Birkhoff's Ergodic Theorem, Equidistribution and Generic Points

Seminar on Homogeneous Dynamics and Applications
Tel-Aviv University
Roei Raveh

January 2024

1 Introduction

The goal of this talk is to prove Birkhoff's pointwise ergodic theorem and to introduce the notion of equidistribution and generic points. We give a brief overview of the needed background in ergodic theory, as well as some examples and applications in number theory. We begin with a few basic definitions in ergodic theory:

Definition 1.1. Let (X, \mathcal{B}, μ) and (Y, \mathcal{F}, ν) be a probability spaces.

1. Let $f: X \rightarrow Y$ be a measurable map. Define $f_{*} \mu(A)=\mu\left(f^{-1}(A)\right)$ for $A \in \mathcal{F}$, then $f_{*} \mu$ is a measure on (Y, \mathcal{F}) and is called the pull-back measure of f.
2. A measurable map $f: X \rightarrow Y$ is measure preserving if $\mu\left(f^{-1}(A)\right)=\nu(A)$ for any $A \in \mathcal{F}$, i.e. if $f_{*} \mu=\nu$.
3. Let $T: X \rightarrow X$ be measure-preserving, then the measure μ is said to be T-invariant, (X, \mathcal{B}, μ, T) is called a measure-preserving system, and T a measure-preserving transformation

Proposition 1.1. A measure μ on X is T-invariant if and only if

$$
\begin{equation*}
\int_{X} f \mathrm{~d} \mu=\int_{X} f \circ T \mathrm{~d} \mu \tag{1.1}
\end{equation*}
$$

for all $f \in L^{\infty}$. Furthermore, if μ is T-invariant, then (1.1) holds for all $f \in L^{1}(\mu)$

Example 1.1. Consider $(\mathbb{T}, \mathcal{B}, m)$ where $\mathbb{T}=\mathbb{R} / \mathbb{Z} \cong[0,1), \mathcal{B}$ is the Borel σ algebra, and m the Lebesgue measure. Define $S: \mathbb{T} \rightarrow \mathbb{T}$ as $S(x)=x^{2}$, then S is not measure-preserving. Clearly,

$$
S^{-1}[0,1 / 4)=[0,1 / 2),
$$

Hence,

$$
m\left(S^{-1}[0,1 / 4)\right)=\frac{1}{2} \neq \frac{1}{4}=m([0,1 / 4))
$$

Example 1.2. Take $(\mathbb{T}, \mathcal{B}, m)$ as in the previous example. Let $d \geq 2$ be an integer, and define $T: \mathbb{T} \rightarrow \mathbb{T}$ as $T(x)=\{d x\}$, then T is measure-preserving. Indeed, we need to show $T_{*} m=m$, and it is enough to show for all intervals $[a, b) \subseteq[0,1)$.

$$
T^{-1}[a, b)=\bigcup_{k=0}^{d-1}\left[\frac{k+a}{d}, \frac{k+b}{d}\right) .
$$

Hence,

$$
T_{*} m([a, b))=\sum_{k=0}^{d-1} m\left(\left[\frac{k+a}{d}, \frac{k+b}{d}\right)\right)=\sum_{k=0}^{d-1} \frac{b-a}{d}=b-a=m([a, b)) .
$$

Definition 1.2. A measure-preserving transformation $T: X \rightarrow X$ of a probability space (X, \mathcal{B}, μ) is ergodic if for any $B \in \mathcal{B}$, if B is T-invariant, i.e. $T^{-1} B=B$ then $\mu(B) \in\{0,1\}$.

