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0. Summary. The objects of ergodic theory —measure spaces with mea-
sure-preserving transformation groups—will be called processes, those of
topological dynamics —compact metric spaces with groups of homeomor-
phisms —will be called flows. We shall be concerned with what may be
termed the “arithmetic” of these classes of objects. One may form products
of processes and of flows, and one may also speak of factor processes and
factor flows. By analogy with the integers, we may say that two processes are
relatively prime if they have no non-trivial factors in common. An alterna-
tive condition is that whenever the two processes appear as factors of a
third process, then their product too appears as a factor. In our theories
it is unknown whether these two conditions are equivalent. We choose the
second of these conditions as the more useful and refer to it as disjointness.

Our first applications of the concept of disjointness are to the classifica-
tion of processes and flows. It will appear that certain classes of processes
(flows) may be characterized by the property of being disjoint from the
members of other classes of processes (flows). For example the processes
with entropy 0 are just those which are disjoint from all Bernoulli flows.

Another application of disjointness of processes is to the following filter-
ing problem. If {x,} and {y,} represent two stationary stochastic processes,
when can {x,} be filtered perfectly from {x, + y,}? We will find (Part I,
§9) that a sufficient condition is the disjointness of the processes in question.

For flows the principal application of disjointness is to the study of
properties of minimal sets (Part III). Consider the flow on the unit circle
K = {z:|z| = 1} that arises from the transformation z — z2. What can be said
about the “size” of the minimal sets for this flow, that is, closed subsets of
K invariant under z — 2%, but not containing proper subsets with these
properties. Uncountably many such minimal sets exist in K. Writing z =
exp (2w 2a,/2"), a, = 0, 1, we see that this amounts to studying the mini-
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mal sets of the “shift flow” on binary sequences. Most of the known ex-
amples of minimal sets would lead one to conjecture that a minimal set A
is “small” in the sense that its Hausdorff dimension vanishes. More recent
examples, however, show that the Hausdorff dimension may be positive.
We shall show that, nevertheless, A is small in the sense that it does not
form a basis for K. That is, there always exist numbers in K which are not
finite products of members of A.

Another application is to the following problem. Products of minimal
flows need no longer be minimal; are there any special properties that are
nonetheless valid for such flows? Our solution to this problem depends
upon the fact that minimal flows are disjoint from a class of flows that we
call #-flows. In ordinary arithmetic if x and y are relatively prime and y is
a factor of xz, then y is already a factor of z. The analogue of this fact for
flows is given in Lemma III.1, and this provides the key to our analysis.

The same class # of flows, as well as the notion of disjointness, arises in
connection with a problem in Diophantine approximation (Part IV). Which
sets S of positive integers have the property that for every irrational « and
€ > 0, there exists an s € S with |a — x/s| < €/s for some integer x? A com-
plete solution may be given in the case that S is a multiplicative semigroup
of integers. In that case we find (Theorem IV.1) that S necessarily pos-
sesses this property unless it is contained in the set of powers of a single
integer (in which case it does not).

The interdependence between the four parts of this paper has been
kept to a minimum. As a result it is possible for a reader interested in
topological dynamics to omit Part I which deals with processes and to read
only Parts II and III. Although Part IV is presented as an application of
the notion of disjointness (and this will be apparent after reading Part I11),
we have suppressed any explicit dependence on the preceding parts in
order to make Theorem IV.1 more readily accessible.

Part I. Disjoint Processes

1. Factors and Products of Processes. Let (), #,u) denote a probabil-
ity triple; that is, Q is a space, # a o-field of sets in (), and p a probability
measure defined on sets in #. We say T is a measure-preserving trans-
formation of Q if 7' 4 € # whenever 4 € ¥ and u(T7'4) = u(4). In
this case we say that the quadruple (0, % ,u,T) determines a process. For a
precise definition we introduce a notion of equivalence of quadruples. We
say that (Q, #,u,T) and (Q',#’,u’,T") are equivalent if to every class of sets
modulo null sets in () there corresponds a similar class in {}', and this cor-
respondence carries # to ¥', wto ' and T to T'. A process is then an
equivalence class of quadruples. In practice we generally choose a repre-
sentative quadruple which we simply refer to as the process in question and
write X = (Q,#,u,T). If the transformation T is invertible for some rep-
resentation of a process, we shall speak of bilateral process. As a result of
this notion of equivalence, the nature of the space () matters very little and
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only the o-field # plays a significant role. For example, if Q' =Q X[, #'=
{AxI,A € F},p'(AX])=pu(A) and T’ (w,t) = (Tw,t), then, although the
spaces ) and Q' are quite different, (Q,%,x,T) and (Q',',u',T") deter-
mine the same process. We shall always assume that the probability space
(Q,%,u) is separable (a countable subset of # is “dense” in #). Every
process may then be represented by a quadruple ((,%,u,T') where Q is
a compact metric space, ¥ the o-field of Borel sets (or its completion with
respect to u), 1 a regular Borel measure, and T a continuous transforma-
tion. (See the Appendix to Part I for a proof of this assertion.) When this
is the case we may suppress the o-field # and write X = (Q,u,T).

If X is a process then Qy, Fx, and uy will denote a space, a o-field and
a measure such that X may be represented by ({)x, # x,ux,T). The symbol
T will denote throughout the transformation defining the process. Its
domain will always be clear from the context. We shall also denote by T the
operator that T induces on the class of functions on {y. Namely, if ¢(&) is
defined for ¢ € (Qy, then T¢ will denote the function defined by Ty (¢) =
w(Te).

If x, is a complex-valued measurable function on (2, then the sequence
of random variables {x,(»)} defined by x,(®) = x((T"w), or x, = T"x,, is a
stationary sequence. That is, the probability of an event of the form (x,,(w),
Zni2(®), * -+, Xni(w)) € A for a Borel set 4 in C is independent of n.
Conversely, every stationary sequence may be realized in this way. A
stationary sequence is said to be defined for a process if it arises in the above
fashion. Such a sequence also defines the process if the o-field # is the smallest
field with respect to which all the variables x,(w) are measurable. It is not
difficult to see that a stationary sequence defines a unique process (because
of the equivalence we have introduced). Naturally, a stationary sequence
{x,} defined for — < n < « defines a bilateral process.

Customarily, one refers to a sequence {x,} of random variables ex-
hibiting the aforementioned stationarity property as a stationary stochastic
process. For many purposes, one need not distinguish between two station-
ary sequences that can be defined on the same measure space, e.g., be-
tween {x,} and {y,}, where y, = 2x, + x,4,. For this reason we emphasize
the notion of a process in which the variables have been suppressed.

Let X and Y be two processes. Suppose ¢ is a measurable map from Qy
to Qy satisfying uy(4) = px(¢™'4) for A € Fy, and Te(¢) = ¢T(§) for
£ € Qy. We then say that Y is a factor process of X and write X &> Y. We also
say that ¢ is a homomorphism of X onto Y. Briefly, the condition on ¢ is that
it be measure-preserving and commute with T. For example, if # is a 7-
invariant subfield of # and ¢ denotes the identity map of Q to (, then
(Q,#',u,T) is a factor process of (Q,%,u,T). In fact, every factor process
may be realized in this way. We point out that the existence of ¢ for one
realization of X and Y does not imply its existence for every representation;
we nonetheless consider Y a factor process of X. When Y is a factor of X,
then )y and )y may be chosen as compact metric spaces in such a way that
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¢ actually is a continuous onto map. (See the Appendix to Part L)

The representation of a homomorphism ¢ in the form (), % ,u.T) —
©,7',1,T) with #' a subfield of # shows immediately that any stationary
sequence defined for a factor process of X is also defined for X. In general
if we have ¢:X — Y and y is a random variable defined on {)y then y > ¢ is
a random variable defined on Qy. We speak of y ° ¢ as a variable defined
for X which is lifted from Y.

The product of two processes X and Y is defined by letting (Qyxy, # xxy»
txxy) be the usual product of the underlying measure spaces of X and ¥,
and setting T'(¢,m).= (T¢,Tm). Qgxy will then be the product of 1x and )y
and we shall denote by 7rX and my the prq]ectxons of Qxxy onto its two com-
ponents. Note that X X Y™ Xand X XY 5 Y so that every pair of processes
can always be realized as factor processes of a single process. In this realiza-
tion the two processes are independent in the sense that any set of variables
defined for X when lifted to X X Y is independent of any set of variables
defined for Y and lifted to X X Y.

2. Disjointness. Suppose {x,} and {y,} denote two stationary se-
quences. In general we cannot speak of the joint distributions between
variables x, and y, until both sequences are defined simultaneously on the
same measure space. In particular one may always find a space for which
{x,} becomes independent of {y,}. It sometimes occurs, however, that
this is the only manner in which the two sequences may be combined to
form a stationary composite sequence {x,,y,}. More precisely, let us say
two stationary sequences {x,} and {x’,} are isomorphic if corresponding
joint distributions are identical. We then find that there exist pairs of
sequences {x,}, {yx}, such that if {x’,,y} is a stationary sequence with
{x',} isomorphic to {x,} and {y,} to {y,}, then {x',} must be independent
of {y',}. Let us call this phenomenon absolute independence. This is a special
case of disjointness of processes.

Definitition 1. Two processes X and Y are disjoint if whenever we have homo-
morphisms Z > X, Z LY, then there exists a homomorphism Z 2 X X Y such that
a=myy, B = mwyy. We denote disjointness by X L Y

An equivalent condition is that whenever Z > X, Z 5 Ythen the fields
a'Fy and B7'Fy are independent subfields of #,.

The necessity is obvious since 7y' #x and 7' %y are independent in
X X Y. The sufficiency stems from the fact that if o' #y and 7' #y are in-
dependent, then their composition is a field isomorphic to Fxxy and
('()Zaa_1 U .B_ 'fY’“'Z’T) =XXY.

Returnmg to the sequences {x,} and {y,} that were previously con-
sidered, note that if X is the process defined by {x,} and Y the process
defined by {y,}, then X and Y are factors of the process defined by {x',,y'»}.
Hence if X and Y are disjoint, all the variables x', must be independent of
all the variables y’,. Thus, if X and Y are disjoint, the stationary sequences
defined for X and Y respectively are absolutely independent. In fact,
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LEMMA L1. X and Y are disjoint if and only if whenever {x,} and {yn} are
stationary sequences defined for X and Y respectively, then {x,} and {y,} are
absolutely independent.

Proof It suffices to show that this condition is sufficient. Let Z <> X and
Z 5 Y, let z, be a variable defined on ©; and measurable with respect to

a'Fx and let z, be measurable with respect to 87'#y. The sequences
{zl(T"C)}, {z,(T™0)} are defined for X and Y respectively, so they are in-
dependent, and so a ! Fx and B! Fy are independent fields. Notice that it
suffices in fact to have absolute independence for stationary sequences
that take on only the two values 0 and 1.

An important lemma is the following

LEMMA 1.2. Suppose as in the diagram we are given homomorphwms X, 3y,
X, =3 Y. Then there exists a process Z with homomorphisms Z i, X, such that o, 8, =

P
NA

Proof: We assume as we may that {y, and (}y are compact metric spaces
and that the maps a; are continuous surjections. We write {); for €y, u; for
px;- To define Z we set

Q= {(w;,0) € Q; X Qy: a3(w;) = az(wy)} -

() is a closed subset of €2, X ), and hence is compact. T is defined in { by
T(w,,0;) = (Tw,,Tw,). Define Bi: Q — Q; by Bi(w;,0,) = ;. Clearly o, 8; =
asf3; on (). It follows that if we find a T-invariant measure . on Q satisfying
Bi(i) = pi, then (,u,T) will define a process Z satisfying the requirements
of the lemma.

Such a measure p represents a linear functional L on C(() satisfying

i Lf=0iff=0

(i) L1=1

(iii) L(Tf — f) = 0 where Tf (w) = f(Tw)

(iv) Lf =0 if f(w;,w;) = F (w;), where [ F (w;)du;(w;) = 0.

Conversely, if a functional L exists with these properties, it will determine
a measure g as required. Now conditions (i), (iil) and (iv) describe elements
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of C(€) that must lie in the half-space L (f) = 0. From the Hahn-Banach
theorem it follows that L will exist provided these elements be in a proper
closed convex subset of the space. This amounts to the condition that an
inequality

(1) flw,0;) — f(Tw,,Tw,) + Fi(w,) + Fa(w,) >C, >0

cannot be valid throughout Q, if [F(w;)du(w;) = 0 and f, F,, F, are con-
tinuous functions.

Suppose (1) were valid. Apply T, T2, - - -, T" to (1), and average the
resulting inequalities. Since f is bounded we find, for sufficiently large n,
there exist functions F, and F, with

(2) Fi(w) + Fy(w,) > C, > 0,

where again [F;(w;) dpi(w;) = 0.

Let n € Qy. For i = 1, 2 set G;(n) = inf F,(w;), where the infimum is
taken over the set of w; satisfying a;{(w;) = 1. G, is lower semi-continuous
and hence Borel measurable, Moreover G;(a;(w;)) = F;(w;). Hence
JGi(n) dpy(n) < 0. On the other hand, since (2) is valid for all pairs
(wy,05) with @, (w;) = ay(w,), we see that G(n) + G,(n) = C, > 0. Hence
f[Gi(m) + G2(m)] duy(n) = C,, which is a contradiction. This proves the
lemma.

The lemma implies the following result for stationary sequences. Let
{x'w,¥a} and {y%.z"%,} denote composite stationary sequences with {y’,}
isomorphic to {y",}. Then there exists a sequence {x,,¥y,2,} with {x,.,}
isomorphic to {x'y,¥',} and {y,,z,} isomorphic to {y",z"%}.

The main application of the lemma is in the proof of the following

PROPOSITION L1. Fori =1, 2 let X; => Y; denote homomorphisms of proc-
esses. Then X, L X, implies Y, L Y,.

Proof : 1t suffices to prove that ¥; and X, are disjoint, for then, by the
same token, Y; and Y, will be disjoint. For this we consider the accompany-
ing diagram. To show that ¥; L X, we suppose Z is given with homomor-

X2
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phisms B, B;. We wish to show that there exists a homomorphism 6: Z —
Y, >< X, with B; = 0, the ¥; denoting projections. Apply the lemma to
X, >Y,and Z 2 Y,; we obtain a process W with homomorphisms 8 and Y1
such that a,y, = 8,8. Define y, = 8,8. Consider the homomorphism W—>X
and recall that X; 1 X,. We thereby obtain a homomorphism € with y; =
€, the ; denoting projections. Finally the homomorphism 7 is defined by
n(€,€) = (a,(£,),€;). We then find that the 4 triangles and 2 quadri-
laterals in the diagram are commutative. We now claim there is a unique
homomorphism 8: Z — Y; X X, that satisfies 65 = ne. The uniqueness of 8
follows from the fact that 8: Q) — € is onto; hence 0 is determined by 68.
For the existence of 68 we must show that if v, ® € Qy and 8(w) = (')
then ne(w) = ne(w’). But any map ¢ into Qy, X Qy, is determined by ¢
and ye, and Pme = B;8 by the commutativity of the diagram. The same
argument applied to measures rather than points shows that the map 6 is
in fact measure-preserving, i.e., a homomorphism. This gives us the de-
sired homomorphism 6. Namely, as before, 8; are determined by 88, and
B:86 = Pime = ;65 whence B; = 5,0, as was to be shown.

An immediate consequence of this proposition is

PROPOSITION 1.2. If two processes are disjoint they can have no non-
trivial factors in common.

