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Littlewood’s conjecture in simultaneous approximation

Littlewood’s conjecture (1930s)

For every x ∈ R2 and every c > 0 there exist m
n ∈ Q2 such that∣∣∣x1 − m1

n

∣∣∣ ∣∣∣x2 − m2

n

∣∣∣ ≤ c2

n3
.
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Equivalent formulation of the Littlewood conjecture

For every x ∈ R denote |〈x〉| = d (x ,Z). Upon multiplying by n3 the
Littlewood conjecture is more commonly phrased as follows:

Littlewood’s conjecture (equivalent form.)

Every x ∈ R2 satisfies

inf
n∈N

n |〈nx1〉| |〈nx2〉| = 0.
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Rational vectors surrounded by hyperbolas

Figure: Rational vectors in the unit square with n ≤ 1 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .
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Rational vectors surrounded by hyperbolas

Figure: Rational vectors in the unit square with n ≤ 2 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .
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Rational vectors surrounded by hyperbolas

Figure: Rational vectors in the unit square with n ≤ 5 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .
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Rational vectors surrounded by hyperbolas

Figure: Rational vectors in the unit square with n ≤ 10 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .

Erez Nesharim (HomDyn and applications) Littlewood conjectures 12 Nov 20 8 / 71



Rational vectors surrounded by hyperbolas

Figure: Rational vectors in the unit square with n ≤ 20 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .
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Geometric interpretation of Littlewood’s conjecture

For every x ∈ R2 denote

u(x) =

 1 x1
1 x2

1


and note that

u(x)

 m1

m2

n

 =

 nx1 + m1

nx2 + m2

n

 .
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Geometric interpretation of Littlewood’s conjecture (cntd.)

The Littlewood conjecture says that for every x ∈ R2 and every c > 0
there are 0 6= n ∈ N and m ∈ Z2 such that

n |nx1 + m1| |nx2 + m2| ≤ c .

Equivalently, the lattice u(x)Z3 has vectors whose last coordinate is
nonzero in the hyperbola given by{

y ∈ R3 : |y1y2y3| ≤ c
}
.

This in turn is equivalent to

u(x)Z3 ∩
{
y ∈ R3 : |y1y2y3| ≤ c, |y1|, |y2| < 1

}
6= {0} .
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Lattice and hyperbola in R2

Figure: A lattice

(
1 x

1

)
Z2 with no nonzero vectors y satisfying |y1y2| ≤ c

and |y1| < 1.
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Lattice and hyperbola in R2

Figure: A lattice

(
1 x

1

)
Z2 with no nonzero vectors y satisfying |y1y2| ≤ c

and |y1| < 1.
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Dynamical formulation of Littlewood’s conjecture

For every t ∈ R2 denote

a(t) =

 et1

et2

e−(t1+t2)

 .

For 0 < c < 1, if

u(x)Z3 ∩
{
y ∈ R3 : |y1y2y3| ≤ c3, |y1|, |y2| < 1

}
= {0} .

then as long as t1, t2 ≥ 0 the lattice

a(t)u(x)Z3

has no nonzero vectors whose supremum norm is smaller than c.
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Dynamical formulation of Littlewood’s conjecture (cntd.)

On the other hand, if u(x)Z3 has a nonzero vector in

Y =
{
y ∈ R3 : |y1y2y3| ≤ c5, |y1|, |y2| < 1

}
then it must also have a nonzero vector in

Y ′ =
{
y ∈ R3 : |y1y2y3| ≤ c3, |y1|, |y2| ≤ c

}
.
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Dynamical formulation of Littlewood’s conjecture (cntd.)

Indeed, if u(x)

(
m
n

)
∈ Y then

n |nx1 + m1| |nx2 + m2| ≤ c5.

Assume WLOG that |nx2 + m2| > c. Then n |nx1 + m1| < c4.
By Dirichlet’s theorem there exist integers k,m′2 such that

|k(nx2) + m′2| < c

0 < k < 1/c

So n′ = kn and m′1 = km1 satisfy

n′
∣∣n′x1 + m′1

∣∣ = k2 (n |nx1 + m1|) < c2 .

So |n′x1 + m′1| < c and n′ |n′x1 + m′1| |n′x2 + m′2| < c3, which verifies that

u(x)

(
m′

n′

)
∈ Y ′.
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Dynamical formulation of Littlewood’s conjecture (cntd.)

