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Part I

Impossibility of general results
1 Impossibility of general results - no bound on

general convergence speed.
In our previous discussions of ergodic theory, we have seen that it is of great
interest in many cases to study the convergence of series of the type Af

N (x) =
1

N

∑N−1
n=0 f(Tnx), and can be thought of as a “time average”, that shows us

that T “shuffles points well enough”, such that integrals may be evaluated using
averages of the function T . Birkhoff’s Ergodic theorem states that

Af
N (x) =

1

N

N−1∑
n=0

f(Tnx) → f̄(x)

such as ∫
X

f̄dµ =

∫
X

fdµ

for each f ∈ C(X), almost everywhere on X, assuming T is measure preserving,
and in the case that T is ergodic the stronger case holds:

f̄ ≡
∫
X

fdµ

But, nowhere previously have we discussed how quickly the series converges.
Is the convergence bounded? is it fast? Maybe the sequence even becomes
constant at some point...
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It turns out that no, the convergence is “as weak as it gets” - and we will illustrate
this on a specific example. We do not intend to show that it is always the case
- our intention is to disprove the wrong idea that it is possible to bound the
convergence speed, so we will show it for a very simple and intuitive case - the
real interval [0, 1].

1.1 Thm (Krengel, 1977): when X is the [0, 1] interval, µ is
the standard Lebesgue measure, and τ is an invertible
ergodic measure preserving transformation on X, for
each descending null sequence (αN)

∞
N=0 and ε > 0, there

exists an f ∈ C(X) and a subset Y ⊆ X of measure
more than 1− ε, for which

∀x ∈ Y, lim
N→∞

α−1
N

∣∣∣∣∣ 1N
N−1∑
n=0

f(τnx)−
∫
X

fdµ

∣∣∣∣∣ = ∞

To start - we need to establish a result known as Rokhlin’s lemma. It will aid
us in the construction of both Y and f .

1.2 Thm (Rokhlin’s lemma): When τ is an ergodic mea-
sure preserving map on a probability space X, for
each ε > 0 and N ∈ N we can find a set S for which
S, τ−1S, ..., τ−N−1S are pairwise disjoint, and the “error
set” (X −

⋃N
i=0 τ

iS) is of measure less than ε.
Let us assume that C ⊆ X is a set of positive measure, 0 < µ(C) < ε/N .
Now, we define the “arrival time” function - that for each x ∈ X assigns the
minimal time for its arrival in C. f(x) = min

n
{n ∈ N|τn(x) ∈ C}. From

τ ’s ergodicity, we know that µ (
⋃∞

n=0{x ∈ X|f(x) = n}) = 1. Let us define
S = {x ∈ X|f(x) ∈ {N, 2N, ...}}. Obviously the sets S, τ−1S, ..., τ−N+1S are
pairwise disjoint, and their union contains all points that do not end up in C
after less than N turns. So:

N−1⋃
n=0

τ−nS =

( ∞⋃
n=0

{x ∈ X|f(x) = n}

)
−

(
N−1⋃
n=0

τ−nC

)

And as all of the sets in the equation are disjoint, we infer that

µ

(
N−1⋃
n=0

τ−nS

)
= µ

( ∞⋃
n=0

{x ∈ X|f(x) = n}

)
−µ

( ∞⋃
n=0

τ−nC

)
> 1−N ·ε/N = 1−ε

Which is exactly the intended result. □
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It is important to note that in the literature, Rokhlin’s lemma is usually stated
as a more general result - it is not necessary for X to be a probability space, or
for τ to be ergodic - weaker restrictions on τ are enough for that result, but the
proof is much simpler this way and for the proof of (1.1) we do not need the
more general statement of Rokhlin’s Lemma. Also, the sets S, τ−1S, ..., τ−N+1S
are commonly referred to as a “Rokhlin tower” - the set S is known as the “base”
of the tower, and the set τ−iS is the i-th layer of the tower.