Proof: If X; 1 X, and X; t > Y, then Y is disjoint from itself. This implies
that Y is trivial, i.e., that 2y may be taken as a one-point space. Forif Y 1 ¥,
then the identity homomorphism Y — Y induces a homomorphism ¥ —
Y X Y which maps )y onto the diagonal of Qy X {)y. Then the measure
My X py is concentrated on the diagonal of Qy X £y, which implies that wy
reduces to a single point mass and Y is trivial.

Accordingly, a necessary condition for disjointness of two processes is
that they possess no common factors. It would be important to know if this
condition is also sufficient, as it would facilitate a number of the results
which we shall obtain. A result of this kind is in fact valid for other cate-
gories. For example, we may say that two groups G,,G; are disjoint if when-
ever there exist epimorphisms «;:G — G;, then there exists an epimorphism
v:G = G; X G, with a; = myy as before. In this case it is quite easy to show
that two groups are disjoint if and only if they have no common factor
groups. Incidentally, here we must specify that the maps are onto, a stipu-
lation that was not made for processes. The reason is that for processes it
follows automatically that homomorphisms are onto from the requirement
that the underlying map be measure-preserving.

The following two open problems are suggested by this analogy, as
also by the analogy with ordinary arithmetic.

Problem A: 1f two processes have no common non-trivial factors, are
they disjoint?

Problem B: Does X 1 Y,, X 1 Y, imply X L (Y, X ¥,)?
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3. Classes of Processes. We present a list of some major classes of proc-
esses. The list is by no means exhaustive; we have given priority to those
classes of processes to which the concept of disjointness may be fruitfully
applied. In the sequel, if ¢ denotes a class of processes, ¢+ will denote the
class of all processes disjoint from all the processes of 4.

(A) Bernoulli Processes. X is a Bernoulli process, or X € %, if X is the
process defined by a stationary sequence x, whose variables are independ-
ent. A Bernoulli process may always be represented by forming the in-
finite product of a measure space (A,%,v) with itself, }=AXAXAX - -
and setting T(A;,A,A3, * - *) = (Az,A3,A4, - * *). A bilateral Bernoulli process
may be obtained similarly by setting @ =- - - X AXAXAX - ..

(B) Pinsker Processes. The class # is contained in the class of Kolmo-
gorov processes. We shall have nothing to say regarding these, so we refer
the reader to [13] for their definition. (In Rokhlin’s terminology, one
speaks of Bernoulli automorphisms and Kolmogorov automorphisms.) This
class in turn is contained in a class, also defined in [13], whose members
we shall call Pinsker processes. In [13] they are referred to as automorphisms
of completely positive entropy. Our definition, however, makes no reference
to the notion of entropy.

Definition 2. 4 stationary sequence {x,} is deterministic if x; is measurable
with respect to the o-field generated by the variables x5,%3,x4,  * - .

In general a process will possess deterministic stationary sequences. For
example, suppose {y,, —%© < n < ®} is a stationary sequence defined for a
bilateral process X such that y, takes on only the values 0 and 1. Let x, =
2eyn—;2771. Then x, is the fractional part of 2x,,, so that {x,} is determin-
istic. However, finite-valued deterministic stationary sequences need not
always exist.

We now say that X is a Pinsker process, X € 2, if a stationary finite-
valued sequence defined for X must be trivial (i.e., x, = const with prob-
ability 1) if it is deterministic. It will develop presently that # C 2, i.e.,
that Bernoulli processes have this property. In other words, if {x,} is a
stationary sequence of independent variables and the sequence {y,} is

obtained by setting y, =f (* * * ,%,,%y+1, * * *) for some measurable function
fwith a finite range, then {y,} is not deterministic and a relationship of the
form y, = F (¥n11,¥ns2, - * *) cannot subsist.

(C) Deterministic Processes. On the opposite end of the spectrum are
processes with the property that every stationary sequence defined for them
is deterministic. (If this is true for all finite-valued sequences, it is also true
for all sequences.) We call such processes deterministic and designate the
class of all deterministic processes by 2. Clearly 2 N 2 consists of the
trivial process.

(D) Ergodic Processes. ¢ will designate the class of all ergodic proc-
esses. We recall that X is ergodic if the condition T4 C 4 for 4 € F 5 im-
plies ux(4) = 0 or 1. We recognize readily that # C € and # C &.
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(E) Mixing Processes. The following four properties of a process X
are equivalent:

(i) The equation Tx = Ax with x measurable over % has only the solu-

tions A = 1, x = const, or x = 0.

) X XX € &.

)X x & C .

(iv) If ¢, € L*(Qy, % x,ux) then for each € > 0, the sequence {n,} for

which [{g,T"¢) — (Y,1){1,p)| > € satisfies ny/k —> =.

If X satisfies any of these properties it is called weakly mixing. We then
sayX € .

The equivalence of (i), (ii) and (iv) is well known (see [9]) and clearly
(iii) implies (ii). It is apparently not well known that the usual definition of
weak mixing implies (iii), so let us give a proof that (iv) implies (iii).

PROPOSITION L.3. If X satisfies (iv) and Y is ergodic, then X X Y is ergodic.

Proof: Since (B) shows that Z = X XY is ergodic, it suffices to show that
if z is an L?-variable defined for Z, then (V +l ) 2§ Tz converges weakly
to a constant. To show this for all such z it suffices to consider z of the form
z(¢,m) = x(£)y(n). Furthermore, in proving weak convergence, it suffices
to consider inner products with functions of the same form. Thus, what is
to be shown is that

®) e ST (Thyy) — L L)

If we could replace (T"x,x’) by (x,1)(1,x") in the left side of (3), then the
result would be immediate, since (VN + 1)7! = Ty — (y,1) by ergodicity of
Y. However, according to (iv), the error in this replacement tends to 0 as
N — . This proves the proposition.

We mention in passing that # contains the class of strongly mixing
processes which in turn contain those that are strongly mixing of every order.
The definitions may be found in [13]. It is also known that the processes
in # and 2 are strongly mixing of every order. In particular #,# C 4.
That # C # may be seen as follows. Itis clear that # X% C %. Since # C &,
it follows that for X € #, X X X € & and so X € « by (ii). It is also quite
easy to show, using (i), that # C 4 but this will also appear as a conse-
quence then of other considerations.

(F) Kronecker Processes. Let ) be a compact group and let 7 € ) be
an element with the property that it is not contained in a proper closed
subgroup of (). Let u denote Haar measure on ). Then defining the trans-
formation T on Q by Tw = 7w, we obtain a process X = (Q,u,7). A process
obtained in this way will be called a Kronecker process and the class of these
will be denoted %. Kronecker processes are never weakly mixing. For, if
x is a character on , then Tx(w) = x(7)x(w). On the other hand, a Kro-
necker process is necessarily ergodic. For, if 2 ¢xx is the expansion of an
invariant L?-function, then ¢, = x(7)cy. Hence ¢, # 0 implies x(7) = 1. But
{w:x(w) = 1} is a closed subgroup, so that ¢y # 0 implies x = 1.
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(G) Weyl Processes. Kronecker processes are special cases of Weyl
processes. To define the latter we require the notion of a group extension.

Definition 3: Let G be a group of measure-preserving transformations
of the underlying measure space ({l, Fx,ux) of a process X. Denote the
action of G by € — £g, and assume that G commutes with T so that (T¢)g =
T (£g). We suppose that (£,g) —> g determines a measurable map from
Oy X G to Qy. Let ¥y denote the o-field of all G-invariant sets. Then if
Y = (Qy, Fy,ux), we say that X is a group extension of ¥ and we write
Y=X/G.

To illustrate the notion, let 4 be a 2-dimensional torus: Qy = {({,,{,),
|4} = || = 1}, px Haar measure on ), and define T by

T(CI,C2) = (eiaCIs(p(Cl)CZ) )

where ¢ denotes a measurable function from the circle to the circle. If we
take G to be the group of rotations ({,,{;) — (£;,€(;), then G commutes
with T. We see that X is a group extension of the Kronecker process in the
circle defined by rotation by a. Processes of this kind were studied in [4].
Note that Kronecker processes are also group extensions of the trivial
process. Conversely, it is easily seen that an ergodic group extension of the
trivial process is a Kronecker process.

We now define the class # of Weyl processes as the smallest class of
processes satisfying the following three conditions:

(i) The trivial process belongs to #".
(i) A factor process of a process in #” is again in #".
(iii) An ergodic group extension of a process in #" is in #".

Our nomenclature owes its origin to the fact that a celebrated equidis-
tribution theorem of Weyl (if p(n) is a polynomial in » with an irrational
coefficient, its values are equidistributed modulo 1) may be deduced by
studying a particular Weyl process.

4. Entropy. For details regarding the contents of this section the reader
is referred to [10]. We shall briefly summarize the basic results that we
shall need. If # is a finite field of measurable sets in a measure space, it
possesses a quantity of information H(#) defined by

H(%) =Sp, 1og;},

where the p; are the probabilities of the atoms of #. Given two fields we
find that

“4) H(F),H(F,) <H(F,V %,) s HF,) +H(F,) .
If we define H(#,/#,) by H(#, V ¥,) — H(#),), then

(5) 0 <H(#,/%,) < H(#))
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In (4) we can show that equality holds on the left for H(# y) only if #,=
Fi V Fy, ie., if F C F. Also equality holds on the right only if #, and
#, are independent. Thus H( %,/ #,) = 0 implies #, C #,,and H( %,/ #,) =
H(#,) implies %, is independent of #,. The function H (F,/ #,) is mono-
tonic in both variables, but increases as %, increases while it decreases if
%, increases. Hence it may be defined for #, an arbitrary field, as long as
¥, is finite. With these stipulations H( %,/ #,) satisfies the foregoing condi-
tions; it is an increasing function of #,, a decreasing function of #,,
H(%,/#,) vanishes only if %, is contained (modulo null sets) in #;, and
H(F,/#,) = H(#,) only if %, is independent of ;. We also have

(6) H(FWF),H(F%F)<H(F, NV FY F) <SH(FYF,) +H(FF))

Given a set of random variables in a measure space, there is determined
a least o-field with respect to which they are all measurable. If #, is the
field determined in this manner by {x,} and %, the field determined by
{ys}, we shall write H({ys}/{x.}) in place of H(F,/#,). So if y is a finite-
valued random variable, then H(y/{x,}) is always defined and finite. It will
vanish only if y is a function of the x,, and it will equal H(y) only if y is
independent of the x,. ‘

Now let {x,} denote a stationary sequence of finite-valued random vari-
ables. We define the entropy of the sequence, by

(7) E({xn}) = H(xllx29x39x4, T ')
Note that
H(xlax29 Tt $xn) =H(x29 Tt 9xn) +H(x1/x2’ e ’xn)
n—1
= 2 H(xi/xi+la s 7xn) + H(xn)
1

= S H(xfxa, - - - 1) + H(x)

by stationarity. Dividing by n and using the monotonicity of H(x,/x,, * - -, x;)
we find that

H(xlaxz, e 7xn)

(8) €({x,}) = lim

n—»>0 n

By (8) we see that

9 e({xx}), €({ya}) < €({xn,yn}) < e({xa}) + e({y}) .

Now let X be a process. We define €(X) as the L.u.b. of the entropies of
all finite-valued stationary sequences defined for X.
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The following result is due to Sinai [10]:

PROPOSITION 1.4. If X is the process defined by a finite-valued stationary
sequence {x,}, then €(X) = e({x,}).

The notion of entropy gives a simple characterization of the classes
2 and #:

PROPOSITION L.5. X € 2 if and only if €(X) =0, and X € ?if and only
if €(Y) > 0 for every non-trivial factor process Y of X.

Proof: A deterministic finite-valued sequence clearly has entropy 0 by
(7). Conversely, if a sequence has entropy 0, it must be deterministic since,
as has been remarked, H(x,/#) = 0 only if x, is measurable with respect
to #. Since a Pinsker process possesses no deterministic finite-valued
sequences, its entropy must be positive. But a factor process of a Pinsker
process is clearly again a Pinsker process, so the proposition follows.

An important consequence of Proposition 1.4 is that a deterministic
finite-valued sequence defines a deterministic process. It is not a priori
clear that if X is the process defined by a deterministic finite-valued se-
quence, then every sequence defined for X is deterministic. But, according
to Proposition 1.4, e(X) =0, and so €({y,}) =0 for every {y,} defined for X.

5. Entropy and Disjointness

THEOREM L1. Two processes with positive entropy cannot be disjoint.

Proof: By Lemma 1.1, it suffices to prove that two stationary sequences
with positive entropy cannot be disjoint. Moreover, by the remark follow-
ing Lemma 1.1, it suffices to do this for stationary 2-valued sequences. So
suppose {x,}, {y,} have positive entropy and take on only the values 0, 1.
Let us show that we can form a stationary sequence {x%,y%} with {x*,}
isomorphic to {x,}, {y%,} isomorphic to {y,} but with {x*,} not independ-
ent of {y*}. There will be no loss of generality if we suppose that the
sequences are indexed for —o < n <,

Let (), denote the space of all binary sequences: w € Q, if w= (- - -,
w_5,0_;,00) with w; =0, 1. Let uy denote the measure on {), representing
the distribution of the ,-valued random variable (- - - ,x_,,x_;,x,), and
let uy denote the distribution of (- * - ,y_s,¥_1,%). Let (I,m) denote the
underlying measure space of the Bernoulli process defined by a sequence
ti,ty, * + + when the ¢; are independent and uniformly distributed in [0, 1].
Form the measure space

(QF,u*) = (Qy X Qy X I, g X py X m) .
(The spaces being compact metric, we have suppressed the o-field.)

The conditional probabilities P(x; = 1/xp,x—1, - * -}, P(y1=1/%0,¥_1, * = *)
are defined almost everywhere on (£),,ux) and ({2,,uy) respectively. We can
therefore define the following function on [0, 1] X , X Q,:

_ [l ift < P(xy = 1xoxoyy = * )
(10) F(t,fqn) o {O lft = P(x1 = ]-/xO,x—ls o ) 4
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where the conditional probability is to be evaluated at £. Similarly we set

—_ ]'lft < P(ylz 1/)’073’—1’ °t ')
G(t §7 )~{O lft >P()’1= 1/_’)’07_’)’—17 o ) ’

with the conditional probability evaluated at 7.

We now define a sequence of variables on (Q*,y, ) which we denote
(x*,,,y ). We define the variables x*,,5%, for n < 0 by x*%(&m,7) = &,
y*u:(€,m,7) = M. Also the variable ¢, for n > 0 is deﬁned by t.(€,m,7) =T,
To define x*%,,y%, we proceed inductively. Namely, we set

(11)

(12) i1 = Fltysr; ¢ ° 0 Zn1,Xn)s 0 0 ¥ne1s¥a))

y n+1 " G(tn+l’ (' o 7xn—l’xn)9 (. t Jn—laJ/n)) .

We claim that by proceeding in this manner we obtain sequences {x*},
{y*} isomorphic to {x,}, {y.} respectively. Because of the stationarity of
the definition (10), it suffices to prove that {- - - ,x_,,x,2,} is isomorphic to
{+ -+ 2%, x%,x%}, and similarly for the y,. To compute a typical expecta-
tion involving these variables, it suffices to consider functions of the form
3P (x9,x—q, -+ +) and x¥ P (x%,a%,, - ) = 24P (20,21, - * +). The expecta-
tion_of the former is E[ P(x, = 1/xg,%_;, * * )P (x0,%—y, - - )], and that of
the latter is E[F(¢; » « + ,x_1,%0, * * *,¥_1.%0) ¥ (%0,%_1, + - -)]. The variable
¢, is independent of all the other variables, and so the latter expectation
becomes

1
EI: QF(t; MR S P 7 TR 7y—lay0){ll(x09x—l’ te ')dt:I

=E[P(x, =1/xg,x1, = * IP(xg,x1, *  *)],

by (10). The same argument holds for the y,, and the isomorphism be-
tween the starred and unstarred sequences is established.

