



# **The Product Structure**

### Daren Wei, The Hebrew University of Jerusalem

Seminar on homogeneous dynamics and applications

Feb 25, 2021







Proposition 8.5

Corollary 8.8

- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;

 $\bullet \ H = T \ltimes U_{-};$ 



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- G is a semisimple connected linear Lie group and  $\Gamma \subset G$  is a lattice;
- $X = \Gamma \setminus G$  equipped with a left-invariant metric induced from left-invariant Riemannian metric on G;
- $a \in G$ : an element of class A;
- $\mu$  is Borel *a*-invariant probability measure on *X*;
- $U_{-} \subset G^{-}$  be *a*-normalized and contracted by *a*;
- $T \subset C_G(a)$  and assume T normalizes  $U_-$ ;
- $\bullet \ H = T \ltimes U_{-};$



- [·] be the equivalence classes by portionality of the leaf-wise measure;
- Theorem 6.29 guarantees that there is a function  $\rho > 0$  such that  $\int \rho d\mu_x^T < \infty$  a.e.;
- Picking a sequence {f<sub>i</sub> ≤ ρ} ⊂ C<sub>c</sub>(T) spanning a dense subset.

 $d([\nu_1], [\nu_2]) = \sum_{i=1}^{\infty} 2^{-i} \left| \frac{\int f_i d\nu_1}{\int \rho d\nu_1} - \frac{\int f_i d\nu_2}{\int \rho d\nu_2} \right|$  Assume  $\int \rho d\nu_i = 1$ , then this metric corresponds to weak\* in the space of Radon measures and thus we can interpret  $\mu_x^T$  as a measurable function with values in a compact metric space.



- [·] be the equivalence classes by portionality of the leaf-wise measure;
- Theorem 6.29 guarantees that there is a function  $\rho > 0$  such that  $\int \rho d\mu_x^T < \infty$  a.e.;
- Picking a sequence {f<sub>i</sub> ≤ ρ} ⊂ C<sub>c</sub>(T) spanning a dense subset.

 $d([\nu_1], [\nu_2]) = \sum_{i=1}^{\infty} 2^{-i} \left| \frac{\int f_i d\nu_1}{\int \rho d\nu_1} - \frac{\int f_i d\nu_2}{\int \rho d\nu_2} \right|$  Assume  $\int \rho d\nu_i = 1$ , then this metric corresponds to weak\* in the space of Radon measures and thus we can interpret  $\mu_x^T$  as a measurable function with values in a compact metric space.



- [·] be the equivalence classes by portionality of the leaf-wise measure;
- Theorem 6.29 guarantees that there is a function  $\rho > 0$  such that  $\int \rho d\mu_x^T < \infty$  a.e.;
- Picking a sequence {f<sub>i</sub> ≤ ρ} ⊂ C<sub>c</sub>(T) spanning a dense subset.

 $d([\nu_1], [\nu_2]) = \sum_{i=1}^{\infty} 2^{-i} \left| \frac{\int f_i d\nu_1}{\int \rho d\nu_1} - \frac{\int f_i d\nu_2}{\int \rho d\nu_2} \right|$  Assume  $\int \rho d\nu_i = 1$ , then this metric corresponds to weak\* in the space of Radon measures and thus we can interpret  $\mu_x^T$  as a measurable function with values in a compact metric space.



- [·] be the equivalence classes by portionality of the leaf-wise measure;
- Theorem 6.29 guarantees that there is a function  $\rho > 0$  such that  $\int \rho d\mu_x^T < \infty$  a.e.;
- Picking a sequence {f<sub>i</sub> ≤ ρ} ⊂ C<sub>c</sub>(T) spanning a dense subset.

 $d([\nu_1], [\nu_2]) = \sum_{i=1}^{\infty} 2^{-i} \left| \frac{\int f_i d\nu_1}{\int \rho d\nu_1} - \frac{\int f_i d\nu_2}{\int \rho d\nu_2} \right|$  Assume  $\int \rho d\nu_i = 1$ , then this metric corresponds to weak\* in the space of Radon measures and thus we can interpret  $\mu_X^T$  as a measurable function with values in a compact metric space.



- [·] be the equivalence classes by portionality of the leaf-wise measure;
- Theorem 6.29 guarantees that there is a function  $\rho > 0$  such that  $\int \rho d\mu_x^T < \infty$  a.e.;
- Picking a sequence {f<sub>i</sub> ≤ ρ} ⊂ C<sub>c</sub>(T) spanning a dense subset.

 $d([\nu_1], [\nu_2]) = \sum_{i=1}^{\infty} 2^{-i} \left| \frac{\int f_i d\nu_1}{\int \rho d\nu_1} - \frac{\int f_i d\nu_2}{\int \rho d\nu_2} \right|.$ Assume  $\int \rho d\nu_i = 1$ , then this metric corresponds to weak\* in the space of Radon measures and thus we can interpret  $\mu_x^T$  as a measurable function with values in a compact metric space.