We intend to construct a continuous function f (for which
∫
f = 1/2), a set

Y ⊆ X, and intervals (Mn, Nn+1) such as

∀x ∈ Y, sup
Mn≤K≤Nn+1

α−1
K | 1

K

K−1∑
i=0

f(τ ix)− 1/2| > n

We will do this iteratively, by defining f as a limit of continuous functions
(fn)

∞
n=0, ∀n,

∫
fn = 1/2. We want for fn to hold - for the interval of indices

(Mn, Nn+1), on a sufficiently large set Yn,

∀x ∈ Yn, sup
Mn≤K≤Nn+1

α−1
K | 1

K

K−1∑
i=0

fn(τ
ix)− 1/2| > n

Throughout the proof we will make use of a descending non zero sequence εn,
which bounds the convergence of fn - we will define the functions in a way,
such as ∥fn+1 − fn∥∞ ≤ εn, and as the proof does not require any upper bound
on the speed of εn’s convergence, many of the arguments presented here are
rationalized by making εn converge to 0 really quickly.
In addition, a series of integers pn will be defined, which will be useful for defi-
nition of fn+1 from fn. fn+1 is constructed from fn by adding an “oscillation”
gn, and pn may be thought of as a quantifier of this oscillation.

For the base step - let us define the function f1 = 1/2 (constant), Y1 = X
and N0 = 0, N1 = 1.
After the n’th step, we have a continuous function fn,

∫
fn = 1/2, our previous

interval (Mn−1, Nn), and a large subset Yn. By introducing a cleaner notation

fn,K(x) =
1

K

∑K−1
i=0 fn(τ

ix) , we have that

sup
Mn−1≤K≤Nn

α−1
K |fn,K(x)− 1/2|

is large on a significantly large subset of X.
In order to proceed from the n-th step, we define εn to be some small quantity,

for which 0 < εn ≤ 1

4Nn
holds. Then we pick an integer pn for which p−1

n <
εn
4

,

and then pick Mn > Nn, for which α−1
Mn

> (n+1)/

(
εn
24pn

)
. For a large enough
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Mn (αN tends to infinity, so we can pick an arbitrarily large Mn) Birkhoff’s
ergodic theorem states that

sup
K≥Mn

|fn,K(x)− 1/2| < 2−5εnp
−1
n

almost everywhere - we pick such an Mn. Then, we define the next value
Nn+1 = pnMn. We now have our next bound - (Mn, Nn+1).
We now make use of Rokhlin’s Lemma - The decomposition of X into a Rokhlin
tower allows us to think about the action τ as moving down in the tower, and
by carefully defining a function along the tower’s layers, we can say a lot about
its ergodic time average - as applying τ to a point just moves it down the tower.
We will make use of the tower to define a function gn, whose overall integral is
0, but it’s ergodic average reaches relatively high values.
Rokhlin’s lemma implies the existence of a set Bn, for which the sets {τ−kBn|0 ≤
k < Nn+1} are disjoint, and their union has a measure as close to unity as we
like - in this case, we need it to be ≥ 1− εn

4
. Now we define the set of the first

Mn layers En to be

En =

Mn−1⋃
k=0

τ−kBn

and the new function g∗n to be

g∗n = 1En
− 1τ−Mn◦En

More intuitively, it means that g∗n = 1 on the first Mn levels of the tower, −1
on the next Mn,and 0 for the rest of the levels.
We may notice that it’s integral is obviously zero - it has values of −1 and 1 on
sets with similar measures.
Analogously to the definition of fn,K , for a clearer notation we define

g∗n,K =
1

K

K−1∑
i=0

g∗n ◦ τ i

Now, we climb mount Rokhlin.
The big set we are interested in is Yn =

⋃Nn+1−1
k=2Mn

τ−kBn - so, the entirety of the
tower, except the first 2Mn layers. The measure of this set is, of course,

µ(Yn) = µ(Bn)·(Nn+1 − 2Mn) =
(
1− εn

4

)
·Nn+1 − 2Mn

Nn+1
=
(
1− εn

4

)
·
(
1− 2

pn

)
>
(
1− εn

4

)
·
(
1− εn

2

)
The measure tends to 1 as εn tends to 0 - this is exactly the property that we
need, as εn can be arbitrarily small.
Let us suppose that x ∈ Yn, and denote the layer it is located in as L. If we define
L′ to be the number of layers between x and the Mn’th layer (L′ = L−Mn) we
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will get that g∗n,L′(x) =
Mn