We next claim that{x*,} and {y*,} are not independent. In fact, were
they independent then E(x*y*/x¢,50,%_1,5_1, * - *) would be given as the
product E(x*/xg,x_y, <+ *)E(y*/yp.y-1, - - +): But

E (5%5% /%0, YorX—1sY—gs = = *) =
E[F(t; - -+ x 1% - Y-1¥0)G (85 + XX * * * Yors¥o) [XosYo * * +] =
min {P(x; = 1fxo,x—y, =+ +), P(y1=1%y-1, * - *)}.
On the other hand, the product referred to is simply P(x; = 1/x9,%_y, - + *) X
P(y1 = 1/y0,5-1, " - *). Setting u = P(x; = 1/xg,%_1, * - ), v=P(vs = 1/y0,¥_1,

* ') we obtain, almost everywhere, uv = min {u,v}. Suppose, with positive
probability, 0 < u < 1,0 < v < 1; this is incompatible with uv = min {u,v}.
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Hence if u is neither 0 or 1, then v must be either 0 or 1. On the other hand,
u and v are independent; hence either u takes on only the values 0, 1 or v
takes on only these values. But if, say, u =0, 1 with probability 1, then {x,}
is deterministic. By hypothesis, €({x,}) > 0 and e({y,}) > 0, and so we
conclude that {x*,} and {y*} are not independent; hence {x,} and {y,}
are not absolutely independent. This proves the theorem.

There are concrete examples of processes with positive entropy where
the conclusion of the theorem is not evident. For example, let 4 and B be
respectively m- and n-dimensional unimodular matrices with eigenvalues
distinct from roots of unity. Then letting K™ and K" denote tori of di-
mensions m and n, (K™,4) and (K",B) determine processes of positive
entropy with respect to Lebesgue measure (see [13]). Hence they are not
disjoint, and there exists a measure on K™ invariant with respect to
A @ B which projects into m- and n-dimensional Lebesgue measure under
the projections onto the first n and last n coordinates, but which is distinct
from (m + n)-dimensional Lebesgue measure. It would be of interest to
construct such a measure directly.

COROLLARY: %+ C Z and 7+ C 2.

Proof: HY € BorY € #,e(Y) > 0. Hence if X L Y, then e(X) =0, or
X e o

6. #+ = 2. To identify #+ with 2 we must still show that # and 2 are
disjoint, i.e., that every Bernoulli process is disjoint from every deter-
ministic process. By Lemma 1.1, it suffices to show that every finite-valued
Bernoulli sequence is absolutely independent of every finite-valued
deterministic sequence.

Let {x,} denote a finite-valued Bernoulli sequence, {y,} a finite-valued
deterministic sequence. From §4 (9) we obtain

(13) 6({xn}) = e({xnayn}) = e({xn}) + E({Yn}) = E({xn}) »

since €({y,}) = 0. Also €({x,}) = H(x,), the x, being independent. So
6({xnayn}) = H(xl) BY §4 (7)’

€({xn,¥n}) = H(x1,1/%2,¥2,%3,y3, * * *)
so by §4 (6),
H(x;) < H(x1/%0,52.%3.53, * * ) + H(1/%0,52.%3,53, -+ *) ©
Now H(y1/y2,¥3, * * *) = 0 and, a fortiori, H(y,/x2,y2, - - -) = 0. Hence
H(x,) = H(x,/%5,Y2:%3,¥3, * * *) =< H{x,)

by §4 (5). But this implies that x, is independent of the field generated by
¥2,¥3, * + - which is the field generated by all the y,. Thus each individual



Disjointness in Ergodic Theory 15

%m is independent of {y,}. The same argument applied to the sequence of
variables (x,,%s, * * * %), (Xr41.Xrt25 © * * »X2r), * ° + shows that the entire
sequence {x,} is independent of {y,}. We have thereby proved

THEOREM 1.2. 2+ = 2,

COROLLARY: % C 2.

Proof: Since 2 1 2 it follows that # C 2+. We claim that 2+ C 2. For,
if X is disjoint from all deterministic processes, it cannot (by Proposition
I.1) possess a deterministic factor process. So it cannot possess determinis-
tic stationary finite-valued sequences since these define deterministic
processes (see the end of §4). This proves the corollary.

According to Rokhlin [13], a result has been proved by Pinsker which
is tantamount to the statement that # L 2. This implies that 2+ = 2. For
we saw that 2+ C 2, and 2 L 2 implies that # C 2+. We thus have the
relationships

(14) BL=9, (B)L=2.

We note that if the answer to Problem A in §2 is afirmative, then it is clear
that # 1 9. For factors of Pinsker processes are Pinsker processes and
factor of deterministic processes are deterministic, and we have already
remarked that £ N 2 is trivial.

The result (#*)*+ = 2 suggests another problem. For any class ¢, ¢++
not only contains ¢ but it contains all factors of all processes in ¢. This
suggests

Problem C. Let #* denote the class of all factors of Bernoulli processes.
Then

BCR*CP.

Are either or both of these inclusions actually equalities?
The possibility that # = 2 exists only in the bilateral case. The station-

ary Markov chain x,,%;,x3, + - + with transition matrix (fl) Z), ptgq=1,p#

%, determines a Pinsker process which is not a Bernoulli process. It has not
been shown that the bilateral sequence - - - ,x.;,x0,%, - - - does not define
a Bernoulli process.

7. Disjointness and Weakly Mixing Processes.

THEOREM L3. # =%+ N &.

Proof: We first show that an ergodic process which is disjoint from all
Kronecker processes is weakly mixing. If X is not weakly mixing, there is a
measurable non-trivial solution to Tx = Ax on Q4. Inasmuch as 7 is mea-
sure-preserving, Ax and x have the same distribution, so that |A\| = 1. By
ergodicity |x| is constant, and we may assume |x| = 1. Then x is a measur-
able map of {1y to the circle K. Let Y denote the process on K defined by the
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transformation { = A{ and whose measure is the image under x of puy.
Then X — Y. Since Y is ergodic, uy is either Lebesgue measure or is con-
centrated at the vertices of a regular polygon. In either case Y is a Kro-
necker process and we cannot have X 1 %.

To complete the proof of the theorem we must show that # L %. This
is a consequence of the following stronger result:

THEOREM14. .# L ¥

Proof: In §3 (G) we defined #" as the smallest class of processes satis-
fying (i), (ii), and (iii). To prove the theorem it will suffice to prove that
#+ satisfies (i), (i1) and (iii) of §3 (G). Now (i) and (ii) are satisfied by any
class of the form ¢!, so what remains is showing that .#* is closed under
passage to ergodic group extensions. Suppose then that ¥ = X/G, that X is
ergodic, and that Y L #. We wish to show thatX L #. Choose W € 4, and
suppose we have Z > X, Z A W. Define the map (a X 8): {}; = Qy X Qy by

(a X B)E) = (a(8).B(L))

Now mx(a X 8) = a, mw(a X B) = B; hence in order to prove that X L W,
it suffices to show that a X 8 defines a homomorphism of Z on X X ¥. For
this it is only necessary to show that (a X B)(uz) = pux X uw. If we let u* =
(e X B) (uz), then p* is a measure on {y X L}y, satisfying

(@) [Fiew) dur€) = [ 1) dus® duw(o).
where f(-,w) is measurable with respect to %y, and

(b) Tp* = p*.

The reason that (a) is satisfied is that Y L W. Hence u* when restricted to
functions on Qy X y, reduces to a product measure. We wish to show that
Mx X py is the only measure satisfying (a) and (b).

For any measure p on {}y X £}y and g € G, let pu, denote the measure
satisfying

f F(Ew) dpy(Es0) = j Flegw) du(tw) .

Let Y(g) denote bounded measurable function on G, then yu, will be de-
fined by

(15) f F(Ew) dpy (€)= f f F(£8.0)0(8)du(£,0)ds.

Clearly u, is absolutely continuous with respect to u;. Suppose u satisfies
(a) and (b). We shall show that u, coincides with gy X py. By (15),

f F(€,0) dus(€,0) = f F (¢,0) du(£.0) |

where F(¢,w) = [of(¢g.w) dg. Hence F(ég,w) = F(¢é,0) for g € G and
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so F (-,w) is measurable with respect to Fy. By (a) it follows that u; = py X
pw- Now W € # and X € . Hence X X W € #, and (¢ X Qy,py,7T) is
ergodic. As we have remarked, the measures y, are absolutely continuous
with respect to py; since they are also T-invariant by (b), it follows that py =
( Jy(g) dg)u,. This implies that almost all the measures u, are identical
with #; = my X pw, and since the latter is G-invariant we conclude that
i = px X py. This completes the proof of the theorem.

COROLLARY 1. Weyl processes are deterministic.
Proof: By theorem 1.2, 2 = #+. Now # C # implies that #+ C 2+ =9.
Finally, #* C 4+ implies #" C 2.

COROLLARY 2. Pinsker processes are weakly mixing.

Proof: In the proof of Theorem 1.3 we saw that if an ergodic process
is not mixing, it has a Kronecker factor. But % C #" C 2, so such a process
contains a deterministic factor. But a Pinsker process cannot contain a
non-trivial deterministic factor; hence # C .

8. Relations Among Classes. For the reader’s convenience we assemble
here the relationships between the various classes of processes we have
introduced.

(a) 2C P C H CE;

by ¥ Cw C 2;

(c) #t=92+ C 2

(d) xtNne=u;, £+ D w;

(e) The classes &, 4, ¥, and 2 satisfy € X € C &;

(f) The classes ?, #, %, ¥, 9, € are closed under passage to factors.

All of these have either been proven or are self-evident with the ex-
ception of

() wXxw Cw; (i) 2X9 C 2; (i) A factor process of a Kronecker
process is a Kronecker process.

(i) follows from the inductive definition of #". Namely the class of
processes X satisfying X X %" C #" clearly satisfies the conditions of §3(G).
Hence % is contained in this class. (ii) follows by virtue of the fact that
e(X XY) =€(X) +e(Y). (iii) follows from the characterization of Kronecker
processes as ergodic processes with discrete spectrum.

9. Disjointness and Filtering. The problem of filtering for stationary
sequences may be described as follows. We suppose given a composite
stationary sequence {x,,¥,} in the sense that all the joint distributions be-
tween all sets of variables are known. {x,} is to represent a “signal” and
{ya} the “noise”. The problem is to find a function of the sequence {x, +y,}
which comes as close as possible to a specified variable x,,. In particular we
may ask under what conditions is each x,, itself a (measurable) function of
{xn + ¥,}? In other words, when will it be the case that the o-field spanned
by the variables {x, + y,} contains that spanned by {x,} (and hence also
that spanned by {y,}, since y, = (x, + y5) — x)?
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Let us reword this in the terminology of processes. Let U denote the
process defined by the variables {x,,y,} and ¥ the process defined by {v,},
where v, = x, + y,. Ostensibly V' is a factor process of U. We seek conditions
under which the homomorphism U — V is actually an isomorphism.

PROPOSITION L.6. Let U > V denote a homomorphism of processes. If o
is not an isomorphism, theve exists a process W and there exist distinct homomor-

phisms W25 U, W5 U such that aB, = af.

d
Ay

Proof: We assume (see §1) that y, () are compact metric spaces and
that « is a continuous map of Qy onto . Consider the conditional expec-
tation E(-/a~'(#y)) as an operator on bounded measurable functions on
Qy. It is not hard to show that this operator has a “kernel”. This means
there is a measurable function u, defined almost everywhere on {y and
whose values are themselves measures on )y such that

(16) E(fla~ (%)) (@) = f F(@') dpo(w’)

almost everywhere. The function has the following properties:

(a) p, is a probability measure with support in the set of w’ satisfying

a(w') = alw),

(b) pr, = Tu,,

(c) (16) is satisfied whenever f (') is a continuous function on (.
For the construction of the function u,, we refer the reader to [4, p. 592].

Define Q, to be the closed subset in Qy; X Q of pairs of points satisfying
a(w,) = a(wy). We let 8, and B, denote the two projections of 1y onto {y.
Clearly aB; = af,. T is defined in () in the usual manner. A measure py
is defined by the condition

[ (w0 dunt@ron)

(17)
= [| [ [#(@iw duutwn dpale) | dic(0)

for every continuous function f on Q. By (b) it follows that Tuy = pw.
Thus Q.. T) defines a process W. We claim that 8;(W) = U fori=1, 2.
Since B:(Qy) = Oy we need only show that B;(puw) = uy. Take i = 1. What
has to be shown is that if f= ¢ ° 8, for ¢ € C(Qy), then [ fduw = ¢ dpo.
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But by (17),

[ran = [[ [otwn) duon | duotw)
~ E(E(ola($))) = E(0) = [pduy.

Our proof will be complete if we can show that 8, # B,. Suppose then that
B: = B.. This means that the measure uy on (y X {}y; must actually concen-
trate on the diagonal of this product. This implies that

j¢<w,)¢<w2> by (@1,03) = f (01)2 iy (wr,0) .

Applying (17) and (16), we obtain
E(E(pla'(#v))?) = E(¢%) .

The projection ¢ = E(¢/a™(Fy)) can be norm-preserving for all (or for a
dense set of) ¢ € L*({y,uy) only if it is the identity. This would imply that
a ' (#y) = %y, which means that a is an isomorphism. This proves the
proposition.

Let us now return to our filtering problem with U and V as before.
Suppose the homomorphism U <% ¥ is not an isomorphism; then we con-

struct the process & with the homomorphisms W —$ U as in the projection.
Set {x'n,y'n} = {22 ° Br.¥n ° Br}s {x'n:¥"n} = {2 ° Bas¥n ° Be}. Since U is defined
by {xn,¥a}, the stipulation that 8, and B, are distinct implies that we cannot
have an identity x, = x", ¥, = ¥"5. On the other hznd, the variables v, on
V satisty v, © o = x, + y,, so that

%' T ¥'n =% ° B+ yu o Br = vy af; = v,af,
=Bty Be=ay+ v,
We have thereby proved

PROPOSITION L7. Let {x,,y,} be a stationary sequence with the property
that if {x'y,y'%.X"%.y"} s a stationary sequence with {x'y,y'n} and {x",y"n} iso-
morphic to {xn,yn} and with x'y + y'y = X'y + y'n, then x'y = x"y and y'n ="y Then
the o-fields spanned by {x, + y,} and {x,,y.} are identical, so that {x,} is a
“function” of {x, + ¥n}.

We shall say in this case that the sequence {x,,y.} admits a perfect filter.

To apply the criterion of the proposition we shall need

LEMMA L1.3. Let u,,us,0,,0, denote four integrable random variables with
each of the u; independent of each of the v, Then u, + v, = u, + v, together with
E(u,) = E(uy) implies uy = u,, v, = v,.
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Proof: Fach uw; is integrable because of the independence of the fac-
tors. We also have E(u; — u,) = E(vy —v3) = 0. But (u; —up)? = (u; — uy) X
{v;—vy), so that

E((u; — u)?) = E(uy — up) E(v, —9,) = 0.

Hence u, = u, and v; = v,.

Remark: It would be of interest to know if the integrability stipulation
may be omitted, replacing the equality of the expectations of u; and u, by
equality of their distributions. That is to say, under these conditions to-
gether with the independence of each u; of each v;, does u; + v, =u, + v,
imply u; = u,, v; = v,? A positive answer would be implied by an affirma-
tive answer to the following “elementary” question.

