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Basic setting

Statement of main theorems

m G is a semisimple connected linear Lie group and ' C G is a
lattice;

X =T\G equipped with a left-invariant metric induced from
left-invariant Riemannian metric on G;

a € G: an element of class A;
1 is Borel a-invariant probability measure on X;

U_ C G~ be a-normalized and contracted by a;

T C Cg(a) and assume T normalizes U_;

m H=T x U_;
where a is class A if (i) a is R-semisimple; (ii) 1 is the only
eigenvalue of absolute value 1 for the adjoint action Ad,; (iii) No
two different eigenvalues of Ad, have the same absolute value.
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Equivalence classes

Statement of main theorems

m [] be the equivalence classes by portionality of the leaf-wise
measure;

m Theorem 6.29 guarantees that there is a function p > 0 such
that [ pdu] < oo a.e;
m Picking a sequence {f; < p} C C.(T) spanning a dense
subset.
Then for any two equivalence classes of Radon measure with
[ pdvi < 0o, define
_ N00 o—j ffidVl - fﬂ'duz
d([nl al) = S, 277 | St — T2
then this metric corresponds to weak™ in the space of Radon
measures and thus we can interpret i) as a measurable function

Assume [ pdv; =1,

with values in a compact metric space.
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Main Theorems

Statement of main theorems

Proposition 8.5

There exists X' C X of full measure such that for every x € X’ and
h € H with h.x € X', we have

T T
[1x 1 = [(1nx)t]
where h = tu’ = "'t for some v/, " € U_ and t € T.
Let t = e, then we have

Corollary 8.6
Let u € U_, then x,u.x € X" implies [u]] = [1],].
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Main Theorems

Statement of main theorems

Product structure, Corollary 8.8

There exists X’ C X of full measure such that for every x € X’, we
have

o (g X ),
where v : (t,u) € T x U_ — tu € H.

A natural corollary of Corollary 8.8 is a property similar to
Corollary 8.6:

Corollary 8.13
Let t € T, then x, t.x € X' implies [115 "] = [1ex].
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Proof of Corollary 8.13

Statement of main theorems

By Corollary 8.8 for x and t.x, we obtain

U_
o u(u] x ul=), pb ocu(ul, X pex)-

Then applying t from right to the second equation, since Theorem

6.3 implies pt oc uf t, we have

H H T u—
Fx O ppint O ey X prx )T

Recall that H = T x U~, thus (tl, U1) . (tQ, U2) = (tltg, ultlthfl),
thus we know ¢(p/, yij_;)t = o(p] t % uy_;), which together
with u] t oc u] and above equations guarantee that

U_ U_
/lx X Mt x -
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The following example is useful to keep in mind among all proofs:
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1 1
1 x x
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Proof of Proposition 8.5

Proposition 8.5

By Lusin theorem, for any € > 0, there exists a compact
K. C T\ G such that

® x — [u]] is continuous for x € K;
o u(K)>1—¢
® (1] =[ul. t] for x, t.x € K..

mlet X. ={x€K. :supl S 1xe(a'.x) < 3}, then by
maximal ergodic theorem, we have [1xedp > Su(XS), i.e.
p(Xe) >1—2e.

m Suppose x, h.x € X;, the definition of X. = n; — oo such
that a”.x,a"h.x € K.. Then by passing to a subsequence if
necessary, we assume that a”.x — xp € K.. Together with
continuity of x + [1]] on K, we obtain

IS A
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Proof of Proposition 8.5

Proposition 8.5

a"h.x = ta"u'a "a"m x = ta" .x — t.xp.

m Then by continuity of x + [u,]] on K, we have

[doinx] = [1d)-

m Since T € Cg(a) and p is a-invariant, a maps an (r, T )-flower
(Y,.A) to another o—algebra a.A of subsets aY, whose atoms
are still T—platues. As a preserves the measure p, the
conditional measures for A are mapped to conditional
measures for a.A. Together with Theorem 6.3 and T € Cg(a),
we have [u]] = [u] ] a.e..
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Proposition 8.5

Proposition 8.5

m Since [p)]] = [1],] a.e, thus there exists X! C X. with
wu(X!) = p(Xe) such that for every x, h.x € X!, we have

[l ] = [dn ] = (k] = [nd ]t

and
[t = [Hdndt = [t
which gives [i1]] = [p/] ]t.
m lLet g, = % choose K, increasing and define X’ be union of
X1, we complete the proof.

n



Proposition 8.5

Proposition 8.5

m Since [p)]] = [1],] a.e, thus there exists X! C X. with
wu(X!) = p(Xe) such that for every x, h.x € X!, we have

[l ] = [dn ] = (k] = [nd ]t

and
[t = [Hdndt = [t
which gives [i1]] = [p/] ]t.
mlete, = % choose K, increasing and define X’ be union of
X1, we complete the proof.



