is a semisimple Lie group with trivial center and no
non-trivial compact factors; (in fact, G/ M is the maximal among such quotients). Further,
for any lattice Ã, Ì Ã is a closed subgroup of G and the natural quotient map
ç : G l T — » G/ M Ã is proper (cf. [25]). We conclude from this the following.

4. 1. Proposition. For geG the trajectory {gtgF \ t^O} in G/ Ã is divergent if and
only if the trajectory {gtgMF \ t^O} in G/ M Ã is divergent.

Since G/ÌÃ is the quotient of G/M by the lattice M Ã /M, the proposition signifies
that in studying divergence of trajectories of flows there is no loss of generality if we
restrict to (connected) semisimple Lie groups G with trivial center and non-trivial compact
factors. Such a group is linear (that is, a subgroup of GL(n, /R) for some n). In the
following sections we shall, in general, only assume G to be a connected linear semi-
simple Lie group. We next motivate further restrictions on Ã.
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A lattice Ã in a semisimple Lie group G is said to be irreducible if for any normal
subgroup F of positive dimension, Fr is dense in G. We recall the following result on
"decomposition" of lattices into irreducible components.

4. 2. Proposition. IfGisa semisimple Lie group with trivial center and no non-trivial
compact factors and Ã is a lattice in G then there exist normal (closed) subgroups
G1? G2,. . . , Gk of G such that

i) G = G1 - G2 - · · Gk (direct product);

ii) for each i= l, 2,...,/:, L n Gf = ri5 say, is an irreducible lattice in Gf;

iii) Fi - Ã2 -" Fk is of finite index in Ã.

(4. 3) Thus the homogeneous space Ð Gi/Fi is canonically isomorphic to
G/riF2 ·" Tk. It is evident that a trajectory {gtgF \ t^O} is divergent if and only if
{gtgF1F2 ··· Fk \ t^Q} is divergent and that holds if and only if the projection on any
one of Gf/rf, l^i^k is divergent. We thus find that in studying divergence s above
we may (further) restrict to irreducible lattices.

(4. 4) Now let G be a semisimple Lie group with trivial center and no non-
trivial compact factors and let Ã be an irreducible lattice in G. Then by Margulis'
arithmeticity theorem (cf. [22]) there are only the following three (not mutually exclusive)
possibilities: i) G/T is compact; ii) Ã is an arithmetic lattice in the sense that G is the
connected component of the identity in the group of P-elements of an algebraic group G
defined over 0 and Ã is commensurable with Gz (that is, Ã n G7 has finite index in Ã
and G/); or iii) G is of/R-rank 1.

The rank of an irreducible lattice Ã (or equivalently of the homogeneous space
G/Ã) s above is defined to be 0 if i) holds, l if iii) holds and i) does not and to be the
0-rank of the algebraic group G if ii) holds. It is well-known that this is consistent;
(it follows for instance from Theorem 13. l and Corollary 15. 3 of [2]). If G has non-
trivial center C (but other conditions are s before) then the rank of an irreducible
lattice Ã in G is defined to be the rank of the (irreducible) lattice CF/C in G/C.

In analogy to Propositions 2. 4 and 2. 6 in general we have the following.

4. 5. Proposition. Let G be a connected semisimple Lie group with finite center.
Let Ã be an irreducible lattice in G. Let {gt} be a one-parameter subgroup of G which is
not contained in any compact subgroup of G. If {t^ is a sequence in IR such that f,.—» oo
then for almost all gF e G/Ã, {gt.gF} is dense in G/Ã. If all eigenvalues of Adgl are
of absolute value l then no trajectory of {gt} on G/Ã is divergent. If Ã is non-uniform and
Ad#! is diagonalisable over C and has an eigenvalue ë with \ë\ ö l then {gt} has a divergent
trajectory on G/Ã.

Proof. As before the first part follows from the results of C. C. Moore (cf. [23],
Theorem 1). For an arithmetic lattice Ã and a one-parameter subgroup {gt} consisting
of unipotent elements (that is, Adgt is unipotent) the non-existence of divergent
trajectories can be conclude using Margulis' result s involved in Proposition 2. 6,
using Proposition 9. 3 of [25] (cf. [11] for an idea of the proof). For a non-arithmetic
lattice this (and even a stronger assertion) is proved in [14]. (Actually, a simpler proof
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is also possible if we only need non-divergence.) As in the proof of Proposition 2. 6,
non-existence of divergent trajectories when all eigenvalues of Adgj are of unit absolute
value can be concluded from the above special case, using the Jordan decomposition.

For a large class of homogeneous spaces we shall actually find divergent trajectories
for {gt} when Adgx has an eigenvalue ë with | ë |ÖÀ (cf. Theorem 7.3 and Proposi-
tion 5. 6). However, to prove the converse assertion sought after, we follow an indirect
argument. If Adg1 is diagonalisable over C and has an eigenvalue ë with |A| Ö l, then
the corresponding horospherical subgroup U is non-trivial and consequently not contained
in any compact subgroup of G. Since Ã is an irreducible lattice, this implies that the
action of U on G/ T is ergodic. Hence if {gt} has no divergent trajectories, then by
Theorem 1. 6 this implies that all {/-orbits on G/ Ã are dense. But when G/ T is non-
compact, this is false even for a maximal horospherical subgroup (cf. [12], Corollary
2. 4 and Remark 2. 5 in the arithmetic case and condition d) of Theorem 5. 2 of the
present paper for the case of lattices in simple Lie groups of P-rank 1).

It seems to the author that the converse assertion would be true without the
assumption that Adg1 is diagonalisable over C.

As suggested by Theorem 2. 17 it will turn out that while for lattices of rank l all
divergent trajectories are "degenerate", when the rank is ^2 there always exist "non-
degenerate" divergent trajectories. This will be taken up in §§ 6 and 7 respectively. We
conclude this section by proving an abstract characterization of degenerate divergent
trajectories in SL(n, R)ISL(n, Z).

4. 6. Definition. Let G be a connected semisimple Lie group and let Ã be a
lattice in G. A parabolic subgroup â of G is said to be Ã -rational if the unipotent radical N
of Q intersects Ã in a lattice; that is, N n Ã is a lattice in W.

Let f, where 1^/^n — l, be the subgroup of SL(n,IR) consisting of all the
elements which under the /th exterior action (natural if /=!) leaves invariant the
subspace spanned by ei Ae 2 A · · · Aei5 where s before {e19 e29. . ., en} is the Standard
basis of IRn. It is well-known that any maximal parabolic subgroup Q of SL(n, f?) is
conjugate to (a unique) Qi9 i^ n — l ; Q is Ã-rational if it is conjugate to Qt by an element
of SL(n, 0); that is, Q = qQiq~1 for some qeSL(n,Q) and 1^/^H-l.

4. 7. Theorem. Let G = SL(n9R) and Ã = 5×(«, Z). Let {gt} be a one-parameter
subgroup and let g E G. The trajectory {gtgF \ t^.0} is a degenerate divergent trajectory
if and only if the following holds: there exist a representation p : G — > GL(V} over a finite
dimensional vector space and a v e V— (0) such t hat the following conditions are satisfied:

i) The subgroup = {xe G \ p(x) í=÷(÷) v for some /(jc)e£?*} is a maximal
Ã-rational parabolic subgroup of G, and

ii) there exists è 6 €(Ã) = SL(n9 O) such that p(gtgB} -* 0 s t — > oo (note that è is
understood to be independent of t).
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Proof. Suppose that {gtgF \ t^O} is a degenerate divergent trajectory (in the sense
of § 1). Then by Proposition 2. 9 there exists i, 1^ i^n — l such that if p = /V the zth
exterior representation (natural, if / = 1) then p(gtgy) (e1 Ë e2 Ë · · · Ë £f) — » 0 for a suitable
7 6 Ã. This together with the remark preceding the Statement of the theorem implies that
conditions i) and ii) are satisfied for p = ft9 v = ei Ë e2 Ë · · · Ë ei and è = ã.

