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Statement of main theorems Proposition 8.5 Corollary 8.8

Basic setting

G is a semisimple connected linear Lie group and Γ ⊂ G is a
lattice;
X = Γ\G equipped with a left-invariant metric induced from
left-invariant Riemannian metric on G ;
a ∈ G : an element of class A;
µ is Borel a-invariant probability measure on X ;
U− ⊂ G− be a-normalized and contracted by a;
T ⊂ CG(a) and assume T normalizes U−;
H = T n U−;

where a is class A if (i) a is R-semisimple; (ii) 1 is the only
eigenvalue of absolute value 1 for the adjoint action Ada; (iii) No
two different eigenvalues of Ada have the same absolute value.
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Equivalence classes

[·] be the equivalence classes by portionality of the leaf-wise
measure;
Theorem 6.29 guarantees that there is a function ρ > 0 such
that

∫
ρdµT

x <∞ a.e.;
Picking a sequence {fi 6 ρ} ⊂ Cc(T ) spanning a dense
subset.

Then for any two equivalence classes of Radon measure with∫
ρdνi <∞, define

d([ν1], [ν2]) =
∑∞

i=1 2−i
∣∣∣∣∫ fi dν1∫

ρdν1
−
∫

fi dν2∫
ρdν2

∣∣∣∣ .Assume
∫
ρdνi = 1,

then this metric corresponds to weak∗ in the space of Radon
measures and thus we can interpret µT

x as a measurable function
with values in a compact metric space.



Statement of main theorems Proposition 8.5 Corollary 8.8

Equivalence classes

[·] be the equivalence classes by portionality of the leaf-wise
measure;
Theorem 6.29 guarantees that there is a function ρ > 0 such
that

∫
ρdµT

x <∞ a.e.;
Picking a sequence {fi 6 ρ} ⊂ Cc(T ) spanning a dense
subset.

Then for any two equivalence classes of Radon measure with∫
ρdνi <∞, define

d([ν1], [ν2]) =
∑∞

i=1 2−i
∣∣∣∣∫ fi dν1∫

ρdν1
−
∫

fi dν2∫
ρdν2

∣∣∣∣ .Assume
∫
ρdνi = 1,

then this metric corresponds to weak∗ in the space of Radon
measures and thus we can interpret µT

x as a measurable function
with values in a compact metric space.



Statement of main theorems Proposition 8.5 Corollary 8.8

Equivalence classes

[·] be the equivalence classes by portionality of the leaf-wise
measure;
Theorem 6.29 guarantees that there is a function ρ > 0 such
that

∫
ρdµT

x <∞ a.e.;
Picking a sequence {fi 6 ρ} ⊂ Cc(T ) spanning a dense
subset.

Then for any two equivalence classes of Radon measure with∫
ρdνi <∞, define

d([ν1], [ν2]) =
∑∞

i=1 2−i
∣∣∣∣∫ fi dν1∫

ρdν1
−
∫

fi dν2∫
ρdν2

∣∣∣∣ .Assume
∫
ρdνi = 1,

then this metric corresponds to weak∗ in the space of Radon
measures and thus we can interpret µT

x as a measurable function
with values in a compact metric space.



Statement of main theorems Proposition 8.5 Corollary 8.8

Equivalence classes

[·] be the equivalence classes by portionality of the leaf-wise
measure;
Theorem 6.29 guarantees that there is a function ρ > 0 such
that

∫
ρdµT

x <∞ a.e.;
Picking a sequence {fi 6 ρ} ⊂ Cc(T ) spanning a dense
subset.

Then for any two equivalence classes of Radon measure with∫
ρdνi <∞, define

d([ν1], [ν2]) =
∑∞

i=1 2−i
∣∣∣∣∫ fi dν1∫

ρdν1
−
∫

fi dν2∫
ρdν2

∣∣∣∣ .Assume
∫
ρdνi = 1,

then this metric corresponds to weak∗ in the space of Radon
measures and thus we can interpret µT

x as a measurable function
with values in a compact metric space.



Statement of main theorems Proposition 8.5 Corollary 8.8

Equivalence classes

[·] be the equivalence classes by portionality of the leaf-wise
measure;
Theorem 6.29 guarantees that there is a function ρ > 0 such
that

∫
ρdµT

x <∞ a.e.;
Picking a sequence {fi 6 ρ} ⊂ Cc(T ) spanning a dense
subset.

Then for any two equivalence classes of Radon measure with∫
ρdνi <∞, define

d([ν1], [ν2]) =
∑∞

i=1 2−i
∣∣∣∣∫ fi dν1∫

ρdν1
−
∫

fi dν2∫
ρdν2

∣∣∣∣ .Assume
∫
ρdνi = 1,

then this metric corresponds to weak∗ in the space of Radon
measures and thus we can interpret µT

x as a measurable function
with values in a compact metric space.