Problem D: Let z,,z,,w;,w, be four random variables with z; and z, having
the same distribution and with w, and w, having the same distribution.
Does the inequality z; + wy = 2, + w, imply that equality holds with prob-
ability 1?7

Setting z; = uw, and w; = uv,, we see that the conditions of this problem
are met, and z, + w;, = z, + w, would imply u; = u,, v, = v,.

If on the other hand we stipulate that each y; is independent of the
pair (vy,v5), then the desired conclusion follows. For then E (ei*2) = E (e™) X
E (e*®~*?) and for ¢ sufficiently small, E(e“®~"?) = 1. But this is known to
imply that v, — v, = 0.

The main result of this section is

THEOREM L5. Let {x,}, {y,} be two stationary sequences of integrable ran-
dom variables, and suppose that the two sequences are absolutely independent (i.e.,
that the processes they determine are disjoint). Then {x,,y,} admits a perfect filter.

The proof is immediate, taking into account Proposition 1.7 and Lemma
1.3.

The question arises whether the integrability requirement is essential
for the conclusion of the theorem. Whether or not it can be eliminated
depends on the answer to the question raised in the foregoing Remark.
The following is an example where the integrability requirement may be
omitted.

PROPOSITION L8. If {y,} is defined for a Bernoulli process and {x,} de-
fines a deterministic process, then {x,,y.} admits a perfect filter.

Proof: We must show that x', + ¥, = x", + 5", implies x, = x",. But
{x'n,x"} is deterministic by §4 (9), and so {y',} is independent of it (recall
# 1 2). The argument preceding Theorem 1.5 then shows that x’, = x",.

In case {y,} is itself a Bernoulli sequence, i.e., if the y, are independent,
and if {x,} is deterministic, and if, furthermore, all the variables are
integrable with E(y,) = 0, then we can exhibit the “filter” explicitly,
namely,

(18) xn:E(xn +yn/xn—1 + Yno1Xn—2 t Ynogs * " ) .
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For the conditioning o-field in (18) is the same as that spanned by the
variables {xn—la.')’n—lsxn—m}’n—b ot } and

E(xy/xy—1,¥n-15 * * *) +E(yn/xn—1’yn—1a ) =x, T E(yy) =%, .

Here we have used the fact that x, is measurable with respect to {x,—1,¥u—1,
-+ +} and y, is independent of this field (see §6).

10. Stochastic Sequences and Disjointness. In [3, Chap. 1] we de-
veloped the notion of a stochastic sequence. Briefly stated, it is a generaliza-
tion of the notion of a normal number.

Definition 4. Let A be a compact metric space and é={¢,,n=1,2, - - -}
a A-valued sequence. We say ¢ is a stochastic sequence if whenever fis a
continuous function on some product A¥, the limit

N
lim ]%Zf(fnﬂ,&wz, Tt 7§n+k)

Nox

exists.
£ is a point of the product space d=A XA XA X - -, It follows from
the dehnition that if ¢ is stochastic and f € C(Q), then

D I
{13: NZf(T £) =L(f)
exists, where 7 denotes the usual shift transformation. The linear func-
tional L(f) corresponds to a probability measure u on , and, since
L(Tf) =L(f), the triple (Q,u,T) defines a process X. The point ¢ € Q is

a generic point in accordance with the following definition.

Definition 5. Let X be a process and {2y a compact metric realization of
the sample space of X. A point ¢ € )y is generic if

7 S 5T16) = [f0) duse()

as N — «, for every f € C({y).

A stochastic sequence thus determines a process and a generic point for
the process. Conversely, given a process X, a generic point £ € {y, and a
A-valued continuous function A(w) on Qy, it is easily seen that

&n = MT"'E)

represents a stochastic sequence.

Almost all points are generic in the case of an ergodic process. Hence
almost all points lead to stochastic sequences. In fact, one can show that
for any stationary sequence {x,}, almost all {x,(@)} are stochastic se-
quences. All almost periodic sequences are stochastic. As with almost
periodic sequences, a continuous function of a single stochastic sequence
{C} = {f(éns€n+1, - - -) } is again stochastic. The question arises whether
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functions of several stochastic sequences are again stochastic. This is not
the case, as the following example shows.

Let n, = (—1)%, where » is the greatest integer in log n. Then {7,} is not
stochastic. However, if {£,} is generic for a Bernoulli process with inde-
pendent variables x, taking on the values =1 with probability 1%, then it can
be seen that {¢,m,} = {£',} is again generic for the same process. This
means that the product {£,£',} = {n,} of two stochastic sequences need not
be stochastic. The same example shows that their sum need also not be

stochastic, since 7, = é—( (€, + &) 2).
We have however the following theorem.

THEOREM L.6. Let {£,} and {m,} be stochastic sequences that are generic
Jor disjoint processes X and Y respectively. Then the composite sequence {€,,my} s
stochastic and is generic for X X Y. In this case any sequence of the form

{Cn} = {f(fmgn-n’ S MMy © )}

is stochastic if f is continuous.

Proof: The last statement of the theorem follows from the preceding
one since functions of stochastic sequences are stochastic. To prove the
theorem we must show that (£,9) € (Qy X )y is generic for X X Y, i.e., that

(19) I%ilf(T"“&T"“n) - fﬂw,w') dux (@) duy(w)

as N> oo, for f € C(Qy X Qy).

If the sequence in (19) did not converge to the value indicated, a sub-
sequence would converge to some other value. Refining the subsequence,
we could obtain a limit not just for the fin question, but for a countable set
of functions in C(€x X Qy). Choosing this countable set to be dense, we
conclude that there is a sequence {N,} with

N
TS FTET ) = L)
ko
for every f € C(Qy X §y), and where the linear functional L does not co-
incide with that given by the right side of (19).
In any case L(f) corresponds to a T-invariant probability measure g,
and defines a process Z = (Qx X Qy,u;,T). Let wx and 7y denote the pro-

jections from Qy X Qy to Qy and Qy respectively. We claim that 7yZ = X,
7TyZ = Y. NOW

1 %
[be mat0.0) dus(ow) = tim 5= B w e w8 T)
—» 00 1

I
= lim 5 (1) = [0(@) dux()
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since ¢ is generic for X. This means that 7y (uz) = py. Similarly my(uz) = Ky,
and this proves that Z maps onto X and Y. Hence Z =X X Y so that pz =
px X py. This contradicts our assumption that L(f) is not given by px X py,
and this proves the theorem.

As an application let us prove that if .a,a,a5... is a normal number to the
base r, then so is every arithmetic subsequence: .a,a;;¢@;+2q-.- - This con-
tains the result of Niven and Zuckerman in [11]. The hypothesis of
normality is equivalent to the requirement that {a,} is stochastic and
generic for a Bernoulli process {x,}, where x,, = 0,1, - -, r — 1 with equal
probabilities. The assertion that every arithmetic subsequence of difference
d is again normal can be seen to be equivalent to the condition that the
composite sequence {a,,e*™™?} is stochastic and generic for the process
determined by {x,,y,}, where y, is the Kronecker process defined by
Vasr = €™y But this is immediate since 2 1L @ D %

Appendix. Let X and Y denote processes and suppose there exists a
homomorphism X 3 Y. We wish to show that X and Y can be realized as
quadruples (Qy, Fx,ux,T) and (Qy, Fy,uy,T) such that x and )y are com-
pact metric spaces, ¥y and #y are the Borel fields, ux and py are Borel
measures and a corresponds to a continuous map of {1y onto Qy.

We suppose to begin with that X = (Q,#,u,T) and that Y= (Q, %", u,T )
with #' C %. Choose a countable dense subset of L2(Q,#',u) and extend
it to a countable dense subset of L2(Q, #,u). Without loss of generality we
may suppose that the functions chosen are bounded. Extending the set
further, if necessary, we may suppose that it is invariant with respect to T
Let 4 denote the closure in L* (£}, #,u) of the algebra generated by these
functions and their conjugates. Let 4" denote the subalgebra correspond-
ing to those functions measurable with respect to #'. 4 and A" are com-
mutative C*-algebras and we may represent them as 4 = C({2x), 4" = C({y),
where (x,Qy are compact spaces, and {dy is the image of {}x under a con-
tinuous map . Since 4 and A4’ are separable, {1y and )y are metrizable.
The measure u induces a linear functional on C(Qyx) which in turn deter-
mines a measure pux on £y. In addition, the endomorphism T of 4 with it-
self induces a continuous map T of )y onto itself, and similarly for 4" and
Qy. It can be seen that gy is invariant under T and that with uy = a(uy),
(Qy,uy,T) defines a factor process of (x,ux,T). Now the correspondence
between functions in 4 and continuous functions on {5 induces an isom-
etry of a dense subset of L2(}, #,u) with a dense subset of L2({dy,uy). This
extends to an isometry of the two L? spaces. Restricting this isometry to
indicator functions of measurable sets in {} we find that we have an equiva-
lence of (Q,%,u,T) and (Qy,ux,T). Similarly, (Q,#',u,T) is seen to be
equivalent to (Qy,uy,T), and one sees easily that the original homomor-
phism restricting to sets in.#' is given by the map .

Part II. Disjoint Flows.

1. Basic definitions. A flow is a pair ({2,T), where () is a compact metric
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space and T is a continuous map of  into ). When 7 is one-one and onto
it generates a group of homeomorphisms of €2, and we speak of a bilateral
flow. If  is a point of (), the sequence w,Tw,T%w, - + - is referred to as the
orbit of w.

Let X = (Q,T), Y= (Qy,T), and suppose that ¢ is a continuous map of
Qy onto Qy such that Tp(¢) = ¢(T¢), ¢ € Q. We then say that Y is a factor
flow of X and we write X > Y.

It is also convenient to introduce the notion of a subflow. We say ¥ =
(Qy,T) is a subflow of X = (Q,T) if Qy is a closed subset of Qy and the
transformation T on )y is the restriction of the corresponding transforma-
tion on ().

The product of two flows is defined by Qyyy = Qx X Qy, T(£,m) = (T,
Tm). X and Y are both factors of X X Y and e will denote the projection

homomorphisms by X X ¥ EXandXxY 5y,

Definition IL1. Two flows X = (Q,T) and Y = (Qy,T) are disjoint if
whenever there exists a flow Z with Z 3X,Z L Y, then there also exists a homo-
morphism Z L X X Y with a = wyy, B = 1myy. We then write X L Y.

LEMMA IL.1. X 1 Y if and only if the only closed subset A C Qy X Qy satis-
fying (@) TA C A, (b) mxA = Qy, (c) myA = Qy, is A =0y Xy,

Proof: Suppose the condition is fulfilled and Z > X, Z > Y. Form the
map y:{); = Qx X Qy defined by y(¢) = (a({).B({)). We see at once that
the set A = y(£);) satisfies (a), (b), and (c), and is closed. Hence y({};) =
Qx X {y. But then y defines a homomorphism of Z to X X Y, and evidently
Ty = o, Ty = .

Conversely, assume that X | Y Deﬁne Z by Q;=Aforaset A C Oy X Oy
satlsfymg (a), (b) and (c). Then Z—-> X, Z A Y,and so vy must exist such that
Z 5 X x Y with 7wy = mwyy, my = myy. This means that y(¢,m) = (£,m), and
since vy must be onto, A must coincide with Oy X {y.

The following lemma corresponds to Lemma 1.2:

LEMMA 11.2. Let X,,X,.Y denote three flows and suppose there exist homo-
morphisms X, =5 Y, X,=3 Y. Then there exists a Sflow Z and maps Z % X, with
o1 = ayf3,.

The proof of this lemma is contained in the proof of the more difficult
Lemma I.1 to which we refer the reader. We may also draw from this
lemma the corresponding conclusion:

PROPOSITION ILL.If X, % Y, and X, 2> Yy, then X, L X, implies Y, L Y,.

It is evident that isomorphic non-trivial flows cannot be disjoint. For,
the diagonal of 1y X (y satisfies (a), (b), and (c) in Lemma II1.1, and the
diagonal will not coincide with £}y X Qx unless )y reduces to a single point.
This implies

PROPOSITION I1.2. Two disjoint flows cannot have any common non-
trivial factors.
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Whether the converse is true is again unknown.

We remark that while a flow cannot be disjoint from a factor flow, it may
be disjoint from a subflow. We shall encounter examples of this in Part II1.

If X = (Q,T) is a flow, it is always possible to find a probability Borel
measure g on {) which is invariant with respect to T. (Let v be any prob-
ability measure and let u be a weak limit point of n™ (v + - - - + T*"'p).)
The triple ({2,u,T) then determines a process which we shall denote by
(X,u). In general the measure w is not uniquely determined, so that in the

above manner one may obtain a large family of processes supported by a
flow X.

2. Sequences Defined for a Flow. Let X = ({),T') be a flow and suppose
f € C({), that is, fis a continuous complex-valued function on €. For any
® € () we may form the sequence { f(T"w), n =0,1,2, - - -} which we then
call a sequence defined for the flow X. More generally, f may be a continuous
map of () into a compact metric space A, in which case we speak of a A-
sequence. Every sequence with values in a compact metric space is associ-
ated with some flow. Namely, let £ = {£(n)}, so that £ is a point of the car-
tesian product A X A X A X - - - . Defining T on A* as the operator T (A,,
Ag, - 0 7)) = (Ag,Ag, - - ), we find that (A®,T) defines a flow and {£(n)} is
-a A-sequence defined for the flow.

It is evident that we need not necessarily choose {) = A™ to obtain the
sequence {£(n)} as a sequence defined for the flow. Any T-invariant closed
subset to which £ belongs will do. In particular we can choose for ) the
closure of the orbit of ¢ in (A®,T). This subflow ({2,7') will be referred to as
the flow determined by the sequence {£(n)}.

3. Classes of Flows. As in Part I we shall enumerate various classes of
flows with an eye to determining disjointness relations between them.
Among the classes we shall describe, the classes of minimal and distal flows
have attracted attention in the literature ([2], [5], [6]). The others have
not been studied extensively and their theory is only lightly touched upon
even here.

(A) Bernoulli Flows. When the space Qy of a flow X has the form
Qx=AXAXAX--- (where A is a compact metric space) and T is the
shift transformation, T (A ,As, - * *) = (Ag,A5, + ¢ ¢), then X is referred to
as a Bernoulli flow. The class of Bernoulli flows will be denoted by #. If
A is finite, we say that X is a Bernoulli flow of finite type.

Every flow is isomorphic to a subflow of a Bernoulli flow. In fact, if
X = (,T), then Q may be identified with the subset

Q' = {((l)l,(l)z,w:;, n '): Wy = T(J)n}

of *=0XQXOQX-:-, and so X is a subflow of (O=,T).

Definition IL.2. 4 flow is of finite type if it is a subflow of a Bernoulli flow
of finite type. '
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(B) Ergodic Flows. We say that a flow X is ergodic if every T-invariant
proper closed subset of (ly is nowhere dense. The family of ergodic flows
will be denoted by . A straightforward argument shows that X is ergodic
if and only if the set of points of {}y whose orbits are not dense in {}y form
a set of the first category. Another criterion for ergodicity is that for any
two open sets 4,B C )y there exists a power T of T with 7"4 N B non-
empty. The analogy with ergodicity in the measure-theoretic setup is
apparent. Moreover, suppose X supports an ergodic process (X,u) such that
the support of the measure u is the entire space {}y. Then since a closed
subset of )y with p-measure 0 must be nowhere dense, it follows that a
T-invariant proper closed subset of {}y must be nowhere dense. Hence X
is ergodic as a flow. This fact enables us to construct numerous ergodic
flows. In particular, we recognize that Bernoulli flows are ergodic, a fact
which is also otherwise evident.

