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Abstract. A linear map from one Euclidean space to another may map a compact set
bijectively to a set of smaller Hausdorff dimension. For ‘homogeneous’ fractals (to
be defined), there is a phenomenon of ‘dimension conservation’. In proving this we
shall introduce dynamical systems whose states represent compactly supported measures
in which progression in time corresponds to progressively increasing magnification.
Application of the ergodic theorem will show that, generically, dimension conservation
is valid. This ‘almost everywhere’ result implies a non-probabilistic statement for
homogeneous fractals.

0. Introduction
If f : X → Y is a Lipschitz map of the metric space X to the metric space Y , then the
Hausdorff dimension of f (X) never exceeds that of X : dim f (X) 6 dim X . In the classical
situation where f is a linear map of one vector space to another, dim X − dim f (X) =

dim(ker f ), the latter being also the dimension of f −1(y) for each y ∈ f (X). Thus the
discrepancy between the dimension of the image and that of the domain of f is accounted
for by the size of f −1(y) for any y in the image. In the general context of metric spaces
and Hausdorff dimension, a Lipschitz map may decrease dimension without the loss being
compensated for by dim f −1(y) for any y ∈ f (X). Thus f : X → f (X) may be a one-
to-one map with dim f (X) < dim X . This can happen even when f is the restriction of
a linear map from one Euclidean space to another with domain X , a compact subset of
the first Euclidean space. We shall use the term ‘fractal’ for compact subsets of Euclidean
space.

A map f taking a fractal to another will be termed ‘dimension conserving’ when loss of
dimension (if there is any) is accounted for by the dimension of fibers f −1(y) in a manner
to be made precise in §1. Our main result states that for a certain class of fractals—we call
them homogeneous fractals—at least linear maps are dimension conserving.

The principal tool in our proof will be the introduction of a dynamical system we call a
‘CP-shift system’, in which progression in ‘time’ corresponds to progressively increasing
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magnification about a point in the support of a compactly supported measure in Euclidean
space. This will make available tools from ergodic theory both for the construction and
study of fractal sets. More precisely, states in this dynamical system will correspond
to ‘ergodic fractal measures’, and the ergodic theorem will be invoked to deduce almost
everywhere information regarding the supports of these measures.

In §1 we introduce the notion of a micro-set of a fractal and in our final section we
show that, for any set of positive dimension, there exist micro-sets supporting ergodic
fractal measures. Thus, for any set A, the information available for ergodic fractal
measures is applicable to some microsets of A. Now, for homogeneous fractals micro-sets
are homothetic to subsets, so that the information available for ergodic fractal measures
can be applied directly to homogeneous fractals. This is a brief sketch of the argument
used in the proof of our main result. We expect that the ergodic fractal measures appearing
here can be regarded as objects of independent interest, and part of our aim here is to call
attention to these. Other applications of the ideas developed here—albeit in a different
form—can be found in [F] and [FW].

1. Preliminaries
1.1. Fractals and their micro-sets. As indicated, the term ‘fractal’ will be applied to
an arbitrary compact subset in Euclidean space. Hausdorff dimension is defined for any
metric space and is finite for fractals, for which it can take any value between zero and the
dimension of the ambient space.

Definition 1.1. If f : A → Rn is a Lipschitz function from A ⊂ Rm to Rn , we say that f
is dimension conserving (DC) if, for some δ ≥ 0,

δ + dim{y | dim f −1(y) > δ} > dim A (1.1)

(there may be more than one such δ). We adopt here the convention that the dimension of
the empty set is −∞, so that (1.1) cannot hold if δ is chosen too large, and the set of y in
question is empty.

We give two examples of mappings that are not DC.
(a) Let ϕ : [0, 1] → R be a continuous function whose graph has dimension greater than

one. This will be true, for example, if ϕ is a typical one-dimensional Brownian motion.
If A is the graph of ϕ and f : R2

→ R1 is given by f (x, y) = x , then clearly f |A is not DC.
(b) For two sets B ′, B ′′, dim(B ′

× B ′′) > dim B ′
+ dim B ′′, where we may have strict

inequality. If this happens, then setting A = B ′
× B ′′, the projection of A to B ′ (or B ′′)

clearly cannot be DC.
In what follows we will focus on fractals lying inside the unit cube Q(m)

= [0, 1]
m

of Rm for some m. For fixed m we simply denote Q(m) by Q. The family of closed subsets
of Q will be denoted by 2Q . The Hausdorff metric in 2Q is defined by

D(A, B) = inf{d | A ⊂ Bd and B ⊂ Ad},

where, for any set S ⊂ Rm , Sd is the union of all open balls of radius d centered in S.
Endowed with this metric, 2Q is a compact metric space. The following notions generalize
the notion of a subset of a given set A. We suppose that A ∈ 2Q .



Ergodic fractal measures and dimension conservation 407

Definition 1.2. A set A′
∈ 2Q is a mini-set of A if, for some scalar λ > 1 and u ∈ Rm ,

A′
⊂ (λA + u) ∩ Q.

Definition 1.3. A set A′′
∈ 2Q is a micro-set of A if is there is a sequence A′

n of mini-sets
of A with A′

n → A′′ in the Hausdorff metric on 2Q .

Definition 1.4. A fractal A is homogeneous if every micro-set of A is a mini-set.

Definition 1.5. A family G ⊂ 2Q is called a gallery if it is closed in 2Q and, with each
A ∈ G, every mini-set of A is also in G.

Remark. The set of micro-sets of a given fractal A forms a gallery. We denote this gallery
by GA.

Definition 1.6. For any gallery G, dim∗ G = sup{dim A | A ∈ G}.

It will be shown later that the supremum in the foregoing definition is always attained
by a member of the gallery.

Finally, we have the following.

Definition 1.7. For a fractal A, dim∗ A will denote dim∗ GA.

We always have dim A 6 dim∗ A. In fact, dim A 6 dimB A 6 dim∗ A, where dimB A
is the upper ‘box dimension’ or ‘Minkowski dimension’ of A. If A is homogeneous, then
dim A = dim∗ A so the various notions of dimension coincide.

The classical Cantor middle-third set is homogeneous. More generally, if A =⋃
ϕi (A) where the ϕi are contracting homotheties and the ϕi (A) are disjoint, then A is

homogeneous. A further example generalizing that of the Cantor set is that of a closed set
A ⊂ Q(m) invariant under τp where

τp(x1, x2, . . . , xm) = (px1 − [px1], px2 − [px2], . . . , pxm − [pxm]).