### **Proposition 8.5**

There exists  $X' \subset X$  of full measure such that for every  $x \in X'$  and  $h \in H$  with  $h.x \in X'$ , we have

 $[\mu_x^T] = [(\mu_{h.x}^T)t]$ 

where h = tu' = u''t for some  $u', u'' \in U_-$  and  $t \in T$ .

Let t = e, then we have

**Corollary 8.6** 

Let  $u \in U_-$ , then  $x, u.x \in X'$  implies  $[\mu_x^T] = [\mu_{u.x}^T]$ .



### **Proposition 8.5**

There exists  $X' \subset X$  of full measure such that for every  $x \in X'$  and  $h \in H$  with  $h.x \in X'$ , we have

$$[\mu_x^{\mathsf{T}}] = [(\mu_{h.x}^{\mathsf{T}})t]$$

where h = tu' = u''t for some  $u', u'' \in U_-$  and  $t \in T$ .

Let t = e, then we have

### **Corollary 8.6**

Let  $u \in U_-$ , then  $x, u.x \in X'$  implies  $[\mu_x^T] = [\mu_{u.x}^T]$ .



### Product structure, Corollary 8.8

There exists  $X' \subset X$  of full measure such that for every  $x \in X'$ , we have

$$\mu_x^H \propto \iota(\mu_x^T \times \mu_x^{U_-}),$$

where  $\iota : (t, u) \in T \times U_{-} \rightarrow tu \in H$ .

A natural corollary of Corollary 8.8 is a property similar to Corollary 8.6:

**Corollary 8.13** 

Let  $t \in T$ , then  $x, t.x \in X'$  implies  $[\mu_x^{U_-}] = [\mu_{t.x}^{U_-}]$ .



### **Product structure, Corollary 8.8**

There exists  $X' \subset X$  of full measure such that for every  $x \in X'$ , we have

$$\mu_x^H \propto \iota(\mu_x^T \times \mu_x^{U_-}),$$

where  $\iota : (t, u) \in T \times U_{-} \rightarrow tu \in H$ .

A natural corollary of Corollary 8.8 is a property similar to Corollary 8.6:

### Corollary 8.13

Let  $t \in T$ , then  $x, t.x \in X'$  implies  $[\mu_x^{U_-}] = [\mu_{t.x}^{U_-}]$ .



$$\mu_x^H \propto \iota(\mu_x^T \times \mu_x^{U_-}), \quad \mu_{t.x}^H \propto \iota(\mu_{t.x}^T \times \mu_{t.x}^{U_-}).$$

Then applying t from right to the second equation, since Theorem 6.3 implies  $\mu_x^H \propto \mu_{t,x}^H t$ , we have

$$\mu_x^H \propto \mu_{t,x}^H t \propto \iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t.$$

Recall that  $H = T \ltimes U^-$ , thus  $(t_1, u_1) \cdot (t_2, u_2) = (t_1 t_2, u_1 t_1 u_2 t_1^{-1})$ , thus we know  $\iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t = \iota(\mu_{t,x}^T t \times \mu_{t,x}^{U_-})$ , which together with  $\mu_{t,x}^T t \propto \mu_x^T$  and above equations guarantee that

$$\mu_x^{U_-} \propto \mu_{t.x}^{U_-}.$$



$$\mu_x^H \propto \iota(\mu_x^T \times \mu_x^{U_-}), \quad \mu_{t.x}^H \propto \iota(\mu_{t.x}^T \times \mu_{t.x}^{U_-}).$$

Then applying t from right to the second equation, since Theorem 6.3 implies  $\mu_x^H \propto \mu_{t,x}^H t$ , we have

$$\mu_x^H \propto \mu_{t,x}^H t \propto \iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t.$$

Recall that  $H = T \ltimes U^-$ , thus  $(t_1, u_1) \cdot (t_2, u_2) = (t_1 t_2, u_1 t_1 u_2 t_1^{-1})$ , thus we know  $\iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t = \iota(\mu_{t,x}^T t \times \mu_{t,x}^{U_-})$ , which together with  $\mu_{t,x}^T t \propto \mu_x^T$  and above equations guarantee that

$$\mu_x^{U_-} \propto \mu_{t.x}^{U_-}.$$



$$\mu_x^H \propto \iota(\mu_x^T \times \mu_x^{U_-}), \quad \mu_{t.x}^H \propto \iota(\mu_{t.x}^T \times \mu_{t.x}^{U_-}).$$

Then applying t from right to the second equation, since Theorem 6.3 implies  $\mu_x^H \propto \mu_{t,x}^H t$ , we have

$$\mu_x^H \propto \mu_{t,x}^H t \propto \iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t.$$

