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1 Introduction

The goal of this talk is to prove Birkhoff’s pointwise ergodic theorem and to
introduce the notion of equidistribution and generic points. We give a brief
overview of the needed background in ergodic theory, as well as some examples
and applications in number theory. We begin with a few basic definitions in
ergodic theory:

Definition 1.1. Let (X, B, u) and (Y, F,v) be a probability spaces.

1. Let f: X — Y be a measurable map. Define f.u(A) = u(f~*(4)) for
A € F, then f.pis a measure on (Y, F) and is called the pull-back measure

of f.

2. A measurable map f : X — Y is measure preserving if u(f~1(A)) = v(A)
for any A € F, ie. if fou=v.

3. Let T : X — X be measure-preserving, then the measure p is said to be
T-invariant, (X,B,u,T) is called a measure-preserving system, and T a
measure-preserving transformation

Proposition 1.1. A measure p on X is T-invariant if and only if

/fd,u:/ foTdu (1.1)
X X

for all f € L*°. Furthermore, if p is T-invariant, then (1.1) holds for all
feLl(n)

Ezample 1.1. Consider (T,B,m) where T = R/Z = [0,1), B is the Borel o-
algebra, and m the Lebesgue measure. Define S : T — T as S(x) = 22, then S
is not measure-preserving. Clearly,

S~110,1/4) =[0,1/2),



Hence,
m (ST 0.1/4) = 5 # 7 =m((0,1/4)).

Ezample 1.2. Take (T,B,m) as in the previous example. Let d > 2 be an
integer, and define T': T — T as T'(z) = {dz}, then T is measure-preserving.
Indeed, we need to show Tym = m, and it is enough to show for all intervals
[a,b) C [0,1).

71 [a,b):L;J; {k;a,kdﬂ’).
Hence,
1 d—1
T*m([a,b)):zmqkji‘“,kd“’» = b;a =b—a=m{([ab)).

Definition 1.2. A measure-preserving transformation 7' : X — X of a prob-
ability space (X, B, u) is ergodic if for any B € B, if B is T-invariant, i.e.
T7'B = B then pu(B) € {0,1}.

Ezample 1.3. Consider the map T : T — T as defined in Example 1.2, i.e.
Tz = {dz}, then T is ergodic. For all n > 1 and 0 < k < d™ — 1 denote

Ia(n, k) =[5, EEL). Let E € B,

k
T”Eﬂ[d(n,k){ (;x ::cEE},

which yields
m(T™"ENIy(n, k) =d "m(E).

Denote Fyq = {@}U{I4(n, k) : 0 < k < d"—1, n > 1}, then Fy is a m-system and
o(Fyq) = B (where o(Fy) is the o-algebra generated by Fy). Now, let A € B
be T-invariant and suppose m(A) # 0. Define pu(E) = %, then p is a

probability measure on (T, B). Since for all n > 1
m(AN Ig(n, k) =d "m(A),

then for any E € F; we have m(E) = p(E). Thus, m = p on o(F4) = B. Thus,
for any B € B,
m(AN B) =m(A)m(B).

In particular A € B and thus,
m(A) = m(A)>.
Which shows m(A) = 1.

Exercise 1.1. Let (X, B, u,T) be a measure-preserving system and let f : X —
R be a measurable function. Suppose that f = foT and T is ergodic, then f is
constant p-almost everywhere.



2 Birkhoft’s Ergodic Theorem

Theorem 2.1 (Birkhoff’s Ergodic Theorem). Let (X,B,u,T) be a measure-
preserving system, and let f € L'(u). There exists a T-invariant function
f* € LY (u), such that

. 1 n—1 N §
nlggoﬁgf(T z) = f*(x)
p-almost everywhere and in L'(p), and

/deu:/xf*du'

f*(x)=/xfdu

If T is also ergodic, then

pw-almost everywhere.

2.1 Application: Normal Numbers

Definition 2.1. Let 6 € [0,1) and let = >~ ° | %2 be its expansion in base b
(i.e. an € {0,1,...,b—1}). 0 is said to be simply normal in base b if for any
ke{0,1,...,0—1},

i PULSiSnie =k} 1

n—oo n b
6 is said to be normal in base b if for any kq,...,k; € {0,1,...,b— 1},
lim #{1<j<n—i+1l:a;j="Fky,...,aj4i—1 =k} :l.

