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1. Introduction

A sequence {Yn · · · · · Y1}n of products of i.i.d. random invertible matrices, or its
action on a Rd vector {Yn · · · · · Y1 · x}n, possibly in the reversed order of multiplication
{X1 · · · · ·Xn · x}n, give rises to many mathematical questions. Some are questions
analogous to the classical probabilistic theorems regarding growth and (normalized)
convergence of sum of i.i.d. random variables - the Law of Large Numbers, Central
Limit Theorem, and more refined rate of convergence theorems such as the Law of the
Iterated Logarithm; Some questions are of geometric flavor - spectrum of the products,
special degenerated subspaces; and some are of dynamical flavor, about the relations
between the probabilistic measure µ onGLd (R) and its continuous µ-invariant measures
on P

(
Rd
)
the projective space of directions in Rd.

Since the completion of the foundation of classical probability theory in the 60’s,
there have been lots of (pure and applied) researches on Random Matrices (and their
multiplication), up to nowadays.

Last week we have seen Furstenberg-Kesten and Oseledets theorems, which well an-
alyzes the growth of ‖Yn · · · · · Y1‖, or ‖Yn · · · · · Y1 · x‖, x ∈ Rd. For our purposes, to
model the multiplication Yn · · · · ·Y1 of random i.i.d. invertible matrices, we consider the
probability preserving system with space GLd (R)N, measure µ⊗N and the shift operator.
We conclude that µ⊗N-a.s. there exists λ+ (ω) , λ− (ω) ∈ R s.t.

λ+ = lim 1
n

log ‖Yn · · · · · Y1‖ , λ− = lim 1
n

log
∥∥∥(Yn · · · · · Y1)−1

∥∥∥
and for the d = 2 case, when restricted to Yn ∈ SL±2 (R), we either have λ+ = λ− = 0,
for isometries, or λ+ > 0 > λ− = −λ+ and for all but a proper subspace of R2,

lim 1
n

log ‖Yn · · · · · Y1x‖ = λ+ > 0

which guarantees an exponential rate of growth. Moreover, from ergodicity λ+ (ω) is
a.e. a constant γ (the upper Lyapunov exponent). The growth rate analysis of the case
X1 . . . Xn (where the matrices are multiplied in the reversed order) is the same, by use
of the identity ‖Yn · · · · · Y1‖ =

∥∥∥(Yn · · · · · Y1)t
∥∥∥.

Through the proof of the d = 2 case we have also seen that the rate of convergence
in direction to the eigenspaces of Yn · · · · · Y1 is exponentially fast:

lim 1
n

log δ (sn, sn+1) 6 −2λ+
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Today we will be interested in geometric questions somewhat complementary to the
growth rate question. We will only care for the direction of vectors, essentially re-
ducing x ∈ R2\ {0} to its direction x ∈ P (R2). In the the scenarios {Yn · · · · · Y1}n ,
{X1 · · · · ·Xn}n, we ask about the direction of X1 · · · · ·Xn ·x and whether it converges,
and about the angular distances such as δ (Yn · · · · · Y1x, Yn · · · · · Y1y).

For starter, we recall the definition of the angular distance δ (·, ·) in P (R2), and how
δ (Anx,Any) relates to the magnitudes ‖Anx‖ , ‖Any‖.

Definition 1. For x, y ∈ P (R2), x, y unit vectors, we define

δ (x, y) =
√

1− 〈x, y〉2 = |sin (∠x, y)|

which for the d = 2 and x, y ∈ R2\ {0} (not necessarily unital) can also be computed
by

δ (x, y) =
∣∣∣∣∣det (x|y)
‖x‖ ‖y‖

∣∣∣∣∣ = |x1y2 − x2y1|
‖x‖ ‖y‖

.

