The Littlewood conjecture in simultaneous approximation and variants of it

Erez Nesharim

Seminar on homogeneous dynamics and applications

12 November 2020

Littlewood's conjecture

- 2 C-S-D, Gallagher, Chow, E-K-L, Badziahin ...
- 3 The *p*-adic Littlewood conjecture
- 4 D-M–T, B–H–V, E–K, B–V
- 5 Littlewood conjectures in positive characteristic

Littlewood's conjecture (1930s)

For every $\mathbf{x} \in \mathbb{R}^2$ and every c > 0 there exist $\frac{\mathbf{m}}{n} \in \mathbb{Q}^2$ such that

$$x_1-\frac{m_1}{n}\Big|\Big|x_2-\frac{m_2}{n}\Big|\leq \frac{c^2}{n^3}.$$

For every $x \in \mathbb{R}$ denote $|\langle x \rangle| = d(x, \mathbb{Z})$. Upon multiplying by n^3 the Littlewood conjecture is more commonly phrased as follows:

Littlewood's conjecture (equivalent form.)

Every $\mathbf{x} \in \mathbb{R}^2$ satisfies

$$\inf_{n\in\mathbb{N}} n |\langle nx_1\rangle| |\langle nx_2\rangle| = 0.$$

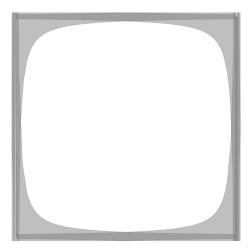


Figure: Rational vectors in the unit square with $n \le 1$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

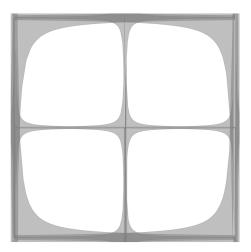


Figure: Rational vectors in the unit square with $n \le 2$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

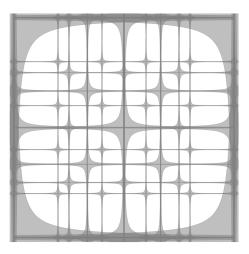


Figure: Rational vectors in the unit square with $n \le 5$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

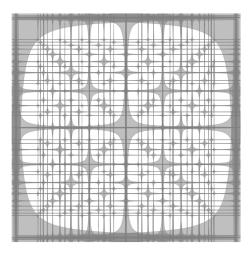


Figure: Rational vectors in the unit square with $n \le 10$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

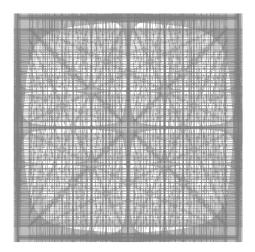


Figure: Rational vectors in the unit square with $n \le 20$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

For every $\boldsymbol{x} \in \mathbb{R}^2$ denote

$$u(\mathbf{x}) = \left(egin{array}{ccc} 1 & x_1 \ & 1 & x_2 \ & & 1 \end{array}
ight)$$

and note that

$$u(\mathbf{x})\left(\begin{array}{c}m_1\\m_2\\n\end{array}\right)=\left(\begin{array}{c}nx_1+m_1\\nx_2+m_2\\n\end{array}\right).$$

The Littlewood conjecture says that for every $\mathbf{x} \in \mathbb{R}^2$ and every c > 0 there are $0 \neq n \in \mathbb{N}$ and $\mathbf{m} \in \mathbb{Z}^2$ such that

$$|nx_1 + m_1| |nx_2 + m_2| \le c$$
.

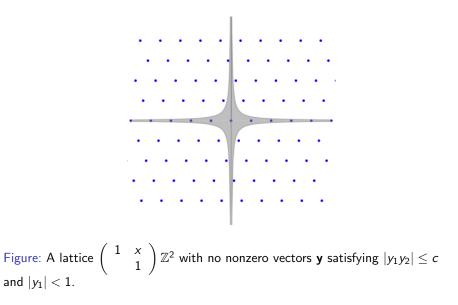
Equivalently, the lattice $u(\mathbf{x})\mathbb{Z}^3$ has vectors whose last coordinate is nonzero in the hyperbola given by

$$\left\{\mathbf{y}\in\mathbb{R}^3\,:\,|y_1y_2y_3|\leq c\right\}.$$

This in turn is equivalent to

$$u(\mathbf{x})\mathbb{Z}^3 \cap \left\{ \mathbf{y} \in \mathbb{R}^3 \, : \, |y_1y_2y_3| \leq c, \, |y_1|, |y_2| < 1 \right\} \neq \left\{ \mathbf{0} \right\}.$$

Lattice and hyperbola in \mathbb{R}^2



Lattice and hyperbola in \mathbb{R}^2



and $|y_1| < 1$.