Example 1.3. Consider the map $T: \mathbb{T} \rightarrow \mathbb{T}$ as defined in Example 1.2, i.e. $T x=\{d x\}$, then T is ergodic. For all $n \geq 1$ and $0 \leq k \leq d^{n}-1$ denote $I_{d}(n, k)=\left[\frac{k}{d^{n}}, \frac{k+1}{d^{n}}\right)$. Let $E \in \mathcal{B}$,

$$
T^{-n} E \cap I_{d}(n, k)=\left\{\frac{k+x}{d^{n}}: x \in E\right\}
$$

which yields

$$
m\left(T^{-n} E \cap I_{d}(n, k)\right)=d^{-n} m(E)
$$

Denote $\mathcal{F}_{d}=\{\varnothing\} \cup\left\{I_{d}(n, k): 0 \leq k \leq d^{n}-1, n \geq 1\right\}$, then \mathcal{F}_{d} is a π-system and $\sigma\left(\mathcal{F}_{d}\right)=\mathcal{B}$ (where $\sigma\left(\mathcal{F}_{d}\right)$ is the σ-algebra generated by \mathcal{F}_{d}). Now, let $A \in \mathcal{B}$ be T-invariant and suppose $m(A) \neq 0$. Define $\mu(E)=\frac{m(E \cap A)}{m(A)}$, then μ is a probability measure on $(\mathbb{T}, \mathcal{B})$. Since for all $n \geq 1$

$$
m\left(A \cap I_{d}(n, k)\right)=d^{-n} m(A)
$$

then for any $E \in \mathcal{F}_{d}$ we have $m(E)=\mu(E)$. Thus, $m=\mu$ on $\sigma\left(\mathcal{F}_{d}\right)=\mathcal{B}$. Thus, for any $B \in \mathcal{B}$,

$$
m(A \cap B)=m(A) m(B)
$$

In particular $A \in \mathcal{B}$ and thus,

$$
m(A)=m(A)^{2}
$$

Which shows $m(A)=1$.
Exercise 1.1. Let (X, \mathcal{B}, μ, T) be a measure-preserving system and let $f: X \rightarrow$ \mathbb{R} be a measurable function. Suppose that $f=f \circ T$ and T is ergodic, then f is constant μ-almost everywhere.

2 Birkhoff's Ergodic Theorem

Theorem 2.1 (Birkhoff's Ergodic Theorem). Let (X, \mathcal{B}, μ, T) be a measurepreserving system, and let $f \in L^{1}(\mu)$. There exists a T-invariant function $f^{*} \in L^{1}(\mu)$, such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)=f^{*}(x)
$$

μ-almost everywhere and in $L^{1}(\mu)$, and

$$
\int_{X} f \mathrm{~d} \mu=\int_{X} f^{*} \mathrm{~d} \mu
$$

If T is also ergodic, then

$$
f^{*}(x)=\int_{X} f \mathrm{~d} \mu
$$

μ-almost everywhere.

2.1 Application: Normal Numbers

Definition 2.1. Let $\theta \in[0,1)$ and let $\theta=\sum_{n=1}^{\infty} \frac{a_{n}}{b^{n}}$ be its expansion in base b (i.e. $a_{n} \in\{0,1, \ldots, b-1\}$). θ is said to be simply normal in base b if for any $k \in\{0,1, \ldots, b-1\}$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{1 \leq j \leq n: a_{j}=k\right\}}{n}=\frac{1}{b}
$$

θ is said to be normal in base b if for any $k_{1}, \ldots, k_{i} \in\{0,1, \ldots, b-1\}$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{1 \leq j \leq n-i+1: a_{j}=k_{1}, \ldots, a_{j+i-1}=k_{i}\right\}}{n}=\frac{1}{b^{i}}
$$

Finally, θ is called normal (sometimes absolutely normal or completely normal) if it is normal in base b, for all $b \geq 2$.

Example 2.1. The number

$$
\frac{123,456,789}{999,999,999}=0 . \overline{0123456789}
$$

is simply normal in base 10. However, any rational number is not normal in any base. The number

$$
0.1234567891011121314151617181920212223242526272829 \ldots
$$

is normal in base 10, as well as the number

$$
0.2357111317192329313741434753596167717379 \ldots
$$

that was proven to be normal (in base 10) by Copeland and Erdős.

It is fairly easy to construct a number that is normal in a given base; while it is incredibly difficult to construct an absolutely normal number. Furthermore, there is no proof to the normality of $\sqrt{2}, e, \pi$ or numbers similar to them.

Theorem 2.2 (Borel). Let \mathcal{N} be the set of absolutely normal numbers, then $m(\mathcal{N})=1$.