The class & is not closed under multiplication but it is closed under
passage to factors. To see this, suppose X <> Y and that 4, B are open sets
in Qy. Then a7 '(4) and «*(B) are open in Qy, and if T"a"1(4) N a*(B)
is non-empty, so too is 7”4 N B.

(C) Weakly Mixing Flows. We recall from Part I, §3 (E), that there are
four equivalent definitions for the notion of a weakly mixing process. Two
of these are related to ergodicity: X X X € & and X X & C &. We choose the
analogue of the first of these as the definition of a weakly mixing flow.
Precisely, we say X is a weakly mixing flow if X X X is an ergodic flow. The
class of weakly mixing flows will be denoted by #". We do not know whether
the product of a weakly mixing flow and any ergodic flow is ergodic.
(Later we shall see that a special case of this is true: The product of a mini-
mal flow and a weakly mixing flow is ergodic.) Nevertheless we have

PROPOSITION I1.3. If X is weakly mixing, then any power X X X X X X
+« X X s ergodic.

Proof: X as a factor process of X X X is ergodic. Let N(4,B) denote the
set of positive integers n for which 7”4 N B is non-empty, where 4 and B
denote open subsets of (. By the ergodicity of X, N(4,B) is always non-
empty. We shall show that, in fact, if 4,B,C,D are open subsets of Qy, then
there exist open sets E,F C Qy with N(4,B) N N(C,D) D N(E,F). This is
a consequence of the weak mixing property. Namely, since X X X is ergodic,
there exists a k£ = 0 such that T%(4 X B) N (C X D) is non-empty. That
means that (A XB) N T* (CXD) #B,orANT* ¥C#BandBNT*D#
. These sets are non-empty and open; call them E and F respectively. If
n € N(E,F),thend N T*C N T*"(BN T%D) #J. Butthen4 N T"B #
T7*C N T*(T7*D) # . The second of these implies C N T"D # & and so
N(E,F) C N(4,B) N N(C,D). As a result of this, O N(4;,B;) # & for any

finite collection of open sets A;, - -+ , A, By, - - - ,B,. This, however, yields
N(A4; X - - - X A4y,, By X - - - X By) # (J which implies that the n-fold product
X X - -+ X Xis ergodic.
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Suppose the flow X can be equipped with a T-invariant measure pu
whose support is all of {1y, and such that the process (X,u) is a weakly mix-
ing process. Then (X X X,u X ) is an ergodic process; hence X X X is an
ergodic flow, and X itself is weakly mixing.

This condition again allows one to construct a wide class of examples of
weakly mixing flows. For example, let G be a compact abelian group and
suppose that T is an endomorphism of G. Denote by T* the adjoint endo-
morphism of the dual group G. Harmonic analysis on G shows (see [8])
that if m; denotes Haar measure on G, then (G mg,T) is a weakly mixing
process if and only if T* has no finite orbit in G. (If G is a torus, then T is
represented by an integer matrix and the condition is that no root of unity
occur among its eigenvalues.) With this condition, then, it follows that
(G,T) is a weakly mixing flow.

(D) #-flows. We say that a flow X = (Q,T') belongs to the class # (for
“fixed point”), or that X is an #-flow, if it satisfies the two conditions:

(i) Each of the flows (},T™), m =1,2,3, - - - is ergodic;
(ii) The totality of all fixed points of all the powers T™ (i.e., {e: for some
m, T™w = w}) is dense in Q.

Note that# C #. For, if (},T) € %, then, as one sees readily, ({2,T™) €
#. Hence all (2,T™) are ergodic. Secondly, a periodic sequence in ) = A®
is a fixed point of some power of T, and the periodic sequences are dense
in €.

Another class of examples of #-flows are flows of the form (G,T),
where, as in the preceding paragraph, T is an endomorphism of the abelian
group G. This time, in addition to the condition that T* have no finite
orbit, we assume that G is a torus. By the first condition (G,T) is ergodic,
and, since (G,T™) satisfies the same condition, each (G,T™) is ergodic. Sup-
pose G is an r-dimensional torus, so that T is given by an r X r integer ma-
trix T ~ (a;;). Let (;) denote a point of G with rational coordinates. We can
write a; = p;/q with p,, - - - ,p,,q integers. (a;) is a fixed point of T™ if
T™(p;) = (p;) (mod q). The condition that such an integer m exist is that
det (ay) be relatively prime to q. (Then T € GL(r,Z/gZ) which is finite, and
some power T'™ is the identity.) The set of ¢ which are relatively prime to
det (ay) is infinite, which implies that in G the set of all fixed points of all
powers of T is dense.

The simplest cases in this last category are obtained by taking G = R/Z,
the circle group written additively, and setting Tx = tx for some integer
t # 0. The flow is almost identical with the Bernoulli flow obtained by set-
ting A= {0,1, - - - ,t — 1}, since

ty ait = > a4t (mod 1)
1

where a; € A. The flows are not quite identical, since A* is disconnected
and R/Z is connected.
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(E) Minimal Flows. If a flow contains no proper subflows, it is called
minimal (see [6]). The class of minimal flows will be denoted by .#. The
closure of the orbit of a point in Qy is always a T-invariant subset. If X is
minimal, it must coincide with y. Hence a flow is minimal if and only if
every point has a dense orbit. In particular,

PROPOSITION I1.4. 4 minimal flow is ergodic.

Every flow possesses minimal subflows. If (£2,T) is a flow, the closed
T-invariant subsets A C € with the property that (A,T) is minimal are
called minimal sets. Since every flow is a subflow of a Bernoulli flow, to study
minimal flows, it suffices to study the minimal sets for all Bernoulli flows.
We shall study a restricted version of this problem in Part III.

Products of minimal flows need not be minimal. In fact, if X is a non-
trivial minimal flow, then X X X cannot be minimal inasmuch as the diag-
onal of )y X Qyis T-invariant. On the other hand, a factor of a minimal flow
is minimal. This follows immediately from the definition. It is also true that
limits of inverse systems (or “inverse limits”) of minimal flows are minimal.
Suppose we have a system of minimal flows {X,} indexed by a partially
ordered set {a} and maps X; _".‘f’ X, for B8 > a. Write X, = (Q,,T); then
lim X, = (lim Q,,T),where lim {}, is the subset of Hﬂa of points @ = {wa}
satisfying 7 fws = w,. There is a natural map m: lim Q, — €. One can
show that a sequence {@,} in im Q, is dense if and only if {ms(@,)} is
dense in Qg for each B. From this it follows that each orbit in lim X, is dense
if and only if this is so in each X,. Hence the inverse limit of minimal flows
is minimal.

(F) Semi-simple Flows. Let X = (Q,T) be a flow. If Q is the union of
all the minimal sets of X, then we say that X is semi-simple. In other words,
X is semi-simple if ( =LaJ*Q,, where the (), are non-overlapping T-invariant

closed sets such that (£2,,T) is minimal for each a. An example of a flow
that is not semi-simple is ([0,1],7) where Tx = x2. The only minimal sets
for this flow are {0}, {1}. We denote the family of semi-simple flows by #.
In [6] this property is referred to as pointwise almost periodicity of T. As with
minimality it is clear that factors of semi-simple flows are semi-simple.

PROPOSITION IL5. If a flow ts semi-simple and ergodic it is minimal. In
symbols, ¥ N &= 4.

Proof: If 1y decomposes into more than one minimal set then no orbit
can be dense.

One reason for studying semi-simple flows is that they give rise to a
class of sequences that possess a property that we shall call recurrence. This
property is a natural generalization of (Bohr) almost periodicity.

In the following A is a compact metric space.

Definition IL.3. Let {¢(n)} be a A-sequence defined for n= 1,2, - - - . For
any open set V. C A¥, where k is some positive integer, form the sequence n, (V) <
n(V) <---< ny(¥V) <---(which may be empty) of values of n for which
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E(n+1),£(n+2), -+, E(nth)) EV.

The sequence {£(n)} is recurrent if for each V, the sequence {n,(V)} is either
empty or else it satisfies

(D Ry V) —n; (V) <K(V) <o,

A sequence of integers satisfying (1) is said to be relatively dense. Loosely
speaking, we say that a A-sequence {£(n)} is recurrent if everything that
occurs once in the sequence occurs for a relatively dense set of times.

We leave to the reader the proof of the following proposition.

PROPOSITION IL6. 4 sequence defined for a semi-simple flow is recurrent.
On the other hand, the flow defined by a recurrent sequence is minimal.

(G) Distal Flows. We refer the reader to [2] and [5] for the details
concerning distal flows. We shall content ourselves with a rapid outline
of the theory.

A flow X = (,T) is distal if the relationships im 7§ ={, lim T"n =,
for ¢,,0 € Q, imply ¢ = . Equivalently, X is distal if £ # n implies that
ir'}f D(T™¢,T"n) > 0, where D(-,") denotes a metric on {). We denote the
class of distal flows by 2.

The powers {T", n = 0} form a subsemigroup of the semigroup Q of
all maps (continuous or not) of & — (. With the product topology, Q%
becomes a compact topological space. Let I' be the closure of {7} in this
compact space. In general I' may be shown to be a semigroup. When the
flow is distal, it is easy to see that yy, = yy,, for y,y:,y; € I, implies v, =1v,.
For a compact semigroup, this condition implies it is a group. This shows,
among other things, that T is invertible, 7! € T, and irlg D(T"¢,Tmn) =

inf D(T"¢,T™n). Hence a distal flow is bilateral. (In particular, the theory

—top< w0
of [5] which is stated for groups of transformations applies.)
One consequence of the fact that I is a group is

PROPOSITION I11.7. 2 C ¥.

Proof: Let X = (Q,T) € 2. In each £ € Q, I'; is the closure of the orbit
of £. Now suppose 1 € I';; thenn=vy& fory ELandso £ =y 19 € T,,. It
follows that I'; is a minimal set for (2,7). Since each ¢ € T,  is a union
of minimal sets. '

From the definition of distal flows we conclude easily that 2 X 2 C 2.
In particular X X X is semi-simple whenever X is distal. Conversely, if
X X X is semi-simple, X must be distal. For the diagonal of Qy X Qy is T-
invariant and can intersect a minimal set only if it contains the set. If we had
T (¢,m) = (,0), then the minimal set to which (£,m) belongs must be con-
tained in the diagonal; hence ¢ = 7. This shows that X is distal. Thus 2 =
{X: X XX € #}. We shall presently establish still another characterization:

.@={X:XXYCY}.
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(Note that these two characterizations relate 2 to & in the same way that
the weakly mixing processes were related to ergodic processes in Part I,
§3. Namely, # ={X: X XX € g} = {X:X X g C¢&}.)

Factors of distal flows are distal. In fact, if X £ Yand X x X € &, then
Y X Y is a factor of a semi-simple flow, so it belongs to &. Under certain
circumstances we can argue in the opposite direction and conclude that if
X Y and Y is distal, then X is distal. This is in the case of a group extension.

Definition IL.4. Let X = (Q,T) be a flow and suppose G operates on Q) in
such a way that (w,g) —> wg defines a continuous map from QU X G — Q with the
property that if wg = w for some w € ), then g is the identity. Assume, in addition,
that the action of F commutes with that of T: T(wg) = (Tw)g. Then the orbit space
Q/G determines a flow Y = X|G = (Q)G,T), where T(wG) = (Tw)G. Y is then a
Sactor of X and we say that X is a group extension of Y.

PROPOSITION IL8. 4 group extension of a distal flow is distal.

Proof: Suppose T™¢, — ¢, T"é, — {, with £,&,, € (). We consider two
cases. Supoose first that for some g, ¢, = £,g. Then, by continuity, {= {g and
g must be the identity, which implies ¢, = &,. If this is not the case, then
&G # £,G. Let a denote the map ¢ — £G € Q/G. If Y is distal, then since
a(é) # a(éy), im Thia(€,) # lim TMa(£,). But both limits are aff) since a
is a continuous map. This contradiction proves that ¢ = &,. Hence X is
distal.

Another operation preserving distality is passage to inverse limits. This
is immediate from the definition. In fact, an inverse limit of flows is a sub-
flow of the product flow. But distality is preserved both for products and
for subflows.

Recapitulating, the class 2 is closed under passage to products, sub-
flows, factor flows, inverse limits, and group extensions. The main result
of [5] is a restricted converse to this. We restate it here in a weaker form
that is still sufficiently precise for our purpose. Note that since distal flows
are semi-simple, they decompose into minimal flows, and the latter, as
subflows, are again distal. In a certain sense, therefore, it suffices for the
study of 2 to consider Z N 4.

PROPOSITION 1IL.9. The class 2 N # of minimal distal flows coincides
with the smallest class € of flows satisfying

(@) The trivial (one point) flow is in €.

(b) Factors of flows in € are in €.

(c) A group extension of a flow in € is in € provided it is minimal.
(d) Inverse limits of flows in € are in %.

As one application of this proposition let us prove:

PROPOSITION 11.10. 2 X ¥ C ¥.
Proof: Clearly it suffices to show that the product of a minimal distal
flow and a semi-simple flow is semi-simple. So let ¢’ = {X: X X ¥ C #}.
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One sees readily that ¢’ satisfies conditions (a), (b) and (d). Let us show that
it satisfies (c). This will prove the proposition, for it will show that ¢’ D
# N Pand hence 2 N 4 X ¥ C &.

Suppose then that Y = X/G and that Y X ¢ C &. Let Z be a particular
flow in &; we would like to show that X X Z is semi-simple. Now X X Z is
clearly a group extension of ¥ X Z, and by hypothesis, ¥ X Z is semi-simple.
It suffices therefore to show that a group extension of a semi-simple flow
is semi-simple. For this it is clearly sufficient to show that a group extension
of a minimal flow is semi-simple. Suppose then that U = ¥V/G, where U is
minimal. Let A be a minimal set in ). One such minimal set certainly
exists. Clearly each of the sets Ag is again minimal. Let a denote the map
from Qy to Qy sending w into wG. Clearly a(A) is a T-invariant closed sub-
set of ;. Hence by the minimality of U, a(4) = {}y. But this means that, for
every w € )y, w6 intersects A. In other words

Q= U Ag

£EG

and each point of {}; belongs to a minimal set. This proves the proposition.

(H) Kronecker Flows. Let G be a compact abelian group, 7 an element
of G whose powers are dense in G. Defining T by Tg = 7g we obtain a flow
(G,T). A flow obtained in this manner is called a Kronecker flow, and the
class of these is denoted by #.

X C 9. In fact a flow in % is a group extension of the trivial flow.
Conversely, every minimal group extension of the trivial flow is a Kro-
necker flow.

A sequence defined for a Kronecker flow is easily seen to be (Bohr)
almost periodic. Conversely, the flow defined by an almost periodic se-
quence is a Kronecker flow.

At this point let us summarize the relationships between the various
classes of flows. We have

i) aCy NFCyw UZFCE,;

@) ¥C2N#HCIU 4 CI,;

(i) ¥ ={XXXg Cg}={XXXX € &}
(iv 2={XXXx¥ C¥}={XXxX e &}
) FNg=u,

Vi) 2 N w =4 N F={trivial flow}.

We have proven all but (vi). Suppose X is distal and weakly mixing.
Then X X X is both semi-simple and ergodic. By (v) X X X is minimal, which
can only occur if X is trivial. Next suppose that X is both minimal and an
F-flow. As an Z-flow it possesses finite orbits; since there are dense, (Qx
must be finite. But then an N exists with TV@ = @ for each w € Qy, and
(Qx,T*) is not ergodic unless {lyx reduces to a single point.