For every $\boldsymbol{t} \in \mathbb{R}^2$ denote

$$a(\mathbf{t}) = \left(egin{array}{ccc} e^{t_1} & & \ & e^{t_2} & \ & & e^{-(t_1+t_2)} \end{array}
ight)$$

For 0 < c < 1, if

$$u(\mathbf{x})\mathbb{Z}^3 \cap \left\{ \mathbf{y} \in \mathbb{R}^3 \, : \, |y_1y_2y_3| \leq c^3, \; |y_1|, |y_2| < 1
ight\} = \left\{ \mathbf{0}
ight\}.$$

then as long as $t_1, t_2 \ge 0$ the lattice

$$a(\mathbf{t})u(\mathbf{x})\mathbb{Z}^3$$

has no nonzero vectors whose supremum norm is smaller than c.

On the other hand, if $u(\mathbf{x})\mathbb{Z}^3$ has a nonzero vector in

$$Y = \left\{ \mathbf{y} \in \mathbb{R}^3 \, : \, |y_1 y_2 y_3| \le c^5, \; |y_1|, |y_2| < 1
ight\}$$

then it must also have a nonzero vector in

$$Y' = \left\{ \mathbf{y} \in \mathbb{R}^3 \, : \, |y_1 y_2 y_3| \leq c^3, \; |y_1|, |y_2| \leq c
ight\}.$$

Dynamical formulation of Littlewood's conjecture (cntd.)

Indeed, if
$$u(\mathbf{x})\begin{pmatrix}\mathbf{m}\\n\end{pmatrix}\in Y$$
 then

$$|nx_1 + m_1| |nx_2 + m_2| \le c^5.$$

Assume WLOG that $|nx_2 + m_2| > c$. Then $n |nx_1 + m_1| < c^4$. By Dirichlet's theorem there exist integers k, m'_2 such that

> $|k(nx_2) + m'_2| < c$ 0 < k < 1/c

So n' = kn and $m'_1 = km_1$ satisfy

$$\begin{split} n' \left| n' x_1 + m'_1 \right| &= k^2 \left(n \left| n x_1 + m_1 \right| \right) < c^2 \,. \\ \text{So } \left| n' x_1 + m'_1 \right| < c \text{ and } n' \left| n' x_1 + m'_1 \right| \left| n' x_2 + m'_2 \right| < c^3 \text{, which verifies that} \\ u(\textbf{x}) \left(\begin{array}{c} \textbf{m}' \\ n' \end{array} \right) \in Y'. \end{split}$$

Therefore, there exist $t_1, t_2 \ge 0$ such that $a(\mathbf{t})u(\mathbf{x})\mathbb{Z}^3$ has a nonzero vector in

$$[-c,c]^3 = \left\{ \mathbf{y} \in \mathbb{R}^3 : |y_1|, |y_2|, |y_3| \le c \right\}.$$

Indeed, if $\mathbf{0} \neq \mathbf{y} \in Y' \cap u(\mathbf{x})\mathbb{Z}^3$ choose $t_1, t_2 \ge 0$ so that $e^{t_1}|y_1| = e^{t_2}|y_2| = c$. Then:

$$e^{-(t_1+t_2)}|y_3|=rac{1}{c^2}|y_1y_2y_3|\leq c\,,$$

so $\mathbf{0} \neq a(\mathbf{t})\mathbf{y} \in [-c, c]^3$.

 $\mathbf{x} \in \mathbb{R}^2$ satisfies Littlewood if and only if $a(\mathbf{t})u(\mathbf{x})\mathbb{Z}^3$ has short nonzero vectors as $(t_1, t_2) \to +\infty$.

Let $G := SL_3(\mathbb{R})$, $\Gamma := SL_3(\mathbb{Z})$, $X := G/\Gamma$. The action $G \curvearrowright X$ is identified with the linear action of G on the space of lattices via the map

$$[g]
ightarrow g\mathbb{Z}^3$$
 .

For every $\varepsilon > 0$ define the set

$${\mathcal K}_{\varepsilon}:=\left\{[g]\in X\,:\, \|{\mathbf v}\|\geq \varepsilon \text{ for any } {\mathbf v}\in g{\mathbb Z}^3\setminus\{{\mathbf 0}\}\right\}\,.$$

Mahler's compactness criterion

 $S \subseteq X$ is unbounded if and only if $S \nsubseteq K_{\varepsilon}$ for every $\varepsilon > 0$.

$\mathbf{x} \in \mathbb{R}^2$ satisfies Littlewood if and only if $\{a(\mathbf{t}) [u(\mathbf{x})] : t_1, t_2 \ge 0\}$ is unbounded.