Proof. Let $b \geq 2$ an integer and let \mathcal{N}_{b} be the set of normal numbers in base b. Define $T_{b}: \mathbb{T} \rightarrow \mathbb{T}$ as $T_{b} x=\{b x\}$. For $x \in[0,1)$ let $x=\sum_{n=1}^{\infty} \frac{a_{n}}{b^{n}}$ be its base b expansion.
Let $k_{1}, \ldots, k_{i} \in\{0,1, \ldots, b-1\}$, and denote $p=k_{1} b^{i-1}+\ldots+k_{i-1} b+k_{i}$. Since

$$
T x=\sum_{n=1}^{\infty} \frac{a_{n+1}}{b^{n}}
$$

for any $1 \leq j \leq n-i+1$ we have $a_{j}=k_{1}, \ldots, a_{j+i-1}=k_{i}$ if and only if

$$
T^{j-1} x \in\left[\frac{p}{b^{i}}, \frac{p+1}{b^{i}}\right)=: A
$$

Hence,
$\#\left\{1 \leq j \leq n-i+1: a_{j}=k_{1}, \ldots, a_{j+i-1}=k_{i}\right\}=\sum_{j=1}^{n-i+1} \mathbb{1}_{A}\left(T^{j-1} x\right)=\sum_{j=0}^{n-i} \mathbb{1}_{A}\left(T^{j} x\right)$.
By Theorem 2.1,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-i} \mathbb{1}_{A}\left(T^{j} x\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} \mathbb{1}_{A}\left(T^{j} x\right)=\int_{\mathbb{T}} \mathbb{1}_{A} \mathrm{~d} m=\frac{1}{b^{i}}, \quad m \text {-a.e. }
$$

since T_{b} is ergodic. Thus,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{1 \leq j \leq n-i+1: a_{j}(x)=k_{1}, \ldots, a_{j+i-1}(x)=k_{i}\right\}}{n}=\frac{1}{b^{i}}, \quad m \text {-а.е. }
$$

Meaning $m\left(\mathbb{T} \backslash \mathcal{N}_{b}\right)=0$ for all $b \geq 2$. Therefore

$$
\mathbb{T} \backslash \mathcal{N}=\bigcup_{b=2}^{\infty} \mathbb{T} \backslash \mathcal{N}_{b}
$$

is a set of measure zero. Hence, $m(\mathcal{N})=1$.
Remark. Although the set of non-normal numbers is of measure zero, it is uncountable. For instance, every element of the middle-thirds Cantor set is nonnormal.

In order to prove Theorem 2.1 we will need Theorem 2.3.

2.2 Maximal Ergodic Theorem

Theorem 2.3 (Maximal Ergodic Theorem). Let (X, \mathcal{B}, μ, T) be a measurepreserving system on a probability space and let $g \in L^{1}(\mu)$ be a real-valued function. For any $\alpha \in \mathbb{R}$, define

$$
E_{\alpha}=\left\{x \in X: \sup _{n \geq 1}\left(\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)\right)>\alpha\right\}
$$

Then

$$
\alpha \mu\left(E_{\alpha}\right) \leq \int_{E_{\alpha}} g \mathrm{~d} \mu \leq\|g\|_{1} .
$$

Moreover, $\alpha \mu\left(E_{\alpha} \cap A\right) \leq \int_{E_{\alpha} \cap A} g \mathrm{~d} \mu$ for any T-invariant set A, i.e., $T^{-1} A=$ A.

To prove Theorem 2.3 we will need the following proposition:
Proposition 2.1 (Maximal Inequality). Let $U: L^{1}(\mu) \rightarrow L^{1}(\mu)$ be a positive linear operator with $\|U\| \leq 1$. Define