Recall that  $H = T \ltimes U^-$ , thus  $(t_1, u_1) \cdot (t_2, u_2) = (t_1 t_2, u_1 t_1 u_2 t_1^{-1})$ , thus we know  $\iota(\mu_{t,x}^T \times \mu_{t,x}^{U_-})t = \iota(\mu_{t,x}^T t \times \mu_{t,x}^{U_-})$ , which together with  $\mu_{t,x}^T t \varpropto \mu_x^T$  and above equations guarantee that

$$\mu_x^{U_-} \propto \mu_{t.x}^{U_-}.$$



The following example is useful to keep in mind among all proofs: •  $G = SL(3, \mathbb{R});$  $\bullet a = \begin{pmatrix} e^{-2} \\ e \\ e \end{pmatrix};$  $U_{-} = \left\{ \left( \begin{array}{ccc} 1 & * & * \\ 1 & 0 \\ & 1 \end{array} \right) \right\}, \ T = \left\{ \left( \begin{array}{ccc} 1 & 0 & 0 \\ & 1 & * \\ & & 1 \end{array} \right) \right\};$  $\blacksquare H = \left\{ \left( \begin{array}{cc} 1 & * & * \\ 1 & * \\ & 1 \end{array} \right) \right\}.$ 



The following example is useful to keep in mind among all proofs: •  $G = SL(3, \mathbb{R});$ 



The following example is useful to keep in mind among all proofs:

$$G = SL(3, \mathbb{R});$$

$$a = \begin{pmatrix} e^{-2} \\ e \\ e \end{pmatrix};$$

$$U_{-} = \left\{ \begin{pmatrix} 1 & * & * \\ 1 & 0 \\ & 1 \end{pmatrix} \right\}, \ T = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ & 1 & * \\ & & 1 \end{pmatrix} \right\};$$

$$H = \left\{ \begin{pmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{pmatrix} \right\}.$$



The following example is useful to keep in mind among all proofs:

$$G = SL(3, \mathbb{R});$$

$$a = \begin{pmatrix} e^{-2} \\ e \\ e \end{pmatrix};$$

$$U_{-} = \left\{ \begin{pmatrix} 1 & * & * \\ 1 & 0 \\ & 1 \end{pmatrix} \right\}, \ T = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ & 1 & * \\ & & 1 \end{pmatrix} \right\};$$

$$H = \left\{ \begin{pmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{pmatrix} \right\}.$$



The following example is useful to keep in mind among all proofs:

• 
$$G = SL(3, \mathbb{R});$$
  
•  $a = \begin{pmatrix} e^{-2} \\ & e \\ & e \end{pmatrix};$   
•  $U_{-} = \left\{ \begin{pmatrix} 1 & * & * \\ & 1 & 0 \\ & & 1 \end{pmatrix} \right\}, \ T = \left\{ \begin{pmatrix} 1 & 0 & 0 \\ & 1 & * \\ & & 1 \end{pmatrix} \right\};$   
•  $H = \left\{ \begin{pmatrix} 1 & * & * \\ & 1 & * \\ & & 1 \end{pmatrix} \right\}.$ 



continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we obtain

 $[\mu_{a^{n_i}.x}^{\mathcal{T}}] \to [\mu_{x_0}^{\mathcal{T}}].$ 



continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we obtain

 $[\mu_{a^{n_i}.x}^{\mathcal{T}}] \to [\mu_{x_0}^{\mathcal{T}}].$ 



 $[\mu_{a^{n_{i,X}}}^{\mathcal{T}}] \rightarrow [\mu_{x_0}^{\mathcal{T}}].$ 



continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we obtain

 $[\mu_{a^{n_i}.x}^{\mathcal{T}}] \to [\mu_{x_0}^{\mathcal{T}}].$ 



continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we obtain

 $[\mu_{a^{n_i}.x}^{\mathcal{T}}] \to [\mu_{x_0}^{\mathcal{T}}].$ 



continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we obtain

 $[\mu_{a^{n_{i,X}}}^{\mathcal{T}}] \to [\mu_{x_0}^{\mathcal{T}}].$ 

Statement of main theorems Proposition 8.5 Corollary 8.8 Since h = tu',  $T \in C_G(a)$  and  $a^{n_i}u'a^{-n_i} \to e$  as  $n_i \to \infty$ , we have

$$a^{n_i}h.x = ta^{n_i}u'a^{-n_i}a^{n_i}.x = ta^{n_i}.x \to t.x_0.$$

• Then by continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we have

 $[\mu_{a^{n_i}h.x}^{\mathsf{T}}] \to [\mu_{t.x_0}^{\mathsf{T}}].$ 

 Since T ∈ C<sub>G</sub>(a) and μ is a-invariant, a maps an (r, T)-flower (Y, A) to another σ−algebra aA of subsets aY, whose atoms are still T−platues. As a preserves the measure μ, the conditional measures for A are mapped to conditional measures for aA. Together with Theorem 6.3 and T ∈ C<sub>G</sub>(a), we have [μ<sub>x</sub><sup>T</sup>] = [μ<sub>a,x</sub><sup>T</sup>] a.e..