1.2. p-ary decomposition of Q. Fix a dimension m, and let Q = Q(m)
= [0, 1]

m denote
the unit cube in Rm . Fix an integer p > 2 and consider the partition

[0, 1] =

[
0,

1
p

)
∪

[
1
p
,

2
p

)
∪ · · · ∪

[
p − 1

p
, 1

]
= J0 ∪ J1 ∪ · · · ∪ Jp−1,

where all but the last interval are half-open and half-closed. We denote the product
set {0, 1, . . . , p − 1}

m by 3. For λ = (i1, i2, . . . , im) ∈ 3 we define Qλ = Ji1 × Ji2 ×

· · · × Jim . We then obtain a partition

Q =

⋃
λ∈3

Qλ

to disjoint cubes. For any x ∈ Q there is a unique λ with x ∈ Qλ. We write λ = λ(x)

and Qλ = Q1(x). Let ρλ denote the restriction to Qλ of the map t 7→ pt − λ. In general
ρλ(Qλ) is a partially open subcube of Q, unless λ = (p − 1, p − 1, . . . , p − 1), where
ρλ(Qλ) = Q. We can now define subcubes Qλ1,λ2,...,λ`

for any ` and λi ∈ 3 inductively by

Qλ1,λ2 = ρ−1
λ1

Qλ2 , Qλ1,λ2,λ3 = ρ−1
λ1

Qλ2,λ3 , . . . , Qλ1,λ2,...,λ`
= ρ−1

λ1
Qλ2,λ3,...,λ`

, etc.
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The cube Qλ1,λ2,...,λ`
has side p−`, Qλ1,λ2,...,λ`+1 ⊂ Qλ1,λ2,...,λ`

, and if x ∈
⋂

`>1
Qλ1,λ2,...,λ`

then x =
∑

∞

1 λn/pn where we regard the λi as vectors in Rm . The ‘p-ary’
expansion of points x ∈ Q is not always unique, whereas the λn with x ∈ Qλ1,λ2,...,λn are
unique as a result of the intervals Ji being non-overlapping.

For w = (λ1, λ2, . . . , λ`) ∈ 3` we shall write Qw for Qλ1,...,λ`
and the length ` of w

will be denoted by `(w). For any x ∈ Q and ` ∈ N, Q`(x) will denote Qw for the unique
word w of length ` for which x ∈ Qw. Finally, Q itself can be denoted by Q∅ where ∅ is
the ‘empty’ word.

If A ⊂
⋃k

i=1 Qwi with disjoint cubes {Qwi } we shall say that {Qwi }
k
1 is a p-cover of A.

The usual definition of Hausdorff dimension involves covering a set A with countably
many balls. When A is compact this can be replaced by a finite set of balls, and each ball
can be replaced by the union of cubes whose sides are the same order of magnitude as the
radius of the ball. We can thus relate the dimension of a closed subset of Q to its p-covers,
and we obtain the following.

LEMMA 1.1. If A is a closed subset of Q with dim A < γ , then, for any ε > 0, there exists
a finite p-cover A ⊂

⋃
Qwi with

∑
p−γ `(wi ) < ε.

We now come to a result which will play an important role in what follows. Here again
Q = Q(m)

⊂ Rm for any m > 1. Below, we denote the set of probability measures on Q
by P(Q).

THEOREM 1.1. Let θ ∈ P(Q) and assume that, for every x ∈ Q outside of a set of
θ -measure 0,

lim inf
{

−
1
n

logp θ(Qn(x))

}
> β. (1.2)

Then, denoting the support of θ by |θ |, we have dim |θ | > β.

Proof. If dim |θ | < β, let β ′ < β and dim |θ | < β ′. By (1.2), we can find a compact set
A ⊂ |θ | with θ(A) > 1

2 and a large N so that for x ∈ A, n > N , θ(Qn(x)) < p−β ′n . By
Lemma 1.1, since dim A < β ′, for any ε > 0, there exists a p-cover of A, {Qwi }, with∑

p−β ′`(wi ) < ε. If ε < p−β ′ N all the wi appearing here will have `(wi ) > N . We can
assume that Qwi ∩ A 6= ∅. This implies that θ(Qwi ) < p−β ′`(wi ). But then

∑
θ(Qwi ) < ε.

If ε is now chosen with ε < 1
2 then θ(A) 6 θ(

⋃
Qwi ) < 1

2 which is a contradiction. Hence
dim |θ | > β. 2

2. Ergodic CP-shift systems
In this section we introduce a family of dynamical systems that will play a central role in
our discussion. Again Q = Q(m) will denote the unit cube in Rm for a fixed m > 1, and
P(Q) will denote the set of probability measures on Q. The set 8 ⊂ P(Q) × Q consisting
of all pairs (θ, x) such that, for every n, θ(Qn(x)) > 0, is a Borel set in P(Q) × Q. We
now define a measurable map T : 8 → 8, namely we let T be the ‘rescaling map’ where
for (θ, x) ∈ 8 and x ∈ Qλ1 = Q1(x),

T (θ, x) =

(
ρλ1(θ |Qλ1

)

θ(Qλ1)
, px − λ1

)
. (2.1)



Ergodic fractal measures and dimension conservation 409

Writing Qn+1(x) = Qλ1w with `(w) = n, we have Qn(px − λ1) = Qw and
ρλ1(θ) (Qw) = θ(ρ−1

λ1
Qw) = θ(Qλ1w) = θ(Qn+1(x)) > 0; hence T (θ, x) ∈ 8.

Definition 2.1. A measure µ on P(Q) × Q will be said to be adapted if there is a measure
ν on P(Q) such that dµ(θ, x) = dθ(x) dν(θ), i.e.∫

f (θ, x) dµ(θ, x) =

∫ ( ∫
f (θ, x) dθ(x)

)
dν(θ). (2.2)

We now come to the central notion of this section—that of a CP-shift system. Here
CP stands for ‘conditional probability’, which describes the probability measure appearing
in T (θ, x) as the image in Q of the measure on Q1(x), given by θ conditional on being
in Q1(x).

Definition 2.2. (8, T, µ) is an ergodic CP-shift system (ECPS) if µ is an adapted
T -invariant measure on 8 such that the corresponding measure-preserving system
is ergodic.