Finally, € is called normal (sometimes absolutely normal or completely normal)
if it is normal in base b, for all b > 2.

Ezample 2.1. The number

123, 456, 789

is simply normal in base 10. However, any rational number is not normal in any
base. The number

0.1234567891011121314151617181920212223242526272829...
is normal in base 10, as well as the number
0.2357111317192329313741434753596167717379...

that was proven to be normal (in base 10) by Copeland and Erdds.



It is fairly easy to construct a number that is normal in a given base; while it
is incredibly difficult to construct an absolutely normal number. Furthermore,
there is no proof to the normality of v/2, e, 7 or numbers similar to them.

Theorem 2.2 (Borel). Let N be the set of absolutely normal numbers, then
m(N) =1.

Proof. Let b > 2 an integer and let A, be the set of normal numbers in base b.
Define Ty, : T — T as Tpx = {bx}. For x € [0,1) let = Y~ | 4= be its base b
expansion.

Let k1,...,k; € {0,1,...,b—1}, and denote p = k1b* "t + ...+ k;_1b+k;. Since

T,ZU = ag:17
n=1
forany 1 <j <n—i+1 we have a; = ki,...,a;4;—1 = k; if and only if
i p p+1
T'] 1 S Ty T = A
ce (555
Hence,
n—i+1 n—1i
#U<j<n—itliaj=ky, ... a5 =k}= Y 14T '2)=) 14(T72).
j=1 =

By Theorem 2.1,

n—iu n—1

1 ; 1 ; 1
nli_)rréonjz_%]l,q(Tjac):nli_)rréonjz_%ILA(TMC):/TILAdm:bi7 m-a.e.

since Ty, is ergodic. Thus,

#{1§j§n—i—|—1:aj(x):kl,...,ajﬂ,l(x):ki}: 1

lim —, m-a.e
n— 00 n b
Meaning m(T \ ;) = 0 for all b > 2. Therefore
T\N = U T\ Ny,
b=2
is a set of measure zero. Hence, m(N) = 1. O

Remark. Although the set of non-normal numbers is of measure zero, it is un-
countable. For instance, every element of the middle-thirds Cantor set is non-
normal.

In order to prove Theorem 2.1 we will need Theorem 2.3.



2.2 Maximal Ergodic Theorem

Theorem 2.3 (Maximal Ergodic Theorem). Let (X,B,u,T) be a measure-
preserving system on a probability space and let g € L'(n) be a real-valued
function. For any o € R, define

Ea{xeX:sup (Tllnzlg(Tkx)> >a}.

n>1

Then
au(Ea)é/ gdu < |gll,.

Eqo
Moreover, ap(E,NA) < fE qa 9du for any T-invariant set A, i.e., T4 =
4 o

To prove Theorem 2.3 we will need the following proposition:

Proposition 2.1 (Maximal Inequality). Let U : L'(u) — L'(u) be a positive
linear operator with ||[U|| < 1. Define

n—1

fo=0, fa=)Y Uf Yn>1

=0

and Fy =max{f, :0<n < N}. Then for all N > 1,

/ fdu>0.
{Fn>0}

Proof of Theorem 2.3. Let U : L'(u) — L'(u) be the operator Uf = foT.
Clearly, U is a positive linear operator with ||U|| < 1. Let g € L*(u), « € R
and A a T-invariant set, and denote f = 14 - (g — «). Now, define {f,}>2, and
{Fn}%_, as stated in Proposition 2.1. Then,

o0
E.= [ J{Fx >0}
N=0

Therefore, [, fdu >0 which means [, -, gdu > ap(E, N A). O

Proof of Proposition 2.1. Let N > 1, clearly Fy € L*(u). Since U is positive
and linear and because Fy > f,, for all 0 <n < N, we have

UFN+fZUfn+f:fn+l

Hence,

> .
UFNn+ f > @?an

Denote P = {z € X : Fy(x) > 0}. Since fo, =0, for all x € P we have

Fn(z) = Jnax fu(z) = | ax, fn(z).