$$
f_{0}=0, \quad f_{n}=\sum_{i=0}^{n-1} U^{i} f \quad \forall n \geq 1
$$

and $F_{N}=\max \left\{f_{n}: 0 \leq n \leq N\right\}$. Then for all $N \geq 1$,

$$
\int_{\left\{F_{N}>0\right\}} f \mathrm{~d} \mu \geq 0
$$

Proof of Theorem 2.3. Let $U: L^{1}(\mu) \rightarrow L^{1}(\mu)$ be the operator $U f=f \circ T$. Clearly, U is a positive linear operator with $\|U\| \leq 1$. Let $g \in L^{1}(\mu), \alpha \in \mathbb{R}$ and A a T-invariant set, and denote $f=\mathbb{1}_{A} \cdot(g-\alpha)$. Now, define $\left\{f_{n}\right\}_{n=0}^{\infty}$ and $\left\{F_{N}\right\}_{N=0}^{\infty}$ as stated in Proposition 2.1. Then,

$$
E_{\alpha}=\bigcup_{N=0}^{\infty}\left\{F_{N}>0\right\}
$$

Therefore, $\int_{E_{\alpha}} f \mathrm{~d} \mu \geq 0$ which means $\int_{E_{\alpha} \cap A} g \mathrm{~d} \mu \geq \alpha \mu\left(E_{\alpha} \cap A\right)$.
Proof of Proposition 2.1. Let $N \geq 1$, clearly $F_{N} \in L^{1}(\mu)$. Since U is positive and linear and because $F_{N} \geq f_{n}$ for all $0 \leq n \leq N$, we have

$$
U F_{N}+f \geq U f_{n}+f=f_{n+1}
$$

Hence,

$$
U F_{N}+f \geq \max _{1 \leq n \leq N} f_{n}
$$

Denote $P=\left\{x \in X: F_{N}(x)>0\right\}$. Since $f_{0}=0$, for all $x \in P$ we have

$$
F_{N}(x)=\max _{0 \leq n \leq N} f_{n}(x)=\max _{1 \leq n \leq N} f_{n}(x)
$$

Therefore, for all $x \in P$

$$
U F_{N}(x)+f(x) \geq F_{N}(x)
$$

We have $F_{N} \geq 0$ and thus $U F_{N} \geq 0$. Hence,

$$
\begin{array}{rlr}
\int_{P} f \mathrm{~d} \mu & \geq \int_{P} F_{N} \mathrm{~d} \mu-\int_{P} U F_{N} \mathrm{~d} \mu \\
& =\int_{X} F_{N} \mathrm{~d} \mu-\int_{P} U F_{N} \mathrm{~d} \mu & \left(F_{N}(x)=0 \text { for all } x \notin P\right) \\
& \geq \int_{X} F_{N} \mathrm{~d} \mu-\int_{X} U F_{N} \mathrm{~d} \mu & \\
& =\left\|F_{N}\right\|_{1}-\left\|U F_{N}\right\|_{1} \geq 0 & \quad \text { (since }\|U\| \leq 1) .
\end{array}
$$

It would be beneficial to state a similar result for a lower bound:
Corollary 2.1. Let (X, \mathcal{B}, μ, T) be a measure-preserving system on a probability space and let $g \in L^{1}(\mu)$ be a real-valued function. For any $\beta \in \mathbb{R}$, define

$$
E^{\beta}=\left\{x \in X: \sup _{n \geq 1}\left(\frac{1}{n} \sum_{k=0}^{n-1} g\left(T^{k} x\right)\right)<\beta\right\}
$$

Then

$$
\beta \mu\left(E^{\beta}\right) \geq \int_{E^{\beta}} g \mathrm{~d} \mu
$$

Moreover, $\beta \mu\left(E^{\beta} \cap A\right) \geq \int_{E^{\beta} \cap A} g \mathrm{~d} \mu$ for any T-invariant set A.
We are now ready to prove Birkhoff's ergodic theorem:
Proof of Theorem 2.1. Let $f \in L^{1}(\mu)$ and WLOG assume that $f \geq 0$. For all $x \in X$, define

$$
\begin{aligned}
& f^{*}(x)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right) \\
& f_{*}(x)=\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)
\end{aligned}
$$

For all $n \geq 1$ and $x \in X$,

$$
\begin{equation*}
\frac{n+1}{n}\left(\frac{1}{n+1} \sum_{k=0}^{n} f\left(T^{k} x\right)\right)=\frac{1}{n} \sum_{k=0}^{n} f\left(T^{k} x\right)=\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k}(T x)\right)+\frac{1}{n} f(x) \tag{2.1}
\end{equation*}
$$