We present two examples of ECPS systems, both derived from stationary 3-valued
processes. Suppose {Xn}n∈Z is an ergodic, stationary 3-valued process defined on a prob-
ability space �. Writing Xn = (X (1)

n , . . . , X (m)
n ) with X (i)

n (ω) ∈ {0, 1, . . . , p − 1}, we
assume that the event X (i)

1 = X (i)
2 = · · · = X (i)

n = · · · = p − 1 occurs with probability 0
for each i . Set

Zn(ω) =

∞∑
k=1

Xn+k(ω)

pk

with values in Q. The restriction placed on {Xn} implies that, with probability 1,
Zn ∈ Q Xn+1,Xn+2,...,Xn+k for each k. (Note that, for m = 1, the point

x =
p − 1

p2 +
p − 1

p3 + · · · =
1
p

belongs to Q1 and not to Q0.) We have δZ0(Q X1,X2,...,Xk ) = 1 so that (δZ0 , Z0) ∈ 8 with
probability 1. Moreover, T (δZ0 , Z0) = (δZ1 , Z1). It follows that if µ is the distribution
of (δZ0 , Z0) in 8, then it is invariant under T , and since {Xn} is ergodic, so is the system
(8, T, µ). It is clear that the distribution on 8 of (δZ0 , Z0) is an adapted measure, since
Z0 is exactly the support of δZ0 . Thus (8, T, µ) is an example of an ergodic CP-shift
system.

A second example makes use of the ‘past’ {Xn}n60. For almost every ω, the ‘prediction’
measure θ̃ (ω) on 3N is defined, whereby, for a continuous f (ξ) on 3N,∫

f (ξ) d θ̃ (ω) (ξ) = E( f (X1, X2, . . .)|X0, X−1, X−2, . . .) (ω), (2.3)

where θ̃ (ω) depends on the past: θ̃ (ω) = θ̃ (X0(ω), X−1(ω), . . .). Define π : 3N→ Q
by π(ξ) =

∑
∞

1 ξk/pk for ξ = (ξ1, ξ2, . . .) and put θ(ω) = π(θ̃(ω)) so that θ(ω) ∈ P(Q).
We can verify that

T (θ(X0, X−1, . . .), π(X1, X2, . . .)) = (θ(X1, X0, . . .), π(X2, X3, . . .))
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with probability 1. Moreover with probability 1, for each k,

θ(X0, X−1, . . .)(Q X1,X2,...,Xk ) > 0,

and hence (θ(Xo, X−1, . . .), π(X1, X2, . . .)) ∈ 8 with probability 1. Denote by P(3N)

the set of probability measures on 3N. Let ν̃ be the distribution on P(3N) of
θ̃ (X0, X−1, X−2, . . .) and µ̃ the distribution on 3N of {Xn}

∞
−∞. Then dµ̃ = d θ̃ d ν̃(θ̃ ).

It follows that the distribution µ on 8 of the variable (θ(X0, X−1, . . .), π(X1, X2, . . .))

is an adapted measure. Since the process {Xn} is ergodic, µ is an ergodic measure for T
and we conclude that (8, T, µ) is an ergodic CP-shift system.

The ergodic theorem can be applied to any ECPS system with implications for almost
every (θ, x) ∈ 8. We will refer informally to the typical measure appearing here as
‘ergodic fractal measures’. We will not give a precise definition; rather such measures are
those reflecting properties enjoyed by almost every θ for some ECPS system. An example
of such a property will follow as a corollary from the next theorem.

THEOREM 2.1. Let (8, T, µ) be an ECPS system with ν the associated measure onP(Q),
and set

h = hµ = −

∫
8

logp θ(Q1(x)) dµ(θ, x).

Then for almost every θ with respect to ν, dim |θ | > h. (Thus h is at most the dimension of
the ambient space, and so the integral in question is finite.)

Proof. We set I (θ, x) = −logpθ(Q1(x)) and we proceed to evaluate

1
n

n−1∑
k=0

I (T k(θ, x)).

Let x ∈ Qw for w = λ1λ2 . . . λk . Iterating (2.1) we find

T k(θ, x) =

(
ρλk ◦ ρλk−1 ◦ · · · ◦ ρλ1(θ |Qλ1 ...λk

)

θ(Qλ1...λk )
, pk x − [pk x]

)
, (2.4)

where [pk x] = λk + λk−1 p + · · · + λ1 pk−1. Also,

Q1(pk x − [pk x]) = Qλk+1

and
ρ−1

λ1
ρ−1

λ2
. . . ρ−1

λk
(Qλk+1) = Qλ1λ2...λk+1 .

This gives

I (T k(θ, x)) = −logp

(
θ(Qλ1...λk+1)

θ(Qλ1...λk )

)
. (2.5)

Consequently
1
n

n−1∑
k=0

I (T k(θ, x)) = −
1
n

logp θ(Qn(x)). (2.6)

The ergodic theorem applies to non-negative measurable functions giving a limiting
value ∞ if the function is non-integrable. Thus for µ-almost every (θ, x) the limit in (2.6)
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is hµ, which a priori might be +∞. Inasmuch as µ is an adapted measure, this conclusion
holds for ν-almost every θ and θ -almost every x . We now apply Theorem 1.1 to conclude
that, for almost every θ , dim |θ | > hµ. Since θ is a measure on Q(m), dim |θ | 6 m, so that
hµ is finite, and a posteriori we find that I (x) is integrable. This concludes the proof of
the theorem. 2

As a corollary we conclude that ‘ergodic fractal measures’ have the property that

lim
n→∞

(θ(Qn(x))1/n) (2.7)

exists for almost every x with respect to θ , and is independent of x . We denote the above
limit by H(θ). More generally we will say that a measure on Q is p-regular if (2.7) exists
almost everywhere and is independent of x . For a p-regular θ we will speak of −logH(θ)

as the p-dimension of θ , denoted by dimp θ .

3. Dimension conservation for ergodic fractal measures
We will see in §6 that the phenomenon of dimension conservation for arbitrary linear maps
restricted to fractals can be studied by looking at the special case of the map (x, y) 7→ x
where x ∈ Rm1 and y ∈ Rm2 so that the function in question takes Q(m1+m2) to Q(m1).
Having defined p-dimension for measures we define a notion analogous to dimension
conservation for measures on Q(m1+m2) relative to the foregoing map Q(m1+m2) → Q(m1).
We denote Q(m1+m2) by Q, Q(m1) by Q′ and Q(m2) by Q′′. A probability measure
θ ∈ P(Q) has a ‘Fubini’ decomposition

θ =

∫
Q′

δx × θx d θ̄ (x), (3.1)

where θx ∈ P(Q′′) is well defined for almost all x ∈ Q′ relative to θ̄ , the projection of θ

to Q′.