Statement of main theorems Proposition 8.5 Corollary 8.8 Since h = tu',  $T \in C_G(a)$  and  $a^{n_i}u'a^{-n_i} \to e$  as  $n_i \to \infty$ , we have

$$a^{n_i}h.x = ta^{n_i}u'a^{-n_i}a^{n_i}.x = ta^{n_i}.x \to t.x_0.$$

• Then by continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we have

 $[\mu_{a^{n_i}h.x}^{\mathcal{T}}] \to [\mu_{t.x_0}^{\mathcal{T}}].$ 

 Since T ∈ C<sub>G</sub>(a) and μ is a-invariant, a maps an (r, T)-flower (Y, A) to another σ-algebra aA of subsets aY, whose atoms are still T-platues. As a preserves the measure μ, the conditional measures for A are mapped to conditional measures for aA. Together with Theorem 6.3 and T ∈ C<sub>G</sub>(a), we have [μ<sub>x</sub><sup>T</sup>] = [μ<sub>a,x</sub><sup>T</sup>] a.e..

Statement of main theorems Proposition 8.5 Corollary 8.8 Since h = tu',  $T \in C_G(a)$  and  $a^{n_i}u'a^{-n_i} \to e$  as  $n_i \to \infty$ , we have

$$a^{n_i}h.x = ta^{n_i}u'a^{-n_i}a^{n_i}.x = ta^{n_i}.x \to t.x_0.$$

• Then by continuity of  $x \mapsto [\mu_x^T]$  on  $K_{\varepsilon}$ , we have

$$[\mu_{a^{n_i}h.x}^{\mathcal{T}}] \to [\mu_{t.x_0}^{\mathcal{T}}].$$

 Since T ∈ C<sub>G</sub>(a) and μ is a-invariant, a maps an (r, T)-flower (Y, A) to another σ-algebra aA of subsets aY, whose atoms are still T-platues. As a preserves the measure μ, the conditional measures for A are mapped to conditional measures for aA. Together with Theorem 6.3 and T ∈ C<sub>G</sub>(a), we have [μ<sub>x</sub><sup>T</sup>] = [μ<sub>a,x</sub><sup>T</sup>] a.e..





• Since  $[\mu_x^T] = [\mu_{a,x}^T]$  a.e, thus there exists  $X'_{\varepsilon} \subset X_{\varepsilon}$  with  $\mu(X'_{\varepsilon}) = \mu(X_{\varepsilon})$  such that for every  $x, h.x \in X'_{\varepsilon}$ , we have  $[\mu_x^T] = [\mu_{a^{n_i}.x}^T] \to [\mu_{x_0}^T] = [\mu_{t.x_0}^T]t$ ,

and

$$[\mu_{h,x}^{\mathsf{T}}]t = [\mu_{a^{n_i}h,x}^{\mathsf{T}}]t \to [\mu_{t,x_0}^{\mathsf{T}}]t,$$

which gives  $[\mu_x^T] = [\mu_{h,x}^T]t$ .

• Let  $\varepsilon_n = \frac{1}{n}$ , choose  $K_{\varepsilon_n}$  increasing and define X' be union of  $X'_{\frac{1}{n}}$ , we complete the proof.

## **Proposition 8.5**



• Since  $[\mu_x^T] = [\mu_{a,x}^T]$  a.e, thus there exists  $X'_{\varepsilon} \subset X_{\varepsilon}$  with  $\mu(X'_{\varepsilon}) = \mu(X_{\varepsilon})$  such that for every  $x, h.x \in X'_{\varepsilon}$ , we have  $[\mu_x^T] = [\mu_{a^{n_i},x}^T] \to [\mu_{x_0}^T] = [\mu_{t,x_0}^T]t$ ,

and

$$[\mu_{h,x}^{\mathsf{T}}]t = [\mu_{a^{n_i}h,x}^{\mathsf{T}}]t \to [\mu_{t,x_0}^{\mathsf{T}}]t,$$

which gives  $[\mu_x^T] = [\mu_{h.x}^T]t$ .

• Let  $\varepsilon_n = \frac{1}{n}$ , choose  $K_{\varepsilon_n}$  increasing and define X' be union of  $X'_{\frac{1}{n}}$ , we complete the proof.

## **Proposition 8.5**



• Since  $[\mu_x^T] = [\mu_{a,x}^T]$  a.e, thus there exists  $X'_{\varepsilon} \subset X_{\varepsilon}$  with  $\mu(X'_{\varepsilon}) = \mu(X_{\varepsilon})$  such that for every  $x, h.x \in X'_{\varepsilon}$ , we have  $[\mu_x^T] = [\mu_{a^{n_i},x}^T] \to [\mu_{x_0}^T] = [\mu_{t,x_0}^T]t$ ,

and

$$[\mu_{h,x}^{\mathsf{T}}]t = [\mu_{a^{n_i}h,x}^{\mathsf{T}}]t \to [\mu_{t,x_0}^{\mathsf{T}}]t,$$

which gives  $[\mu_x^T] = [\mu_{h.x}^T]t$ .