Now let p be a representation of G over a finite dimensional yector space V and
let t; e V be such that conditions i) and ii) are satisfied. By the remark preceding the
theorem, the subgroup Q s in condition i) is of the form qQtq~l for some q e SL(n, Q)
and l^i^n — l (with Q s defined there). Then p( f) leaves invariant the subspace
spanned by w = p ( q ~ l ) (v). Also p(gtgOq)(w) = p(gtge)(v)—>Q s t— > oo. Since

Q) = C(F),

this means that by replacing t; by w in the hypothesis we may assume Q s in condition i)
to be Qi for some z, l^i^n — 1.

Since any representation of SL(n9 R) is completely reducible, by passing to one of
the components we may assume p to be the irreducible one; note that since Q{ is a maximal
parabolic subgroup the subspace spanned by at least one of the components of v is
invariant only under the action of elements of Qt.

Recall that an irreducible representation is determined completely by its heighest
weight. Also since Qt is a maximal parabolic subgroup, all the possible highest weights
of irreducible representations for which there is a rinvariant l -dimensional subspace
in the representation space are multiples of each other (note that one-zero vectors in
the rinvariant one-dimensional subspace have to be highest weight vectors). Using the
fact that the highest weight has to be "integral" (cf. [20]) and that the highest weight
corresponding to the ith exterior representation is a fundamental weight we conclude that
the highest weight of p s above must be a positive integral multiple, say k times, of the
highest weight corresponding to the ith exterior representation.

Consider the kth Symmetrie power pf of the zth exterior representation. Let
w = (e± Ë e2 Ë · · · Ë et)

k
9 the kth Symmetrie power, and let W be the smallest pf (SL(n, P))-

invariant subspace containing w. In view of the choice of k and the uniqueness of an
irreducible representation with a given highest weight, it follows that W can be expressed
s a direct sum of pf-invariant subspaces Wl9 W29. . ., Wl such that the restriction of

pf to each of the subspaces is isomorphic to the representation p. Further if wi9 w2, . . . , wt

be the components of w in W19W2,...,W1 respectively they are highest weight vectors
and hence under this isomorphism they correspond to a scalar multiple of v e V. Hence
by our hypothesis p\(gtg È) (Wj) — * 0 s t --> oo for all j = l , 2, . . . , /. Hence p\ (gtg È) (w) — > 0
s / — »oo; that is, the &th Symmetrie power (Ëß(&£0)(âéË'"Ëâß))*~"~>0 s f — >oo. It

is straightforward to verify by looking at the components that this implies that
/V (g, g) (e1 Ë · · · Ë ed — > 0. It is well-known, and easy to see, that SL(n, Q) <=. SL(n, º) - P,
where P is the subgroup consisting of all upper triangul r matrices. In particular, è can
be expressed s è = y ·/?, where ã e SL(n9 Z) and pePaQ.. Then in view of the above,
evidently /^(gtgy) (ei Ë ··· Ëâ£)-*0. By Proposition 2.9 this implies that {grgr | i^
is a degenerate divergent trajectory.
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§ 5. Fundamental domains and degeneracy

In this section we recall the results on fundamental domains of lattices (to be used
in the sequel following the same notation) and motivate the notion of degeneracy in the
general context.

(5. 1) Let G be a connected linear semisimple Lie group and Ã be an irreducible
non-uniform lattice in G; in particular this means that G can have no compact factors.
We shall assume that there exists, and consider fixed, an algebraic group G defined
over k, where k = O or P, such that G = Gp (notation s in [3]) and at least one of the
following conditions is satisfied:

a) k = 0 and Ã is commensurable with Gz or

b) k = f? and P-rank of G is 1.

Recall that in view of the reductions in § 4, the above assumptions do not involve
any loss of generality in the study of divergent trajectories on homogeneous spaces of
Lie groups by lattices.

Let S be a maximal k-split torus in G and let *S = Sp. Let (5 be the (algebraic or
equivalently, complex) Lie algebra of G. Relative to the adjoint action of S on © we
have the decomposition

© =3(S)+ Ó ®ë

ëåÖ

where 3 (S) is the Lie algebra corresponding to the centralizer Z (S) of S in G, Ö is the
System of k-roots relative to S and for each ë e Ö

©A = {£e<5 \(ÁÜ$)î = ë(÷)î forall seS}.

Let P be a minimal k-parabolic subgroup of G and let U be the unipotent radical
of P. There exists a unique order on Ö such that U is the subgroup generated by
{exp (5 ë | /À6Ö + } ,Ö + being the set of positive roots relative to the order. We denote by Ä
the set of simple roots with respect to the order. For any ô > 0 put

St = {$eS|a(s)<T for all aezl}.

We note also that P can be expressed s P = S · M · U, where M is a reductive algebraic
subgroup of Z (S) which is defined and anisotropic over k. Put P = PP n G, M = M° and
t/ = Up. Then we get the decomposition P° = SMU. Finally, let r denote the rank
of Ã (cf. §4.4).

5. 2. Theorem. Let the notations be s above. Further let K be a maximal compact
subgroup of G. Then there exists a compact subset C of MU, a finite subset J ofGk n G
and ô>0 such that the following conditions are satisfied:

a) G = KS,Cjr.

b) Let J1=J i f k = Ft and any finite subset of Gp if k = 0; then for any compact
subset D of MU and ó > 0 the set {y e Ã | (Ê8ó¿^) ã n (KS^DJJ Ö 0} is finite.

c) //>=! then for any compact subset D of MU there exists ó>0 such that the
following holds: ifj\j\ e/ and yeF are such that (KS0Djy) n (KS<rDji) is non-empty
then j\ =j and jyj~l € P,

d) For all je /, j~lUj n Ã is a lattice in j'1 Uj.
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e) If Q is a parabolic subgroup such that the unipotent radical N of Q intersects Ã
in a lattice (that is, N n Ã is a lattice in N) then there exists j e J and ã e Ã such that Q
contains y~ij~iPjy.

For arithmetic lattices conditions a), b) and c) s above follow from Theorem 13. l,
Corollary 15. 3 and Proposition 17. 9 respectively of [2]. Condition d) follows from the
fact that /c: Gp and U is a unipotent algebraic group defined over 0. Condition e) follows
from conjugacy of minimal -parabolic subgroups and the fact that if the unipotent
radical of a parabolic subgroup Q of G intersects Ã in a lattice then Q = Qp n G for
an appropriate Q-parabolic subgroup of G. (The unipotent radical must be defined
over 0 and hence so is Q, being its normalizer.)

For lattices in simple Lie groups of f?-rank l conditions a), b), c) and d) follow
from Theorem 0. 6 of [17]. To uphold condition e) we proceed s follows. Observe that
in view of condition d) s in the theorem, for any ÷ e PJF, the orbit of UxF/F under
the i/-action is compact. It turns out that PJF/F is precisely the set of all the points
with this property; this may be deduced from Theorem 3. 4 in [12]. A simpler proof
can also be obtained using Theorem 1. 6 and the "only if part" of Theorem 6. l of the
present paper (cf. Corollary 6. 3). We note that the latter does not involve condition e)
(or any of its consequences). Now let Q be a proper parabolic subgroup. Since G is of
IR-rank l, Q must be conjugate to P, say Q = gPg~l for some g eG. Then g U g'1 is the
unipotent radical of Q. If, s in the condition, gUg~l n Ã is a (necessarily uniform)
lattice in g t/g"1, then U n g'1 Tg is a uniform lattice in U and consequently Ug~1F/F
is a compact (7-orbit. Hence by the above remark, g~iePJF'9 let g~i=:pjy, where

yeF. Then Q=gPg~l =^y-irip-i

A set / for which the conditions of Theorem 5. 2 are satisfied is called a sufflcient
set of cusp elements.