By taking the limit along a subsequence for which the LHS of (2.1) converges to the limsup, we can deduce $f^{*} \leq f^{*} \circ T$. In the same way, taking the limit
along a subsequence for which the RHS of (2.1) converges to the limsup, we can deduce $f^{*} \geq f^{*} \circ T$. A similar argument for f_{*} shows that

$$
\begin{equation*}
f^{*}=f^{*} \circ T, \quad f_{*}=f_{*} \circ T \tag{2.2}
\end{equation*}
$$

Now fix rationals $\alpha>\beta$, and write

$$
E_{\alpha}^{\beta}\left\{x \in X: f_{*}<\beta \text { and } f^{*}(x)>\alpha\right\}
$$

We have $T^{-1} E_{\alpha}^{\beta}=E_{\alpha}^{\beta}$ and $E_{\alpha}^{\beta} \subseteq E_{\alpha}$. By Theorem 2.3,

$$
\begin{equation*}
\int_{E_{\alpha}^{\beta}} f \mathrm{~d} \mu \geq \alpha \mu\left(E_{\alpha}^{\beta}\right) . \tag{2.3}
\end{equation*}
$$

And by Corollary 2.1,

$$
\begin{equation*}
\int_{E_{\alpha}^{\beta}} f \mathrm{~d} \mu \leq \beta \mu\left(E_{\alpha}^{\beta}\right) . \tag{2.4}
\end{equation*}
$$

The inequalities (2.3) and (2.4) show that $\mu\left(E_{\alpha}^{\beta}\right)=0$. Now, since

$$
N:=\left\{x \in X: f_{*}(x)<f^{*}(x)\right\}=\bigcup_{\substack{\alpha>\beta \\ \alpha, \beta \in \mathbb{Q}}} E_{\alpha}^{\beta}
$$

we have $\mu(N)=0$. Hence,

$$
f^{*}(x)=f_{*}(x) \quad \mu \text {-a.e. }
$$

Denote

$$
g_{n}(x):=\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k} x\right)
$$

By Fatou's lemma,

$$
\int_{X} f_{*} \mathrm{~d} \mu \leq \liminf _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu=\liminf _{n \rightarrow \infty} \int_{X} f \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu
$$

Using the reverse Fatou lemma,

$$
\int_{X} f^{*} \mathrm{~d} \mu \geq \limsup _{n \rightarrow \infty} \int_{X} g_{n} \mathrm{~d} \mu=\limsup _{n \rightarrow \infty} \int_{X} f \mathrm{~d} \mu=\int_{X} f \mathrm{~d} \mu
$$

Meaning,

$$
\int_{X} f \mathrm{~d} \mu=\int_{X} f^{*} \mathrm{~d} \mu
$$

Furthermore, since $g_{n} \xrightarrow[\mu \text {-a.e. }]{n \rightarrow \infty} f^{*}$ and $\left\|g_{n}\right\|_{1} \xrightarrow{n \rightarrow \infty}\left\|f^{*}\right\|_{1}$ we can deduce

$$
g_{n} \xrightarrow[L^{1}(\mu)]{n \rightarrow \infty} f^{*}
$$

Remark. Our use of Fatou's lemma and the reverse Fatou lemma was possible due to the assumption that $f \geq 0$. This ensures that the integral always has value (however, it may be infinite).

3 Equidistribution and Generic Points

Throughout this section we assume that (X, \mathcal{B}, μ, T) is a measure-preserving system, X an LCSC topological space, \mathcal{B} the Borel σ-algebra, μ a probability measure on X, and $T: X \rightarrow X$ continuous.