L′ . As L > 2Mn, L′ ∈ [Mn, Nn+1] - and as such

sup
Mn≤K≤Nn+1

|g∗n,K(x)| ≥ |g∗n,L′(x)| =
Mn

L′ =
Mn

L−Mn
≥ Mn

Nn+1 −Mn

=
Mn

(pn − 1)Mn
=

1

pn − 1
≥

pnis large enough

1

2pn

This holds, of course, for each x ∈ Yn - the final bound does not depend on L,
and from p−1

n .
A result from real analysis implies that g∗n can be approximated by a continuous
function gn, such as

∫
gn = 0, |gn| ≤ 1, and the approximation is close enough

such as gn,K =
1

K

∑K−1
i=0 gn ◦ τ i satisfies a slightly weaker bound:

sup
Mn≤K≤Nn+1

|gn,K | ≥ 1

4pn

The fact that such an approximation exists is non trivial, and is left as an
exercise for the curious reader.
Now we define fn+1 = fn + εngn, and we see that for each x ∈ Yn

sup
Mn≤K≤Nn+1

|fn+1,K(x)− 1/2| = sup
Mn≤K≤Nn+1

|fn,K(x) + εngn,K(x)− 1/2|

But, we know that

sup
Mn≤K

|fn,K(x)− 1/2| < 2−5εnp
−1
n

and as such:

sup
Mn≤K≤Nn+1

|fn,K(x) + εngn,K(x)− 1/2| ≥ sup
Mn≤K≤Nn+1

|gn,K | − sup
Mn≤K≤Nn+1

|fn,K(x)− 1/2| ≥

≥ εn
4pn

− εn
25pn

≥ εn
24pn

on a sufficiently large measure set - Yn

The desired result is thus obtained. 2−4εnp
−1
n is the sufficiently large value that

we require.
As we know that ∥fn+1 − fn∥ < εn, and

∑
εn converges, and as slowly as we

like, we know that there is a continuous function f , such as fn →
n→∞

f .
We may notice that, because of our selection of Mn - we selected it such as

α−1
Mn

> (n+ 1)/

(
εn
24pn

)
, it holds that

sup
Mn≤K≤Nn+1

α−1
Mn

|fn+1,K(x)− 1/2| ≥ n+ 1

and as fn →
n→∞

f - and we may make it converge as quickly as we like by picking
small εn’s, we may see that for the limit function f , those results hold, and as
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such, the sequence α−1
N

∣∣∣∣ 1N ∑N−1
n=0 f(Tnx)−

∫
X
fdµ

∣∣∣∣ is indeed unbounded, on

the set that is the intersection of all Yn’s - which we can force to be of a measure
larger than 1− ε by picking εn’s to be very small!
So, the proof is complete. A corollary exists - the proof may be modified to
yield a function f for which this result is true almost everywhere, but this is
outside the scope of this work and is left as an exercise to the interested reader.

Part II

Unique ergodicity
2 On T invariant measures
It is of great interest for us to discuss and identify Borel measures, in the study
of dynamical systems. In the second part of the lecture, we will do just that.

2.1 Def: M(X) is the space of Borel probability measures
on a compact metric space (X, d).

2.2 Def: MT (X) is the subspace of T invariant Borel prob-
ability measures on (X, d).

Every continuous T : X → X induces a continuous map (in respect to the weak
star topology!) T∗ : M(X) → M(X), by defining T∗(µ)(A) = µ(T−1A).
An obvious measure we can look at is δx(A) which equals to 1 if x ∈ A, and
0 if x /∈ A. We may notice that:T∗δx(A) = δx(T

−1A) = δT (x)(A), and as
such T∗δx = δT (x). This is interesting - in some sense, M(X) “contains” all
the points of X in itself, as the δx measures - and as such, T∗ may be viewed
as an extension of the mapping T : X → X to the broader space M(X). An
Important property of T∗, which is an extension of the previously described one,
is that for each f ∈ C(X), µ ∈ M(X):∫

X

fd(T∗µ) =

∫
X

f ◦ Tdµ

It may be seen that MT (X) is the set of all measures for which T∗(µ) = µ,
and as T∗ is affine (obviously) and continuous, the fixed set M(X) is closed
and convex. (closure can be shown by constructing a sequence of invariant
measures).