(5. 3) Let the notation be s in (5. 1). For any subset Ó of Ä let <Ã> be the set
of all elements of Ö which are contained in the subgroup of the character group generated
by Ó. For Ó ad let ÑÓ be the subgroup generated by Z (S) u {exp(5A | A e <Ó> u Ö*},
where Z (S) is the centralizer of S. Note that Ñö = Ñ -ÑÓ9 Ó á Ä are all the k-parabolic
subgroups containing P (cf. [3]). They are called Standard parabolic k-subgroups with
respect to the order. Any parabolic k-subgroup is conjugate to a Standard parabolic
k-subgroup, by an element of Gk. For each á e Ä, ÑÓ-{Ë} is a maximal Standard parabolic
subgroup.

Let Ó^Ä. The Standard parabolic subgroup ÑÓ can be (Levi) decomposed s
ÑÓ = ÆÓ· Í^ where N^ is the unipotent radical of ÑÓ and ÆÓ is the reductive Q-subgroup
generated by Z (S) and {exp(5A | A e <£>}. Zr can be further decomposed s ÆÓ=¾Ó¹Ó

where ¾Ó is a k-split torus in the center of ÆÓ and H^ is a reductive algebraic group defined
over k on which there is no character defined over k. This, in particular, implies that if
Ç=(ÇÓ)° then ÁÃç Ã is a lattice in H (cf. [2], Corollary 13. 2 for the arithmetic case;
in the other case it is obvious since either H is compact or H = G). If Ó = ö then H = M.
In this case M n Ã is a uniform lattice in H. We note for later use that since /c G0 if
k = 0 and M is compact if k = f?, for all j e /, j~ * Mj n Ã is a uniform lattice in j~ 1 Mj.

(5. 4) Let â be a parabolic subgroup of G and let N be the unipotent radical of Q.
Recall that Q is said to be F-rational if N n Ã is a lattice in N. If Ã is an arithmetic
lattice then a parabolic subgroup Q of G is Ã-rational if and only if â = Qp n G for
a suitable (unique) parabolic Q-subgroup Q of G.
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Recall that in (5. 1) while choosing the order on Ö we started with a minimal
parabolic k-subgroup P; that is, P is Q-parabolic if Ã is arithmetic, but only P -parabolic
otherwise. We shall henceforth assume the choice to be such that in the latter case
(also) P is Ã-rational. By condition e) this implies that there exists y e Ã and y'0 e /
(the corresponding set of cusp elements) such thaty*0y normalizes P. Since a parabolic
subgroup is its own normalizer we get that j0y e P. P can be decomposed s M' SU
where S and U are s above and M' = {&e K \ ks = sk for all s G S}. Hence the last
conclusion implies that the assertions s in the theorem remain valid, for a suitably
modified C and ô, if y*0 is replaced by e, the identity. In other words we may assume
without loss of generality, s we do in the sequel, that e e J.

5. 5. Definition. Let p : G—> GL(F) be a representation of G over a finite dimen-
sional vector space V and let v E V— (0). The triple (p, F, t;) is said to be an admissible
chart at oo for G/ Ã if the following conditions are satisfied :

i) The subgroup â = {g e G \ p (g) (v) e IR*v} is a Ã-rational parabolic subgroup
of G.

ii) The subgroup 0 = {g E G \ p (g) (v) = v} intersects Ã in a lattice; that is, 0
 n Ã

is a lattice in 0.

If (p, F, t?) is an admissible chart at oo then the subgroup Q s in condition i) is
called the corresponding projective isotropy subgroup.

5. 6. Proposition. Let [xt}t^0 be a curve in G. Let (p, F, v) be an admissible chart
at oo for G l T such that p(xt) (v) — > 0 s t — > oo. Then the following conditions hold:

a) There exists an admissible chart at oo for G/Ã, say (p', F', t/) such that the
corresponding projective isotropy subgroup is a maximal Ã-rational parabolic subgroup and
p'(xf)(i/)— »0 s t— > oo.

b) xtF — »oo s t — * oo.

c) Let {gt} be a one-parameter subgroup of G and

E={xeG\ p(gtx)(v)-*Q s t-*ao}.

Then given an ÷ e E and a compact set F of G/Ã, there exists a neighbourhood Ù of ÷
in E and a T^. 0, such that gtgÃö F whenever t>T and g e Ù.

Proof. Let Q be the projective isotropy subgroup corresponding to (p, F, v).
Since Q is Ã-rational, without loss of generality (by modifying the given representation
suitably) we may assume that Q contains the subgroup P involved in Theorem 5. 2
and (5. 4). Let Q be the parabolic subgroup of G such that Q = Qp n G. Then Q is a
Standard parabolic k-subgroup (k s in (5. 1)); Ó á Ä be such that Q = PI. Let H^ and
Nr be s in §5.3. Let //=(HI)°, Ô=(¾Ó)°Ñ and Í = (ÍÓ)Ñ. Recall that //n Ã is a
lattice in H. Also by Ã-rationality of , 7V n Ã is a lattice in N.

Let 0 = [q E Q \ p(q) (v) = v}. We claim that HNa Q0. Recall that since (p, F, v)
is an admissible chart 0 n Ã is a lattice in 0. Since / 0 is one-dimensional and
â ç Ã cannot be a lattice in â ( s â is not unimodular) it follows that â ç Ã/â0 ç Ã
is finite. Hence there exist subgroups of finite index in H n Ã and N n Ã which are
contained in 0. By Zariski-density of N n Ã in N (cf. [13], § 4) this implies that N c 0.
Also Hr\F is Zariski-dense in a co-compact normal subgroup of H (cf. [13], §4).
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Hence p (H) (v) is compact. But since the 1-dimensional subspace spanned by v is
p(//)-invariant and H is connected, this is impossible unless p (H) fixes v; that is, H is
contained in ß0.

Now let || || be a p (Ä^-invariant norm on V such that ||t?|| = l. We have
= KTHNand if x = ksy, where keK, se T and ye HN then

IIP« 0011 = \\p(ksy) (tOII = \\p(s) (v)\\ = X(s)

where x:S-^>ft+ is the character defmed by p(s)(v) = x(s)v. Let {xt}t^0 be a curve
in G äs in the hypothesis. Writing xt = ktstyt, where kt e K, st S and yt e //7V for all t,
we see that x(st)=\\p(xt)(v)\\—*Q äs f — >oo .

Observe that ü is a highest weight vector (when we consider the complexified rep-
resentation) with respect to any Borel subgroup contained in Q. Since the corresponding
weight has to be dominant integral it follows in particular that the character can be
expressed äs

*(*)= «(*)*·

where ma^.O for all e A. Since H<^Q0 we get that wa = 0 for all e . On the other
band since x(s)—*Q there exists such that ß(st)-+Q. Evidently — and
mß>0. Let Qf = PA_(ß} and Q' = Q^ n G. Let 7V' be the unipotent radical of Q' and let /
be the dimension of N'. Let V = /Y (5, the /th exterior power of © äs a vector space.
Let p' be the /th exterior power of the adjoint representation of G over (5 and let v' be
a non-zero element of the one-dimensional subspace of V corresponding to the Lie
subalgebra of N'. It is straightforward to verify that (p'9 K', i/) is an admissible chart
at oo for G/ . Now let || || be a p'(Ä>invariant norm on V such that ||t/|| = l. Let
H' = (HA_{ß})

0
p and N' = (NA_(ß})p. Then it is easy to see that Ha H' and NcH'-N'

and that p (H' N') fixes v'. The argument applied to p above now shows that if x = ksy
where k e K, s e S and y e /f 7V' then ||p'(jc) (v')\\=ß(s)m for some m>0. Let fcf, ̂  and
yt where i ̂ 0 be äs chosen above. Since yt e HNc: H' N' we get that \\p'(xt) (vf)\\=ß(st)

m — > 0
äs / — * oo since by choice of /?, ß(st) — > 0. This proves assertion a) of the Proposition.