A natural generalisation of Littlewood

Conjecture (Littlewood for cones)

For any $\mathbf{t}, \mathbf{t}' \ge 0$ satisfying span $\mathbf{t} \neq$ span \mathbf{t}' , every $\mathbf{x} \in \mathbb{R}^2$ satisfies that the orbit $\{a(\mathbf{t})^k a(\mathbf{t}')^l [u(\mathbf{x})] : k, l \ge 0\}$ is unbounded.

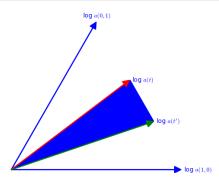


Figure: A two parameter subgroup generated by two diagonal matrices

Erez Nesharim (HomDyn and applications)

Littlewood conjectures

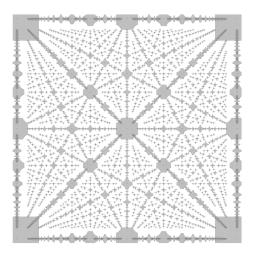


Figure: Rational vectors in the unit square with $n \le 20$ surrounded by a hyperbola $|x_1 - \frac{m_1}{n}| \cdot |x_2 - \frac{m_2}{n}| \le \frac{c^2}{n^3}$ with $c = \frac{1}{10}$.

Definition

 $x \in \mathbb{R}$ is well approximable if $\inf_{n \in \mathbb{N}} n |\langle nx \rangle| = 0$. Otherwise, x is badly approximable.

Recall that x is well approximable if and only if upon writing

$$x = [a_0; a_1, a_2, \ldots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \cdots} \cdots}$$

the integers a_0 and $a_1, a_2, a_3, \ldots \geq 1$ satisfy

 $\sup_{n\in\mathbb{N}}a_n=\infty\,.$

If $x_1 \in \mathbb{R}$ is well approximable then (x_1, x_2) satisfies Littlewood for every $x_2 \in \mathbb{R}$.

Gallagher's theorem in simultaneous approximation

Theorem (Spencer 1942)

For any $\alpha > 0$, almost every $\mathbf{x} \in \mathbb{R}^2$ satisfies

$$\inf_{n\in\mathbb{N}} n^{1+\alpha} |\langle nx_1\rangle| |\langle nx_2\rangle| > 0.$$

Theorem (Gallagher 1962)

For any monotonic function $\psi : \mathbb{N} \to (0, \infty)$, the set

$$\left\{\mathbf{x} \in \mathbb{R}^2 : |\langle nx_1 \rangle| |\langle nx_2 \rangle| < \psi(n) \text{ i.o. } \right\}.$$

has full or zero Lebesgue measure if the sum

$$\sum_{n\in\mathbb{N}}\psi(n)\log n$$

diverges or converges, respectively.

Corollary (Gallagher 1962)

Almost every $\mathbf{x} \in \mathbb{R}^2$ satisfies

$$\inf_{n\in\mathbb{N}} n\log^2 n |\langle nx_1\rangle| |\langle nx_2\rangle| = 0.$$

Definition

Two real numbers x_1 and x_2 are linearly dependent over the rationals if there exist $m \in \mathbb{N}$ and $\mathbf{n} \in \mathbb{Z}^2$ such that

 $m + n_1 x_1 + n_2 x_2 = 0$.

If x_1 and x_2 are linearly dependent over the rationals then (x_1, x_2) satisfies Littlewood.

Linearly independent pairs over the rationals

Let $\mathbf{x} \in \mathbb{R}^2$ be such that $[\mathbb{Q}[x_1, x_2] : \mathbb{Q}] = 3$.

Theorem (Cassels – Swinnerton-Dyer 1956)

x satisfies Littlewood.

In fact, a slightly stronger result holds:

$$\liminf_{n\in\mathbb{N}} n\log n |\langle nx_1\rangle| |\langle nx_2\rangle| < \infty.$$

Problem

Is it true that

$$\inf_{n\in\mathbb{N}} n\log n |\langle nx_1\rangle| |\langle nx_2\rangle| > 0.$$

Theorem (Pollington – Velani 2000)

If $x_1 \in \mathbb{R}$ is badly approximable then the set of all badly approximable x_2 satisfying

$$\liminf_{n\in\mathbb{N}} n\log n |\langle nx_1\rangle| |\langle nx_2\rangle| \leq 1$$

has full Hausdorff dimension.

Gallagher on badly approximable fibres

Theorem (Chow 2017, Beresnevich-Haynes-Velani 2015)

If $x_1 \in \mathbb{R}$ is badly approximable, $\psi: \mathbb{N} o (0,\infty)$ monotonic, then the set

$$\{x_2 \in \mathbb{R} : |\langle nx_1 \rangle| |\langle nx_2 \rangle| < \psi(n) \text{ i.o. }\}$$

has full or zero Lebesgue measure if the series

$$\sum_{n\in\mathbb{N}}\psi(n)\log n$$

diverges or converges, respectively.