Claim 2. ForAn ∈ SL±2 (R), such as the determinant-normalized productAn = Yn . . . Y1,
we get

δ (Anx,Any) = ‖x‖ ‖y‖ δ (x, y)
‖Anx‖ ‖Any‖

and hence a positive Lyapunov exponent ensures (a.s.) exponentially fast angular dis-
tance convergence to zero.

2. Intuition

The SVD decomposition, the effects of multiplying a “narrow” matrix by a more
“rounded” matrix from the right or from the left.

3. Formal Analysis of the d = 2 Case

Lemma 3. Let µ be a distribution on GL2 (R), ν a µ-inv distribution on P (R2). Then
µ-a.s. the sequence of P (R2)-distributions

{X1 (ω) . . . Xn (ω)M1 . . .Mkν}n

weakly converges to a distribution ν (ω), same for any M1, . . . ,Mk ∈ supp (µ), k > 0.

Proof. For a bounded Borel function f : P (R2)→ R define F : GL2 (R)→ R by

F (g) =
∫
f (gx) dν (x) .
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Then for An = X1 . . . Xn, n > 0,

E
[
F (An+1)

∣∣∣ An

]
=
∫
F (Ang) dµ (g)

=
∫∫

f (Angx) dµ (g) dν (x)

[y = gx ∼ µ ∗ ν = ν] =
∫
F (Any) dν (y)

= F (An)

meaning {F (An)}n is a martingale. f being bounded, the martingale is bounded, and
by martingale convergence theorem µ-a.s F (An)→ Γf , and

E [Γf ] = E [F (A0)] = E
[∫

f (x) dν (x)
]

=
∫
fdν.

Considered as an integral, Γf defines a measure ν (ω) and X1 (ω) . . . Xn (ω) ν → v (ω)
holds. ν (ω) must be a probabilistic measure.

To strengthen the result and show that a.s. X1 (ω) . . . Xn (ω)M1 . . .Mkν → ν (ω),
consider the distribution λ := ∑∞

r=0 2−r−1µ∗r on GL2 (R). Recall that as a martingale,
we have for any j, r > 0,

E
[
|F (Aj+r)− F (Aj)|2

]
= E

[
F (Aj+r)2

]
− E

[
F (Aj)2

]
Thus, using cancellation,

∞∑
j=1

E
[∫
|F (Ajg)− F (Aj)|2 dλ (g)

]
=

∞∑
j=1

∞∑
r=0

2−r−1E
[∫
|F (Ajg)− F (Aj)|2 dµ∗r (g)

]
=

∞∑
r=0

2−r−1
∞∑

j=1
E
[
|F (Aj+r)− F (Aj)|2

]
6

∞∑
r=0

2−r−1 · r · sup
g
|F (g)|2 <∞

so P⊗ λ-a.s
∞∑

j=1
|F (Ajg)− F (Aj)|2 <∞

and
limF (Ajg) = limF (Aj) = Γf =

∫
fdν (ω) .

�
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Proposition 4. Let {Xi}∞i=1 ⊂ SL2 (R) be iid with distribution µ, and ν be µ-invariant
continuous1 distribution on P (R2) . If supp (µ) is not contained in a compact subgroup2

of SL2 (R), then for µ-almost any ω ∈ Ω there exists Z (ω) ∈ P (R2) such that the
measures X1 (ω) . . . Xn (ω) ν weakly converges to δZ(ω).
Moreover, Z ∼ ν and this is the unique continuous µ-inv measure of P

(
Rd
)
.