To prove assertion b) we may revert to the initial notation and assume Q to be a
maximal -rational parabolic k-subgroup. Then T is one-dimensional and the character
has the form x(s) = ß(s)m for some ße and w>0.

First consider the case of (non-uniform) lattices in simple Lie group of f?-rank l .
Then HN=MU and H N n is a uniform lattice in H N. Hence there exists a compact
subset D of M U such that HNaDF. Using the decomposition xt = ktstyt äs before
we see that xt e KstDF, where ß(st) — > 0 (ß now being the unique element of ). Since
e e / (cf. §5.4) by condition b) of Theorem 5. 2 this implies that xt — > oo äs t — > oo.

Next consider the case of arithmetic lattices; that is, k = 0. Put S' = SnHd_{/?},
S' = (Sp)° and U' = U n H. Let K' be a maximal compact subgroup of H and let K be
a maximal compact subgroup of G containing K '. By Theorem 13. l of [2] (actually
condition a) in Theorem 5. 2, except that H may have compact factors) there exist a
compact subset D1 of MU'9 a finite subset J1 of H n G0 and >0 such that

H=K'(S' n S.) D^J^H n ).
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Since N n Ã is a uniform lattice in N there exists a compact subset D2 of N such that
N=D2(NnF). Hence

K'(S' n 5ff) />!/!(# n O -N = K'(S' n Sff) D^J^N^ n Ã)

c JTOS" n 5ó) ¼^¿2ÃáÊ'(5' ç SJ D^F,

where D = D1( (J jD2j~
1). We note also that {sJczT and hence centralizes #'. Thus

in this case we have xt = ktstyt e KstK'(Sf n Sff) D/! Ã = J£sf (S' n SJ D/j Ã and (st) —> 0.
Since J1 is a finite subset of G0, by condition b) of Theorem 5. 2 this implies that

Finally, to prove assertion c) we proceed s follows. Let the notation be s in
the proof of a). By assertion b) given the compact subset F of G/ Ã there exists å > 0
such that for ÷ e G, the condition \\ñ(÷) (í)\\ <å implies that ÷ Ã ö F. We note also that
since p(gt) is a one-parameter subgroup of matrices if W— {w \ p(gt) (w) — » 0 s t — > 00}
then p(gt) (w) — > 0 uniformly on compact subsets of W. Now let ÷ e E. Then p(x) (v) e W
and hence there exists Ã^Ï such that \\p(gt) (w)|| <å for all t^T and w in a neighbour-
hood, say Ù', of p(x) (ý). Now assertion c) evidently holds for Ù = {g e G \ p(g) (v) e O'}.

Proposition 5. 6 and Theorem 4. 7 motivate the following definition.

5. 7. Definition. Let G and Ã be s before. Let {gt} be a one-parameter subgroup
of G and let g 6 G. If there exists an admissible chart (p, V, v) at oo for G/ Ã such that
p(gtg) (v) — > 0 s i — * oo then {gtgF \ t ̂  0} is said to be a degenerate divergent trajectory
of {gj on G/Ã.

Proposition 5. 6 shows that such trajectories are indeed divergent. Further it also
shows that for checking degeneracy we may restrict to those charts at oo for which
the corresponding projective isotropy subgroup is a maximal Ã-rational parabolic subgroup.
If Ã is a lattice such that the rank of Ã equals the f?-rank of G (that is, 0-rank = P-rank
if Ã is arithmetic) then condition i) s in Definition 5. 5 automatically implies condi-
tion ii) (to see this follow the proof of H N ð Ã is a lattice in H N, s before). Since the
condition on rank holds for S L (n, I) s a lattice in SL(n9 f?), this explains why
Theorem 4. 7 does not involve condition ii) s in Definition 5. 5. More generally this
shows the following.

5. 8. Proposition. Let the notation be s before and suppose that the rank of
Ã = the Fl-rank ofG. Let {gt} be a oneparameter subgroup ofG and g e G. Then {gtgF 1/^0}
is a degenerate divergent trajectory if and only if there exists a representation p of G on
a finite dimensional vector space V and a vector VE F— (0) such that {q e G \ p(q) (v) e R* v}
is a maximal Ã-rational parabolic subgroup and p(gtg) (v) — * 0 s t — * oo.

However, in general (that is, if 0-rank of G < P-rank of G), there exist maximal
0-parabolic subgroups which are not maximal s P-parabolic subgroups. In that case
existence of p, V and v s in Proposition 5. 8 may not imply divergence of {gtgF \ t^Q}.
We will not go into the proof of this; it suffices to note that at the other extreme, that is,
0-rank = 0, there are uniform lattices for which no trajectory is divergent. The inter-
mediary cases are a combination of the two extremes.
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5. 9. Proposition. Lei G and Ã be s before. Let {gt} be a one-parameter subgroup
of G. Let P be a T -rational parabolic subgroup of G. Let N be the horospherical subgroup
corresponding to g1 and let R be the normalizer of N in G. Then there exist flnitely many
elements ù1? ù2?. . ., com such that for g E G, {gtgF \ t^.0} is a degenerate divergent
trajectory if and only if g e Rco^JF for some i = l, 2, . . . , m, where J is the set of cusp
elements s in Theorem 5.2. For each i = l , 2 , . . . , / w there exists an admissible chart
(pf, Vt, v ̂  at oo for G/ Ã such that the corresponding projective isotropy subgroup is a
maximal Ã -rational parabolic subgroup and pt(gtg) (vt)— »0 for all g in the closure of

. The set X= (j Áù,Ñ is a proper closed subset of G. Further given an x0e X and
i = l

a compact set F of G/ Ã there exists a neighbourhood Ù of x0 in X and a 7^0 such that
gtxF ö F for any ÷ e Ù and t^T.

Proof. Let (p, F, v) be an admissible chart at oo for G/ Ã and let Q be the cor-
responding projective isotropy subgroup. Suppose that Q contains P. Let

Y={geG\p(gtg)(v)^0 s f->oo}.

Since P c: <2, F is invariant under the right action of P on G ; that is, Õ P = Y. We now
show that it is also invariant under the left action of R on G, that is, RY= Y. Let
E={ue V \ p (g t) (u) —» 0 s t — >> oo }. Let gi = d -v be the Jordan decomposition of gj ;
that is, <5, v e G are two commuting elements such that Ad ä is semisimple (diagonalizable
over C), Ad v is unipotent ((Adv — Id)i = 0 for some /). Then p(gi) = p( ) p (v) is the
Jordan decomposition of p(gl). Evidently E is the largest pig^-invariant subspace of F
such that all eigenvalues of p(g1) on E are of absolute value < 1. Every pig^-invariant
subspace is p(<5)-invariant and the sets of eigenvalues on the subspace are the same for
p(gi) and p(<>). We conclude that E={ue F | p(<51) (u) — > 0 s i — » oo}. The normalizer R
of N is a parabolic subgroup and in view of the semisimplicity of Ad <5 for each ÷ e R
{äé÷ä~é | i = l, 2,. . .} is bounded. The above characterization of E in terms of ä now
implies that the set E is p(/?)-invariant. Hence RY— F. Thus Y is a union of double cosets
of the form Ra>P, ù eG. Since P and R are parabolic subgroups, by Bruhat decomposi-
tion (cf. [3], Theorem 5. 15), there are only finitely many distinct double cosets of this
form.