Corollary (Chow 2017)

If $x_1 \in \mathbb{R}$ is badly approximable then almost every x_2 satisfies

$$\inf_{n\in\mathbb{N}} n\log^2 n |\langle nx_1\rangle| |\langle nx_2\rangle| = 0.$$

Erez Nesharim (HomDyn and applications)

Definition

Let S be a finite set. The combinatorial entropy of a sequence over S is the exponential growth rate of the number of different blocks.

Formally, for $\mathbf{a} \in S^{\mathbb{N}}$ and $j \in \mathbb{N}$, a *j*-block of \mathbf{a} is a tuple $\mathbf{b} \in S^{j}$ such that there exists $i \ge 0$ for which

$$(b_1,\ldots,b_j)=(a_{i+1},\ldots,a_{i+j})$$
.

Let $C_j(\mathbf{a})$ be the number of different *n* blocks of **a**. Then the combinatorial entropy of **a** is

$$h(\mathbf{a}) \coloneqq \lim_{j \to \infty} \frac{\log C_j(\mathbf{a})}{j}$$

Theorem (Einsiedler – Katok – Lindenstrauss 2006)

If $x_1 = [a_1, a_2, a_3, ...]$ is badly approximable and $h(\mathbf{a}) > 0$ then for every x_2 the pair (x_1, x_2) satisfies Littlewood.

Theorem (Moshchevitin, Moshchevitin–Bugeaud 2009)

For every badly approximable number x_1 the set

$$\left\{x_2 \in \mathbb{R} : \inf_{n \in \mathbb{N}} n \log^2 n \left|\langle n x_1 \rangle\right| \left|\langle n x_2 \rangle\right| > 0\right\}$$

has full Hausdorff dimension.

Theorem (Badziahin 2012)

For every badly approximable number x_1 the set

$$\left\{x_2 \in \mathbb{R} : \inf_{n \in \mathbb{N}} n \log n \log \log n \left| \langle n x_1 \rangle \right| \left| \langle n x_2 \rangle \right| > 0\right\}$$

has full Hausdorff dimension.

For any $x \in \mathbb{R}$, every $n \in \mathbb{N}$ satisfies $|\langle nx \rangle| \leq \frac{1}{2}$ and $\inf_{n \in \mathbb{N}} n |\langle nx \rangle| < \frac{1}{\sqrt{5}}$. Therefore every $\mathbf{x} \in \mathbb{R}^2$ satisfies

$$\inf_{n\in\mathbb{N}} n |\langle nx_1\rangle| |\langle nx_2\rangle| < \frac{1}{2\sqrt{5}}.$$

Badziahin improved this bound using a computer:

Theorem (Badziahin 2016)

Every $\mathbf{x} \in \mathbb{R}^2$ satisfies $\inf_{n \in \mathbb{N}} n |\langle nx_1 \rangle| |\langle nx_2 \rangle| < \frac{1}{19}$.

The following problem was suggested by De-Mathan and Teulié in 2004 as an analogue of the Littlewood conjecture: Fix a prime p. For a nonzero integer n let its p-adic norm be

$$|n|_{p} = p^{-\max\{k \ge 0 : p^{k}|n\}}.$$

The *p*-adic Littlewood conjecture

Does every $x \in \mathbb{R}$ satisfy

$$\inf_{n>0} n \left| \langle nx \rangle \right| \left| n \right|_{p} = 0 ?$$

Equivalently, writing $n = kp^{l}$ gives:

The *p*-adic Littlewood conjecture (equivalent form.)

Does every $x \in \mathbb{R}$ satisfy

$$\inf_{k\in\mathbb{N},\,l\geq0}k\left|\left\langle kp^{l}x\right\rangle\right|=0?$$

• $\varphi = [1; 1, 1, 1, 1, ...].$ • $2\varphi = [3; 4, 4, 4, 4, ...].$ • $4\varphi = [6; 2, 8, 2, 8, ...].$ • $8\varphi = [12; 1, 16, 1, 16, ...].$ • $16\varphi = [25; 1, 7, 1, 34, 1, 7, 1, 34, ...].$ • ...

•
$$\sqrt{2} = [1; 2, 2, 2, ...].$$

• $2\sqrt{2} = [2; 1, 4, 1, 4, ...].$
• $4\sqrt{2} = [5; 1, 1, 1, 10, ...].$
• $8\sqrt{2} = [11; 3, 5, 3, 22, ...].$
• $16\sqrt{2} = [22; 1, 1, 1, 2, 6, 11, 6, 2, 1, 1, 1, 44, ...].$
• ...