Therefore, there exist t1, t2 ≥ 0 such that a(t)u(x)Z3 has a nonzero vector
in

[−c, c]3 =
{
y ∈ R3 : |y1|, |y2|, |y3| ≤ c

}
.

Indeed, if 0 6= y ∈ Y ′ ∩ u(x)Z3 choose t1, t2 ≥ 0 so that
et1 |y1| = et2 |y2| = c. Then:

e−(t1+t2)|y3| =
1

c2
|y1y2y3| ≤ c ,

so 0 6= a(t)y ∈ [−c, c]3.
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Dynamical formulation of Littlewood’s conjecture (cntd.)

x ∈ R2 satisfies Littlewood if and only if a(t)u(x)Z3 has short nonzero
vectors as (t1, t2)→ +∞.
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The topology on the space of lattices

Let G := SL3 (R), Γ := SL3 (Z), X := G/Γ. The action G y X is
identified with the linear action of G on the space of lattices via the map

[g ]→ gZ3 .

For every ε > 0 define the set

Kε :=
{

[g ] ∈ X : ‖v‖ ≥ ε for any v ∈ gZ3 \ {0}
}
.

Mahler’s compactness criterion

S ⊆ X is unbounded if and only if S 6⊆ Kε for every ε > 0.
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A Dani correspondence for Littlewood

x ∈ R2 satisfies Littlewood if and only if {a(t) [u(x)] : t1, t2 ≥ 0} is
unbounded.

Erez Nesharim (HomDyn and applications) Littlewood conjectures 12 Nov 20 20 / 71



A natural generalisation of Littlewood

Conjecture (Littlewood for cones)

For any t, t′ ≥ 0 satisfying span t 6= span t′, every x ∈ R2 satisfies that the
orbit

{
a(t)ka(t′)l [u(x)] : k, l ≥ 0

}
is unbounded.

Figure: A two parameter subgroup generated by two diagonal matrices
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Rational vectors surrounded by trimmed hyperbolas

Figure: Rational vectors in the unit square with n ≤ 20 surrounded by a hyperbola∣∣x1 − m1

n

∣∣ · ∣∣x2 − m2

n

∣∣ ≤ c2

n3 with c = 1
10 .
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Well approximable numbers satisfy Littlewood

Definition

x ∈ R is well approximable if infn∈N n |〈nx〉| = 0. Otherwise, x is badly
approximable.

Recall that x is well approximable if and only if upon writing

x = [a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2+··· · · ·

the integers a0 and a1, a2, a3, . . . ≥ 1 satisfy

sup
n∈N

an =∞ .

If x1 ∈ R is well approximable then (x1, x2) satisfies Littlewood for every
x2 ∈ R.
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Gallagher’s theorem in simultaneous approximation

Theorem (Spencer 1942)

For any α > 0, almost every x ∈ R2 satisfies

inf
n∈N

n1+α |〈nx1〉| |〈nx2〉| > 0.

Theorem (Gallagher 1962)

For any monotonic function ψ : N→ (0,∞), the set{
x ∈ R2 : |〈nx1〉| |〈nx2〉| < ψ(n) i.o.

}
.

has full or zero Lebesgue measure if the sum∑
n∈N

ψ(n) log n

diverges or converges, respectively.
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Gallagher’s theorem in simultaneous approximation (cntd.)

Corollary (Gallagher 1962)

Almost every x ∈ R2 satisfies

inf
n∈N

n log2 n |〈nx1〉| |〈nx2〉| = 0 .
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Linearly dependent pairs over the rationals

Definition

Two real numbers x1 and x2 are linearly dependent over the rationals if
there exist m ∈ N and n ∈ Z2 such that

m + n1x1 + n2x2 = 0 .

If x1 and x2 are linearly dependent over the rationals then (x1, x2) satisfies
Littlewood.
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Linearly independent pairs over the rationals

Let x ∈ R2 be such that [Q[x1, x2] : Q] = 3.

Theorem (Cassels – Swinnerton-Dyer 1956)

x satisfies Littlewood.

In fact, a slightly stronger result holds:

Theorem (Peck 1961)

lim inf
n∈N

n log n |〈nx1〉| |〈nx2〉| <∞ .