Cool! but we haven’t shown that MT (X) is non empty...
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3 Kryloff - Bogoliouboff theorem
As usual, we let T : X → X be a continuous map of a compact metric space,
and νn to be a sequence in M(X). The sequence µn = 1

n

∑n−1
j=0 T j

∗ νn is in-
duced by the sequence νn, and as M(X) is weak * compact, We know that
it has a converging subsequence µnk

→ µ. Let us take a look at the value∣∣∫
X
f ◦ Tdµnk

−
∫
X
fdµnk

∣∣, for some f ∈ C(X):∣∣∣∣∫
X

f ◦ Tdµnk
−
∫
X

fdµnk

∣∣∣∣ = 1

nk

∣∣∣∣∣
∫
X

nk−1∑
i=0

(
f ◦ T i+1 − f ◦ T i

)
dνnK

∣∣∣∣∣
=

1

nk

∣∣∣∣∫
X

(f ◦ Tnk − f) dνnK

∣∣∣∣ ≤
probability space

1

nk
· 2 · sup{|f(x)||x ∈ X} → 0

As such,
∫
f ◦ Tdµ =

∫
fdµ for all f ∈ C(X), and as such µ is a member of

MT (X) (recall previous lecture).
And so, the statement of thew Kryloff - Bogolioboff theorem may be inferred:

3.1 Thm (Kryloff Bogolioboff): MT (X) is non empty (for
a compact space).

It may be noted that the theorem is obviously false for many non compact (and
possibly locally compact) spaces, such as the real line.

4 Unique ergodicity
An interesting class of transformations is the class of those that have a unique
T preserving borel measure.

4.1 Def: T : X → X is uniquely ergodic if |MT (X)| = 1.
The uniquely ergodic measure µ is automatically ergodic, because if we have
a set A ⊂ X,such as µ(A) /∈ {0, 1} and T−1A = A We may define a measure

µ′(B) =
1

µ(A)
µ(A∩B), and we get that µ′(B) =

µ(A ∩B)

µ(A)
=

µ(T−1(A ∩B))

µ(A)
=

µ(A ∩ T−1B)

µ(A)
= µ′(T−1B) , and as such we got another measure in MT (X).

Now, let us introduce an important result:

4.2 Thm: when T is uniquely ergodic, ∀f ∈ C(X), the
following statement holds:

Af
N =

1

N

N−1∑
n=0

f(T nx) → Cf
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without dependence of Cf on x, and the convergence
is uniform.

Let µ be the unique member of MT (X). We may notice that, according to the
prior result, the following relation must be true:

1

N

N−1∑
n=0

δTnx → µ

And as such, because f is continuous in respect to the weak star topology, it
holds that

1

N

N−1∑
n=0

f(Tnx) →
∫
X

fdµ

Now, let us assume that the convergence is non uniform. Non uniformity of the
convergence implies the existence of a function g ∈ C(X), and ε > 0, s.a. for
every N0, there is N > N0 and xj ∈ X, for which∣∣∣∣∣ 1N

N−1∑
n=0

g(Tnxj)− Cg

∣∣∣∣∣ ≥ ε

By defining µN =
1

N

∑N−1
n=0 δTnxj

, we may express the sum as an integral∣∣∣∣∫
X

gdµN − Cg

∣∣∣∣ ≥ ε

compactness implies existence of a converging sequence µNk
→ ν. By the earlier

result we see that ν ∈ MT (X), and∣∣∣∣∫
X

gdν − Cg

∣∣∣∣ ≥ ε

but as Cg =
∫
X
gdµ, this contradicts µ = ν.

As such, we have established our result - the convergence is uniform!
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