Definition 3.1. θ ∈ P(Q) satisfies dimension conservation (DC) if θ and θ̄ are p-regular,
and almost all θx are p-regular with the same p-dimension, and for almost all x

dimp θ = dimp θ̄ + dimp θx . (3.2)

Note that (3.2) can also be written as

−logH(θ) = −logH(θ̄)−logH(θx ).

The main result in this section is the assertion (Theorem 3.1) that, for any ergodic
CP-shift system (8, T, µ) on Q = Q(m1+m2), almost every measure θ ∈ P(Q) satisfies
DC. We shall need the following lemma.

LEMMA 3.1. Let (�, B, P) be a probability space and A ∈ B, and let F1 ⊂ F2 ⊂

· · · ⊂ Fn ⊂ · · · be an increasing subsequence of finite subfields of B. The conditional
probabilities P(A | Fn) = E(1A | Fn) are almost everywhere defined, and setting

f (ω) = 1A(ω) sup
n

(−logpP(A | Fn) (ω)),

then f (ω) is integrable:
∫

f (ω) dP(ω) < ∞.
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Proof. We show that
∑

∞

N=0 P(ω : f (ω) > N ) < ∞. P(A | Fn) is constant on the atoms
of Fn , and, for each i , we consider all those atoms {Ai, j } j with Ai, j ∈ Fi for which
−logpP(A | Fi ) > N . We arrange these by increasing i , counting only those Ai, j not
contained in a previous Ai ′, j ′ with i ′ < i . Let this sequence of disjoint sets be denoted
by B1, B2, . . . , Bk, . . . , so that {ω | f (ω) > N } =

⋃
A ∩ Bk . Bk is an atom of some Fn ,

and so P(A ∩ Bk) 6 p−N P(Bk). Summing over k, we obtain P( f (ω) > N ) 6 p−N , which
proves the lemma. 2

Suppose now that (8, T, µ) is an ergodic CP-system on Q = Q′
× Q′′ as above. We

can write 3 = 3′
× 3′′ with 3′

= {0, 1, . . . , p − 1}
m1 , 3′′

= {0, 1, . . . , p − 1}
m2 . We

shall denote elements of 3′ by ξ and those of 3′′ by η. Points of Q′ can be expressed as
x =

∑
∞

1 ξn/pn , and those of Q′′ expressed as y =
∑

∞

1 ηn/pn . The points of 8 have the
form (θ; x, y), and with x and y as above we can write

T (θ; x, y) =

(
ρξ1,η1(θ)

θ(Q′
ξ1

× Q′′
η1

)
; px − [px], py − [py]

)
,

and iterating, using the fact that pi x − [pi x] =
∑

∞

1 ξn+i/pn and pi y − [pi y] =∑
∞

1 ηn+i/pn ,

T k(θ; x, y) =

(
ρξk ,ηk ρξk−1,ηk−1 . . . ρξ1,η1(θ)

θ(Q′
ξ1...ξk

× Q′′
η1...ηk

)
; pk x − [pk x], pk y − [pk y]

)
. (3.3)

We note that the measure θx on Q′′ is given for almost every x ∈ Q′ and B ⊂ Q′′ by

θx (B) = lim
n→∞

θ(Q′
n(x) × B)

θ(Q′
n(x) × Q′′)

= lim
n→∞

θ(Q′
n(x) × B)

θ̄(Q′
n(x))

according to the martingale convergence theorem.
Define the functions Jn(θ; x, y) on 8 by

Jn(θ; x, y) =
θ(Q′

n(x) × Q′′

1(y))

θ(Q′
n(x) × Q′′)

and
J∞(θ; x, y) = θx (Q′′

1(x)),

so that Jn → J∞.
We apply (3.3) to calculate Jn(T k(θ; x, y)), which we also write as T k Jn(θ; x, y),

where we again write x =
∑

ξn/pn , y =
∑

ηn/pn :

T k Jn(θ; x, y) =
θ(ρ−1

ξ1,η1
. . . ρ−1

ξk ,ηk
(Q′

n(pk x − [pk x]) × Q′′

1(pk y − [pk y])))

θ(ρ−1
ξ1,η1

. . . ρ−1
ξk ,ηk

(Q′
n(pk x − [pk x]) × Q′′))

=

θ(ρ−1
ξ1,η1

. . . ρ−1
ξk ,ηk

(Q′
ξk+1ξk+2...ξk+n

× Q′′
ηk+1

))

θ(ρ−1
ξ1,η1

. . . ρ−1
ξk ,ηk

(Q′
ξk+1ξk+2...ξk+n

× Q′′))

=
θ(Q′

ξ1ξ2...ξk+n
× Q′′

η1η2...ηk+1
)

θ(Q′
ξ1ξ2...ξk+n

× Q′′
η1η2...ηk

)
. (3.4)



Ergodic fractal measures and dimension conservation 413

Replace n by n − k:

T k Jn−k(θ; x, y) =
θ(Q′

ξ1...ξn
× Q′′

η1...ηk+1
)

θ(Q′
ξ1...ξn

× Q′′
η1...ηk

)
. (3.5)

If we now define Kn = −logp Jn and K∞ = −logp J∞, we obtain

1
n

n−1∑
k=0

T k Kn−k(θ; x, y) =
1
n

· −logp

θ(Q′
ξ1...ξn

× Q′′
η1...ηn

)

θ(Q′
ξ1...ξn

× Q′′)

= −
1
n

logp(θ(Qξ1,η1...ξn ,ηn )) +
1
n

logp θ̄ (Q′
ξ1...ξn

), (3.6)

which we write as Rn + Sn .
Fix k and let n → ∞ in (3.5); we get

T k K∞(θ; x, y) = −logpθx (Q′′
η1...ηk+1

) + logp θx (Q′′
η1...ηk

),

so that
1
n

n−1∑
k=0

T k K∞(θ; x, y) = −
1
n

logp θx (Q′′
η1...ηn

). (3.7)

The limit of (3.7) exists almost everywhere (as a number 6 ∞) by the ergodic theorem;
this shows that almost every θx is p-regular, and that the limit is in fact a finite constant δ.
We now invoke a theorem of Maker [M] to assert that the limit in (3.6) also exists almost
everywhere and has the same value δ.