We conclude from this that there exist ù1? ù2,. . ., com, w^O such that for ge G,
(X)—>0 for some admissible chart (p, F, v) in which p (P) leaves invariant the

subspace spanned by v if and only if geRwtP for some /= l , 2 , . . . ,m . Since any
Ã-rational parabolic subgroup contains y~lj~1Pjy for some 7 E / and ã e T(cf. condition e)
of Theorem 5. 2) it follows that {gtgF \ t^O} is a degenerate divergent trajectory if and
only if g 6 Áù,Ñ/Ã for some /=!,. . ., w. By assertion a) in Proposition 5. 6 we can
find for each i an admissible chart (pi5 Vi9 v·) satisfying the contention of the proposition.

Since for each i = l, 2, . . . , m the corresponding set Yt = {g e G \ Pi(gtg) (t^·) — * 0},
m m

which is a union of cosets of the form RcoP,is closed it follows that X= (J RcoiP= (j Yt
i = l ÉÖ1

is closed. Assertion c) of Proposition 5. 6 implies that for any x0 e Yt the last assertion
of the present proposition holds ; since each Yt is closed it follows for all x0 e X. The
assertion that X is proper can be deduced either by observing that each Yt s above is
lower dimensional ( s all eigenvalues of p(gt) on p(G)-invariant space cannot be of
absolute value < l ) or directly from Poincare recurrence lemma.
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5. 10. Remark. Let the notation be s in Proposition 5. 9. Let C(F) be the
commensurator of Ã (cf. § 1). If (p, F, v) is an admissible chart at oo for G/Ã and è Å C(F)
then clearly (p, F, ñ(è)(í)) is an admissible chart at oo. It follows that for g e G
{gtgT 1*^0} is a degenerate divergent trajectory if and only if {gtg9F | /^O} is a
degenerate divergent trajectory for all è e C(T). Thus by Proposition 5. 9, XJF=XJC(r).
If Ã is an arithmetic lattice then C(F) = GQ (cf. [2], Lemma 15. 11). Since / is contained
in G

5. 11. Remark. A part of the proof of Proposition 5. 9 also implies the following
assertion. Let {xt } and {yt} be two one-parameter subgroups such that xt, t e IR and yt,
t e R commute with each other and let gt = xtyt. Suppose that all eigenvalues of Adyt are
of absolute value 1. Then for ge G, {g, g Ã \ t^O} is a degenerate divergent trajectory if
and only if {xtgF \ t^O} is a degenerate divergent trajectory.

§ 6. Homogeneous spaces of rank l

Let G be a connected linear semisimple Lie group and let Ã be an irreducible
lattice of rank 1. We shall show that in this case all the divergent trajectories of flows
are degenerate.

We follow the notations introduced in § 5. l s involved in the Statement of
Theorem 5. 2. Let © be the Lie algebra of G and U the subalgebra associated to U. Let
F= A'®' tiie /th exterior power of (5 s a vector space, where / is the dimension of U.
Let p : G — * GL(F) be the /th exterior power of the adjoint representation of G on (5.
Let t; e V be a non-zero element of the line f^ U in F. Observe that in view of condition d)
of Theorem 5. 2 and the fact that j~lMj n Ã is a uniform lattice in j~lMj (cf. § 5. 3)
for all JE J and ã e Ã, (p, F, p ( y ~ 1 j ~ i ) v) is an admissible chart at oo for G/Ã.

6. 1. Theorem. Let {gt} be a one-parameter subgroup of G and let g eG. Then
g, g Ã — » oo if and only if g e XJF, where

X={geG\ p(gtg)v^0 s i-*oo}.

In particular, all the divergent trajectories are degenerate.

Proof. If g e XJF, say g = xjy, where ÷ E X, je J and y e Ã then

P(gtg) P(y'ij~1) (v) = p(gtx) (v) -> 0.

Since (p, F, p(y~1j~1) (v)) is an admissible chart at oo, by Proposition 5. 6 it follows
that gtgF — > oo s t — > oo.

Conversely suppose that gtgT-+ oo s i—> oo. We shall show that geXJF. Let
P0 be the subgroup {x 6 P \ p(x) (v) = ±v}. Then P0 contains M U s a subgroup of finite
index. In view of condition d) in Theorem 5. 2 and the remark about M at the end of
§ 5. 3, for all j e /, j~lPQj n Ã is a uniform lattice in j~l P0j. Clearly P0 is a normal sub-
group of P and P/P0 is isomorphic to f?+. Since P does not admit any lattice (it is not
unimodular) and since for any jeJ, /ïÐ^'Ã/"1 is a lattice in P0 the last assertion
implies that ./T/""1 n P0 is contained in Ñ0.
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Now for any j E /, y E Ã and ó > 0 put

Also for J E / let Fj=j~1P0j n Ã. Since Ã. is a uniform lattice in j~iP0j there exists a
compact subset D of P0 such that for all y E/, y"1 PoJ^J'^DjTj. Thus

Let ó>0 be small enough so that condition c) of Theorem 5. 2 holds for the set D s
above. Now suppose that Ùó(], y) n Ùó(/, y') is non-empty for some jj' E J and
y, y' E Ã. Then KS(TDjy1 n KSaDj'y2 is non-empty for some yx E Ã,-y and y2 E Fry'. By
condition c) of Theorem 5. 2 we get that j=f and jy2yiij~i e P. Since yTy'1 ç Ñ is
contained in P0, this means that j y ' y ~ l j ~ l E P0. Thus fy'=jy'=pjy for some /?EP0
and consequently Ùó(/, y') = fl(T(7, y). Thus the sets Qa(j,y\ JE/, y E T are disjoint
whenever they are distinct.

It is easy to see that for all ó>0, G—(j {Qff(j, y) : j E 7, y E Ã} is contained in a
set of the form FF where Fc: G is compact. Since gtgF — > oo it follows that for any
ó > 0 there exists Ã^> 0 such that for all t^ Ã, gtg E (J [Qff(j, y); j E / and y E Ã}. Since
{gtg \ t Î> T} is connected while for all sufficiently small ó the sets from the union are
disjoint open sets, we conclude that there exists JE J and y E Ã such that for all t ̂  Ã,
gtgEQa(j\y). It is also obvious that j and y can be chosen to be the same for all
sufficiently small ó. Therefore there exist JE J and y E Ã such that for all sufficiently
small ó>0 there exists Ã^Ï such that ggy'V'1 e

Now let || · || be a p(AT)-invariant norm on V such that ||v|| = 1. Recall that now S
is a one-parameter subgroup and Ä (notation s before) consists of a unique element,
say . As in the proof of Proposition 5. 6 we see that if ÷: S^>ft+ is the character
defmed by the relation p (s) (v) = x(s) v for all S E S then there exists w>0 such that
X(s) = (s)m. Recall also that p (y) (v) = ± v for all yePQ. Hence if x E KSa P0, say x = ksy,
where k E K, s E Sa and y E P0 then

HP W 0011 = HP (*) P(S) P(y) (»)ll = HP W 0011

Thus we have \\p(gtgy~lj~^} i>|| <vm for all t^T with T s above. In other words,
y~lJ '~^ w — * 0. Thus gy'V"1 6 ̂  and hence g E

6. 2. Corollary. Le/ G be a connected simple Lie group of R-rank l and Ã be a
non-uniform lattice in G. Let P be a parabolic subgroup of G and K be a maximal compact
subgroup of G. Let J be a sufficient set of cusp elements relative to (K, P). Let {gt} be a
one-parameter subgroup such that the horospherical subgroup corresponding to gi is non-
trivial and contained in P. Then

{xEG/r\gx-+ao s t~+ 00} = Ñ/Ã/Ã.