• Let  $\varepsilon_n = \frac{1}{n}$ , choose  $K_{\varepsilon_n}$  increasing and define X' be union of  $X'_{\frac{1}{n}}$ , we complete the proof.





Heuristic explanation:  $\mu_x^H$  is the measure on H such that  $\mu_x^H x$  describes  $\mu$  along the orbit H.x and  $(\mu_x^H)_h^L.h$  describes  $\mu_x^H$  along the coset Lh, we want  $(\mu_x^H)_h^Lh.x$  describes  $\mu$  on the orbit Lh.x.

#### Lemma 8.10

let *H* be a locally compact second countable group acting on *X* locally and measure-theoretically free, and let  $\mu$  be a locally finite Radon measure on *X*. Assume  $H = LM = \iota(L \times M)$  is topologically isomorphic to the product of two closed subgroups L, M < H. Then *L* acts by restriction on *X* and on *H* by left translation, and so gives rise to families of leaf-wise measures  $\mu_X^L$  and  $(\mu_X^H)_h^L$  for  $x \in X$  and  $h \in H$ . Then there exists  $X' \subset X$  of full measure such that whenever  $x \in X'$ , we have  $[(\mu_X^H)_h^L] = [\mu_{h_X}^L]$  for  $\mu_X^{-}$ -a.e.  $h \in H$ .





position 8.5

Corollary 8.8

Heuristic explanation:  $\mu_x^H$  is the measure on H such that  $\mu_x^L x$  describes  $\mu$  along the orbit H.x and  $(\mu_x^H)_h^L.h$  describes  $\mu_x^H$  along the coset Lh, we want  $(\mu_x^H)_h^Lh.x$  describes  $\mu$  on the orbit Lh.x.

#### Lemma 8.10

let *H* be a locally compact second countable group acting on *X* locally and measure-theoretically free, and let  $\mu$  be a locally finite Radon measure on *X*. Assume  $H = LM = \iota(L \times M)$  is topologically isomorphic to the product of two closed subgroups L, M < H. Then *L* acts by restriction on *X* and on *H* by left translation, and so gives rise to families of leaf-wise measures  $\mu_x^L$  and  $(\mu_x^H)_h^L$  for  $x \in X$  and  $h \in H$ . Then there exists  $X' \subset X$  of full measure such that whenever  $x \in X'$ , we have  $[(\mu_x^H)_h^L] = [\mu_{hx}^L]$  for  $\mu_x^H$ -a.e.  $h \in H$ .



Statement of main theorems

**Proposition 8.5** 

- Let  $\Xi \subset X$  be *R*-cross-section for the action of *H* with positive measure and  $\tilde{\mathcal{A}}_H$  be the  $\sigma$ -algebra  $\mathcal{B}_R^H \times \mathcal{B}(\Xi)$  on  $\mathcal{B}_R^H \times \Xi$ , where  $\mathcal{B}(\Xi)$  is the Borel  $\sigma$ -algebra on  $\Xi$ .
- By *R*-cross section definition, ι(h, x) = h.x is injective on B<sup>H</sup><sub>R</sub> × Ξ and thus A<sub>H</sub> = ι(Ã<sub>H</sub>) is a countably generated σ-ring of Borel sets. Moreover, the atom [x]<sub>A<sub>H</sub></sub> is an open H-plaque for any x ∈ ι(B<sup>H</sup><sub>R</sub> × Ξ).
- Let  $\tilde{\mathcal{A}}_L = \{LB \cap B_R^H : B \in \mathcal{B}(M)\}$ , where  $\mathcal{B}(M)$  is the Borel  $\sigma$ -algebra on M. Recall by assumption, M is a global cross-section of L in H. Then the  $\sigma$ -ring  $\mathcal{A}_L = \iota(\tilde{\mathcal{A}}_L \times \mathcal{B}(\Xi))$  is countably generated and  $[x]_{\mathcal{A}_L}$  is an open L-plaque for all  $x \in \iota(B_R^H \times \Xi)$ .
- By the construction, we have  $\mathcal{A}_H \subset \mathcal{A}_L$ .