Proof. Let An = X1 . . . Xn, and Bn = ‖An‖−
1
2 An (of norm 1). Take a subsequence Bnj

converging to A (ω). µ-a.s., for any M ∈ supp (µ) we get from lemma 3 that
Bn (ω)Mν = An (ω)Mν → ν (ω) , Bn (ω) ν = An (ω) ν → ν (ω)

but we also have
Bn (ω)Mν → A (ω)Mν , Bn (ω) ν → A (ω) ν

hence A (ω)Mν = A (ω) ν = ν (ω). Assuming (for contradiction) that A (ω) is invert-
ible, then Mν = ν, meaning

supp (µ) ⊆ H := {M ∈ SL2 (R) : Mν = ν}
and observe that H is a subgroup of GL2 (R) that cannot be closed, or else supp (µ)
is contained in a compact subgroup of SL2 (R). Thus there exist a sequence Mj ∈ H,
‖Mj‖ → ∞, s.t. ‖Mj‖−

1
2 Mj → M where M is not invertible, yet by continuity

v = limMjν = lim ‖Mj‖−
1
2 Mjν = Mν, but then Mν is a Dirac measure on P (R2),

contradicting our assumption that ν is continuous.
We conclude that a.s. A (ω) is not invertible, hence for the direction Z (ω) of the

range of A (ω) we get that ν (ω) = A (ω) ν = δZ(ω). Moreover, for any Borel function
f : P (R2)→ R ∫

f (x) dν (x) = E
[∫

f (x) dνω (x)
]

= E
[
f
(
Z
)]

hence Z ∼ ν. We conclude that ν must be unique for µ. �

Remark 5. Because P (R2) is compact, there must always be an µ-inv distribution ν on
P (R2), but it might not be continuous. The above proposition implies that there is up
to one µ-inv continuous distribution, with the stated conditions.

Example 6. What are the µ-inv measures of P (R2) for µ = δM , M =
(

1 0
0 1

2

)
?

Proposition 7. Let {An}n ⊂ SL2 (R) and ν be a continuous distribution on P (R2)
s.t. Anν weakly converges to δz, z ∈ P (R2), ‖z‖ = 1. Then

lim ‖An‖ = lim
∥∥∥At

n

∥∥∥ =∞

1For the d > 2 case we would require any hyperplane subspace of P
(
R2) to be o ν-null measurable.

2For the d > 2 case we would require that 〈supp (µ)〉 is of “index” 1, i.e. there exists a limit of
(normalized) matrices from supp (µ) which is a matrix of rank 1.
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and for any x ∈ R2,

lim ‖A
t
nx‖
‖At

n‖
= 〈x, z〉 .

Proof. Let A be a limit of a subsequence of
{
‖An‖−1 An

}
n
. A must be of unit norm,

and in particular A 6= 0, however A cannot be invertible (or else Aν = limAnj
ν = δz,

which implies that ν = A−1δz is not continuous). Hence

0 = |det (A)| = lim
∣∣∣‖An‖−2 det (An)

∣∣∣ = lim 1
‖An‖2 .

The second claim holds since z must be the direction of the range of A. �

4. The d > 2 case

If time permits, we discuss the key differences between the d = 2 and d > 2 cases.

5. Further reading

To prepare for the talk, I’ve read Part A of the textbook “Products of Random
Matrices with Application to Schrödinger Operators” by Bougerol & Lacroix, and a bit
of the textbook “Random walks on reductive groups” by Benoist & Quint. The former
is a very accessible book, yet the result are not presented in linear order, so the reader
essentially has to “solve the puzzle” in the right order in the his/her mind. The latter
is a more recent and more extensive textbook, written for somewhat more advanced
audience, and is very well organized.

The content of the talk is originally based on the following three papers3 :
• FURSTENBERG H. (1963). Non commuting random products. Trans. Amer.
Soe. 108, 377-428.
• LE PAGE E. (1984). Repartition d’etat d’un operateur de Schrödinger aleatoire.
Probability measures on groups VII, Proceedings Oberwolfach, Springer lectures
notes series 1064, 309-367.
• GUIVARC’H, Y., and RAUGI, A. (1986). Products of random matrices: con-
vergence theorems. In: Random Matrices and Their Applications, Workshop
Brunswick Maine 1984.

3I didn’t verified this myself. The reference numbers are erroneous in Bougerol & Lacroix’s book, I
hope I figured it out correctly.