• $\varphi = [1; 1, 1, 1, \ldots].$ • $3\varphi = [4; 1, 5, 1, 5, \ldots].$ • $9\varphi = [14; 1, 1, 3, 1, 1, 19, \ldots].$ • $27\varphi = [43; 1, 2, 5, 6, 1, 1, 11, 1, 1, 6, 5, 2, 1, 59 \ldots].$ • $81\varphi = [131; 16, 2, 5, 1, 3, 5, 1, 1, 2, 1, 1, 8, 1, 19, 4, 2, 1, 2, 1, 1, 1, 1, 35, 1, 1, 1, 1, 2, 1, 2, 4, 19, 1, 8, 1, 1, 2, 1, 1, 5, 3, 1, 5, 2, 16, 181, \ldots].$

Erez Nesharim (HomDyn and applications)

• ...

Dynamics with two parameters

Let $G:(0,1) \rightarrow [0,1)$ be the Gauss map defined by

$$G(x) = \left\{\frac{1}{x}\right\}.$$

The *p*-adic Littlewood conjecture (equivalent form.)

Every $x \in \mathbb{R} \setminus \mathbb{Q}$ *satisfies*

 $0 \in \overline{\{G^j p^k x \mod 1 : j, k \ge 0\}}.$

Theorem (Furstenberg 1967)

If $p, q \in \mathbb{N}$ satisfy $\frac{\log p}{\log q} \notin \mathbb{Q}$ then every $x \in \mathbb{R} \setminus \mathbb{Q}$ satisfies

$$0\in\overline{\{p^jq^kx\,\,mod\,\,1\,:\,j,k\geq 0\}}.$$

The usual Dani correspondence ties between approximation of a real number x and the orbit

$$\left(\begin{array}{c} e^t \\ e^{-t} \end{array}\right) \left(\begin{array}{c} 1 & x \\ & 1 \end{array}\right) \mathbb{Z}^2.$$

Is there a homogeneous space $X = G/\Gamma$ with a linear action which is equivalent to passing from

$$\begin{bmatrix} \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} \end{bmatrix}$$
$$\begin{bmatrix} \begin{pmatrix} 1 & px \\ & 1 \end{pmatrix} \end{bmatrix}?$$

to

Dynamical formulation of *p*-adic Littlewood (cntd.)

Take $G := \text{PGL}_2(R) \times \text{PGL}_2(\mathbb{Q}_p)$ and $\Gamma := \text{PGL}_2(\mathbb{Z}_p\left[\frac{1}{p}\right])$ embedded diagonally in G. Then

$$\begin{pmatrix} \begin{bmatrix} p \\ & 1 \end{bmatrix}, \begin{bmatrix} p \\ & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} p & px \\ & 1 \end{pmatrix}, \begin{pmatrix} p & \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1/p & \\ & 1 \end{bmatrix}, \begin{bmatrix} 1/p & \\ & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & px \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix}$$

Dynamical formulation of *p*-adic Littlewood (cntd.)

Take $G := \text{PGL}_2(R) \times \text{PGL}_2(\mathbb{Q}_p)$ and $\Gamma := \text{PGL}_2(\mathbb{Z}_p\left[\frac{1}{p}\right])$ embedded diagonally in G. Then

$$\begin{pmatrix} \begin{bmatrix} p \\ & 1 \end{bmatrix}, \begin{bmatrix} p \\ & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} = \\ \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} p & px \\ & 1 \end{pmatrix}, \begin{pmatrix} p \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1/p \\ & 1 \end{bmatrix}, \begin{bmatrix} 1/p \\ & 1 \end{bmatrix} \end{pmatrix} = \\ \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & px \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix}$$

Dynamical formulation of *p*-adic Littlewood (cntd.)

Take $G := \text{PGL}_2(R) \times \text{PGL}_2(\mathbb{Q}_p)$ and $\Gamma := \text{PGL}_2(\mathbb{Z}_p\left[\frac{1}{p}\right])$ embedded diagonally in G. Then

$$\begin{pmatrix} \begin{bmatrix} p \\ & 1 \end{bmatrix}, \begin{bmatrix} p \\ & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} = \\ \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} p & px \\ & 1 \end{pmatrix}, \begin{pmatrix} p \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1/p \\ & 1 \end{bmatrix}, \begin{bmatrix} 1/p \\ & 1 \end{bmatrix} \end{pmatrix} = \\ \begin{bmatrix} \begin{pmatrix} \begin{pmatrix} 1 & px \\ & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ & 1 \end{pmatrix} \end{pmatrix} \end{bmatrix}$$

Theorem (Einsiedler-Kleinbock 2005)

 $x \in \mathbb{R}$ satisfies the p-adic Littlewood conjecture if and only if

$$\left\{ \left(\left[\begin{array}{c} e^{t} \\ 1 \end{array}\right], \left[\begin{array}{c} p^{-k} \\ 1 \end{array}\right] \right) \left[\left(\left(\begin{array}{c} 1 & x \\ 1 \end{array}\right), \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \right) \right] \\ \vdots \ t \ge 0, \ e^{t} \ge p^{k} \right\}$$

is unbounded.