THEOREM. (Maker [M]) If { fn} are integrable functions on (X, B, µ) where (X, B,

µ, T ) is a measure-preserving system and if fn(x) → f∞(x) almost everywhere, and
if sup | fn(x)| = g(x) is integrable, then for almost every x,

lim
1
n
( fn(x) + fn−1(T x) + · · · + f1(T n−1x)) = f̄∞(x),

where f̄∞(x) = lim(1/n)
∑n−1

i=0 f∞(T i x).

To use Maker’s theorem we have to verify that supn Kn(θ; x, y) is integrable. We use
Lemma 3.1. Let Fn be the field generated by the pnm1 atoms {Q′

λ1λ2...λn
× Q′′

}. Then
Jn(θ; x, y) = θ(Q′

× Q′′(y) | Fn) and we can write

Kn(θ; x, y) = −

∑
λ∈3′′

1Q′×Q′′
λ

logp θ(Q′
× Q′′

λ | Fn).

By Lemma 3.1 each of the pm1 summands has an integrable supremum and so Maker’s
theorem is applicable. By the remark following Theorem 2.1, the measure θ in Q is
for almost all (θ; x, y) a p-regular measure, and so Rn → −logpH(θ) = dimp θ . As a
consequence lim Sn also exists almost everywhere showing that θ̄ is p-regular. We have
thus proved the following.

THEOREM 3.1. Let (8, T, µ) be an ergodic CP-shift system on Q(m1+m2). Then for
almost every (θ, x, y) ∈ 8 and with the Fubini decomposition of θ given in (3.1) we have θ̄

p-regular and almost each θx is p-regular and

dimp θ = dimp θ̄ + dimp θx . (3.8)
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We will be applying this result in the following way. Assume that dimp θ = dim |θ |.
dimp θx is a constant δ for almost every x with respect to θ̄ . Let A′

⊂ Q′ be a compact set
for which this is the case, as well as the convergence of −(1/n) logp θ̄ (Q′

ξ1...ξn
) to dimp θ̄ ,

and with θ̄ (A′) > 0. By Theorem 1.1, dim A′ > dimp θ̄ . We then have, by (3.8),

δ + dim {x | dim{y | (x, y) ∈ |θ |}} > dim |θ |,

and so the map (x, y) 7→ x taking Q → Q′ is dimension conserving on |θ |. (We have used
here the fact that, for almost every x , |θx | ⊂ {y | (x, y) ∈ |θ |}.)

In the following sections we will show that, in any gallery G of sets, there is a set A ∈ G
with dim A = dim∗ G and supporting a measure θ with dimp θ = dim∗G and for which
(3.8) is valid, i.e. which satisfies dimension conservation.

4. Markovian CP shift systems
We fix m and p and let Q = Q(m), 3 = {0, 1, . . . , p − 1}

m . Points of Q can be
represented by sequences ξ = {ξ(1), ξ(2), . . .} ∈ 3N where ξ represents the point ξ̂ =∑

∞

1 ξ(n)/pn . This representation is not exactly one-to-one, and there are technical
reasons that make it advantageous to replace the connected space Q in P(Q) × Q by
the totally disconnected 4 = 3N, and to define a dynamical system on P(4) × 4. The
system we will construct for a gallery G will arise from a Markov process on the space
P(4) × 3, and projecting this to P(Q) × Q will give us the desired CPS system.

A probability measure ρ on 4 determines a function σ on 3∗
=

⋃
k>0 3k

= finite
length words over the alphabet 3 by setting σ(w) = ρ (sequences in 4 with initial segment
= w). We can also define σ(∅) = 1 for ∅ the empty word. We have

(a) σ(∅) = 1,

(b) σ(w) > 0,

(c) σ(w) =

∑
λ∈3

σ(wλ).
(4.1)

Conversely, a function σ : 3∗
→ [0, 1] satisfying (4.1) determines a probability

measure σ̂ on 4, and we shall identify P(4) with the space of such functions, which
we denote by 6. Here 6 is a closed subset of [0, 1]

3∗ in the compact topology of the
latter and in our identification the topologies coincide.

If σ ∈ 6 and u ∈ 3∗ with σ(u) > 0, we can define σ u
∈ 6 by

σ u(w) =
σ(uw)

σ(u)
. (4.2)

One sees that the transition σ 7→ σ u corresponds to replacing a measure θ on Q by the
conditional probability measure on a subset Qu with θ(Qu) > 0. In particular, for σ ∈ 6,
λ ∈ 3 with σ(λ) > 0 and w ∈ 3∗,

σ̂ λ(Qw) =
σ(λw)

σ(λ)
=

σ̂ (Qλw)

σ̂ (Qλ)
=

σ̂ (ρ−1
λ Qw)

σ̂ (Qλ)
=

ρλ(σ̂ |Qλ)

σ̂ (Qλ)
(Qw), (4.3)

so that σ̂ λ = ρλ(σ̂ |Qλ)/σ̂ (Qλ), which is the conditional probability measure on the
subcube Qλ.
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We now define ‘natural’ probabilities on M = 6 × 3 as follows. The allowable
transitions from a point (σ, λ) are to points of the form (σ λ′

, λ′) and the probabilities
of these transitions are respectively σ(λ′). We need not be concerned that σ λ′

may not
be defined because in this case the probability of transition to (σ λ′

, λ′) is 0. Note that λ

does not figure in this and so transition probabilities are also induced on 6 directly. The
foregoing transitions define a Markov operator P : C(M) → C(M) with

P f (σ, λ) =

∑
σ(λ′) f (σ λ′

, λ′), (4.4)

and a probability measure ν ∈ P(M) is ‘stationary’ if, for every f ∈ C(M),∫
f dν =

∫
P f dν. (4.5)

This can also be written as P∗ν = ν for the adjoint operator P∗ on P(M).
We note that the k-step transitions have the form

(σ, λ) 7→ (σ λ1 , λ1) 7→ (σ λ1λ2 , λ2) 7→ · · · 7→ (σ λ1λ2...λk , λk),

with the probability of this sequence of transitions being

σ(λ1)σ
λ1(λ2)σ

λ1λ2(λ3) . . . σ λ1λ2...λk−1(λk)

= σ(λ1) (σ (λ1λ2)/σ (λ1)) (σ (λ1λ2λ3)/σ (λ1λ2))

. . . (σ (λ1λ2 . . . λk)/σ (λ1λ2 . . . λk−1))

= σ(λ1λ2 . . . λk).