Problem

Is it true that
inf
n∈N

n log n |〈nx1〉| |〈nx2〉| > 0 .
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Badly approximable fibres

Theorem (Pollington – Velani 2000)

If x1 ∈ R is badly approximable then the set of all badly approximable x2
satisfying

lim inf
n∈N

n log n |〈nx1〉| |〈nx2〉| ≤ 1

has full Hausdorff dimension.
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Gallagher on badly approximable fibres

Theorem (Chow 2017, Beresnevich–Haynes–Velani 2015)

If x1 ∈ R is badly approximable, ψ : N→ (0,∞) monotonic, then the set

{x2 ∈ R : |〈nx1〉| |〈nx2〉| < ψ(n) i.o. }

has full or zero Lebesgue measure if the series∑
n∈N

ψ(n) log n

diverges or converges, respectively.

Corollary (Chow 2017)

If x1 ∈ R is badly approximable then almost every x2 satisfies

inf
n∈N

n log2 n |〈nx1〉| |〈nx2〉| = 0 .
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Combinatorial entropy

Definition

Let S be a finite set. The combinatorial entropy of a sequence over S is
the exponential growth rate of the number of different blocks.

Formally, for a ∈ SN and j ∈ N, a j-block of a is a tuple b ∈ S j such that
there exists i ≥ 0 for which

(b1, . . . , bj) = (ai+1, . . . , ai+j) .

Let Cj(a) be the number of different n blocks of a. Then the
combinatorial entropy of a is

h(a) := lim
j→∞

log Cj(a)

j
.
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Fibres with positive combinatorial entropy

Theorem (Einsiedler – Katok – Lindenstrauss 2006)

If x1 = [a1, a2, a3, . . .] is badly approximable and h(a) > 0 then for every x2
the pair (x1, x2) satisfies Littlewood.
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Littlewood with extra logs

Theorem (Moshchevitin, Moshchevitin–Bugeaud 2009)

For every badly approximable number x1 the set{
x2 ∈ R : inf

n∈N
n log2 n |〈nx1〉| |〈nx2〉| > 0

}
has full Hausdorff dimension.

Theorem (Badziahin 2012)

For every badly approximable number x1 the set{
x2 ∈ R : inf

n∈N
n log n log log n |〈nx1〉| |〈nx2〉| > 0

}
has full Hausdorff dimension.
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Best upper bound for Littlewood

For any x ∈ R, every n ∈ N satisfies |〈nx〉| ≤ 1
2 and infn∈N n |〈nx〉| < 1√

5
.

Therefore every x ∈ R2 satisfies

inf
n∈N

n |〈nx1〉| |〈nx2〉| <
1

2
√

5
.

Badziahin improved this bound using a computer:

Theorem (Badziahin 2016)

Every x ∈ R2 satisfies infn∈N n |〈nx1〉| |〈nx2〉| < 1
19 .
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The p-adic Littlewood conjecture

The following problem was suggested by De-Mathan and Teulié in 2004 as
an analogue of the Littlewood conjecture: Fix a prime p. For a nonzero
integer n let its p-adic norm be

|n|p = p−max{k≥0 : pk |n} .

The p-adic Littlewood conjecture

Does every x ∈ R satisfy

inf
n>0

n |〈nx〉| |n|p = 0 ?
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An equivalent formulation for p-adic Littlewood

Equivalently, writing n = kpl gives:

The p-adic Littlewood conjecture (equivalent form.)

Does every x ∈ R satisfy

inf
k∈N, l≥0

k
∣∣〈kplx

〉∣∣ = 0 ?
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Examples for p = 2

ϕ = [1; 1, 1, 1, 1, . . .].

2ϕ = [3; 4, 4, 4, 4, . . .].

4ϕ = [6; 2, 8, 2, 8, . . .].

8ϕ = [12; 1, 16, 1, 16, . . .].

16ϕ = [25; 1, 7, 1, 34, 1, 7, 1, 34, . . .].

...
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Examples for p = 2 (cont.)

√
2 = [1; 2, 2, 2, . . .].

2
√

2 = [2; 1, 4, 1, 4, . . .].

4
√

2 = [5; 1, 1, 1, 10, . . .].

8
√

2 = [11; 3, 5, 3, 22, . . .].

16
√

2 = [22; 1, 1, 1, 2, 6, 11, 6, 2, 1, 1, 1, 44, . . .].

...
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An examples for p = 3

ϕ = [1; 1, 1, 1, . . .].

3ϕ = [4; 1, 5, 1, 5, . . .].

9ϕ = [14; 1, 1, 3, 1, 1, 19, . . .].

27ϕ = [43; 1, 2, 5, 6, 1, 1, 11, 1, 1, 6, 5, 2, 1, 59 . . .].