Statement of main theorems Proposition 8.5 Corollary 8.8

Main Theorems

Proposition 8.5
There exists X ′ ⊂ X of full measure such that for every x ∈ X ′ and
h ∈ H with h.x ∈ X ′, we have

[µT
x ] = [(µT

h.x )t]

where h = tu′ = u′′t for some u′, u′′ ∈ U− and t ∈ T .
Let t = e, then we have

Corollary 8.6
Let u ∈ U−, then x , u.x ∈ X ′ implies [µT

x ] = [µT
u.x ].
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Main Theorems

Product structure, Corollary 8.8
There exists X ′ ⊂ X of full measure such that for every x ∈ X ′, we
have

µH
x ∝ ι(µT

x × µU−
x ),

where ι : (t, u) ∈ T × U− → tu ∈ H.
A natural corollary of Corollary 8.8 is a property similar to
Corollary 8.6:

Corollary 8.13
Let t ∈ T , then x , t.x ∈ X ′ implies [µU−

x ] = [µU−
t.x ].
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Proof of Corollary 8.13

By Corollary 8.8 for x and t.x , we obtain

µH
x ∝ ι(µT

x × µU−
x ), µH

t.x ∝ ι(µT
t.x × µ

U−
t.x ).

Then applying t from right to the second equation, since Theorem
6.3 implies µH

x ∝ µH
t.x t, we have

µH
x ∝ µH

t.x t ∝ ι(µT
t.x × µ

U−
t.x )t.

Recall that H = T nU−, thus (t1, u1) · (t2, u2) = (t1t2, u1t1u2t−1
1 ),

thus we know ι(µT
t.x × µ

U−
t.x )t = ι(µT

t.x t × µU−
t.x ), which together

with µT
t.x t ∝ µT

x and above equations guarantee that

µU−
x ∝ µ

U−
t.x .
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Example

The following example is useful to keep in mind among all proofs:
G = SL(3,R);

a =

 e−2

e
e

;
U− =


 1 ∗ ∗

1 0
1


, T =


 1 0 0

1 ∗
1


;

H =


 1 ∗ ∗

1 ∗
1


.
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Proof of Proposition 8.5

By Lusin theorem, for any ε > 0, there exists a compact
Kε ⊂ Γ\G such that

x 7→ [µT
x ] is continuous for x ∈ Kε;

µ(Kε) > 1− ε;
[µT

x ] = [µT
t.x t] for x , t.x ∈ Kε.

Let Xε = {x ∈ Kε : sup 1
n
∑n−1

i=0 1K c
ε
(ai .x) < 1

2}, then by
maximal ergodic theorem, we have

∫
1K c

ε
dµ > 1

2µ(X c
ε ), i.e.

µ(Xε) > 1− 2ε.
Suppose x , h.x ∈ Xε, the definition of Xε ⇒ ni →∞ such
that ani .x , ani h.x ∈ Kε. Then by passing to a subsequence if
necessary, we assume that ani .x → x0 ∈ Kε. Together with
continuity of x 7→ [µT

x ] on Kε, we obtain

[µT
ani .x ]→ [µT

x0 ].
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Proof of Proposition 8.5

Since h = tu′, T ∈ CG(a) and ani u′a−ni → e as ni →∞, we
have

ani h.x = tani u′a−ni ani .x = tani .x → t.x0.

Then by continuity of x 7→ [µT
x ] on Kε, we have

[µT
ani h.x ]→ [µT

t.x0 ].

Since T ∈ CG(a) and µ is a-invariant, a maps an (r ,T )-flower
(Y ,A) to another σ−algebra aA of subsets aY , whose atoms
are still T−platues. As a preserves the measure µ, the
conditional measures for A are mapped to conditional
measures for aA. Together with Theorem 6.3 and T ∈ CG(a),
we have [µT

x ] = [µT
a.x ] a.e..
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Proposition 8.5

Since [µT
x ] = [µT

a.x ] a.e, thus there exists X ′ε ⊂ Xε with
µ(X ′ε) = µ(Xε) such that for every x , h.x ∈ X ′ε, we have

[µT
x ] = [µT

ani .x ]→ [µT
x0 ] = [µT

t.x0 ]t,

and
[µT

h.x ]t = [µT
ani h.x ]t → [µT

t.x0 ]t,

which gives [µT
x ] = [µT

h.x ]t.
Let εn = 1

n , choose Kεn increasing and define X ′ be union of
X ′1

n
, we complete the proof.
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Lemma 8.10

Heuristic explanation: µH
x is the measure on H such that µH

x .x
describes µ along the orbit H.x and (µH

x )L
h.h describes µH

x along
the coset Lh, we want (µH

x )L
hh.x describes µ on the orbit Lh.x .