Given a stationary measure ν we obtain a stationary Markov process {(Xn, ξn)}n>0

with values in M by setting

E( f0(X0) f1(X1) . . . fk(Xk)) =

∫ ∑
λ1,λ2,...,λk

σ(λ1λ2 . . . λk) f0(σ, λ) f1(σ
λ1 , λ1)

. . . fk(σ
λ1λ2...λk , λk) dν(σ, λ). (4.6)

Definition 4.1. A stationary Markov process on 6 × 3 with transition probabilities as
prescribed will be called a natural Markov process.

The set of stationary measures on M is compact, convex and is spanned by its extremals,
which in turn correspond to the ergodic Markov processes with the given transitions.

For λ ∈ 3 we write λ = (λ(1), . . . , λ(m)) and we consider the event Ai
` that, for all

n > `, ξ
(i)
n = p − 1. If T denotes the measure-preserving shift on which {(Xn, ωn)} is

defined, then Ai
` satisfy T −1 Ai

` = Ai
`+1 ⊃ Ai

`. Ergodicity implies P(Ai
`) = 0 or 1, and

since P(Ai
`) = P(Ai

`+1), either P(
⋃

` Ai
`) = 0 or, with probability 1, ξ

(i)
n = p − 1 for all n.

Since Xn+1 = X ξn+1
n (using the notation of (4.2)) the latter possibility imposes a restriction

on the values of Xn that occur. Namely Xn(w) > 0 only for words w = (λ1, . . . , λ`)

having λ
(i)
1 = λ

(i)
2 = · · · = λ

(i)
` = p − 1.

Definition 4.2. We say that the ergodic process {(Xn, ωn)} has dimension m′ (for m′ < m)
if the foregoing restriction on Xn(w) > 0 takes place for m − m′ superscripts i . If it
happens for no i , then we say that the process has full dimension m.
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Clearly a process of dimension m′ can be identified with a process of full dimension m′

constructed with 3′
= {0, 1, . . . , p − 1}

m′

.
Suppose now that {(Xn, ξn)} is an ergodic process of full dimension. This process takes

values in 6 × 3. We can form another ergodic stationary process {(Xn, ωn)} with values
in 6 × 4 by setting ωn = (ξn+1, ξn+2, . . . , ξn+k, . . .). Consider the map 4 → Q given
by ξ = (ξ(1), ξ(2), . . .) 7→ ξ̂ =

∑
ξ(n)/pn . This induces a map P(4) → P(Q) and if we

identify P(4) with 6 we obtain a map σ 7→ σ̂ . While the map ξ 7→ ξ̂ is not one-to-one
globally, by our assumption that {(Xn, ξn)} has full dimension we may confine ourselves
to ξ for which the event ξ(n)(i) = p − 1 for some ` and all n > ` does not occur, and for
these ξ 7→ ξ̂ is one-to-one. In this case the inverse map ξ̂ 7→ ξ is defined by the sequence
of conditions

Qwr = Qr (ξ̂ ), (4.7)

where wr is the initial r -segment of ξ : wr = ξ(1)ξ(2) . . . ξ(r). We call these sequences,
or points in 4, regular.

LEMMA 4.1. For an ergodic process of full dimension {(Xn, ωn)}, if w ∈ 3∗ then, with
probability 1, X̂n(Qw) = Xn(w).

Proof. We consider the pair (X0, ω0). Since, with probability 1, ω0 is regular, we have
with probability 1 that P(ω0 is regular | X0) = 1. This means that X0 as a measure is
supported on the set of regular points. Let 4w denote the sequences beginning with w.
Then X0(4w) = X0(w), where on the left side X0 is regarded as a measure. But denoting
regular points by R, 4̂w ∩ R = Qw. This proves the lemma. 2

We shall need the following lemma regarding conditional probabilities.

LEMMA 4.2. Let (�, B, P) be a probability space, F a sub-σ -field of B and � =
⋃

Ai

a partition to disjoint sets. Then

Z =

∑
1Ai P(Ai | F )

is positive with probability 1.

Proof. We have 0 6 Z 6 1, and so

lim
n→∞

Z1/n
= 1(Z>0)

and the lemma will follow if we show that E(Z1/n) → 1. Now

Z1/n
=

∑
1Ai P(Ai | F )1/n

and so E(Z1/n
| F ) =

∑
P(Ai | F )1+1/n . This converges to

∑
P(Ai | F ) =∑

E(1Ai | F ) = E(
∑

1Ai | F ) = 1. All the expressions are bounded, so E(Z1/n) =

E(E(Z1/n
| F )) → 1. This proves the lemma. 2

We use this in the following lemma.

LEMMA 4.3. Let {(Xn, ωn)} be the ergodic process derived from the Markov process
{(Xn, ξn)} of full dimension, and let 8 ⊂ P(Q) × Q as in §2. Then with probability 1,
(X̂n, ω̂n) ∈ 8.
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Proof. Taking n = 0, the requirement is that X̂0(Qn(ω̂0)) > 0 for all n > 1. Writing
ω0 = λ1λ2 . . . λn . . . , by the regularity of ω0 it follows that Qn(ω̂0) = Qλ1λ2...λn . By
Lemma 4.1, X̂0(Qλ1λ2...λn ) = X0(λ1λ2 . . . λn). Letting F be the σ -field spanned by X0

and the events Ai correspond to the events ξ1 = λ1, . . . , ξn = λn for the various choices
of λ1, . . . , λn , the foregoing lemma states that P(ξ1 = λ1, . . . , ξn = λn | X0) > 0 on the
set for which ξ1 = λ1, . . . , ξn = λn . But by the Markovian condition the conditional
probability in question is precisely X0(λ1λ2 . . . λn). 2

LEMMA 4.4. With T : 8 → 8 as in §2, we have almost everywhere T (X̂n, ω̂n)

= (X̂n+1, ω̂n+1).

Proof. We write ωn = ξn+1, ξn+2, . . . so that Xn+1 = X ξn+1
n and ω̂n+1 = pω̂n − ξn+1.

By (4.3),

X̂ ξn+1
n = ρξn+1(X̂n|Qξn+1

)/X̂n(Qξn+1),

and so, by (2.1), T (X̂n, ω̂n) = (X̂n+1, ω̂n+1). 2

As a consequence of this lemma the distribution µ of (X̂0, ω̂0) on P(Q) × Q is
T -invariant. We have thus obtained an ergodic CPS system from the ergodic Markov
process {(Xn, ξn)} provided that the foregoing measure is adapted.

LEMMA 4.5. The distribution of (X̂0, ω̂0) is an adapted measure on P(Q) × Q.