Proof. Since the /R-rank of G is l, under the above hypothesis the unipotent
radical of P is the horospherical subgroup corresponding to gv In the notation s above
this implies that p(gt) 00-+0 as * — * °° °r equivalently that PaX. Since P is the nor-
malizer of the horospherical subgroup corresponding to gi9 as in the proof of Proposi-
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tion 5. 9 we see that X is a union of double cosets of the form Ñù P with ù Å G. Since
)R-rank of G is l, by Bruhat decomposition (cf. [3], Theorem 5. 15) apart from P itself
there is only one other double coset of that form. Since X is proper the latter cannot
be contained in X. Hence X—P and hence by Theorem 6. l, PJF/Ã is precisely the set
of points with divergent trajectories under {gt}.

6. 3. Corollary. Lei G be a connected simple Lie group of R-rank l and Ã be a
non-uniform lattice in G. Lei U be a (non-trivial) horospherical subgroup of G and P be the
normalizer of U. Lei J be a sufficient set of cusp elements (relative to (K, P) where K is a
maximal compact subgroup). Then

i) if g e PJr then the U-orbit UgT/Ã is compact;

ii) if g<£PJr then UgT/Ã is dense in G/Ã.

Proof. Assertion i) follows from condition d) of Theorem 5. 2. Assertion ii)
follows from Theorem 1. 6 and Corollary 6. 2. :

It may be observed that the classical result of G. A. Hedlund asserting that for
the horocycle flow associated to a non-compact surface of constant negative curvature
and finite area, every orbit is either dense or periodic (cf. [16] for a stronger result)
follows s a particular case of Corollary 6. 3 when we choose G = SL(2, f?).

§ 7. Non-degenerate divergent trajectories

As before let G be a connected linear semisimple Lie group and let Ã be an
irreducible lattice in G. In this section we shall show that when the rank of Ã is ^2
then there exist non-degenerate divergent trajectories on G/Ã (cf. Theorem 7. 3 and
Corollary 7. 4 below).

Let {gt} be a one-parameter subgroup of G. Let X be a subset of G such that for
all ÷ e X, gtxF — » oo. We say that the divergence is locally uniform over X (or, gtxF — > oo
locally uniformly for ÷ e X) if for any compact subset D of G/Ã and x0 E X there exist
a neighbourhood Ù of x0 in X and Ã^Ï such that gfxFe G/Ã-Æ) for all t^T and

Recall that, by Proposition 5. 9, the set of points on degenerate divergent trajectories
can be expressed s XJF (where X is the finite union of the cosets R<DtP, /= l, 2,. . ., m)
such that X is closed and the divergence is locally uniform over X. To conclude the
existence of non-degenerate trajectories we first prove the following result. The proof is
motivated by the proof of Theorem 14 of [7].

Two closed subsets A and B of G are said to be transversal to each other if
A n B is a nowhere dense subset of both A and B in their respective subspace topologies.

7. 1. Theorem. Let G and Ã be s above. Let C(F) be the commensurator of Ã
(cf. § 1). Let {gt} be a one-parameter subgroup of G. Let Õ be a closed subset of G such
that gtxr—+oo locally uniformly for jce 7. Suppose that there exist closed subsets
Ei9 E29. . .,El of Y9 where 72:1, such that the following conditions are satis ed:
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a) Y=EI u E2 u ··· u E{.

b) For any p and q between l and l and è e C(T), Ep and Eq9 are transversal to
each other unless Ep = EqO.

c) For any p, l^p^l, the subset {x e Ep \ ÷ E Eq9 for some è such that Eq9^ Ep}
is dense in Ep.

Then there exists z E G — YC(F) such that £,æÃ— > oo s t— > oo.

Proof. Let N19N29... be open subsets of G/ T such that G/Ã — ̂  is compact,
Ni+laNi for all i and Ð AT. = 0; in other words, {Nt} is a fundamental System of neigh-
bourhoods of oo. We note that C(T) is a countable group. We well-order C(F) such
that each element has only finitely many predecessors and the identity is the least
element (this is equivalent to fixing an enumeration starting with the identity). We shall
find a sequence { j of bounded open subsets of G/Ã, a sequence { J in C(F) and a
monotonically increasing divergent sequence {7]} in f t + such that the following condi-
tions are satisfied for all é ̂  l :

i) â,.ïéâ.^.

ii) gtxF e Ni_1 for all ÷ E Ùß and t such that Ti_l ̂  t^ 7] (N0 = G/Ã by conven-
tion).

iii) There exists (for each i) a unique /?, i^p^l such that Qir^Ep9i is non-
empty and for this /?, gtxF E Nt for all je e f n EpQ{ and ß ̂  Tj.

iv) f n Ãè = 0 if è<è·.

We first observe that finding this would imply the theorem. Let z n f , which is
indeed non-empty in view of condition i). Since Ni+ic:Ni for all i, condition ii) implies
that gjzTeTVf for all t^T^ which means that gtzjT— >oo. In view of conditions iii)
and iv), { J is an infinite sequence of distinct elements. Hence by condition iv),
æöÕ€(Ã).

For each /?, l^p^l we put Ep = Ep— (j Eq. In view of condition b) in the
9*P

hypothesis Ep is a (non-empty) open dense subset of Ep.

Let /?, l ̂ p^ l be arbitrary and let y e Ep. There exists a bounded neighbourhood
Ù[ of y such that Ù[ n Y<^E'p. Also since gtxF — > oo locally uniformly for xe F we can
find a 7\^0 and a neighbourhood j of y such that ^ j and gtxFeNi for all
xe x n Ep and t^.T±. Choosing 0 to be any bounded open set such that Ù1áÙ0,
è÷ = identity and Ã0 = 0 we see that conditions i) through iv) are satisfied for i' = l.

We now proceed by induction. Suppose that open sets 1 ? . . . , k, elements
015 . . . , 9k E C(F) and 0^ 7\ ̂  T2 ̂  · · · ̂  Tk have been chosen so that conditions i) through
iv) are satisfied for i' =!,...,£. We now find k+1, k+1 and Tk+l^Tk such that the
conditions are satisfied for i =

By condition iii) for i = k there exists a unique /?, l^p^l such that fc n £"ñ

and gtxFENk for all xEQkr^Ep9k and ß^Ô*. By condition c) of the theorem there
exists è e C(F) such that for some y, k n £^0k n EjO is non-empty but £ñïËö£/è. Let
0k+1 be the least possible è for which the last condition is satisfied and let q, \^q^l
be such that k n Ep0k n Eq9k+i Ö 0. This also implies that k n EpBk n Eq0k+i Ö 0; let y
be an element of this set. It is easy to see that since gtxF —> oo locally uniformly for
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x G Õ and 0k+1 € C(T), gtxT —> oo locally uniformly for ÷ e Y9k+1 (cf. proof of Proposi-
tion 1. 5 for an idea of the proof). Therefore we can find a Tk+1 ̂  7^ and a neighbourhood

i+i of y such that gtxTENk+1 for all xe k+1 n EqOk+1 and ß^7^+1. Since
yeC2knEp0k by condition iii) for é = A: we have gtyF E Nk for all f ̂  7^ and in particular
in the interval Tk^t^Tk+i. By continuity there exists a neighbourhood Ù£+é of >>, which
we choose to be such that k+i<^Qk+1 n k, such that the following holds: gtxFeNk
for all xe k+1 and t such that Ãë^ t^ Tk+1. Now put

(7.2) ok+1 = o;+1-( u Ã0)-õ*Á+é·
0<0 k + l j=}=9

Having chosen k + i > 0k+1 and Tk+1 s above, let us verify conditions i) through iv) for
i' = fc + l. Condition i) is evident since ÙË+1 cz k+1 ez k. Condition ii) holds in view of
the choice of Qk+1 and the fact that i2k+1 c £+1. Next we show that k+1 n Eq9k+1 is
non-empty. In view of (7. 2) it is enough to show that k+1 n Ej9 n Eq9k+l, where
lfgy<; / and 9^9k+l, is a nowhere dense subset of Qk+1 n Eq9k+1 whenever either
9<9k+i or 9 = 9k+1 buty=)=#. In view of condition b) in the hypothesis Ej9 n Eq9k+1 is
nowhere dense in Eq9k+l unless Ej9 = Eq9k+l. The choice 9k+1 shows that the latter
holds only if 9 = 9k+1 which then implies that Ej = Eq. Hence k+1 n Eq9k+1 is non-empty.
It is evident that q is the only element between l and / for which this holds. Further,
since k+1 c:i2k+1 we see that gtxFe Ë^+1 for all xe k+1 n Eq9k+1 and f ̂  7^+1. Thus
we have verified condition iii) for i = k+l. Condition iv) is evident from (7. 2).