If $x \in \mathbb{R}$ is well approximable then

 $\inf_{n\in\mathbb{N}}n\left|\langle nx\rangle\right|=0\,.$

Since $|n|_p \leq 1$ for every $n \in \mathbb{N}$ this implies that

$$\inf_{n\in\mathbb{N}} n |\langle nx\rangle| |n|_p = 0.$$

Gallagher-type theorem for simultaneously real and *p*-adic approximation

Theorem (Bugeaud–Haynes–Velani 2011)

For any monotonic function $\psi : \mathbb{N} \to (0,\infty)$, the set

$$\left\{x\in\mathbb{R}: \left|\langle nx\rangle\right|\left|n\right|_{p} < \psi(n) \text{ i.o. }\right\}.$$

has full or zero Lebesgue measure if the sum

$$\sum_{n\in\mathbb{N}}\psi(n)\log n$$

diverges or converges, respectively.

Corollary

Almost every $x \in \mathbb{R}$ satisfies $\inf_{n \in \mathbb{N}} n \log^2 n |\langle nx \rangle| |n|_p = 0$.

Quadratic irrationals satisfy *p*-adic Littlewood

Let x be a quadratic irrational.

Theorem (De-Mathan – Teulié 2004)

x satisfies p-adic Littlewood.

In fact, a slightly stronger result holds:

Theorem (De-Mathan – Teulié 2004, Zorin – Bengoechea 2014)

$$\liminf_{n\in\mathbb{N}}n\log n|\langle nx\rangle||n|_p<\infty.$$

Problem

Is it true that

$$\inf_{n\in\mathbb{N}}n\log n|\langle nx\rangle||n|_p>0?$$

Let $x = [a_1, a_2, a_3, \ldots]$ be badly approximable.

Theorem (Einsiedler – Kleinbock 2005)

If $h(\mathbf{a}) > 0$ then x satisfies p-adic Littlewood.

$$\sup_{j\geq 1} C_j(\mathbf{a}) - j < \infty$$

then x satisfies p-adic Littlewood.

Theorem (Badziahin–Velani 2011)

The set

$$\left\{x \in \mathbb{R} : \inf_{n \in \mathbb{N}} n \log n \log \log n \left| \langle nx \rangle \right| \left| n \right|_{p} > 0 \right\}$$

has full Hausdorff dimension.

Best upper bound for *p*-adic Littlewood

Any
$$x \in \mathbb{R}$$
 satisfies $\inf_{n \in \mathbb{N}} n |\langle nx \rangle| < \frac{1}{\sqrt{5}}$, so:

Theorem

Every
$$x \in \mathbb{R}$$
 satisfies $\inf_{n \in \mathbb{N}} n |\langle nx \rangle| |n|_p < \frac{1}{\sqrt{5}}$.

Badziahin improved this bound for p = 2 using a computer:

Theorem (Badziahin 2016)

Every
$$x \in \mathbb{R}$$
 satisfies $\inf_{n \in \mathbb{N}} n |\langle nx \rangle| |n|_2 < \frac{1}{9}$.

Recently, John Blackman (2020) reported on new bounds achieved by a different approach:

Prime p	2	3	5	7	11	13	17	19
$m_{PLC}(p)$	< $\frac{1}{15}$	< $\frac{1}{9}$	< $\frac{1}{9}$	< $\frac{1}{4}$	< $\frac{1}{5}$	$<\frac{1}{6}$	$<\frac{1}{7}$	$<\frac{1}{7}$

Figure: Current records for upper bounds for some small primes

- q a fixed prime power.
- \mathbb{F}_q the field with q elements.
- $\mathbb{F}_{q}[t]$ the ring of polynomials with coefficients in \mathbb{F}_{q} .
- $\mathbb{F}_{q}(t)$ the field of rational functions in variable t.
- $\mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)$ the field of all Laurent series with finitely many nonzero coefficients for positive powers of t

$$\theta = \theta_{-h}t^h + \ldots + \theta_0 + \theta_1t^{-1} + \theta_2t^{-2} + \ldots$$

where $\theta_i \in \mathbb{F}_q$ for every $i \geq -h$.

The analogy between $\mathbb{F}_q\left(\left(rac{1}{t} ight) ight)$ and \mathbb{R}

For $\theta \in \mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)$:

• The polynomial part and fractional part are

$$\theta = \underbrace{\theta_{-h}t^{h} + \ldots + \theta_{0}}_{[\theta]} + \underbrace{\theta_{1}t^{-1} + \theta_{2}t^{-2} + \ldots}_{\langle \theta \rangle}$$

• The degree and absolute value are

$$\deg \theta = h$$
$$|\theta| = q^{\deg \theta}$$

٠

• The absolute value of the fractional part is the distance to the polynomials

$$|\langle \theta \rangle| = \operatorname{dist}(\theta, \mathbb{F}_q[t]).$$

Let
$$\theta = \theta_{-h}t^h + \ldots + \theta_0 + \theta_1t^{-1} + \theta_2t^{-2} + \ldots \in \mathbb{F}_q\left(\left(\frac{1}{t}\right)\right).$$

• When does
 $|\langle \theta \rangle| < q^{-\ell}$?

