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1 Introduction

One of the most efficient and beneficial tools in the study of Diophantine approximations is the tool of
dynamics on homogeneous spaces: the study of the dynamics of the action of a Lie group G on a space X
on which it acts transitively.
In this lecture we will focus on the special group SLd(R), acting on the space of lattices in Rd. Our main
goal will be to prove some fundamental results regarding this action and show some exciting ways of applying
them to problems that originate from the the study of Diophantine approximations.

We first recall from the previous lecture that lattices are discrete additive subgroups of Rd, and that they
have the following useful characterization: all lattices in Rd are images of the lattice Zd under a linear
transformation. Now, restricting ourselves to the space of lattices of covolume 1, we obtain a transitive
action of SLn(R) on the space of such lattices.

Now, naturally since we have a group acting on a space transitively we would like to consider its quo-
tient by the stabilizer of a certain element (in our case this element is the lattice Zd). This quotient, would
be canonically isomorphic to the original space, by identifying an equivalence class with the image of the
special element we chose in our original space (Zd). So, if we have our space of lattices: Xd, then we have:
SLd(R)/SLd(Z) ∼= Xd.
So in order to study the space of lattices it’s enough to consider this quotient space.

Some crucial tools we need to develop in order to properly study the space of lattices, are a natural topology,
and measure we can endow it with.

For the topology:
notice first that SLd(R) can naturally be endowed with a metric, as it can be thought of as a closed man-
ifold in d2 dimensional space. Then, since SLd(Z) ⊆ SLd(R) is a discrete subgroup, one can just endow
SLd(R)/SLd(Z) = Xd with the quotient topology.
Another way of constructing a topology on Xd is the following:
we construct a metric D called the Chaubuty-Fell metric, on the set of closed sets in Rd, Cl(Rd).
For two closed sets X,Y define: D(X,Y ) = inf({1} ∪ {0 < ϵ < 1 : ∀x ∈ X ∩ B(0, 1

ϵ )∃y ∈ Y s.t∥x − y∥ <
ϵand vice versa})

Theorem 1.1. Let {Lj} be a sequence of lattices in Rd. Then the following are equivalent:
a. The sequence {Lj} converges to a lattice L with respect to D.
b. i. for all l ∈ L there exists a sequence lj ∈ Lj s.t lj → l.
ii. If ljk ∈ Ljk converges to some l∞ then l∞ ∈ L.

c. For a basis v1, ..., vd of L there exist bases v
(j)
1 , ...v

(j)
d such that for all i, v

(j)
i → vi.

d. The Ljs converge to L in the quotient topology on Xd induced on it by the identification: SLn(R)/SLn(Z) ∼=
Xd.

1



One extremely useful and fundamental tool in the theory of homogeneous dynamics on lattices is Mahler’s
compactness criterion. Which provides a simple way to verify weather a certain sequence of lattices has a
convergent subsequence.

2 Mahler’s compactness theorem

Theorem 2.1. Suppose A ⊆ G = SLn(R), and let B = π(A) be its projection to the quotient. Then the
following are equivalent:
a. B̄ is compact
b. There exists some δ > 0 s.t for all the lattices L ∈ B, λ1(L) > δ.
c. here exists some δ > 0 s.t for every g ∈ A, and v ∈ Zn, we have: ∥gv∥ ≥ δ.

An equivalent formulation of this claim would be the following: given a sequence of lattices Ln =
π(gn) −→ ∞ in the space of lattices if and only if λ1(Ln) −→ 0
Reminder: Recall from Alon’s lecture that we defined the λi(L) to be the smallest radius for which the ball
of radius r around the origin contains k linearly independent vectors from the lattice.
in order to prove Mahler’s compactness theorem we will also need the following result from the previos
lecture:

Theorem 2.2. :There exist constants c1, c2 depending only on the dimension and a basis v1, ..., vd such that

c1λi(L) ≤ ∥vi∥ ≤ c2λi+1(L) and: c1 ≤ λ1(L)...λd(L)
covol(L) ≤ c2.

We now have all the tools we need, in order to prove Mahler’s theorem:

Proof. There is an obvious equivalence between parts (b) and (c): the 1s are bounded uniformly in B from
below if and only if, for some uniform constant in B, all the vectors in all the latices have norm bigger than
this constant, and the lattices in B are of the form gZd for g ∈ A.

Let us prove that (a) ⇒ (b): Suppose that B̄ is compact, and assume on the contrary that there exists
a sequence of lattices Ln such that λ1(Ln) → 0 all in B. Since B is cocompact, there we may pass to a
convergent subsequence, that converges to some lattice L (w.l.o.g Ln itself).
Now since L is a lattice it has, for some 0 ≤ ϵ ≤ λ1(L). For all n large enough, Ln contains a vector vn of
length less than ϵ. We may multiply that vn by an integer, and assume w.l.o.g that ϵ

2 ≤ ∥vn∥ ≤ ϵ. Hence
(passing to seubsequence) vn → v for some v ∈ L with ϵ

2 ≤ ∥v∥ ≤ ϵ (here we are using the equivalence
theorem for the topologies). Such a vector exists for all ϵ ≥ 0 and this is a contradiction.

For (b) ⇒ (a): Take a sequence Ln of lattices in B. We show it has a convergent subsequence: the
lattices Λn are unimodular,so they have covolume 1. From 2.2, it follows that: c1 ≤ λ1(Ln)...λd(n) ≤ c2
hence since 1leqλ2leq...leqλd and since the λ1s are bounded from below by δ we obtain: deltad−1λd(Ln) ≤
λ1(Ln)

d−1
λd(Ln) ≤ λ1(Ln)...λd(Ln) ≤ c2 So we have a uniform bound on the λds.