7. 3. Theorem. Let G be a connected linear semisimple Lie group and Ã be an
irreducible lattice in G such that rank of F = IR-rank of G 2:2. Let {gt} be any one-
parameter subgroup of G such that Adgl has an eigenvalue of absolute value other than 1.
Then {gt} has non-degenerate divergent trajectories on G/Ã; that is, there exists geG
such that {gtgF \ t^O} is a non-degenerate divergent trajectory.

Proof. Recall that a lattice s above is arithmetic: there exists an algebraic
group G such that G = G% and Ã is commensurable with Gz. Further in view of the
hypothesis 0-rank of G = ̂ -rank of G ̂ 2. Let S be a maximal 0-split torus; then S
is also a maximal f?-split torus in view of the condition on the rank. Let S = S„. We
first show that for any (non-trivial) one-parameter subgroup {st} of S there exist non-
degenerate divergent trajectories. Let Ö be the root System for the adjoint action of S
(cf. § 5. 1). There exists an order Ö such that, denoting by Ö+ the corresponding set of
positive roots, we have A(^)^ l for all ë Å Ö+ and />0 (cf. [5], VI). Let J = {al9..., ar}
be the set of simple roots corresponding to the order. Then any A e Ö+ is of the form

r

ë(s)= Ð «iOOmi f°r some integers ml9..., wr^0. Since Ã is an irreducible lattice in G
i-1

it follows that G is almost simple s a Q-group. Consequently, the root System is
irreducible: thus Ä cannot be expressed s Ä1 u 29 where A1 and Ä2 are two disjoint
non-empty subsets such that Ö+ c <Jj> u <Ë2>· (Recall that <Ó> for Ó^Ä denotes the
set of elements of Ö contained in the subgroup, of the character group, generated by Ó.)

Let Ñá, á e Ä denote the maximal Standard parabolic subgroup Pd_{a} corresponding
to the order s above (cf. § 5). Let Pa = Pa n G. Let Q be the normalizer of the horo-
spherical subgroup corresponding to st. Then = Qp n G where Q is the Standard
parabolic subgroup corresponding to the set £ = {ae Ä \ á(51) = 1}. Let X be the set
s in Proposition 5. 9. For each á e Ä let / be the dimension of ß/á, the unipotent radical

of P*. Let Va = ft* © and pa be the /ath exterior power of the adjoint representation
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of G. Let íË be a non-zero vector in the one-dimensional subspace corresponding to
the Lie subalgebra of Ua. It is easy to see that for s e S, pa(s) (íË) = ÷Ë($) íá and that the
subspace spanned by va is /0a(P

a)-invariant. If a E z f is such that xa(st)<i for all t>0,
then xa(st) —> 0 s t —> oo and consequently Pa is contained in X. We show that there
are at least two simple roots in Ä for which the condition holds. Since {st} is nontrivial,
there exists a E z f such that a(st)<\ for all t>0. Since the root System is irreducible
there exists â å A - {á} and è å Ö+ such that è ö (Ä - {á}> u <4 - {â}> (that is, the
expression for è involves both á and ). Since A(5f)^ l for all ë Å Ö+ and f >0, we get
that x (st)^9(st)^a(st)<l for all />0. Thus X contains both P* and P . Since Pa

and P generated G, this implies that ÷ is not contained in any proper subgroup of G.

Recall that X can be expressed s a finite disjoint union of double cosets of the
form âù,-Ñ, where ùÀ5 ù2,.. . , com 6 G. For each i= l, 2, . . . , m let £4 be the closure of
â ù; P. Consider the class of subsets / of {l, 2, . . . , m} with the property that X is
contained in ((J E^ G0. By reindexing if necessary, we may assume {l, 2,.. . , /} to be a

ie/
minimal element of this class (under inclusion relation).

Let El9 E2,..., El be s above and let Y=E1 u E2 u ··· u Et. We claim that the
conditions of Theorem 7. l are satisfied. Condition a) is obvious. Since each Ep is the
closure of Qa>pP, the Zariski closure Ep of Ep in G is an irreducible algebraic variety
defmed over IR and Ep = Ep n G (cf. [4], § 3). Therefore for any g E G, and l^/>, q^ /,
£p n Eqg is either £"p or a lower dimensional subset of Ep. Hence Ep n ^g has no interior
point in Ep unless Ep<^Eqg. Recall that C(T) = GC (cf. [2], §15). Since by choice of
E19 E2,..., El9 Ep cannot be contained in Eqg for any g E G0 unless p = q, we conclude
that for p Ö q, Ep n Eqg is no where dense in Ep. By symmetry we get that Ep is transversal
to Eqg. This proves condition b) of Theorem 7. 1.

To verify condition c) we proceed s follows. Since Q-rank of G = P-rank of G
and since Q and P are parabolic subgroups defined over 0 each of the double cosets
Qa>P, ù E G has a rational representative (cf. [3], § 5) and consequently æ)ùÑ ç G0 is
dense in QcoP for all ù E G. Since each Ep is a union of such double cosets Ep n GQ is
dense in Ep for all p = l, 2, . . . , /. Now suppose first that /^ 2 and let l ^==p^ l be given.
Let q, l^q^l, be other than p. Let 00 E Eq n G0. Then for any è E £p n GQ we have

= 00.(0-10)E^( 1 ). Since Å^è^è) is proved to be transversal to £p this shows
that the set defined in the Statement of condition c) contains Ep n G0 and is therefore
dense in Ep by our earlier observation. Now suppose that /=!. Let H be the closed
subgroup {h e G \ Åãh = Ei}. Recall that s the closure of a double coset Qa>vP,
E1 contains the identity (cf. [4], Corollary 3. 15). Hence HaEi. Suppose that H is
properly contained in Ev Clearly H contains P and is therefore itself a finite union of
double cosets of the form P ù P. An argument s before therefore implies that H is
nowhere dense in E±. Hence (E{ — H) n G0 is dense in E^ For any è Å (£º~ H) n G0,
Å1È is transversal to Ei and 9eE19nE1. Thus the set s in condition c) contains
(El — H) n G0 and is therefore dense in E1.

Finally, suppose (if possible) that /=! and Ei=H; in particular, E1 is a closed
subgroup. Recall that XdEiGQ = HGQ. Since HGC is a countable disjoint union of
cosets of H, this is impossible unless X=H. But recall that X is a proper subset not
contained in any proper subgroup of G. Hence X=H. The contradiction shows that the
last case does not arise. Thus condition c) is completely verified.
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Having verified the conditions we now conclude from Theorem 7. l that there
exists z E G- 7C(F) = G - YGQ = G - XGQ , such that stzT -» oo. On the other hand by
Proposition 5. 9 all the points on degenerate divergent trajectories belong to XJF aXGQ.
(Recall that /c=GQ for the case at hand.) Hence {^æÃ|/^0} is a non-degenerate
divergent trajectory.