• Precisely when

$$\theta_1 = \ldots = \theta_\ell = 0.$$

Let
$$\theta = \theta_{-h}t^h + \ldots + \theta_0 + \theta_1t^{-1} + \theta_2t^{-2} + \ldots \in \mathbb{F}_q\left(\left(\frac{1}{t}\right)\right).$$

• When does
 $|\langle \theta \rangle| < q^{-\ell}$?

• Precisely when

$$\theta_1 = \ldots = \theta_\ell = 0.$$

Given $\theta \in \mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)$ and $\ell \ge 0$, are there solutions $0 \ne N \in \mathbb{F}_q[t]$ to the inequality

 $|N||\langle N heta
angle| < q^{-\ell}$?

Recall that $\langle \theta \rangle = \theta_1 t^{-1} + \theta_2 t^{-2} + \dots$ and let $N = n_0 + n_1 t + \dots + n_h t^h$. Then:

$$\langle N\theta \rangle = (\theta_1 n_0 + \dots + \theta_{h+1} n_h) t^{-1} + \\ (\theta_2 n_0 + \dots + \theta_{h+2} n_h) t^{-2} +$$

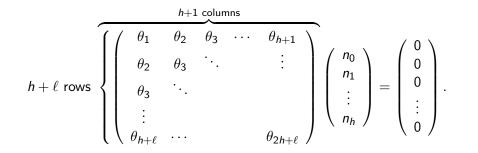
. . .

If
$$n_h \neq 0$$
 then $|N| = q^h$, so $|N| |\langle N\theta \rangle| < q^{-\ell}$ if and only if $|\langle N\theta \rangle| < q^{-(h+\ell)}$, which is equivalent to

$$\sum_{i=0}^{h} \theta_{j+i} n_i = 0 \text{ for every } 1 \le j \le h + \ell.$$

The approximation problem in matrix notation

In other words, if $N \in \mathbb{F}_q[t]$ with deg N = h is a solution to $|N| |\langle N\theta \rangle| < q^{-\ell}$, then



If the inequality $|N| \, |\langle N heta
angle| < q^{-\ell}$ has a solution with deg N=h then

$$\begin{vmatrix} \theta_1 & \theta_2 & \cdots & \theta_{h+j} \\ \theta_2 & \ddots & \ddots & \theta_{h+j+1} \\ \vdots & \ddots & \ddots & \vdots \\ \theta_{h+j} & \theta_{h+j+1} & \cdots & \theta_{2h+2j-1} \end{vmatrix} = 0.$$

for every $1 \le j \le \ell$. In fact, the other direction also holds.

The Hankel matrix of a sequence

For a sequence $heta_1, heta_2,\ldots\in\mathbb{F}_q$ its Hankel matrix is

$$H_{\theta} = \begin{pmatrix} \theta_1 & \theta_2 & \theta_3 & \ddots \\ \theta_2 & \theta_3 & \ddots & \ddots \\ \theta_3 & \ddots & \ddots & \\ \ddots & \ddots & & \end{pmatrix}$$

Theorem (Folklore)

Assume $\theta \in \mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)$ and $\ell \ge 0$. Then $|N| |\langle N\theta \rangle| < q^{-\ell}$ has a nonzero solution if and only if H_{θ} has ℓ consecutive leading principal minors that vanish.

The following problem was raised by Davenport and Lewis in 1963:

Problem (The Littlewood conjecture over function fields)

Is it true that every $heta, arphi \in \mathbb{F}_q\left(\left(rac{1}{t}
ight)
ight)$ satisfy

 $\inf_{0 \neq N \in \mathbb{F}_{q}[t]} |N| |\langle N\theta \rangle| |\langle N\varphi \rangle| = 0 ?$

A Dani correspondence for the Littlewood conjecture over function fields

Let
$$G = \mathsf{SL}_3\left(\mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)\right)$$
, $\Gamma = \mathsf{SL}_3\left(\mathbb{F}_q\left[t\right]\right)$, $X = G/\Gamma$.

$$oldsymbol{ heta} \in \mathbb{F}_{oldsymbol{q}}\left(\left(rac{1}{t}
ight)
ight)^2$$
 satisfies LCFF if and only if

$$\left\{ \left(\begin{array}{cc} t^{k} & & \\ & t^{l} & \\ & & t^{-(k+l)} \end{array}\right) \left[\left(\begin{array}{cc} 1 & \theta_{1} \\ & 1 & \theta_{2} \\ & & 1 \end{array}\right) \right] : k, l \ge 0 \right\}$$

is unbounded.