81ϕ = [131; 16, 2, 5, 1, 3, 5, 1, 1, 2, 1, 1, 8, 1, 19, 4, 2, 1, 2, 1, 1, 1, 1, 35
, 1, 1, 1, 1, 2, 1, 2, 4, 19, 1, 8, 1, 1, 2, 1, 1, 5, 3, 1, 5, 2, 16, 181, . . .].

...
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Dynamics with two parameters

Let G : (0, 1)→ [0, 1) be the Gauss map defined by

G (x) =

{
1

x

}
.

The p-adic Littlewood conjecture (equivalent form.)

Every x ∈ R \Q satisfies

0 ∈ {G jpkx mod 1 : j , k ≥ 0}.

Theorem (Furstenberg 1967)

If p, q ∈ N satisfy log p
log q /∈ Q then every x ∈ R \Q satisfies

0 ∈ {pjqkx mod 1 : j , k ≥ 0}.
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Dynamical formulation of p-adic Littlewood

The usual Dani correspondence ties between approximation of a real
number x and the orbit(

et

e−t

)(
1 x

1

)
Z2.

Is there a homogeneous space X = G/Γ with a linear action which is
equivalent to passing from [(

1 x
1

)]
to [(

1 px
1

)]
?
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Dynamical formulation of p-adic Littlewood (cntd.)

Take G := PGL2 (R)× PGL2 (Qp) and Γ := PGL2

(
Zp

[
1
p

])
embedded

diagonally in G . Then

([
p

1

]
,

[
p

1

])[((
1 x

1

)
,

(
1

1

))]
=[((

p px
1

)
,

(
p

1

))]([
1/p

1

]
,

[
1/p

1

])
=[((

1 px
1

)
,

(
1

1

))]
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Dynamical formulation of p-adic Littlewood (cntd.)

Take G := PGL2 (R)× PGL2 (Qp) and Γ := PGL2

(
Zp

[
1
p

])
embedded

diagonally in G . Then

([
p

1

]
,

[
p

1

])[((
1 x

1

)
,

(
1

1

))]
=[((

p px
1

)
,

(
p

1

))]([
1/p

1

]
,

[
1/p

1

])
=[((

1 px
1

)
,

(
1

1

))]
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Dynamical formulation of p-adic Littlewood (cntd.)

Take G := PGL2 (R)× PGL2 (Qp) and Γ := PGL2

(
Zp

[
1
p

])
embedded

diagonally in G . Then

([
p

1

]
,

[
p

1

])[((
1 x

1

)
,

(
1

1

))]
=[((

p px
1

)
,

(
p

1

))]([
1/p

1

]
,

[
1/p

1

])
=[((

1 px
1

)
,

(
1

1

))]
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A Dani correspondence for p-adic Littlewood

Theorem (Einsiedler–Kleinbock 2005)

x ∈ R satisfies the p-adic Littlewood conjecture if and only if

{([
et

1

]
,

[
p−k

1

])[((
1 x

1

)
,

(
1

1

))]

: t ≥ 0, et ≥ pk

}

is unbounded.
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Well approximable numbers satisfy p-adic Littlewood

If x ∈ R is well approximable then

inf
n∈N

n |〈nx〉| = 0 .

Since |n|p ≤ 1 for every n ∈ N this implies that

inf
n∈N

n |〈nx〉| |n|p = 0 .
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Gallagher-type theorem for simultaneously real and p-adic
approximation

Theorem (Bugeaud–Haynes–Velani 2011)

For any monotonic function ψ : N→ (0,∞), the set{
x ∈ R : |〈nx〉| |n|p < ψ(n) i.o.

}
.

has full or zero Lebesgue measure if the sum∑
n∈N

ψ(n) log n

diverges or converges, respectively.

Corollary

Almost every x ∈ R satisfies infn∈N n log2 n |〈nx〉| |n|p = 0 .
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Quadratic irrationals satisfy p-adic Littlewood

Let x be a quadratic irrational.

Theorem (De-Mathan – Teulié 2004)

x satisfies p-adic Littlewood.

In fact, a slightly stronger result holds:

Theorem (De-Mathan – Teulié 2004, Zorin – Bengoechea 2014)

lim inf
n∈N

n log n |〈nx〉| |n|p <∞ .

Problem

Is it true that
inf
n∈N

n log n |〈nx〉| |n|p > 0 ?
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Very high or very low complexity imply p-adic Littlwood

Let x = [a1, a2, a3, . . .] be badly approximable.