Finally, all the classes of flows but # are closed under passage to factor
flows. In addition, #, #" and 2 are closed under formation of products.
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4. Disjointness Relations. We begin with an analogue of Theorem I.1.

THEOREM IL.1. If two flows are disjoint, one of them must be minimal.

Proof: Let X = (Q4,T), Y = (Qy,T) and suppose A C )y is T-invariant
and closed, and B C Qy is T-invariant and closed. If 4 and B are proper
subsets, then (4 X Qy) U (Qx X B) is a T-invariant closed subset of Qy X Qy
which projects onto 2y and Qy under the projections 7y, 7y.

The following result will be referred to repeatedly in Part III.

THEOREMIL2. % | #«.

Proof: Let X € #,Y € 4, and suppose A C Qy X Qy is a closed T-
invariant set satisfying mx(A) = Qy, 7y(A) = Qy. Consider the flows ¥, =
(Qy,T™). Although Y, =Y is minimal, it is possible that when n > 1,7, is
not minimal. Choose a sequence of natural numbers {n;} such that (a)
nglne+: and (b) every integer m divides some n;. An inductive procedure
enables us to choose a sequence of subsets {Q/} of Qy satisfying: (a)
QF D Q% (b) Oy is a minimal set for Y,,. The significance of the condi-
tion ny|ny, is that a T™-invariant set is also T"*+Linvariant. Hence, given
Q¢ which is T"**1-invariant, it is possible to find a subset Q’;“ which is

minimal 7"*+invariant. Finally we set Qy° = ’Ql (0.3
Fix & momentarily and form the sets
(2) Ay = {¢ € Qy: for some n € T'Q¥, (£,9) € A}

ng—1
where i ranges from 0 to n, — 1. Since T"Qy* C O, L=J T’Qy lS T-invari-

ant, and hence it is all of €}y, Y being minimal. It follows that U Ay = Qy.

Since each Ay is open it follows from this that at least one of them say Ay,
has a non-empty interior. From (2), however, it follows that T"A;; C Ay,
and this contradicts the ergodicity of (Qx,T™) (see §3 (D)) unless Ay; = Qy.
It follows that Ay, = Qy. For, T A,; C Ay, so that Ay D T Q% Now
since X is an #-flow T(y) = Qy, since all fixed points of powers of T lie in
T (Qy). Hence Ay = y. In other words, for each ¢ € (y, there exists
n € QO with (¢,m) € A. Since this is true for each £, we may conclude that,
for a given ¢ € (Qy, there exists n € y°, with (£,m) € A.

Suppose in the foregoing we choose ¢ € )y to be a fixed point of some
T™. Find n € Qy with (¢,1) € A. For k sufficiently large, m|n;, and T™£=¢,
On the other hand {T™%n} represents the orbit of n € Qy° C Q for the
flow (Q,T"), and hence is dense in . Since A is invariant under 7",
we find that (¢,m’) € A for every 0’ € Q4. In particular, (£,') € A for
every n' € Qy.

Now fix ' € £)y°. We have seen that for each fixed point ¢ of some T'™,
(£,m') € A. But these are dense in Qy; hence, {dy X ' C A. Now the set of
m' with this property is closed and T-invariant. Since Y is minimal, it follows
that Qx X (y C A which is the conclusion sought after.
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COROLLARY: @1 = F+t= 4.

Proof: We have just shown that # C #+. On the other hand, since #
contains non-minimal flows (in fact all are non-minimal by §3 (H) (vi)),
1 must consist of minimal flows. Hence #+ = #. For the same reason
B+ C #.Since B C F, B+ D %L, hence BL=AH.

5. Weakly Mixing Flows. There are two ways of defining weak mixing
in terms of ergodicity. We chose the weaker definition:

w={X: XXX € &}.

It is not known whether this implies the stronger property: # X& C &, i.e.,
that the product of a weakly mixing flow with any ergodic flow is ergodic.
The following proposition shows that this is true at least for products of
weakly mixing flows with minimal flows.

PROPOSITIONIL1l. ¥ X # C &.

Proof: Let X € #', Y € #4. To prove the ergodicity of X X Y we must
show that for open sets 4, A" C Qy , B, B’ C )y, there exists an integer
n = 0 with T"(4 X B) N (4’ X B’) # . Equivalently » must be found with
T"A N A" #and T"B N B’ # J. By Proposition I1.3, X XX X - - - X X is
ergodic for any finite product. This implies that for a finite family of open

sets Ay, Ay, -+ AmA' 1 A, - - - A’y in Qy, there exists n such that each
T"4; N A'; # J. In particular, for arbitrarily large m, there exists an n
withT"A NA B, T ANA #D,---, T4 N A" # . In other

words, the sequence {n:T"4 N A’ # J} has arbitrarily large blocks of con-
secutive integers. To prove the proposition, it will suffice to show that
{n:T"B N B’ # J} is relatively dense (see Definition I1.3). But, in fact,
for any n € B, {n:T"n € B’} is relatively dense by virtue of the fact that
{T™n} is recurrent (Definition II.3 and Proposition I1.6). Here we have
used the fact that {n:T™) € B’} is non-empty, which is a consequence of
the fact that {n:T"n never belongs to B} is a closed T-invariant subset of
Qy and Y is minimal.

THEOREM IL3. ¥ L (2 N #).
Proof: According to Proposition I1.9, it will be sufficient to prove that if

z={X: XL}

then (a) the trivial flow is in €, (b) factors of flows in ¢ are in ¥, (c) a group
extensions of a flow in ¢ is in € if it is minimal, (d) inverse limits of flows
in € are in . Now (a), (b), and (d) are always-valid for the class of flows
disjoint from an arbitrary class. To prove the theorem it therefore suffices
to show that a group extension of a flow disjoint from #" is itself disjoint
from # if it is minimal.

Suppose then that ¥ € %', that Y 1 % where Y =X/G, and that X is a
minimal flow. We wish to show that X L W. Let A C Qy X {5 with A closed,
TA C A, wyp(A) = Qy, wx(A) = Qy. Notice that G acts on B X X in a natural
way with (0,£,8) — (w,£g), and this defines a continuous map of Qp X
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Oy X G— Qy X Q. Let o denote the natural map from £ to Oy =Q/G and
let o’ be the corresponding map from Qy X {y to Qy X Qy. The set a'(A)
is a T-invariant closed subset of Qy X Qy and my(a'(A)) = Qy, wy(a'(A)) =
a(dy) = Qy. Since Y L W, we have o'(A) = Qy X Qy. From this it follows
that for every (w,£) € Qy X Qy there exists g € G with (e,£g) € A. This
means that the product AG coincides with Qy X .

We shall show now that A itself coincides with Qy X Qy, and this will
complete the proof. Let V be a closed set in & with non-empty interior and
consider the product AV. Since G is compact there exist g, - - - .& € G
with U1 Vei=G. Hence U AVg; = AG =y X Qy. The sets AVg; being closed,

i= i=1

it follows that one of them, and therefore each of them, has non-empty
interior. But AFg; is T-invariant since A is T-invariant and T commutes
with the action of G. However, we also know that 7 X X is ergodic by Propo-
sition 11.11; hence AVg; = Qy X Qx and so AV =y X Qy. Now we can find
a decreasing sequence of closed sets {V,} each with non-empty interior
and with NV, = {identity}. Since AV, = Qy X QO we conclude that A =
Qu X Q. This proves the theorem.

We conclude with the statement of two open problems.
Problem F: Is it true that ¥ X & C &?
Problem G: Describe the classes #+ and 9+

Part I11. Properties of Minimal Sets.

1. Minimal Subsets of Groups. Let G be a compact abelian group and
T an endomorphism of € such that X = (G.T) is an #-flow. In Part II,
§3 (D), we showed that this is the case if G is a finite-dimensional torus, and
T an endomorphism of G corresponding to an integer matrix with no roots
of unity among its eigenvalues. It will also be the case if G = A X A X A X

-, where A is a compact abelian group and T represents the shift oper-
ator.

With this assumption, X L # by Theorem I1.2, and in particular, X is
disjoint from its own minimal subflows. Using this, we shall be able to show
that the minimal sets in G are “small” in a certain sense.

Definition IIL.1. Let G be a topological group and T an endomorphism of G.
A closed T-invariant subset A of G is said to be restricted if AB= G for some closed
T-invariant set B C G, implies B = G.

Here AB is the collection of all products a8, « € 4, 8 € B. Note that
the notion of a restricted subset depends on the endomorphism T and the
group structure of G.

Definition IIL2. 4 basis of a group G is a set B with the property that each
element in G is a product of finitely many elements in B.

LEMMA IIL1. Let G be a non-trivial compact metrizable group, and suppose
that (G,T) is ergodic. Then a restricted set cannot be a basis of G.
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Proof: If A is a basis then UA" = G. Then some 4" contains an open set
(we assume A4 is closed) and since 4 is T-invariant, so is 4. By ergodicity,
A" =G. Butthen A" ' =G, A" 2=G, -+, A=0GC, {e} =G, and so G is
trivial if A is restricted.

The main result of this section is

THEOREM IIL1. If (G,T) is an F-flow, then every minimal set for (G,T)
is restricted.

The proof of this theorem is based on the following lemma. This lemma
is reminiscent of the familiar fact that if a number divides a product and
is relatively prime to one of the factors, it necessarily divides the remaining
factor.

LEMMA II1.2. Let X and Y be disjoint flows, and suppose there is a flow Z
and a homomorphism X X Z 5 Y. Then Jor each ¢ € Qy, the map { —> mw(€,0)
takes Q5 onto Qy.

Proof: Let W =X X Z. We have W——>X W——> Z, and W => Y. Since
X 1Y, there must exist a homomorphism WHXxY such that ¥ = myy,
and 7 = myy. Then y(£,0) = (&,7(¢,0)). Now vy takes Qy onto Qy X €y, so
for each (¢,7) there is a point @ € Qy with y(w) = (£,7m). But this means
that the equation n = m(¢,{) has a solution for each pair (£,7).

Proof of Theorem I11.1. Let M be a minimal set of the #-flow (G,T). If M
is not restricted, we may find a closed T-invariant set B C G with MB =G
and B # G. Let X = (M,T), Y= (G,T), and Z = (B,T). We have a map
m:M X B — G defined by 7(u,8) = uB which takes M X B onto G. Hence 7
defines a homomorphism of X X Z to Y. But X L Y since X is minimal and
Y is an #-flow. By Lemma IIL.2, m(u,B) = G, or uB = G for any u € M.
But G is a group, and this implies that B = G.

2. Relative Dimension, Hausdorff Dimension and Topological
Entropy. Let A={0,1,---, a — 1}, where a is a positive integer, set () =
AXAXAX---,and let T denote the shift transformation of Q. A can be
given a group structure in several ways; for each of these, {} becomes a
group and T an endomorphism of €. For each of these structures the re-
sults of the last section apply and a minimal set for (€2,7) will be “re-
stricted” with respect to the various group structures on . The question
arises whether it is possible to introduce a quantitative notion of the size
of sets for which all minimal sets will be “small”. There are several notions
which suggest themselves, for all of which it is true that a “small” set is a
restricted set. We shall, however, see that in spite of evidence to the con-
trary, minimal sets need not be small in any of these senses.

There is a correspondence between () and the unit interval which is
almost one-one. Namely, we associate with the sequence (w;,ws,w;, * - )

the real number Y w,a ™. The operator T corresponds to the operator
1

7q on [0,1] which is defined by 7,x = ax modulo 1. 7, becomes continuous
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if we identify 0 and 1, i.e., if we take as its domain the additive group of
reals modulo one. Calling this group K we obtain a flow (K,7,). For a set
A C ) we shall denote by 4* the corresponding set in K. A T-invariant set
A in Q is minimal for (,T) if and only if 4* is a minimal set for (K,7,). In
determining the “size” of a T-invariant set 4 C () we may consider inter-
changeably properties of 4 and properties of 4*.

One such measure of the size of a set in () or in K is given by its Haus-
dorff dimension. This exists for every subset B of K and we denote it by D(B).
Then 0 < D(B) = 1. There is a related notion which is more useful for
certain purposes and which we refer to as the relative dimension. Partition

K into N equal intervals: K= U [m/N,(m + 1)/N], and let »(B,N) be the
()]

number of these that contain points of B. If

. log v(B,N)
M }VTZ log N

exists, we call it the relative dimension of B, and denote it by d(B). It is easy
to see that whenever d(B) exists, it satisfies d(B) = D(B). One establishes

readily the relationship

v(B,Ny) N,

v(BN) SN,
which shows that if the limit (1) exists for a subsequence {N,} satisfying
Niya/Ne < M < o, then the limit exists. In particular, it suffices to establish

log v(B,g")
n

the existence of lim for some integer g.

n—x

Finally, there is a notion of size which is applicable to subsets of (1. Let
A C Q and denote by u(4,n) the number of A-valued n-tuples (a;,a,, - * -,

a,) which coincide with (w;,w;, - * + ,®,) for some point w = (w;,0z, * * * ,@a,
) EAIS
) lim log p,n(A,n)

exists, it is called the topological entropy of A and denoted &(A4). If 4 is T-
invariant, then (4,T) is a flow. In this case £(4) always exists and it may
be seen that #(4) coincides with the topological entropy of the flow (4,T)
as defined in [1].

PROPOSITION IIL.1. Let A be a T-invariant subset of ) and let A* denote
the corresponding subset of K. Then d(A*) and &(A) exist and
g(4)
*) = d(4*) = =22
3) D(4%) = d(4*) log a
Remark: From this proposition it follows that the Hausdorff dimension of
the classical Cantor set is log 2/log 3. For, the Cantor set corresponds to the
set of sequences in Q (A= {0,1,2}) in which 1 does not appear. This clearly
has topological entropy log 2.
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Proof : By the T-invariance of 4, it is clear that u(4,n+ m) < u(4,n) X
u(4,m). It is well known that this implies the existence of the limit in (2);
hence &(A) exists. Consider now »(4*,a"). The interval [m/a®,(m + 1}/a"]
will contain a point of 4* if and only if the a-adic expansion of m, m =

Zb,a"“, is such that (by,b,, * + - ,b,) coincides with the initial n-block of a
sequence in 4. Hence v(A4*,a") = u(4,n). Thus
. v{A4*,a")
lim ————=
n—>w

exists and coincides with £(4). By our remarks concerning relative di-
mension, we conclude that d(A4*) exists and d(4*) = &(4)/log a. '
We must still show that the Hausdorff dimension of 4* coincides with
d(A*¥). Since one always has d(4*) = D(4*), we must show that D(4*) =
d(A*). Recall that D(4*) = § if, for every covering of A* by intervals I, of

sufficiently small length, Y'|I;|> > ¢ > 0. We claim now that in applying

this criterion, it suffices to consider coverings with intervals of the form
I; = [m;/a™ ,(m; + 1)/a™]. For, as one can see, it is possible to replace an
arbitrary covering by one with intervals of this sort, thereby multiplying
Y |1;|° by no more than 2a°. It will suffice therefore to show that if

A* C LJJ [m/as,(m; + 1) [a"]
=1

J
and & < d(4*), then 2 a® = 1.
1
We can restate this in terms of the set 4. We denote by R’ the collection

of all n-tuples of elements of A, R" = U A". R’ is a semigroup if we multi-

ply by juxtaposition: (ai, * * *,aa)(by, L. 2om) = (ag, * * * ,an,by, * L by).
We denote by R the subset of R’ consisting of n-tuples which occur as blocks
in sequences of 4. Thus u(4,r) is the number of elements of R of length n.
Notice that p,p, € R implies that both p, and p, belong to R. We shall say
that p' is divisible by p if p’' = pp, for some p, € R'. Also I{p) will denote
the length of p. With these preliminaries ‘we may restate what must be
proved as follows. If {p;} is a finite collection of elements of R such that
each p € R of sufficiently great length is divisible by some p;, and if § <
d(A*), then Y a~ %%’ = 1.
Suppose to the contrary that ¥ a™*®? < 1. Then

2 a_a(pilpiz s Pin) < oo,

where the sum is taken over the semigroup generated in R’ by {p;}. We
now claim that there is a finite set of elements {p’;} such that every p € R
can be expressed as a product p = p;,p;, * + * p; p';, for some sequence p;,,
-+ ,pi, in {p;} and for some p';. The reason is that each p € R is divisible
by some p;, p = p;,p’ with p’ € R, provided [(p) is large enough. But from
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this it follows that
E a-&(ﬂ) < oo,
R

In other words ¥ u(4,n)a™®" < », However if 8§ < d(4*) = &(4)/log a,
then for n sufficiently large, u(4,r) > a™ and the series in question must
diverge. This proves the proposition.