Statement of main theorems

Proposition 8.5

- Let  $\Xi \subset X$  be *R*-cross-section for the action of *H* with positive measure and  $\tilde{\mathcal{A}}_H$  be the  $\sigma$ -algebra  $\mathcal{B}_R^H \times \mathcal{B}(\Xi)$  on  $\mathcal{B}_R^H \times \Xi$ , where  $\mathcal{B}(\Xi)$  is the Borel  $\sigma$ -algebra on  $\Xi$ .
- By *R*-cross section definition, ι(h, x) = h.x is injective on B<sup>H</sup><sub>R</sub> × Ξ and thus A<sub>H</sub> = ι(Ã<sub>H</sub>) is a countably generated σ-ring of Borel sets. Moreover, the atom [x]<sub>A<sub>H</sub></sub> is an open H-plaque for any x ∈ ι(B<sup>H</sup><sub>R</sub> × Ξ).
- Let  $\tilde{\mathcal{A}}_L = \{LB \cap B_R^H : B \in \mathcal{B}(M)\}$ , where  $\mathcal{B}(M)$  is the Borel  $\sigma$ -algebra on M. Recall by assumption, M is a global cross-section of L in H. Then the  $\sigma$ -ring  $\mathcal{A}_L = \iota(\tilde{\mathcal{A}}_L \times \mathcal{B}(\Xi))$  is countably generated and  $[x]_{\mathcal{A}_L}$  is an open L-plaque for all  $x \in \iota(B_R^H \times \Xi)$ .
- By the construction, we have  $\mathcal{A}_H \subset \mathcal{A}_L$ .

Statement of main theorems

Proposition 8.5

- Let  $\Xi \subset X$  be *R*-cross-section for the action of *H* with positive measure and  $\tilde{\mathcal{A}}_H$  be the  $\sigma$ -algebra  $\mathcal{B}_R^H \times \mathcal{B}(\Xi)$  on  $\mathcal{B}_R^H \times \Xi$ , where  $\mathcal{B}(\Xi)$  is the Borel  $\sigma$ -algebra on  $\Xi$ .
- By *R*-cross section definition,  $\iota(h, x) = h.x$  is injective on  $B_R^H \times \Xi$  and thus  $\mathcal{A}_H = \iota(\tilde{\mathcal{A}}_H)$  is a countably generated  $\sigma$ -ring of Borel sets. Moreover, the atom  $[x]_{\mathcal{A}_H}$  is an open *H*-plaque for any  $x \in \iota(B_R^H \times \Xi)$ .
- Let Ã<sub>L</sub> = {LB ∩ B<sub>R</sub><sup>H</sup> : B ∈ B(M)}, where B(M) is the Borel σ-algebra on M. Recall by assumption, M is a global cross-section of L in H. Then the σ-ring A<sub>L</sub> = ι(Ã<sub>L</sub> × B(Ξ)) is countably generated and [x]<sub>A<sub>L</sub></sub> is an open L-plaque for all x ∈ ι(B<sub>R</sub><sup>H</sup> × Ξ).
- By the construction, we have  $\mathcal{A}_H \subset \mathcal{A}_L$ .

Statement of main theorems

Proposition 8.5

- Let  $\Xi \subset X$  be *R*-cross-section for the action of *H* with positive measure and  $\tilde{\mathcal{A}}_H$  be the  $\sigma$ -algebra  $\mathcal{B}_R^H \times \mathcal{B}(\Xi)$  on  $\mathcal{B}_R^H \times \Xi$ , where  $\mathcal{B}(\Xi)$  is the Borel  $\sigma$ -algebra on  $\Xi$ .
- By *R*-cross section definition, ι(h, x) = h.x is injective on B<sup>H</sup><sub>R</sub> × Ξ and thus A<sub>H</sub> = ι(Ã<sub>H</sub>) is a countably generated σ-ring of Borel sets. Moreover, the atom [x]<sub>A<sub>H</sub></sub> is an open H-plaque for any x ∈ ι(B<sup>H</sup><sub>R</sub> × Ξ).
- Let Ã<sub>L</sub> = {LB ∩ B<sub>R</sub><sup>H</sup> : B ∈ B(M)}, where B(M) is the Borel σ-algebra on M. Recall by assumption, M is a global cross-section of L in H. Then the σ-ring A<sub>L</sub> = ι(Ã<sub>L</sub> × B(Ξ)) is countably generated and [x]<sub>A<sub>L</sub></sub> is an open L-plaque for all x ∈ ι(B<sub>R</sub><sup>H</sup> × Ξ).
- By the construction, we have  $\mathcal{A}_H \subset \mathcal{A}_L$ .



Since on each of these σ-rings, we always have above relation, we complete our proof.



Since on each of these σ-rings, we always have above relation, we complete our proof.



 Since on each of these σ-rings, we always have above relation, we complete our proof.

Statement of main theorems Proposition 8.5 Corollary 8.8 Apply Lemma 8.10 with L = T,  $M = U_{-}$  and  $L = U_{-}$ , M = T and Proposition 8.5, denote the union of the bad null sets as  $X_0$ . Then let  $x \in X \setminus X_0$  and  $Q = B_r^T B_r^{U_-} \subset H$  for some r > 0.