Proof. We write ω0 = ξ1ξ2, . . . , ξn, . . . and we must show that, for any λ1, λ2, . . . , λn in
3, µ(x ∈ Qλ1,...,λn | θ) = θ(Qλ1,...,λn ). Since X̂0 is determined by X0, the latter equality
follows from

P(ŵ0 ∈ Qλ1,...,λn | X0) = P(ξ1 = λ1, . . . , ξn = λn | X0)

= X0(λ1, . . . , λn) = X̂0(Qλ1,...,λn ). 2

We have proved the following.

THEOREM 4.1. If {(Xn, ξn)} is an ergodic natural Markov process on 6 × 3 with the
prescribed transition probabilities and of full dimension, ωn = ξn+1, ξn+2, . . . , then the
distribution of (X̂n, ω̂n) defines an ergodic CPS system.

We refer to a system constructed in this way as a Markovian CPS system. When the
process {(Xn, ξn)} has dimension m′ < m, we have seen by ergodicity that m − m′ of the
coordinates of the ξn are constant (=p − 1) , and we can regard the process as having full
dimension as a natural Markov process with 3 replaced by 3′

= {0, 1, . . . , p − 1}
m′

. The
resulting CPS system will effectively be confined to a face Q′

= [0, 1]
m′

of Q = [0, 1]
m .

Recall from §2 the definition of I (θ, x) as −logpθ(Q1(x)). For a Markovian CPS

system we can write I (X̂n, ω̂n) = −logp Xn(ξn+1). With some abuse of notation we
denote the latter expression as well by I (Xn, ξn+1), representing the information obtained
knowing that the transition (Xn, ξn) → (X ξn+1

n , ξn+1) has taken place. More precisely, we
define two functions on 6 and 6 × 3 respectively.
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Definition 4.3. If σ ∈ 6 we set

E(σ ) = −

∑
λ∈3

σ(λ) logp σ(λ)

taking t log t = 0 for t = 0. For σ ∈ 6 and λ ∈ 6 we set

I (σ, λ) = −logp σ(λ).

We now have the following.

PROPOSITION 4.1. For the stationary Markov process {(Xn, ξn)} we have

E(E(Xn)) = E(I (Xn, ξn+1)). (4.8)

Proof. The right-hand side can be written as E(E(I (Xn, ξn+1) | Xn)) and, by the definition
of transition probabilities, the inside expression is E(Xn). 2

We combine the foregoing with Theorem 2.1 to obtain the following.

THEOREM 4.2. Let (8, T, µ) be the Markovian CPS system derived from the ergodic
Markov process {(Xn, ξn)}. Then for almost every (θ, x) ∈ P(Q) × Q we will have θ

p-regular and

dim |θ | > dimp θ > E(E(Xn)). (4.9)

We conclude this section with the following lemma.

LEMMA 4.6. Regarding E(σ ) as a function on 6 × 3 we have

E(σ ) + PE(σ ) + P2E(σ ) + · · · + Pn−1E(σ ) = −

∑
`(w)=n

σ(w) logp σ(w).

Proof. Iterating (4.4) we can write

Pk f (σ, λ) =

∑
σ(λ1λ2 . . . λk) f (σ λ1λ2...λk , λk).

With f (σ, λ) = E(λ) we obtain

PkE(σ ) = −

∑
λ1λ2...λk

σ(λ1λ2 . . . λk)
∑
λ

σ λ1λ2...λk (λ) logp σ λ1λ2...λk (λ)

= −

∑
λ1λ2...λk ,λ

σ(λ1λ2 . . . λkλ) logp

(
σ(λ1λ2 . . . λkλ)

σ(λ1λ2 . . . λk)

)
= −

∑
`(w)=k+1

σ(w) logp σ(w) +

∑
`(w)=k

σ(w) logp σ(w).

Adding these expressions for k = 0, 1, . . . , n − 1 we obtain the identity of the
theorem. 2
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5. Ergodic fractal measures on galleries
Recalling the notation of §2 for (θ, x) ∈ 8 we consider the orbit {T n(θ, x) = (θn, xn)}

in P(Q) × Q. We note that the supports of all the measures θn in the orbit are mini-
sets of |θ |, and for the entire orbit closure, the measures involved are micro-sets of |θ |.
This suggests defining, for any gallery G of sets in Q, the closed T -invariant subspace
8G ⊂ 8 consisting of pairs (θ, x) with supports |θ | ∈ G. Our main result in this section
is the assertion that, for any gallery G having sets of positive Hausdorff dimension, there
exist non-degenerate ergodic fractal measures supported in the gallery. More precisely,
we show that if dim∗ G > 0, then there exists an ergodic CPS system in 8G such that, for
almost every (θ, x), dim |θ | > dim∗ G.

Toward this end we shall avail ourselves of the construction in the foregoing section
producing a Markovian CPS system. In view of Theorem 4.2, we shall have achieved this
goal once we find a natural Markov process {(Xn, ξn)} with E(E(Xn)) = dim∗ G and with
|X̂n| ∈ G.

We introduce a new measure of the ‘size’ of sets in a gallery G. For any set A ⊂ Q and
` > 1 we set

N`(A) = #{w | `(w) = ` and A ∩ Qw 6= ∅}.

Definition 5.1. For a gallery G, N`(G) = maxA∈G N`(A).

LEMMA 5.1. N`1+`2(G) 6 N`1(G)N`2(G).

Proof. For a given set A ∈ G, each Qw1 meeting A with `(w1) = `1 determines a mini-set
A′ of A and the number of subcubes of degree `1 + `2 of Qw1 meeting A is N`2(A′). Thus
N`1+`2(A) 6 N`1(A)N`2(G). 2

It follows that

lim
`→∞

logp N`(G)

`

exists.

Definition 5.2. For a gallery G,

1(G) = lim
`→∞

logp N`(G)

`
.

Clearly the upper box-dimension (or upper Minkowski dimension) of any set in G is
bounded by 1(G). It will follow from the main theorem of this section that there exist
sets in G with Hausdorff dimension > 1(G). As a result we must have equality and
1(G) = dim∗ G as defined in §1.

We fix a gallery G of sets in Q = Q(m)
⊂ Rm , and 3 = {0, 1, . . . , p − 1}

m as usual,
and 6, 4 are defined as in §4.

Definition 5.3. We define a compact subset 6G ⊂ 6 by 6G = {σ ∈ 6 : |σ̂ | ∈ G}.