3. Deterministic Flows. In [1] the analogy between “entropy” and
“topological entropy” is developed. For a number of flows it may be shown
that the flow X supports a measure u such that the entropy of the process
(X,u) equals the topological entropy of X. In any case the former never
exceeds the latter. The topological entropy of a product is the sum of the
topological entropies of the factors, and the topological entropy of a flow
is at least as great as that of any of its factors. This analogy suggests defin-
ing a class of “deterministic” flows by the condition that the topological
entropy vanish. A deterministic flow has the property that any process
supported by it is deterministic in the sense of Part I, §3. It may be that the
converse is true as well.

Let A and B denote 7,-invariant subsets of K, and let 4 + B denote their
sum, i.e., the set of all sums a + 8, « € 4, « € B. Evidently, v(4 + B,N) <
v(4,2N)v(B,2N). From this we find that d(4 + B) < d(4) + d(B).

PROPOSITION IIL2. If A is a T,-invariant closed subset of K such that
(A,7,) is deterministic, then A is restricted.

Proof : If (A,74) is deterministic, then d(4) = 0. Hence 4 + B = K im-
plies d(B) = 1. Let B correspond to a T-invariant subset B’ C Q. d(B) =1
implies £(B’) = log a. Now if B’ is a proper subset of {}, there is some n-
tuple, for some n, of elements of A which does not occur in the sequences
of B’. But then u(B’,n) < a"— 1 for some n, and so u(B',nm) < (a"— 1),
whence #(B') < log (¢® — 1)/n log a < 1. This proves the proposition.

There appears to be a certain amount of evidence to support the con-’
jecture that minimal flows are deterministic. For one thing, a subset 4 of
K is restricted if the flow (4,7,) is either minimal or deterministic. Secondly
the class 2+ of flows disjoint from Bernoulli flows coincides with # , whereas
the processes disjoint from Bernoulli processes are precisely the deter-
ministic processes. Finally, the most familiar examples of minimal sets do
correspond to deterministic flows. For instance, the recurrent sequences
described by Robbins [12] lead to deterministic flows, and the minimal set
described by Gottschalk [7] is deterministicc. We shall see however that
this evidence is misleading and that there exist minimal flows which are
not deterministic, or, equivalently, minimal sets for (K,7,) with positive
Hausdorff dimension.

THEOREM I11.2. There exist minimal sets with positive topological entropy.
Proof: According to Proposition I1.6, the flow defined by a recurrent
sequence (see Definition I1.3) is minimal. Moreover, if {£(r)} is a A-valued
sequence, and X is the flow it defines, it is possible to compute the topo-
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logical entropy of X directly from {£(n)}. Namely, if H, is the number of
distinct n-tuples of symbols of the form (£(I+ 1), - - - ,€(l + n)) for some
1 = 0, then u(4,n) = H,, A being the subset of () defined by the flow X. To
construct a minimal flow with positive entropy we shall construct a recur-
rent sequence {£(r)} for which H, grows exponentially with n.
Decompose the natural numbers J=1{1,2,3, - - -} into a disjoint union

of arithmetic progressions: J = lj JoJr=c,+d. J, J. N Jy=@forr#s.

1
For each r choose a number a(r) € A, and define {£(n)} by setting é(n) =
a(r) if n € J,. It is easily seen that the sequence {£(n)} is recurrent. In
fact, each m-tuple (£(1), é(2), - - - ,é(m)) recurs periodically.

The condition J =U J, implies that Y’ 1/d, < 1. We would expect equal-
1

ity, but one readily sees that the d, may be chosen to increase as rapidly as
we like. Moreover, it is not hard to see that the set of initial points {c.}
may be made as dense as we like in J, simply by choosing {d,} to be increas-
ing sufficiently rapidly. In particular, we may choose {/,} such that

4) lim sup ¢,/r < 2.

For such m there will be infinitely many r such that ¢, — ¢;+; < 2m. Denote
this set of integers r by Q.

Now let {y,} denote a sequence of independent identically distributed
random variables, each having for its value the symbols in A, all occurring
with positive probability. For any choice of m symbols, a;,a,, * * - ,an, the
probability is O that for each r € Qu, (¥r+1,¥r+2> " * * +¥rem) # (a1,02, * - -,
am). It follows that there exists a sample sequence {y,} = {7,} such that for
every m and every m-tuple (a,,a,, - * - ,ap), there is an r € Q,, with (9,44,
Nry2s * °° ’nr+m) = (al’az, T, Ap).

With this sequence {7,} we form a recurrent sequence {¢(n)}, setting
é(n) =, for n € J,. We find that, for every m-tuple (a,,a;, * * * ,an), anr
exists with ¢,y — ¢,+1 < 2m, and with &€(c,;) = a;,j=1, - - - ,m. This means
that there is a value of r such thatin the sequence ¢ (n+ 1), - - - ,£(n+2m),
the values ay, * * *,a, occur somewhere and in that order, though not
necessarily consecutively (namely, take n = c¢,;;). Now each fixed block

E(n+1),- -+ ,&(n~+ 2m) can give rise to at most (2’") < 4™ m-tuples (a,,

as, * * *,ay,). It follows that the number H,,, for ou,rnsequence {£&(n)} ex-
ceeds (a/4)™. As a result, if a > 4, the flow associated with {£(n)} will have
positive topological entropy. This proves our theorem.

We remark that this theorem has also been proven independently and
in sharper form by F. Hahn and Y. Katznelson (as yet unpublished). They
show that the flow X may be chosen to be strictly ergodic, and such that if
@ is the unique invariant probability measure supported by X, then the
entropy of the process (X,u) is positive.

4, # X # ¢ #. The class of deterministic flows introduced in the last
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section has the property that products of flows in the class are again in the
class and factors of flows in the class are in it. The object of the remainder
of this part is to construct a class with the same properties and containing
the class of minimal flows. By Theorem I11.2, the class of deterministic
flows does not sufhice for this purpose. The problem may also be described
in another way. If we define a deterministic sequence as one which is defined
for a deterministic flow, then it is easily seen that continuous functions of
finitely many deterministic sequences [{(n) =f(&,(n), &(n), - - - ,&.(n))]
are again deterministic sequences. This is a direct consequence of the clo-
sure properties of the class of deterministic flows. Since neither # nor ¥ is
closed under multiplication, there will exist functions of recurrent se-
quences which are not recurrent. The question arises, what properties are
shared by sequences formed in this way?

The fact that products of minimal flows need not even be semi-simple,
or equivalently, that a composite sequence {£,(n),£(n)} whose compo-
nents are recurrent need not be recurrent, may be seen as follows. As
before let {) be the product A X A X A X - - - with A a finite set.

PROPOSITION IIL3. Let X = (A,T) be a subflow of (2,T) such that A is
infinite. Then X X X is not semi-simple.

Remark: In particular, if X is minimal and 4 is not finite, the hypotheses
are fulfilled and X X X is a product of minimal flows which is not semi-
simple. This proposition also shows that a flow of finite type cannot be
distal unless it is periodic. For we recall from Part 11, §3 (G), that X is distal
if and only if X X X is semi-simple.

Proof: On (1, and therefore on A4, are defined coordinate functions
Zn: Xp(@1,02, - - *) = », € A. Suppose X X X were semi-simple. Then for
any continuous function ¢ on 4 X 4, the sequence ¢(T"w,T"w’) would be
recurrent (Proposition 11.6). Using this we shall show that on 4, x, is a
continuous function of x,,x3,%4, * * - . To show this it suffices to show that
if w;,0, € 4 and if x,(@,) = x,(w,;) forn =234, - - -, thenx,(w;) =2, (w,).
But if X X X is semi-simple, then x,(w;) — x,(w;) represents a recurrent
sequence. If it vanishes for n =234, - - -, it must vanish for n = 1. Thus
we may write x; = F (x;,%3,%4, - - -) with F a continuous function on 4. Now
it is easily seen that since each x; takes on only finitely many variables,
2 =F (x9,%3, * * * ,%p). Since A4 is T-invariant, we have x, = F (X4 1,%n+2, * * * >
%n+m-1)- However, there exist only finitely many sequences satisfying these
conditions, and hence 4 must be finite. This proves the proposition.

An explicit example of a minimal set of finite type is

A = set of sequences {£(n) = sgn sin (na + 6)}

where a is fixed and @ varies between 0 and 2. When na + @ = vwr, v an
integer, we define sgn sin (na + ) as either +1 or —1. That s, 8 of the form
vwr— ka gives rise to two sequences {£(n)}, both of which are included in
A. We leave it to the reader to verify that (4,7) is minimal. That the flow
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is not distal can be seen directly by considering limits of translates of
{¢£(n)} where

£(n) = {igln sin na ::(;)

The above example shows directly that sums and products of recurrent
sequence are, in general, not recurrent. For £*(n) — £~ (n) and £*(n) ¢ (n)
are evidently not recurrent.

5. Binary Sequence Spaces. Our object in the next two sections is to
construct a class of flows of finite type (Part 11, §3 (A)), closed under prod-
ucts and passage to factor flows (that is, if X and Y are of finite type, X 5> Y
and X is in the class, then Y should also be in the class) and containing all
minimal flows of finite type. It is clear that what is sought is a relatively
restricted class of flows; the more restricted this class, the more informa-
tion is to be had concerning products of minimal flows.

As yet we have only been successful in dealing with flows of finite type,
but in all likelihood a similar situation will present itself in the general case.

In the present section, all the flows to be considered are subflows of
(Q,.T), where (), is the space of all {0,1}-valued sequences £ = (¢(1), é(2),
<« +,€(n), -+ ) and T is the shift transformation. It will be convenient to
regard ), as a ring, addition and multiplication of sequences being carried
out term by term, treating {0,1} as the field with two elements. During the
remainder of this section, the expression “invariant set” will refer to a
closed, T-invariant subset of {},. A minimal subset {}, will also be under-
stood to be an invariant set which is minimal for (),,7T).

By Definition III.1, a subset 4 of (), is restricted (with respect to the
additive structure of Q,) if 4 + B=Q, implies B = (),. Here 4 and B are
invariant sets. It is clear that the sums of two restricted sets is restricted.
We do not know if the product of restricted sets is restricted. Nevertheless,
we have the following proposition which is a sharpening of Theorem III.1:

PROPOSITION I11.4. If A is a restricted subset of Oy and M is a minimal
set in )y, then MA is restricted.

Proof: Suppose B is an invariant set satisfying M4 + B = (),. We show
that B = ),. Consider the flows (M,T), (4,T), (B,T), and (9,,T). By
hypothesis, there is a map 7 of M X 4 X B onto ), which defines a homo-
morphism of the product of the first three flows onto the last; namely
m(p,,8) = pa + B. Recalling that (M,T), being minimal, is disjoint from
(2:,T) which is an #-flow, we are in a position to apply Lemma I11.2. We
conclude that for each u € M, 7w (u,4,B) =Q,, or, ud + B=,. Fix u and
choose ' € (), in the form »’ = 1 — & + pw with  an unspecified element
of €,. For each choice of w there must exist @ € 4, 8 € B such that

(5) pat+B=1—u+pw.
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Multiply both sides by (1 — u)(1 — B) and recall that for ¢ € Q,, £=¢, or
&(1 — £) = 0. We thus have

(6) (I=w1—=B)=0,(1-g)=ul—-p).
Now multiply both sides of (5) by (1 — g8):

(I —=Bpa=(1-—PBuw
and since (1 —B)u=1-—4,

(I1-Ba=(1-pBw
and
(7) w=a+ Bo—a).

(7) shows that every element in Q, is a sum of an element of 4 and a mul-
tiple of an element of B:

Q, =4+ BQ, .

But Bf), is an invariant set and 4, by hypothesis is restricted. We conclude
that B, = (),. Now in {}, the unit element 1 has a unique representation
as a product: 1 =1 - 1. It follows that 1 € B. We have shown that M4+ B=
Q, implies that 1 € B. Butin addition, MA+ (B+C ) =0, for any invariant
set C. It follows that 1 € B + C. Take C = {1}; we conclude that 0 € B.
Hence 0 € B + C for any invariant set C. This means every invariant set
C intersects —B. Thus B itself must intersect every invariant set, and
hence it must contain every minimal set in £2,. So B contains every periodic
sequence in {),, and since these are dense, we infer that B={(),. This proves
the proposition.

By repeated application of this proposition and the fact that sums of
restricted sets are restricted, we conclude that any set in €, of the form

(8) 4 =2 MM - - - Mili
i=1

is restricted, the M;; denoting minimal sets.

Definition IIL.3. A sequence ¢ € (), is restricted if it belongs to a restricted
set. We denote by R the family of all restricted sequences.

R is a T-invariant subset of €),, but it is not closed. However if ¢ € R,
then all limits of translates of £ are in R. It is also clear that R # (},. To see
this, observe that (€),,T'), being ergodic, has dense orbits. Hence there are
sequences w € (), belonging to no invariant subsets other than ), itself.
These points (which in fact constitute a residual set in ,) are not restricted.

PROPOSITION IIL.5. An invariant set A C )y is restricted if and only if
A CR.

Proof: The necessity is clear, so we turn to the sufficiency. Suppose
A C R and 4 + B =R, A and B being invariant sets. As remarked above
there exists @ € (), whose orbit is dense in {),. Write w =a+ 8, a € 4,
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B € B. Now a € R, hence a € A’, where 4’ is a restricted set. Hence
® € A' + B. The latter set is, however, invariant; hence )}, =4’ + B and so
B = Q,. This proves the proposition.

THEOREM IIL3. Let R, denote the subring of ), generated by all recurrent
binary sequences. Then Ry C R.
Proof: Every element in R, is of form

&= ifilfiz e §ili s

where the &; are recurrent sequences. Each ¢; belongs to a minimal set
M;; and hence £ belongs to a set of the form (8). It follows that ¢ is re-
stricted.

R, is T-invariant and not closed. It also has the property that a limit of
translates of an element of R, is again in R,. Thus R, is a union of closed
T-invariant sets.

COROLLARY. R, is a set of the first category in . R itself may not be a
ring. By Proposition 1115, it is an additive subgroup. Also by Proposition 1114,
it is a module over the ring R,.

6. R-Flows. The ring R, of binary sequences may be identified with a
ring of subsets of the natural numbers. The latter ring we denote R%,. We
shall make use of R% in studying general finite-valued sequences. Let A
be a finite set and suppose {£(n)} is a A-valued sequence.