Apply Lemma 8.10 with L = T and M = U<sub>−</sub>, we obtain that the conditional measures for μ<sup>H</sup><sub>x</sub>|<sub>Q</sub> with respect to the σ-algebra A = B<sup>T</sup><sub>r</sub> × B(B<sup>U<sub>−</sub></sup><sub>r</sub>) can be obtained from the leaf-wise measures μ<sup>T</sup><sub>h,x</sub> for μ<sup>H</sup><sub>x</sub>-a.e.h ∈ Q:

 $(\mu_{x}^{H})_{h}^{\mathcal{A}} \propto (\mu_{h,x}^{T}h)|_{Q}.$ 

Recall Proposition 8.5 gives for  $\mu_x^H$ -a.e.  $h = tu \in Q$ :

 $\mu_{tu,x}^{T}t \propto \mu_{x}^{T}.$ 

Statement of main theorems Proposition 8.5 Corollary 8.8 Apply Lemma 8.10 with L = T,  $M = U_{-}$  and  $L = U_{-}$ , M = T and Proposition 8.5, denote the union of the bad null sets as  $X_0$ . Then let  $x \in X \setminus X_0$  and  $Q = B_r^T B_r^{U_{-}} \subset H$  for some r > 0.

• Apply Lemma 8.10 with L = T and  $M = U_-$ , we obtain that the conditional measures for  $\mu_X^H|_Q$  with respect to the  $\sigma$ -algebra  $\mathcal{A} = B_r^T \times \mathcal{B}(B_r^{U_-})$  can be obtained from the leaf-wise measures  $\mu_{h,x}^T$  for  $\mu_x^H$ -a.e. $h \in Q$ :

 $(\mu_x^H)_h^\mathcal{A} \propto (\mu_{h,x}^T h)|_Q.$ 

Recall Proposition 8.5 gives for  $\mu_x^H$ -a.e.  $h = tu \in Q$ :

 $\mu_{tu,x}^{T}t \propto \mu_{x}^{T}.$ 

Statement of main theorems Proposition 8.5 Corollary 8.8 Apply Lemma 8.10 with L = T,  $M = U_{-}$  and  $L = U_{-}$ , M = T and Proposition 8.5, denote the union of the bad null sets as  $X_0$ . Then let  $x \in X \setminus X_0$  and  $Q = B_r^T B_r^{U_{-}} \subset H$  for some r > 0.

• Apply Lemma 8.10 with L = T and  $M = U_-$ , we obtain that the conditional measures for  $\mu_X^H|_Q$  with respect to the  $\sigma$ -algebra  $\mathcal{A} = B_r^T \times \mathcal{B}(B_r^{U_-})$  can be obtained from the leaf-wise measures  $\mu_{h,x}^T$  for  $\mu_x^H$ -a.e. $h \in Q$ :

 $(\mu_x^H)_h^\mathcal{A} \propto (\mu_{h.x}^T h)|_Q.$ 

Recall Proposition 8.5 gives for  $\mu_x^H$ -a.e.  $h = tu \in Q$ :

 $\mu_{tu.x}^{T}t \propto \mu_{x}^{T}.$ 



Combining above two equations, we obtain that

 $(\mu_x^H)_h^\mathcal{A} \propto \mu_x^T|_{B_r^T} \times \delta_u,$ 

which is equivalent to  $\mu_x^H|_Q$  is a product measure which is proportional to  $\iota(\mu_x^T \times \nu_r)$  for some finite measure  $\nu_r$  on  $B_r^{U_-}$ .

Patching these measure ν<sub>r</sub> together to obtain a Radon measure ν on U<sub>-</sub>, then we have

 $\mu_x^H \propto \iota(\mu_x^T \times \nu).$ 

Restrict to  $Q = B_r^T B_r^{U_-} \subset H$  and consider the  $\sigma$ -algebra  $\mathcal{A}' = \mathcal{B}(B_r^T) \times B_r^{U_-}$ , whose atoms are  $tB_r^{U_-}$  for  $t \in B_r^T$ .



Combining above two equations, we obtain that

$$(\mu_x^H)_h^\mathcal{A} \propto \mu_x^T|_{B_r^T} \times \delta_u,$$

which is equivalent to  $\mu_x^H|_Q$  is a product measure which is proportional to  $\iota(\mu_x^T \times \nu_r)$  for some finite measure  $\nu_r$  on  $B_r^{U_-}$ .

 Patching these measure ν<sub>r</sub> together to obtain a Radon measure ν on U<sub>-</sub>, then we have

 $\mu_x^H \propto \iota(\mu_x^T \times \nu).$ 

Restrict to  $Q = B_r^T B_r^{U_-} \subset H$  and consider the  $\sigma$ -algebra  $\mathcal{A}' = \mathcal{B}(B_r^T) \times B_r^{U_-}$ , whose atoms are  $tB_r^{U_-}$  for  $t \in B_r^T$ .