Take a basis vn1 , ..., v
n
d of Ln taken such that c1λi(Ln) ≤ vni ≤ c2λi(Ln) Hence there is a ball of a uniform

radius R (R = fracc2
2δd) such that all the lattices in the sequence have a basis to them in the ball of radius

R. Take now gn = ((vn1 , ..., v
n
d )) ∈ SLn(R) to be the matrix with columns vni . Then π(gn) = Ln, and since

the vni s have bounded norms then the gns have bounded entries. Hence gn has a convergent subsequence
gnk and then π(gnk) = Lnk converges as well. So we showed B̄ is compact hence we are done!

3 Dani correspondence

In this section we prove and discuss the following theorem which is due to Dani: (The original theorem was
stated and proved in a more general setting but we will only discuss this version of it): define gt to be the
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matrix: gt =


et

et

.
.

et

e−dt

 which is a (d+ 1)× (d+ 1) matrix.

For a vector t define the matrix gt =


et1

et2

.
.

etd

e−[t]

 where [t] = t1 + ...+ td.

For a vector x ∈ Rd define: τ(x) =


1 x1

1 x2

. .
. .

1 xd

1

 We also define, Lx = π(τ(x)).

Theorem 3.1. A vector x ∈ Rd is in BAd if and only if the orbit {gtLx : t ≥ 0} is bounded.

Proof. the vectors in gtLx are of the form gtτ(x)v where v ∈ Zd+1. Let us separate the last coordinate of v
from the first d ones and write v = (−p, q). Now: gtτ(x)v = (et(qx1 − p1), ..., e

t(qxd − pd), e
−dtq).

Let us first show that if the orbit is bounded then the vector is in BAd: Using Mahler compactness, ob-
tain that there exits some δ > 0 such that for all v, ∥gtτ(x)v∥ ≥ δ using the sup norm. (The orbit is
bounded and hence cocompact). Take δ to be smaller than 1, and choose t such that e−dtq = δ

2 . Now

maxi|et(qxi − pi)| ≥ δ. Hence we obtain: ∥x− 1
qp∥∞ ≥ δ

qet = δ
q

δ
1
d

2
1
d q

1
d
= c

q1+
1
d
(c depends on both x and the

dimension).

Now for the second direction: suppose x ∈ BAd. Let us show the orbit isn’t bounded: take c > 0,
such that ∥x − 1

qp∥ ≥ c

q1+
1
d

for all p ∈ Zd and p ∈ Z. Again write v = (−p, q). First, if q = 0: Then

∥gtτ(x)v∥ = et∥p∥ ≥ et ≥ 1 . Hence in this case the orbit is bounded. In the case when q ̸= 0: if e−dtq ≥ 1,
then obviously ∥gtτ(x)v∥ ≥ 1.

Otherwise, we must have e−dtq < 1 and hence q−
1
d > e−t and hence, since ∥x− 1

qp∥ ≥ c

q1+
1
d
⇒ ∥qx−p∥∞ ≥

c

q
1
d

≥ ce−t. So there must exist some i such that et(qxi − pi) ≥ c. Hence ∥gtτ(x)v∥∞ ≥ c, So the orbit is

bounded.

4 Singular vectors

definition 4.1. Say a vector x ∈ Rd is singular if for any δ > 0 there exists some T0 such that for all
T ≥ T0, we can find p ∈ Zn and q ∈ Z+ such that ∥qx− p∥ < δ

T
1
d

and q < T

Singular vectors are often referred to as those for which Dirichlet’s theorem can be infinitely improved.
Note that the existence of singular vectors is trivial: if d > 1: we can take a vector x which is not totally
irrational, meaning that its coordinates are not independent over Q. The existence of singular vectors which
are totally irrational was proved in the work of Khintchine in the 1920s. However, the set of singular vectors
has Lebesgue measure 0.
In this lecture we will mostly be interested in the following generalizations of singular vectors:
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definition 4.2. Given Y ∈ Mm,n, we say Y can be ϵ improved, and write Y ∈ DIϵ(m,n) if for any

sufficiently large t we can find q ∈ Zn, q ̸= 0 and p ∈ Zm such that ∥Y p− q∥ ≤ ϵe−
t
m and ∥q∥ ≤ ϵe

t
n . We

call Y singular if Y ∈ DIϵ for all ϵ > 0.

Putting the previous definition in context: the Dirichlet theorem for matrices states:

Theorem 4.3. for any t we can find q ∈ Zn, q ̸= 0 and p ∈ Zm such that: ∥Y p− q∥ ≤ e−
t
m and ∥q∥ ≤ e

t
n

We have the following dynamical correspondence theorem for singular matrices:

For matrix Y ∈ Mm,n(R). Define the following matrix τ(Y ) =

(
Im Y
0 In

)
∈ SLm+n(R). Also define τ̄ to be

τ̄ = π ◦ τ . When π stands for the projection from SLm+n(R) to SLm+n(R)/SLm+n(Z).

Theorem 4.4. A matrix Y is singular if and only if for all t gt = diag(e
t
m , ..., e

t
m , e−

t
n , ..., e−

t
n ), gt ¯τ(Y ) is

a divergent sequence (in the space of lattices).
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