Definition IIL4. 4 sequence £ is Ry-measurable if the subsets of the form
{n:é(n) € A}, A a subset of A, belong to R*,

THEOREM II1.4. (a) If a sequence is Ry-measurable, then so are all translates
and limits of translates of the sequence; (b) Any function of finitely many Ry
measurable sequences (£(n) = f(&(n), - - - ,€n(n))) i Rymeasurable; (c)
Recurrent sequences are Ry-measurable.

Proof: (a) and (b) follow by virtue of the fact that R% is a ring and R,
has the invariance properties in question. For (c), suppose that {£(n)} is
recurrent. If we let n(n) = 1 or 0 according as £(n) € A or not, then
{n(n)} is a function of {¢(n)} and hence itself recurrent. Hence € R,
and {£(n)} is Ro-measurable.

Finally we introduce the flows that correspond to Ry-measurable se-
quences.

Definition IIL5. Let X be a subflow of (Q,T), where Q=AXAXAX - - -,
and A is finite. If each sequence of Qx is Rymeasurable, then X is said to be an
Ro-flow. The class of Ry-flows will be denoted by %,

THEOREM IIL5. (a) All semi-simple flows of finite type are in R (b)
Ro X Ro C Ro; (c) Subflows of flows in Ry are in Ro; (d) Factors of flows in R are
in Ry provided they are of finite type; (¢) Non-trivial Bernoulli flows do not occur
in 920.
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Proof: (a), (b) and (c) are immediate from Theorem I11.4. To prove (d)
assume that X € #, and that X% Y, where Y is a flow of finite type. Writing

the points of Qy and )y as sequences, a = (a;,04,03, * * *) € Qy, B= (B1,B2,
Bz, - - *) € y, we have

an q)(anaan+la t ')

for some continuous function ® on . Since both the «, and the B8, are
finite-valued, ® can depend only on finitely many coordinates:

Bn = ®lay,ani1, * 4y

But then if a is Ry-measurable, so is 8, and so Y € #,.

Finally (e) follows from the fact that R, is a proper subset of {),. Now
the space of a Bernoulli flow consists of all A-sequences for some space A,
and the only ring with respect to which all these sequences are measurable
is the ring of all subsets of the natural numbers. This proves the theorem.

7. A Necessary Condition for an R,-flow. Let 4 be an invariant subset

of Q =AXAXAX---,where A is a finite set. Let Q be an infinite subset
of the natural numbers. We say 4 is free on Q if for any choice of numbers
g1, "' " .qr € Q,and Ay, - - - A, € A, we can find a sequence o € 4 with
Qg =Ny, 0t 0, = Ay

THEOREM IIL6. If (4,T) € R, then A cannot be free on a relatively dense
set (see Definition 11.3).

Proof: If Aisfreeon Q and if 4" = {a': &', = ¢(at,), « € A} for some func-
tion ¢:A — A’, then A’ is again free on Q. Choose ¢ as a two-valued function
so that 4' C Q,. If (A,T) € %, then (4',T) € #yand so A’ T Ry, We wish
to show that if 4’ is free on @, then Q cannot be relatively dense.

If B € ,, then the set of n for which 8(n) = 1 will be called the support
of B. With A’ as before, let B denote the set of all 8 € (), such that 4’ is
free on the support of 8. B is T-invariant, and because the notion of being
free depended on conditions regarding finitely many coordinates at one
time, B is seen to be closed. Suppose some 8 € B has for its support a rela-
tively dense set. Clearly all translates of 8 have the same property (uni-
formly) and so do limits of these. The set {T"8} then contains a minimal
set M whose members have relatively dense support. In particular M does
not degenerate to {0}. Let w € M. Since 4’ is free on the support of u, we
can write A’ u = Qou, or Qy =A"+ (1 — w)Q,. If weset M' ={1—u:pn € M},
then a fortiori, Oy = A’M’(),. Since 4’ is a restricted set, M'Q; = 2,. Hence
1 € M’ and so 0 € M. But M is minimal and we assumed M # {0}. Hence
no B € B has relatively dense support, and this proves the theorem.

Combining Theorems IIL5 and IIL.6 we find that, beginning with
semi-simple flows of finite type and forming subflows, factor flows of finite
type and product flows we always obtain flows satisfying the conditions of
the theorem. Namely, the space of the flow is a sequence space which can-
not be free on a relatively dense set,
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We note that deterministic flows also satisfy the conditions of Theorem
II1.6. For if a set 4 is free on a relatively dense set, it is clear that u(4,n)
increases exponentially with n.

We conclude this part by formulating two problems which we have not
been able to solve:

Problem H. Is R C ), a ring, and if so, does it coincide with Ry?

Problem 1. Is the condition in Theorem I11.6 sufhicient as well as neces-
sary for an Ry-flow?

Part IV. A Problem in Diophantine Approximation.

1. Minimal Sets on Tori. We let K" denote the r-dimensional torus
considered as an additive group: K™ = R"/Z". The endomorphisms of K"
correspond to r X r integer matrices, and these form a semigroup E(r).
Each o € E(r) determines a flow on K7, and under certain mild conditions,
(K",0) will be an #-flow. Theorem III.1 then gives us certain information
about minimal sets of (K",0): If M is minimal and B is an invariant set,
then M + B = K" implies B=K".

In all this we have been dealing exclusively with a “one-parameter”
semigroup of transformations. It is not difficult to see that the various
notions we have used generalize to the situation where a more complicated
semigroup acts on the space. Namely, we can allow flows (,2) where 3 is
now not a single transformation, but an abelian semigroup of transforma-
tions. The notions of minimal flows, semi-simple flows, #-flows, and the
notion of disjointness all generalize to this situation. Developing the
analogy we may obtain a generalization of Theorem III.1 to abelian groups
on which an abelian semigroup of endomorphisms acts. Specifically, we
may obtain the following result whose usefulness will develop presently.

PROPOSITION 1V.1. Let 3 denote a commutative semigroup of endomor-
phisms of the r-torus K. We assume (i) that the adjoint semigroup of endomorphisms
3™ of the dual group Z" possesses no Sfinite invariant subset in Z" — {0}, and (i)
that there exists a prime q with the property that all det o, o € 3, are relatively
prime to q. Then if M and B are two closed 3-invariant subsets of K™ and M is
mimimal with respect to these properties, M + B = K™ implies M = K.

Remark: We do not know whether condition (ii) is essential. Condition
(i) is indispensable because, for example, if % were finite, the conclusion
of the proposition would be false.

In proving this proposition, we shall, in fact, not proceed in the manner
indicated, that is, we shall not redevelop the machinery alluded to in the
case of flows in the wider sense. Since the results of this section may have
some independent interest we have chosen to present the proof in a dis-
guised form, avoiding the language of flows.

Proof of Proposition IV .1. Let 2™ denote the subsemigroup of o € I for
which o =1 modulo ¢*. Each o € I has some power lying in 3™. For with
respect to the finite ring Z/¢"Z, det o is a unit for ¢ € 2. Hence, modulo
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q", each o € X is invertible, and 2 taken modulo ¢" forms a group of

matrices.

M is a minimal set with respect to ; but it may not be minimal with
respect to ™. Let M™ denote a subset of M which is minimal for %™,
Clearly we may choose the sequence M™ with M™**Y C M™. Then M> =

(Y M™ is non-empty.
For a fixed n, let oy, - - - ,on denote a complete set of representatives
in % of the group 2 modulo ¢". We may suppose that o; € 2™. We claim

N
that U o:M™ = M. For this it suffices to show that the left-hand side is 2-
i=1

invariant, since it is a closed set contained in M. Let o € X; we must show
that for each i, do:M™ C o;M™ for some j. Choosef so that o;= o'o; modulo
q". Since both co;M™ and o;M™ are minimal 2-invariant sets (at this point
we have put the commutativity of 2 to use), it suffices to show that they
intersect. For this it suffices to show that ¢ 2™ and ¢;2™ intersect. Choose
{ such that o € 2™. Then ooa} € 00;2™. Also oo0™ = gy0  =0j =
1 (mod q"). Hence o000y € 0;2™ and o0 3™ N ¢;2™ # . This proves

that U oM™ =M.

C0n51der next M@ + B, which we denote K™. From the foregoing we

find that U oK™ = KT. Thus, some ;K™ has a non-empty interior. Then

K™ jtself must have a non-empty interior. Now K® is invariant under
3™, and in particular, it is invariant under each o € 3™. Now by [8], o
acts ergodically on (K",m), m being Lebesgue measure on K7, if the eigen-
values of o are distinct from roots of unity. However, hypothesis (i) en-
sures the existence in % of an endomorphism with no roots of unity among
its eigenvalues, and an appropriate power of this endomorphism lies in
3™ and still has no roots of unity among its eigenvalues. Since K™ has
positive Lebesgue measure, it must have measure 1; hence K = K", We
have thus shown that M™ + B = K",

Fix ¢ € M*; that is, &, belongs to each M™. Consider a point in K" of the
form

(l) 6= (alq—n7a2q_na Tt ,arq*") 3

where a;,az, * * * ,a, are integers. We may write 8 = p + 8 with u € M™,
B € B. The closure of Z™u is a 2™-invariant subset of M™, and since the
latter is minimal for 2™, it follows that 2™ is dense in M™. In particular,
£ =1im o;u for a sequence {o;} in Z™. Since o; € 2™, it is congruent to the
identity modulo ¢*, and so ;0 = 8 for each 6. Applying o; to both sides of .
0= + B, we find that 6 = ¢ + 8’ for some B8’ € B. Thus ¢ + B includes all
points of the form (1). But the latter are dense in K. Hence § + B =K,
whence B = K". This proves the proposition.

2. Semigroups of Endomorphisms of K. If the semigroup X of Propo-
sition IV.1 is sufficiently large, one can show that a minimal set cannot be
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“small” in the sense required by that proposition unless it is finite. When
r= 1, i.e., for the circle K, this is, in fact, usually the case. For r=1, E(r},
the endomorphism semigroup of K, consists of multiplication by integers.
3, may therefore be identified with a subset of Z. % always contains non-
negative integers and we denote this subset by 2*.

Definition IV.1. 4 multiplicative semigroup % of integers is lacunary if all
the members of 5% are powers of a single integer a. Otherwise, 2 is non-lacunary.

For example, {a”,a”*',a”*2, - - -} is a lacunary semigroup. {2"3™; n,m =
1,2,3, - - -} is a non-lacunary semigroup.
LEMMA 1V.1. Let 3. be a non-lacunary semigroup, and suppose Z+ = {s1,5s,
S, © -} with 8; < s;41. Then, as n — o,
Spt1

Proof: This is a consequence of the following: an additive semigroup
of positive real numbers is either contained in a discrete subgroup, or be-
comes more and more dense as the numbers tend to . Let S be such a
semigroup; S — § is a group, and it is not hard to see that if S— Sis a dis-
crete subgroup, then Sitself is contained in a discrete subgroup. (S—S C
Zu implies S C Zu + ', and 2(nu +s’) = mu + s', whence s’ € Zu; hence
S C Zu.) Now it is known that a subgroup of R is either discrete or dense.
Hence we may suppose that S— Sis dense in R. We may still suppose this
to be the case for a subsemigroup (possibly S itself) of S which is countably
generated. Assume therefore that S itself is countably generated, say, by
a;,02,a3, - - - . It may be seen that

3) S—S=G(S—n(a1+a2+---+an)),
n=1

where the summands to the right of (3) form an increasing sequence. Let
€ > 0. Suppose the sets S — n(a; + a; + - - - + a,) omitted an interval of
length greater than € somewhere in (0,%). ThenS—n(a, +a,+ - - - +a,) —
k,a, would omit an interval of length € inside of (—ay,0) if &, is appropri-
ately chosen. Now

S—n(a;+a+--++a,) ks DS—n(a,+ay++--+a,)

and since the sets S—n(a, +a;+ - - - +a,) become successively more dense,
this is not possible. Hence for n sufficiently large, S —n(a; +a; + - - - +ay)
is e-dense in (0,), whence Sis e-dense in (n(a, + - - + +a,),*). This proves

the assertion regarding additive semigroups. Returning to 2, we now find
two alternatives for log 2. Suppose log 2. is contained in a discrete subgroup
of R; then for each pair i, j some power of s; must coincide with some power
of s;. But this implies that % is lacunary. This leads to the conclusion of
the lemma.

LEMMA 1V.2. Let 3 be a non-lacunary semigroup and let A be a closed 2-

invariant subset of K with the property that O is a non-isolated point of A. Then
A=K.
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Proof: Consider a sequence of points e, € 4 with o, = 0. Fix € > 0 and
choose n, large enough so that s,../s, < 1 + € for n > n,. Next choose n, so
large that 5,,8,, < €. For n > n,

(Spt1 = 8n) Bny < €548y, .

Let n range over the values for which s,8,, € [¢€,1]. The distance between
successive values of s,8,, does not exceed ¢, so that {s,8,,} is e-dense in
[0,1]. Since € is arbitrary, 4 =K.

PROPOSITION IV.2. If 3 is a non-lacunary semigroup of integers, the only
minimal sets in K for 3. are finite sets (of rationals).

Proof: Suppose that the proposition has been proved for semigroups
with the property that some prime number ¢ exists which is relatively
prime to all numbers of the semigroup. It then follows in the general case.
For if 3 is non-lacunary we can find 2’ C 2 which is still non-lacunary and
satisfies this condition. A minimal set for ¥ contains a minimal set for %’.
But if a minimal set for X contains a rational point, all its points must be
rational with the same denominator. Thus we may suppose that %, satisfies
the condition in question and as a result Proposition IV.1 applies to mini-
mal sets for S. Let M be a minimal set for 3. M — M is a 3-invariant set. If
M is infinite then M — M contains 0 as a non-isolated point. But then, by
the foregoing lemma, M — M = K. Now this contradicts Proposition IV.1.
We conclude that M is finite. Since 2, is infinite, a 3-invariant set can be
finite only if it consists of rationals. This proves the proposition.

THEOREM 1V.1. If X is a non-lacunary semigroup of integers and a is an
irrational, then 2. is dense in K.

Proof: Let A be the closure of 2« in K. 4 is a Z-invariant set and neces-
sarily contains a minimal Z-invariant set. Hence 4 contains a rational p/q.
Sa itself consists only of irrationals; hence p/q is a non-isolated point of 4.
Hence 0 is a non-isolated point of g4. Now ¢4 is itself a Z-invariant closed
set, so by Lemma 1V.2, ¢4 = K. This implies that

AU <A+1) U---U (A+i—_—l)=K.
q q

Since these sets are closed, A must have a non-empty interior. But then
sA C A for s > 1 implies A = K. This proves the theorem.
The conclusion of the theorem is clearly false for lacunary semigroups.

For, let a be a positive integer and set =" a™*. Then {a"a} modulo 1 has

1 -2

only the limit points 0, a™', a2, - -.

If r is a positive integer, then the set of rth powers {n"} forms a non-
lacunary semigroup. As a special case of Theorem IV.1, we have the result
of Hardy and Littlewood: If « is irrational, {n"a} is dense modulo 1. (This
is most familiar as a special case of Weyl’s theorem on equidistribution.)
The semigroup {2"3™} corresponds to a subset which is thinner than any
of the {n"} and for which the same conclusion still holds.
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We point out that the equidistribution conclusion cannot be made in
the same generality. If the sequence {2"3™} is arranged in increasing order
as {s,}, then {s,a} is not necessarily equidistributed modulo one when a is
irrational. We mention without proof the fact that if « = 267" and n;, is of
sufficiently rapid growth, then {s,a} is not equidistributed modulo one.
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