6G is closed and therefore compact, because the support of a weak limit of measures is
contained in the limit of the supports. We have seen in (4.3) that if σ(λ) > 0 then σ̂ λ is σ̂

conditioned on Qλ, and the support of this is again in G if |σ | ∈ G.



420 H. Furstenberg

Finally, we set MG = 6G × 3, and observe that the ‘natural’ transitions defined on
M ⊂ 6 × 3 take MG to itself. There will exist stationary measures on MG for these
transition probabilities and these will determine processes {(Xn, ξn)} with Xn ∈ 6G . We
shall call these ‘G-restricted processes’. Clearly the ergodic components of a G-restricted
process are G-restricted, and we note the following for an ergodic G-restricted natural
Markov process.

PROPOSITION 5.1. If {(Xn, ξn)} is an ergodic G-restricted natural Markov process, then
E(E(Xn)) 6 1(G).

Proof. This follows from Theorem 4.2, since if (8, T, µ) is the Markovian CPS system
derived from {(Xn, ξn)}, then the measures θ appearing for almost every (θ, x) in 8 satisfy
|θ | ∈ G. 2

COROLLARY. For any G-restricted natural Markov process {(Xn, ξn)}, E(E(Xn)) 6

1(G).

We now show how to construct a G-restricted process with E(E(Xn)) = 1(G). Since
this expectation is the average of the same expression for the ergodic components, and for
these we have the inequality of Proposition 5.1, this will imply the existence of an ergodic
G-restricted process with E(E(Xn)) = 1(G), and again using Theorem 4.2 this will give
us the existence statement described in the introduction to this section.

Remark. In the foregoing analysis we have used implicitly the fact that the ergodic
components of a stationary Markov process are Markov processes with the same transition
probabilities. This follows from [D, p. 460, Theorem 1.1].

PROPOSITION 5.2. For any gallery G there exists a G-restricted natural Markov process
{(Xn, ξn)} with E(E(Xn)) = 1(G).

Proof. The stationary Markov process in question is determined by a stationary measure ν

on 6G × 3, and E(E(Xn)) =
∫
E(σ ) dν(σ, λ) =

∫
E(σ ) d ν̄(σ ), ν̄ being the projection

of ν on 6G . For each `, let A` ∈ G with N`(A`) = N`(G). Let θ` be a measure supported
on A` such that θ`(Qw) = N`(G)−1 for each w with A` ∩ Qw 6= ∅. Let σ` ∈ 6G with
σ̂` = θ`. We fix λ0 ∈ 3 and form the Dirac measure δ(σ`,λ0) on MG . Finally, let

ν` =
1
`
(δ(σ`,λ0) + P∗δ(σ`,λ0) + P∗2δ(σ`,λ0) + · · · + P∗(`−1)δ(σ`,λ0)).

Here, P∗ is the operator on P(MG) adjoint to P : C(MG) → C(MG). Any weak
limit of the ν` ∈ P(MG) will be a stationary measure ν on 6G × 3. We claim that∫
E(σ ) dν(σ, λ) = 1(G). To see this, note that∫

E(σ ) dν`(σ, λ) =
1
`

∫
[E(σ ) + PE(σ ) + P2E(σ ) + · · · + P`−1E(σ )] dδσ`

=
1
`
[E(σ`) + PE(σ`) + P2E(σ`) + · · · + P`−1E(σ`)].

Referring back to Lemma 4.6 we see that this expression equals

−
1
`

∑
`(w)=`

σ`(w) logp σ`(w).
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Now

σ`(w) = σ̂`(Qw) = θ`(Qw) = N`(G)−1,

which gives ∫
E(σ ) dν`(σ, λ) =

logp N`(G)

`
.

As ` → ∞ this converges to 1(G) and, since E(σ ) is a continuous function, the weak
convergence to ν implies ∫

E(σ ) dν(σ, λ) = 1(G),

which is the statement of the proposition. 2

In view of our previous remarks we obtain the following.

THEOREM 5.1. For any gallery G of sets in Q = Q(m)
⊂ Rm , there exists an ergodic

Markovian CPS system (8, T, µ) so that, for almost every (θ, x), |θ | ∈ G, θ is p-regular
and dim |θ | = dimp θ = 1(G).

In particular, there exists a set A ∈ G with Hausdorff dimension equal to 1(G), and so
supA∈G{dim A} is always attained and equals 1(G).

6. Dimension conservation
The results of the foregoing section apply in particular to the gallery GA of micro-sets
of a set A ∈ 2Q . 1(GA) > dim A. We can combine Theorem 5.1 with Theorems 1.1
and 3.1 to show that the projection (x, y) 7→ x of Q(m1+m2) → Q(m1) is dimension
conserving on some micro-set of A. Namely, let (8, T, µ) be the ergodic CPS system
with measures θ supported on micro-sets of A with dimp θ = 1(GA). By Theorem 3.1 we
have a decomposition for almost every θ ,

θ =

∫
Q(m1)

δx × θx d θ̄ (x),

where θx ∈ P(Q(m2)) with θ̄ p-regular and almost every θx p-regular with dimp θx = δ,
and

dimp θ̄ + δ = 1(GA). (6.1)

Moreover, |θ | ∈ GA. Since, by Theorem 1.1, for any p-regular measure ρ, dim |ρ| >

dimp ρ, (6.1) implies that on the set |θ | the projection (x, y) 7→ x is dimension conserving.
Since dim A 6 1(GA), this gives the following.

PROPOSITION 6.1. If L is a projection map from one Euclidean space to another, every
compact set A in the domain of L has a micro-set A′ with dim A′ > dim A on which L is
dimension conserving.

Now for any linear map L : Rn
→ Rm we can find a projection map with domain Rn and

with the same kernel and range as L . This allows us to generalize the foregoing proposition
to the following.
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THEOREM 6.1. If L is a linear map from one Euclidean space to another, every compact
set A in the domain of L has a micro-set of dimension > dim A on which L is dimension
conserving.

In the case of a homogeneous fractal, we can replace ‘micro-set’ in the above statement
by mini-set. Now a mini-set is homothetic to a subset and it is easy to see that,
for linear maps, conservation of dimension for a set and for a homothetic image are
equivalent. Finally, since the subset is question has dimension no less than dim A,
dimension conservation for the subset implies dimension conservation for A. This gives
the final result.

THEOREM 6.2. If A is a homogeneous set in Euclidean space, the restriction of a linear
map to A is dimension conserving.
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