Lemma 8.10
let H be a locally compact second countable group acting on X
locally and measure-theoretically free, and let µ be a locally finite
Radon measure on X . Assume H = LM = ι(L×M) is topologically
isomorphic to the product of two closed subgroups L,M < H.
Then L acts by restriction on X and on H by left translation, and
so gives rise to families of leaf-wise measures µL

x and (µH
x )L

h for
x ∈ X and h ∈ H. Then there exists X ′ ⊂ X of full measure such
that whenever x ∈ X ′, we have [(µH

x )L
h] = [µL

h.x ] for µH
x -a.e. h ∈ H.
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Proof of Lemma 8.10

Let Ξ ⊂ X be R-cross-section for the action of H with
positive measure and ÃH be the σ-algebra BH

R × B(Ξ) on
BH

R × Ξ, where B(Ξ) is the Borel σ-algebra on Ξ.
By R-cross section definition, ι(h, x) = h.x is injective on
BH

R × Ξ and thus AH = ι(ÃH) is a countably generated
σ-ring of Borel sets. Moreover, the atom [x ]AH is an open
H-plaque for any x ∈ ι(BH

R × Ξ).
Let ÃL = {LB ∩ BH

R : B ∈ B(M)}, where B(M) is the Borel
σ-algebra on M. Recall by assumption, M is a global
cross-section of L in H. Then the σ-ring AL = ι(ÃL × B(Ξ))
is countably generated and [x ]AL is an open L-plaque for all
x ∈ ι(BH

R × Ξ).
By the construction, we have AH ⊂ AL.
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Proof of Lemma 8.10

Recall Theorem 6.3, the measures µH
x and µL

x can be defined
by the values of conditional measures w.r.t. to a countable
collection of σ-rings A(i)

H and A(i)
L as above.

More precisely, recall A(i)
H ⊂ A

(i)
L , then by Theorem 6.3, we

have
((µH

x )L
h|Uh,BH

R
).h ∝ (µH

x )BH
R

h

(µH
x |Ux,AH

).x ∝ µAH
x , (µL

h.x |Uh.x,AL
).(h.x) ∝ µAL

h.x

µAL
h.x ∝ µAH

h.x .

Since on each of these σ-rings, we always have above relation,
we complete our proof.
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Proof of Corollary 8.8

Apply Lemma 8.10 with L = T , M = U− and L = U−,
M = T and Proposition 8.5, denote the union of the bad null
sets as X0. Then let x ∈ X \ X0 and Q = BT

r BU−
r ⊂ H for

some r > 0.
Apply Lemma 8.10 with L = T and M = U−, we obtain that
the conditional measures for µH

x |Q with respect to the
σ-algebra A = BT

r × B(BU−
r ) can be obtained from the

leaf-wise measures µT
h.x for µH

x -a.e.h ∈ Q:

(µH
x )Ah ∝ (µT

h.xh)|Q.

Recall Proposition 8.5 gives for µH
x -a.e. h = tu ∈ Q:

µT
tu.x t ∝ µT

x .
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Proof of Corollary 8.8

Combining above two equations, we obtain that

(µH
x )Ah ∝ µT

x |BT
r
× δu,

which is equivalent to µH
x |Q is a product measure which is

proportional to ι(µT
x × νr ) for some finite measure νr on BU−

r .
Patching these measure νr together to obtain a Radon
measure ν on U−, then we have

µH
x ∝ ι(µT

x × ν).

Restrict to Q = BT
r BU−

r ⊂ H and consider the σ-algebra
A′ = B(BT

r )× BU−
r , whose atoms are tBU−

r for t ∈ BT
r .
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Proof of Corollary 8.8

Since the conditional measure of µH
x |Q at h = tu equals

ι(δt × νr ), then for the action of U− by left multiplication on
H, we have

((µH
x )U−

h |Uh,A′ )({u ∈ U− : u.h ∈ tBU−
r }) = ((µH

x )U−
h |Uh,A′ )(tBU−

r h−1),

which implies the atom of h = tu ∈ Q corresponds to the set
Vh = tBU−

r h−1 ⊂ U− (this due to T normalize U−).
Using these σ-rings for all positive integers r , we obtain that
(µH

x )U−
h must be proportional to tνh−1 for µH

x -a.e. h, where
tνh−1(A) = ν(tAh−1) for A ⊂ U−.
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Proof of Corollary 8.8

We have already shown for µH
x -a.e. h = tu:

µ
U−
h.x ∝ (µH

x )U−
h ∝ tνh−1.

Since we cannot claim h = e for the above formula, we need
the following additional steps to establish our corollary:

µH
h.x

Theorem 6.3
∝ µH

x h−1 ∝ ι(µT
x × ν)h−1

Proposition 8.5
∝ ι(µT

h.x t × ν)h−1

Def of ι
∝ ι(µT

h.x × tνh−1) ∝ ι(µT
h.x × µ

U−
h.x ).
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