The following problem was suggested by De-Mathan and Teulié in 2004 together with its real counterpart:

Problem (The *t*-adic Littlewood conjecture (equivalent form.))

Is it true that every $heta \in \mathbb{F}_q\left(\left(rac{1}{t}
ight)
ight)$ satisfies

$$\inf_{0\neq N\in\mathbb{F}_q[t],\,k\geq 0}|N|\left|\left\langle Nt^k\theta\right\rangle\right|=0?$$

Let
$$G = \mathsf{SL}_2\left(\mathbb{F}_q\left(\left(rac{1}{t}
ight)
ight) imes \mathsf{SL}_2\left(\mathbb{F}_q\left((t)
ight)
ight)$$
, $\mathsf{\Gamma} = \mathsf{SL}_2\left(\mathbb{F}_q\left[t,t^{-1}
ight]
ight)$, $X = G/\mathsf{\Gamma}$

 $heta \in \mathbb{F}_q\left(\left(rac{1}{t}
ight)
ight)$ satisfies the t-adic Littlewood conjecture if and only if

$$\left\{ \left(\left[\begin{array}{c} t^{k} \\ 1 \end{array}\right], \left[\begin{array}{c} t^{-l} \\ 1 \end{array}\right] \right) \left[\left(\left(\begin{array}{c} 1 & \theta \\ 1 \end{array}\right), \left(\begin{array}{c} 1 \\ 1 \end{array}\right) \right) \right] \\ \vdots \ k \ge 0, \ k \ge l \right\}$$

is unbounded.

Problem (The *t*-adic Littlewood conjecture)

Is it true that for every sequence $\theta_1, \theta_2, \ldots \in \mathbb{F}_q$ and every $\ell \ge 0$, H_{θ} has ℓ consecutive adjacent minors that vanish?

In other words, is it true that for every $\theta_1, \theta_2, \ldots \in \mathbb{F}_q$ and every $\ell \ge 1$ there exist $h \ge 0$ and $k \ge 0$ such that every $1 \le j \le \ell$ satisfies

$$\begin{vmatrix} \theta_{k+1} & \theta_{k+2} & \cdots & \theta_{k+h+j} \\ \theta_{k+2} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \theta_{k+h+j} & \cdots & \cdots & \theta_{k+2h+2j-1} \end{vmatrix} = 0?$$

Theorem (Adiceam–Nesharim–Lunnon 2020)

There exists a sequence $\theta_1, \theta_2, \ldots \in \mathbb{F}_3$ such that every adjacent minor of H_{θ} is either nonzero or becomes nonzero when being added the following row and column.

Array of Hankel determinants with isolated zeros 100×200

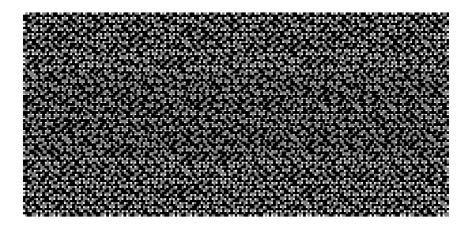


Figure: All $j \times j$ adjacent minors of H_{θ} with upper-left entry $\theta_i, \downarrow i, \rightarrow j$. White=0, Gray=1, Black=2.

The paperfolding sequence

110110000 a a g 2 2

Figure: Folding a piece of paper

Let φ be the *paperfolding sequence*, defined by $\varphi_{2^{j-1}} = 0$ and $\varphi_i = 1 - \varphi_{2^j-i}$ for every $j \ge 1$ and $2^{j-1} < i < 2^j$.

 $\varphi = (0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1...)$

Theorem (Adiceam–Nesharim–Lunnon 2020)

 H_{φ} has no four consecutive adjacent minors that vanish mod 3.

The paperfolding Hankel determinants 100×200

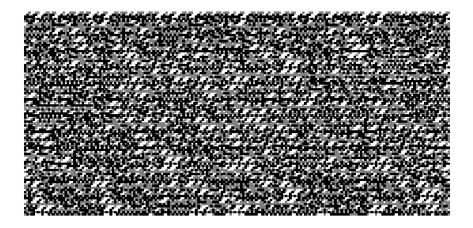


Figure: All $j \times j$ adjacent minors of H_{φ} with upper-left entry θ_i , $\downarrow i$, $\rightarrow j$. White=0, Gray=1, Black=2.

	Littlewood conjecture	<i>p</i> -adic Littlewood conjecture		
\mathbb{R}	open	open		
$\mathbb{F}_q\left(\left(\frac{1}{t}\right)\right)$	open	false for $q = 3$		