Therefore, for all x € P
UFN(z) + f(z) 2 Fn(2).

We have Fiy > 0 and thus UFy > 0. Hence,

/fduz/FNdu—/UFNdu
P P P

:/ FNdu—/UFNd,u (Fy(xz)=0for all x ¢ P)
X P
2/ FNdu—/ UFy du
b'e b's
= [[Fxlly = [UFN]; = 0 (since [[U]] < 1).

It would be beneficial to state a similar result for a lower bound:

Corollary 2.1. Let (X, B, u,T) be a measure-preserving system on a probability
space and let g € L*(u) be a real-valued function. For any B € R, define

n—1
B — {xeX:sup <:L2g(Tkgg)> <B}.
k=0

n>1

Then
ﬁu(EB)E/ gdp.

EB

Moreover, [ (E*B N A) > fEﬁﬂA gdu for any T-invariant set A.
We are now ready to prove Birkhoff’s ergodic theorem:

Proof of Theorem 2.1. Let f € L'(u) and WLOG assume that f > 0. For all
r € X, define

n—oo N

n—1
f*(x) = limsup L Z f(TFz),
k=0

n—1
fu() =lim iolgf% Z (T z).

k=0

Foralln>1and z € X,

] W) EE WICE B WG VS
k=0 k=0 h=0

(2.1)
By taking the limit along a subsequence for which the LHS of (2.1) converges
to the limsup, we can deduce f* < f* oT. In the same way, taking the limit



along a subsequence for which the RHS of (2.1) converges to the limsup, we
can deduce f* > f*oT. A similar argument for f, shows that

[r=[f"eT, fui=fioT (2.2)
Now fix rationals a > (3, and write
Ef{z € X : f. < Band f*(z) > a}.
We have T~'E? = Ef and E C E,. By Theorem 2.3,

/E Fdu > ap()). (2.3)

And by Corollary 2.1,
/ fdp < Bu(EY). (2.4)
EZ

The inequalities (2.3) and (2.4) show that u(EZ) = 0. Now, since
Ni—{oeX: L) < f@h= | B

a>0
a,BeQ

we have u(N) = 0. Hence,
(@) = fulz)  p-ae

Denote
n—1

1
gn(z) == — Z f (Tkx) .
" =0
By Fatou’s lemma,

/f*d,ugliminf/ gndu:ﬁminf/ fd,u:/fdu.

Using the reverse Fatou lemma,

f*duZlimsup/ gndp:hmsup/ fdu:/ fdu.
X X X X

n— oo n—oo

/)(fdu=/)<f*du-

Furthermore, since g, ——s f* and ||gn|l; —— ||f*||; we can deduce
p-a.e.

Meaning,

n— 00 *

I

O
Remark. Our use of Fatou’s lemma and the reverse Fatou lemma was possible

due to the assumption that f > 0. This ensures that the integral always has
value (however, it may be infinite).



3 Equidistribution and Generic Points

Throughout this section we assume that (X,B,u,T) is a measure-preserving
system, X an LCSC topological space, B the Borel g-algebra, p a probability
measure on X, and T : X — X continuous.

Recall. A topological space X is LCSC if it is Hausdorff, locally compact,
and second-countable. In addition, C.(X) (the set of continuous functions with
compact support) is a separable metric space with respect to the uniform norm,

[flloe = supf{lf(2)] : = € X}

However, C.(X) is not a complete metric space and its completion is the space of
continuous functions f that tends to zero outside of compact sets, i.e. for every
€ > 0 there exists K C X compact, such that sup {|f(z)]:z € X N K} <e.

Definition 3.1. A sequence of elements (z,,) is equidistributed with respect to
w if for any f € C.(X),

1 n
lim — )= dge. 3.1
ngrolon;f(%) /Xf p (3.1)
Equivalently, (z,) is equidistributed if

1 n
— Oz, — b

in the weak*-topology.

Remark. When dealing with X = [a,b] C R and the Lebesgue measure it is
common to replace C.([a,b]) with the Riemann integrable functions on [a, b].
When X = T we sometimes say that the sequence (z,,) is uniformly distributed
modulo 1.