Now let {gt} be any one-parameter subgroup of G. Let gt = btut be the Jordan
decomposition of gf, where bt, t>0 are semisimple elements and ut, t>0 are unipotent
elements commuting with bt. Let T be a torus defined over IR containing {bt} and
contained in the centralizer of {ut}. Using the decomposition of T into split and an-
isotropic components (cf. [1], p. 219) we can write bt s ctdt, where {dt} is contained
in a split torus, {ct} is contained in a compact subgroup of G and the elements dt, ct

and ut, t^.0 commute with each other. We note that since Adgi has an eigenvalue of
absolute value other than l, {dt} is non-trivial. Since S s above is also a maximal f?-split
torus there exists g e G such that gdtg~l eS for all t. Replacing {gt} by {ggtg'1} if
necessary, we may assume that {dt} is contained in S. We write st for dt and use the
earlier notation. Recall that by Remark 5. 11, for xe G, {gtxF \ t^O} is a degenerate
divergent trajectory if and only if {stxF \ t^O} is a degenerate divergent trajectory;
viz. if and only if ÷ e XGQ in the notation s above. Since the set X together with
El,E2,...,El s above satisfy the conditions of Theorem 7. l, applying the theorem to
the one-parameter subgroup {gj we conclude there exists zeG — XGQ such that
gtzF — > oo. Thus {gtzF 1/^0} is a non-degenerate divergent trajectory of {gj.

7. 4. Corollary. Let {gj be a one-parameter subgroup of SL(n, IR), n^3 such that
gt has an eigenvalue of absolute value other than 1. Then there exists ÷ e SL(n, ft)/SL(n, Z)
such that {gtx U^O} is a non-degenerate divergent trajectory.

Proof. Rank of SL(n, Z) = /R-rank of SL(n, R) = n-\^2. Further Adgt has an
eigenvalue of absolute value other than l since g1 has. Hence the corollary follows from
Theorem 7. 3.

Appendix. Orbits of horospherical flows

We now give a proof of Theorem 1.6. As stated earlier it is motivated by certain
ideas of D. S. Ornstein and M. Ratner. We begin by recalling the Statement of the
theorem.

1. 6. Theorem. Let G be a connected Lie group and Ã be a lattice in G. Let {gt} be
a one-parameter subgroup of G such that Adgp 16 R are diagonalizable over C. Let U be
the horospherical subgroup corresponding to g1 (or any gi? f^O). Suppose that the
U-action on G/Ã is ergodic. Let geG be such that {gtgF \ t^O} is not a divergent
trajectory. Then UgF/Ã is dense in G/Ã.

Proof. Let © be the Lie algebra of G. Let (5+, (5° and ©~ respectively be the
largest Ad gj -invariant subspace on which all eigenvalues of Ad g! are of absolute value
<1, =1 and >1 respectively. It is well-known that ©+, ©° and ©~ are Lie subalgebras
of © and that ©* is precisely the Lie subalgebra corresponding to the horospherical
subgroup U (cf. [9], § l, for instance). We denote Z and U~ the analytic (connected Lie)
subgroups corresponding to ©° and ©~ respectively.
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Since Adg„ t e R are diagonalizable over C and all eigenvalues of Ad g, on (5° are
of absolute value l it follows (cf. [9] for some details) that there exists a norm || ||
on ©° which is Adgf-invariant; that is

(A.l) ll(Adft)({)ll = ll{|| for all î e ©° and telR.

Similarly the conditions on eigenvalues on ©+ and ©~ imply that there exist norms,
which also we denote by || ||, on © + and ©~ such that

(A. 2) ll(Adft)({)||<C^-^||{||

if either î e ©+ and / ^ O o r ^ e © " and t^ 0, where C and ì>0 are suitable constants.
We equip © + , ©° and ©~ with the norms s above.

The subgroups U and U~ are simply connected nilpotent subgroups and the
exponential maps exp : ©+ — > U and exp : ©~ — > U~ are analytic isomorphisms. Also
there exists a neighbourhood Ó0 of 0 in ©° such that the restriction of the exponential
map to Ó0 is an analytic isomorphism onto a neighbourhood of the identity in Z. For
Ã>0, we denote by UT and U? the images under the respective exponential map of the
sets {£e©+ | ||{||<Ã} and {îå ©~ | \\î\\ < T} respectively. Similarly if the set

where å>0, is contained in Z0 then we denote its image under the exponential map
by ZE. Since for any < ^ e © gf (exp <!;)£_, = exp (Ad g,) (î) conditions (A.l) and (A. 2)
imply the following:

A. 3. Lemma. For all t>0 we have

i) gtZeg_t = ZE, whenever Æå is defined.

ii) gtUTg_tc:UT, where Tf =

iii) g_tU-gtdUY, where Ô' =

In the sequel we also need the following.

A. 4. Lemma. Lei ä > 0 and y e G/ Ã be given. Then there exist an å > 0 and a
neighbourhood Ó of y such that the following holds: for any y^y2e Ó and u± e Ue there
exist u 2 e U and p e U$ Æä such that u2y2 =pulyl.

Proof. Since Ã is a discrete subgroup and since © is the direct sum of ©+, ©°
and ©~ it follows that for a suflflciently small p>0 the map ^ : U~ ÷ Æñ ÷ Up— > G/ T
defined by ^(u~, z, u) = u~ zuy for all u~ e U~9 z e Zp and u e Up is a diffeomorphism.
It is straightforward to deduce the Lemma from this. We omit the details.

We are now ready to prove the theorem. Let g e G be such that the trajectory
{gtgF | /^O} is not divergent. Then there exists a compact subset K of G/ Ã such that
{/^O | gtgF e K} is not bounded. Let Ù be any non-empty open subset of G/Ã. We
shall show that Ù n UgT/Ã is non-empty. Let (5>0 be such that ZdU^(GIT-Q} is not
dense in Ù and let Cd be an open subset of the complement of Æä U^ (G/Ã— Ù) in G/Ã.
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Since K is compact using Lemma A. 4 we can find finitely many open subsets
Ó19 Ó 2, . . . , Óé of G l T and an å>0 such that K is covered by Ó19 . . . , Ó{ and the condition
of Lemma A. 4 is satisfied for each Ó{ (together with å) for the choice of ä s above.
Let a= min m(I^), where m is the G-invariant probability measure on G/Ã. Let Ã^Ï

be such that m(UTC )> l — a. We note that since m(C<5)>0 and the action of U is
ergodic, such a T exists.

Because of our choice of K, there exists ß^ì"1 logCJ/å such that gtgF E K. Let
!?§/<;/ be such that g fgFeZf . Thus gFEg_tIt. Since m(g_iZi) = m(Zi)^a and
m(UTC ) > l — a, £_,£,· n i7TCd is non-empty. Let j G £_,£,· n UTCd. Since yeUTC there
exists w' e t/r such that u'y E Cd. Put uv =gtu'g_t. Then by Lemma A. 3 and the relation
ß^ì"1 log C Ã/å we get MJ e t/e. Since g, g Ã and gr}> belong to Zf by Lemma A. 4 (and
the choice of rf) there exist u2 E U and /? e õä Æä such that

Hence by Lemma A. 3 (g^u2gt)(gF) E (g_tPgt) Cd^g_t(U~ Æä) gtC ^U, Æä€ä. Our
choice of C5 ensures that U0 Z0C0 a Ù. Hence (g-tu2gt) (gF) E Ù. Since g-tu2gt E U this
implies that Ù ç UgF/F is non-empty, thus proving the theorem.

We would like to record here that in a recent preprint entitled "Orbits of horo-
spherical flows", by a different method the author is able to conclude the density of
orbits of horospherical flows under a weaker condition than in Theorem 1. 6. The result
is used, together with certain other ideas, to deduce that the closure of any orbit of a
horospherical subgroup U coincides with an orbit of a closed subgroup H of G containing
U and admits a finite measure invariant under the action of H; this generalizes Corol-
lary 6. 3 to the case of groups of ^-rank ^ 2.
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