Proposition 8.5

Proposition 8.5

m Since [p)]] = [1],] a.e, thus there exists X! C X. with
wu(X!) = p(Xe) such that for every x, h.x € X!, we have

[l ] = [dn ] = (k] = [nd ]t

and
[t = [Hdndt = [t
which gives [i1]] = [p/] ]t.
mlete, = % choose K, increasing and define X’ be union of
X1, we complete the proof.



Lemma 8.10

Corollary 8.8

Heuristic explanation: uf is the measure on H such that pf .x
describes y along the orbit H.x and (uf)k.h describes p!! along
the coset Lh, we want (uf')Eh.x describes u on the orbit Lh.x.

Lemma 8.10

let H be a locally compact second countable group acting on X
locally and measure-theoretically free, and let 1 be a locally finite
Radon measure on X. Assume H = LM = (L x M) is topologically
isomorphic to the product of two closed subgroups L, M < H.
Then L acts by restriction on X and on H by left translation, and
so gives rise to families of leaf-wise measures ut and (u!!)E for

x € X and h € H. Then there exists X’ C X of full measure such
that whenever x € X, we have [(uf)t] = [uf ] for pll-ae. h e H.
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Proof of Lemma 8.10

Corollary 8.8

m Let = C X be R-cross-section for the action of H with
positive measure and Ay be the o-algebra BY x B(Z) on
BH x =, where B(Z) is the Borel o-algebra on =.

m By R-cross section definition, ¢(h, x) = h.x is injective on
BH x = and thus Ay = (Ap) is a countably generated
o-ring of Borel sets. Moreover, the atom [x] 4,, is an open
H-plaque for any x € «(BE x 2).

m Let A, = {LBN BY : B € B(M)}, where B(M) is the Borel
o-algebra on M. Recall by assumption, M is a global
cross-section of L in H. Then the o-ring A, = «(A; x B(Z))
is countably generated and [x] 4, is an open L-plaque for all
x € (B x =).

m By the construction, we have Ay C A;.
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Proof of Lemma 8.10

Corollary 8.8

m Recall Theorem 6.3, the measures p!! and pL can be defined
by the values of conditional measures w.r.t. to a countable

collection of o-rings AS_’;) and A(Li) as above.

m More precisely, recall AS:,) C A(Li), then by Theorem 6.3, we

have ;
B
(bl gy )-h o ()"

H A L A
(;ux ‘UX‘,AH).X o st (Hh.x‘Uh,x.AL)'(h'X) e Iuh.;

A A
Fhox O K-

m Since on each of these o-rings, we always have above relation,
we complete our proof.
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m Recall Theorem 6.3, the measures p!! and pL can be defined
by the values of conditional measures w.r.t. to a countable

collection of o-rings AS_’;) and A(Li) as above.

m More precisely, recall .AS_'}) C A(Li), then by Theorem 6.3, we
have

BH
(i, gw)-hoc (1) "
"R
A
(5 [ a,)) % s (bl Up e a, )-(BeX) o€ s

A
NhL o i -

m Since on each of these o-rings, we always have above relation,
we complete our proof.



Proof of Corollary 8.8

Corollary 8.8

M =T and Proposmon 8.5, denote the union of the bad null
sets as Xp. Then let x € X\ Xp and Q = B,TB, C H for
some r > 0.

m Apply Lemma 8.10 with L = T and M = U_, we obtain that
the conditional measures for ut'|o with respect to the

o-algebra A = B] x B(BU’) can be obtained from the
leaf-wise measures /] for pfl-a.e.h € Q:

(VA o< (g xh)lo-

m Recall Proposition 8.5 gives for u/’-a.e. h=tu e Q:

T T
;U'tu.xt & :u'x :
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Corollary 8.8

M =T and Proposmon 8.5, denote the union of the bad null
sets as Xp. Then let x € X\ Xp and Q = B,TB, C H for

some r > 0.

m Apply Lemma 8.10 with L = T and M = U_, we obtain that
the conditional measures for ut'|o with respect to the
o-algebra A = B x B(Br ) can be obtained from the
leaf-wise measures /] for ut-a.e.h € Q:

(7t oc (uf o h)lo-

m Recall Proposition 8.5 gives for u/’-a.e. h=tu e Q:

T T
/Itqut & :ux



Proof of Corollary 8.8

Corollary 8.8

M =T and Proposmon 8.5, denote the union of the bad null
sets as Xp. Then let x € X\ Xp and Q = B,TB, C H for
some r > 0.

m Apply Lemma 8.10 with L = T and M = U_, we obtain that
the conditional measures for ut'|o with respect to the
o-algebra A = B x B(Br ) can be obtained from the
leaf-wise measures /] for ut-a.e.h € Q:

(7t oc (uf o h)lo-

m Recall Proposition 8.5 gives for ut-a.e. h=tuc @Q:

T T
Mtu.xt & /‘I/X :



Proof of Corollary 8.8

Corollary 8.8

m Combining above two equations, we obtain that

(:ux )h & fhy |BT X 5ua

which is equivalent to py/ |Q is a product measure which is
proportional to ¢(u] x v,) for some finite measure v, on BY-.

m Patching these measure v, together to obtain a Radon
measure v on U_, then we have

phocu(u] x v).

m Restrict to Q = B,TB;J’ C H and consider the o-algebra
A’ = B(BT) x BY~, whose atoms are tB/~ for t € BT .



Proof of Corollary 8.8

Corollary 8.8

m Combining above two equations, we obtain that

(:ux )h & fhy |BT X 6ua

which is equivalent to /| is a product measure which is
proportional to ¢(u] x v,) for some finite measure v, on BY-.

m Patching these measure v, together to obtain a Radon
measure v on U_, then we have
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m Restrict to Q = BrTBrU’ C H and consider the o-algebra
A’ = B(BT) x B~ whose atoms are tBY~ for t € BT .



Proof of Corollary 8.8

Corollary 8.8

m Combining above two equations, we obtain that

(:ux )h & fhy |BT X 6ua

which is equivalent to /| is a product measure which is
proportional to ¢(u] x v,) for some finite measure v, on BY-.

m Patching these measure v, together to obtain a Radon
measure v on U_, then we have

o oy X v).

m Restrict to Q = BrTBr ~ C H and consider the o-algebra
=B(B) x BY~, whose atoms are tBY~ for t € B'.



Proof of Corollary 8.8

Corollary 8.8

m Since the conditional measure of pu!’|q at h = tu equals
t(0¢ X v,), then for the action of U_ by left multiplication on
H, we have

() 10y ) € U= wh € BP=}) = (1), 1 )(BE -

which implies the atom of h = tu € @ corresponds to the set
Ve=tBY h1cU_ (this due to T normalize U_).

m Using these o-rings for all positive integers r, we obtain that
(/zf)g’ must be proportional to tvh~! for uH-a.e. h, where
tvh=1(A) = v(tAh~1) for AC U_.
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Corollary 8.8

m Since the conditional measure of pu!’|q at h = tu equals
t(0¢ X v,), then for the action of U_ by left multiplication on
H, we have

() 10y ) € U= wh € BP=}) = (1), 1 )(BE -

which implies the atom of h = tu € @ corresponds to the set
Ve=tBY h1cU_ (this due to T normalize U_).

m Using these o-rings for all positive integers r, we obtain that
(,ui"),lf‘ must be proportional to tvh™! for ut-a.e. h, where
tvh™1(A) = v(tAh~!) for AC U_.



Proof of Corollary 8.8

Corollary 8.8
m We have already shown for p/-a.e. h = tu:

u- U -
Phx O (1) o tvh™

m Since we cannot claim h = e for the above formula, we need
the following additional steps to establish our corollary:

Theorem 6.3 Proposition 8.5
e o' ph= oc (] x v)h™ o Wl tx v)h™t
Def of ¢

o u(pf, x trh™) o o(pf, % Nili;)'



Proof of Corollary 8.8

Corollary 8.8

m We have already shown for p/-a.e. h = tu:

(U U_ _
i o (ufh)y o tuh ™,

m Since we cannot claim h = e for the above formula, we need
the following additional steps to establish our corollary:

Theorem 6.3 Proposition 8.5
H Hp—1 T -1 T -1
Hh.x & Hx h & L(:u’x X V)h & L(:u’h.xt X V)h
Def of ¢

— U—
o Upx X trh™Y) o (g Xy )-



Corollary 8.8

Thanks!
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