The notion of equidistribution strengthens the notion of topological-density.
We want our sequence to have enough information about the measure to re-
construct it. The following result gives us two different ways to think about
equidistribution in the particular case of ([0, 1], B, m):

Theorem 3.1 (Weyl’s criterion). Let (z,,) C [0, 1], the following are equivalent:
(I) The sequence () is equidistributed.
(II) For all k € Z\ {0},

n

. 1 o
lim — E e2mikz; — ().
n—o00 N
i=1

(III) For any [a,b] C [0,1],

lim #{1<j<n:z;€lab}

n—o00 n

=b—a.



Ezample 3.1. For all « € T \ Q, the sequence (na),en is equidistributed. By
Weyl’s criterion it suffices to prove (II), and indeed, for all k € Z \ {0},

n . eQ'lrika 1— eQﬂ'ikna

1 — 1
- E 627Tikjo¢ _ - E (627rika)] o 0
n T n T on 1—e?mka e’
i—1
‘7_

Jj=1

Proof of Theorem 8.1. (I) <= (II): (I) implies (II) from the definition of
equidistribution. Conversely, (IT) implies that (3.1) holds for trigonometric
polynomials, and since they are dense in C([0, 1]) this implies (I).

(I) < (III): Assume (I) and let [a,b] C [0,1]. Let € > 0 and define

1 x € [a,b],

FHa) = @ z € max0,a — ¢€,a),
% € (b,minb + ¢, 1],
0 otherwise,

and
1 r€la+teb—el,

_ =0 g€ la,a+¢l,
T) = €
f@) b;x x €[b—eg,b],
0 otherwise.

Then f~(z) < g p)(z) < fF(x) for all z € [0,1], and

/ (f+—f7)dm§25.
[0,1]

Thus,
1 n
~> 1 Zﬂ[ab] z5) Zﬁ ;).
j=1

Since T, f~ € C([0,1]), by equidistribution we get

1 n
b—a—2e< f~dm < liminf — Lo (25)
[0,1] n—oo n j; [ b]( J

n

1
< limsup — Z]l[ab] xj) /[]f_dmgb—a—&-%
0,1

n—oo ] 1

Thus,
llnrgngZ]lab (x;) —hrr;solip Z]lab (z;)=b—a
j=1 j=1
as required. Conversely, approximate f with simple functions. O



Definition 3.2. A point « € X is called generic (with respect to p and T') if
the sequence of points along the orbit (T"z),¢n is equidistributed with respect
to p.

Remark. If p and v are T-invariant probability measures and z € X is generic
with respect to both p and v, then p = v. Since for any f € C.(X),

. 171—1 ] B
/deu:nlgr;on;)f(zj)_/dey.

The notion of a generic point is closely related to Birkhoff’s ergodic theorem.
The main difference being that Birkhoff’s ergodic theorem fixes a function, while
generic points allows us to use the ”ergodic property” for a large family of
functions as the next proposition shows:

Proposition 3.1. Suppose T is ergodic, then p-almost all © € X are generic
with respect to p and T

Proof. Let {fn}52, be a dense sequence in C.(X). Let n € N, by Theorem 2.1,
there exists a set of measure zero E,,, such that for any x € X \ E,, we have

Denote X’ = X \ U,~; Ey,, then pu(X’) = 1. We claim that every x € X' is
generic. Indeed, let g € X', f € C.(X) and € > 0, there exists n € N such that

[fn(z) = f(@)] <,

for all z € X. Hence,

/ fdu— e<hm1nf— Z Fn(T720) <l1msup— Z fn(T20) < / fdu+e.

Taking € — 0 we obtain,

n—1
1 _
‘m = J o) —
nh_{rgon E f xo)—/deu.
j=0
O

While Proposition 3.1 proves that almost every point is generic, can we to
construct a generic point for a given 77

Example 3.2. Any normal number in base b, is a generic point with respect to
m and Tp. Let x be a normal number in base b, when proving Theorem 2.2
we showed that for any interval I,(n, k) = [£, ££) condition (III) in Weyl’s
criterion holds for (T'x),ecn. Thus, it holds for any interval of the form [ﬁ, bim)
with k& < £. We can use those intervals to approximate all other intervals and

show condition (IIT) which would imply the equidistribution of (7}'x)nen-.

10