Theorem (Einsiedler – Kleinbock 2005)

If h(a) > 0 then x satisfies p-adic Littlewood.

Theorem (Badziahin–Bugeaud–Einsiedler–Kleinbock 2015)

If
sup
j≥1

Cj(a)− j <∞

then x satisfies p-adic Littlewood.
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p-adic Littlewood with extra logs

Theorem (Badziahin–Velani 2011)

The set {
x ∈ R : inf

n∈N
n log n log log n |〈nx〉| |n|p > 0

}
has full Hausdorff dimension.
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Best upper bound for p-adic Littlewood

Any x ∈ R satisfies infn∈N n |〈nx〉| < 1√
5
, so:

Theorem

Every x ∈ R satisfies infn∈N n |〈nx〉| |n|p <
1√
5

.

Badziahin improved this bound for p = 2 using a computer:

Theorem (Badziahin 2016)

Every x ∈ R satisfies infn∈N n |〈nx〉| |n|2 <
1
9 .

Recently, John Blackman (2020) reported on new bounds achieved by a
different approach:

Figure: Current records for upper bounds for some small primes
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Diophantine approximation over function fields

q a fixed prime power.

Fq the field with q elements.

Fq [t] the ring of polynomials with coefficients in Fq.

Fq (t) the field of rational functions in variable t.

Fq

((
1
t

))
the field of all Laurent series with finitely many nonzero

coefficients for positive powers of t

θ = θ−hth + . . .+ θ0 + θ1t−1 + θ2t−2 + . . .

where θi ∈ Fq for every i ≥ −h.
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The analogy between Fq

((
1
t

))
and R

For θ ∈ Fq

((
1
t

))
:

The polynomial part and fractional part are

θ = θ−hth + . . .+ θ0︸ ︷︷ ︸
[θ]

+ θ1t−1 + θ2t−2 + . . .︸ ︷︷ ︸
〈θ〉

The degree and absolute value are

deg θ = h

|θ| = qdeg θ.

The absolute value of the fractional part is the distance to the
polynomials

|〈θ〉| = dist (θ,Fq [t]) .
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Getting used to the notation

Let θ = θ−hth + . . .+ θ0 + θ1t−1 + θ2t−2 + . . . ∈ Fq

((
1
t

))
.

When does
|〈θ〉| < q−` ?

Precisely when
θ1 = . . . = θ` = 0.

Erez Nesharim (HomDyn and applications) Littlewood conjectures 12 Nov 20 53 / 71



Getting used to the notation

Let θ = θ−hth + . . .+ θ0 + θ1t−1 + θ2t−2 + . . . ∈ Fq
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The approximation problem

Given θ ∈ Fq

((
1
t

))
and ` ≥ 0, are there solutions 0 6= N ∈ Fq [t] to the

inequality
|N| |〈Nθ〉| < q−` ?
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The approximation problem (cont.)

Recall that 〈θ〉 = θ1t−1 + θ2t−2 + . . . and let N = n0 + n1t + . . .+ nhth.
Then:

〈Nθ〉 = (θ1n0 + . . . θh+1nh) t−1+

(θ2n0 + . . . θh+2nh) t−2+

. . .
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The approximation problem by a linear recurrence

If nh 6= 0 then |N| = qh, so |N| |〈Nθ〉| < q−` if and only if
|〈Nθ〉| < q−(h+`), which is equivalent to

h∑
i=0

θj+ini = 0 for every 1 ≤ j ≤ h + `.
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The approximation problem in matrix notation

In other words, if N ∈ Fq [t] with deg N = h is a solution to
|N| |〈Nθ〉| < q−`, then

h + ` rows

h+1 columns︷ ︸︸ ︷



θ1 θ2 θ3 · · · θh+1

θ2 θ3
. . .

...

θ3
. . .

...
θh+` · · · θ2h+`




n0
n1
...

nh

 =


0
0
0
...
0

 .
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The approximation problem using determinants

If the inequality |N| |〈Nθ〉| < q−` has a solution with deg N = h then∣∣∣∣∣∣∣∣∣∣
θ1 θ2 · · · θh+j

θ2 . .
.

. .
.

θh+j+1
... . .

.
. .
. ...

θh+j θh+j+1 · · · θ2h+2j−1

∣∣∣∣∣∣∣∣∣∣
= 0.

for every 1 ≤ j ≤ `. In fact, the other direction also holds.
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The Hankel matrix of a sequence

For a sequence θ1, θ2, . . . ∈ Fq its Hankel matrix is

Hθ =


θ1 θ2 θ3

. . .