Combining above two equations, we obtain that

 $(\mu_x^H)_h^\mathcal{A} \propto \mu_x^T|_{B_r^T} \times \delta_u,$ 

which is equivalent to  $\mu_x^H|_Q$  is a product measure which is proportional to  $\iota(\mu_x^T \times \nu_r)$  for some finite measure  $\nu_r$  on  $B_r^{U_-}$ .

 Patching these measure ν<sub>r</sub> together to obtain a Radon measure ν on U<sub>-</sub>, then we have

 $\mu_x^H \propto \iota(\mu_x^T \times \nu).$ 

■ Restrict to  $Q = B_r^T B_r^{U_-} \subset H$  and consider the  $\sigma$ -algebra  $\mathcal{A}' = \mathcal{B}(B_r^T) \times B_r^{U_-}$ , whose atoms are  $tB_r^{U_-}$  for  $t \in B_r^T$ .



Since the conditional measure of  $\mu_x^H|_Q$  at h = tu equals  $\iota(\delta_t \times \nu_r)$ , then for the action of  $U_-$  by left multiplication on H, we have

$$((\mu_{x}^{H})_{h}^{U_{-}}|_{U_{h,\mathcal{A}'}})(\{u \in U_{-}: u.h \in tB_{r}^{U_{-}}\}) = ((\mu_{x}^{H})_{h}^{U_{-}}|_{U_{h,\mathcal{A}'}})(tB_{r}^{U_{-}}h^{-1}$$

which implies the atom of  $h = tu \in Q$  corresponds to the set  $V_h = tB_r^{U_-}h^{-1} \subset U_-$  (this due to T normalize  $U_-$ ).

■ Using these  $\sigma$ -rings for all positive integers r, we obtain that  $(\mu_x^H)_h^{U_-}$  must be proportional to  $t\nu h^{-1}$  for  $\mu_x^H$ -a.e. h, where  $t\nu h^{-1}(A) = \nu(tAh^{-1})$  for  $A \subset U_-$ .



Since the conditional measure of  $\mu_x^H|_Q$  at h = tu equals  $\iota(\delta_t \times \nu_r)$ , then for the action of  $U_-$  by left multiplication on H, we have

$$((\mu_{x}^{H})_{h}^{U_{-}}|_{U_{h,\mathcal{A}'}})(\{u \in U_{-}: u.h \in tB_{r}^{U_{-}}\}) = ((\mu_{x}^{H})_{h}^{U_{-}}|_{U_{h,\mathcal{A}'}})(tB_{r}^{U_{-}}h^{-1})$$

which implies the atom of  $h = tu \in Q$  corresponds to the set  $V_h = tB_r^{U_-}h^{-1} \subset U_-$  (this due to T normalize  $U_-$ ).

• Using these  $\sigma$ -rings for all positive integers r, we obtain that  $(\mu_x^H)_h^{U_-}$  must be proportional to  $t\nu h^{-1}$  for  $\mu_x^H$ -a.e. h, where  $t\nu h^{-1}(A) = \nu(tAh^{-1})$  for  $A \subset U_-$ .



• We have already shown for  $\mu_x^H$ -a.e. h = tu:

$$\mu_{h.x}^{U_-} \propto (\mu_x^H)_h^{U_-} \propto t\nu h^{-1}.$$

Since we cannot claim h = e for the above formula, we need the following additional steps to establish our corollary:

 $\mu_{h,x}^{H} \stackrel{\text{Theorem 6.3}}{\propto} \mu_{x}^{H} h^{-1} \propto \iota(\mu_{x}^{T} \times \nu) h^{-1} \stackrel{\text{Proposition 8.5}}{\propto} \iota(\mu_{h,x}^{T} t \times \nu) h^{-1}$   $\stackrel{\text{Def of } \iota}{\propto} \iota(\mu_{h,x}^{T} \times t\nu h^{-1}) \propto \iota(\mu_{h,x}^{T} \times \mu_{h,x}^{U}).$ 



• We have already shown for  $\mu_x^H$ -a.e. h = tu:

$$\mu_{h.x}^{U_-} \propto (\mu_x^H)_h^{U_-} \propto t\nu h^{-1}.$$

Since we cannot claim h = e for the above formula, we need the following additional steps to establish our corollary:

$$\mu_{h,x}^{H} \stackrel{\text{Theorem 6.3}}{\propto} \mu_{x}^{H} h^{-1} \propto \iota(\mu_{x}^{T} \times \nu) h^{-1} \stackrel{\text{Proposition 8.5}}{\propto} \iota(\mu_{h,x}^{T} t \times \nu) h^{-1}$$

$$\stackrel{\text{Def of } \iota}{\propto} \iota(\mu_{h,x}^{T} \times t\nu h^{-1}) \propto \iota(\mu_{h,x}^{T} \times \mu_{h,x}^{U}).$$



Statement of main theorems

Proposition 8.5

Corollary 8.8

# **Thanks!**