θ2 θ3
. . .

. . .

θ3
. . .

. . .

. . .
. . .

 .

Theorem (Folklore)

Assume θ ∈ Fq

((
1
t

))
and ` ≥ 0. Then |N| |〈Nθ〉| < q−` has a nonzero

solution if and only if Hθ has ` consecutive leading principal minors
that vanish.
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The Littlewood conjecture over function fields

The following problem was raised by Davenport and Lewis in 1963:

Problem (The Littlewood conjecture over function fields)

Is it true that every θ, ϕ ∈ Fq

((
1
t

))
satisfy

inf
06=N∈Fq[t]

|N| |〈Nθ〉| |〈Nϕ〉| = 0 ?
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A Dani correspondence for the Littlewood conjecture over
function fields

Let G = SL3

(
Fq

((
1
t

)))
, Γ = SL3 (Fq [t]), X = G/Γ.

θ ∈ Fq

((
1
t

))2
satisfies LCFF if and only if

 tk

t l

t−(k+l)

 1 θ1
1 θ2

1

 : k, l ≥ 0


is unbounded.
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The t-adic Littlewood conjecture

The following problem was suggested by De-Mathan and Teulié in 2004
together with its real counterpart:

Problem (The t-adic Littlewood conjecture (equivalent form.))

Is it true that every θ ∈ Fq

((
1
t

))
satisfies

inf
06=N∈Fq[t], k≥0

|N|
∣∣〈Ntkθ

〉∣∣ = 0 ?
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A Dani correspondence for t-adic Littlewood

Let G = SL2

(
Fq

((
1
t

)))
× SL2 (Fq ((t))), Γ = SL2

(
Fq

[
t, t−1

])
, X = G/Γ.

θ ∈ Fq

((
1
t

))
satisfies the t-adic Littlewood conjecture if and only if

{([
tk

1

]
,

[
t−l

1

])[((
1 θ

1

)
,

(
1

1

))]

: k ≥ 0, k ≥ l

}

is unbounded.
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The t-adic Littlewood conjecture via Hankel determinants

Problem (The t-adic Littlewood conjecture)

Is it true that for every sequence θ1, θ2, . . . ∈ Fq and every ` ≥ 0, Hθ has `
consecutive adjacent minors that vanish?

In other words, is it true that for every θ1, θ2, . . . ∈ Fq and every ` ≥ 1
there exist h ≥ 0 and k ≥ 0 such that every 1 ≤ j ≤ ` satisfies∣∣∣∣∣∣∣∣∣∣

θk+1 θk+2 · · · θk+h+j

θk+2 . .
.

. .
. ...

... . .
.

. .
. ...

θk+h+j · · · · · · θk+2h+2j−1

∣∣∣∣∣∣∣∣∣∣
= 0 ?

Erez Nesharim (HomDyn and applications) Littlewood conjectures 12 Nov 20 65 / 71



The t-adic Littlewood conjecture is false

Theorem (Adiceam–Nesharim–Lunnon 2020)

There exists a sequence θ1, θ2, . . . ∈ F3 such that every adjacent minor of
Hθ is either nonzero or becomes nonzero when being added the following
row and column.
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Array of Hankel determinants with isolated zeros 100×200

Figure: All j × j adjacent minors of Hθ with upper-left entry θi , ↓ i , → j .
White=0, Gray=1, Black=2.
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The paperfolding sequence

Figure: Folding a piece of paper
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Hankel determinants of the paperfolding sequence

Let ϕ be the paperfolding sequence, defined by ϕ2j−1 = 0 and
ϕi = 1− ϕ2j−i for every j ≥ 1 and 2j−1 < i < 2j .

ϕ = (0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1 . . .)

Theorem (Adiceam–Nesharim–Lunnon 2020)

Hϕ has no four consecutive adjacent minors that vanish mod 3.
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The paperfolding Hankel determinants 100×200

Figure: All j × j adjacent minors of Hϕ with upper-left entry θi , ↓ i , → j .
White=0, Gray=1, Black=2.

Erez Nesharim (HomDyn and applications) Littlewood conjectures 12 Nov 20 70 / 71



Summary

Littlewood conjecture p-adic Littlewood conjecture

R open open

Fq

((
1
t

))
open false for q = 3
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