Recall. A topological space X is LCSC if it is Hausdorff, locally compact, and second-countable. In addition, $C_{c}(X)$ (the set of continuous functions with compact support) is a separable metric space with respect to the uniform norm,

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}
$$

However, $C_{c}(X)$ is not a complete metric space and its completion is the space of continuous functions f that tends to zero outside of compact sets, i.e. for every $\varepsilon>0$ there exists $K \subseteq X$ compact, such that $\sup \{|f(x)|: x \in X \backslash K\}<\varepsilon$.
Definition 3.1. A sequence of elements $\left(x_{n}\right)$ is equidistributed with respect to μ if for any $f \in C_{c}(X)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(x_{j}\right)=\int_{X} f \mathrm{~d} \mu \tag{3.1}
\end{equation*}
$$

Equivalently, $\left(x_{n}\right)$ is equidistributed if

$$
\frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}} \rightarrow \mu
$$

in the weak*-topology.
Remark. When dealing with $X=[a, b] \subseteq \mathbb{R}$ and the Lebesgue measure it is common to replace $C_{c}([a, b])$ with the Riemann integrable functions on $[a, b]$. When $X=\mathbb{T}$ we sometimes say that the sequence $\left(x_{n}\right)$ is uniformly distributed modulo 1.

The notion of equidistribution strengthens the notion of topological-density. We want our sequence to have enough information about the measure to reconstruct it. The following result gives us two different ways to think about equidistribution in the particular case of $([0,1], \mathcal{B}, m)$:

Theorem 3.1 (Weyl's criterion). Let $\left(x_{n}\right) \subseteq[0,1]$, the following are equivalent:
(I) The sequence $\left(x_{n}\right)$ is equidistributed.
(II) For all $k \in \mathbb{Z} \backslash\{0\}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2 \pi i k x_{j}}=0
$$

(III) For any $[a, b] \subseteq[0,1]$,

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{1 \leq j \leq n: x_{j} \in[a, b]\right\}}{n}=b-a .
$$

Example 3.1. For all $\alpha \in \mathbb{T} \backslash \mathbb{Q}$, the sequence $(n \alpha)_{n \in \mathbb{N}}$ is equidistributed. By Weyl's criterion it suffices to prove (II), and indeed, for all $k \in \mathbb{Z} \backslash\{0\}$,

$$
\frac{1}{n} \sum_{j=1}^{n} e^{2 \pi i k j \alpha}=\frac{1}{n} \sum_{j=1}^{n}\left(e^{2 \pi i k \alpha}\right)^{j}=\frac{e^{2 \pi i k \alpha}}{n} \frac{1-e^{2 \pi i k n \alpha}}{1-e^{2 \pi i k \alpha}} \underset{n \rightarrow \infty}{ } 0
$$

Proof of Theorem 3.1. (I) \Longleftrightarrow (II): (I) implies (II) from the definition of equidistribution. Conversely, (II) implies that (3.1) holds for trigonometric polynomials, and since they are dense in $C([0,1])$ this implies (I).
(I) \Longleftrightarrow (III): Assume (I) and let $[a, b] \subseteq[0,1]$. Let $\varepsilon>0$ and define

$$
f^{+}(x)= \begin{cases}1 & x \in[a, b] \\ \frac{x-(a-\varepsilon)}{\varepsilon} & x \in[\max 0, a-\varepsilon, a) \\ \frac{(b+\varepsilon)-x}{\varepsilon} & x \in(b, \min b+\varepsilon, 1] \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f^{-}(x)= \begin{cases}1 & x \in[a+\varepsilon, b-\varepsilon] \\ \frac{x-a}{\varepsilon} & x \in[a, a+\varepsilon] \\ \frac{b-x}{\varepsilon} & x \in[b-\varepsilon, b] \\ 0 & \text { otherwise }\end{cases}
$$

Then $f^{-}(x) \leq \mathbb{1}_{[a, b]}(x) \leq f^{+}(x)$ for all $x \in[0,1]$, and

$$
\int_{[0,1]}\left(f^{+}-f^{-}\right) \mathrm{d} m \leq 2 \varepsilon
$$

Thus,

$$
\frac{1}{n} \sum_{j=1}^{n} f^{-}\left(x_{j}\right) \leq \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{[a, b]}\left(x_{j}\right) \leq \frac{1}{n} \sum_{j=1}^{n} f^{+}\left(x_{j}\right)
$$

Since $f^{+}, f^{-} \in C([0,1])$, by equidistribution we get

$$
\begin{aligned}
b-a-2 \varepsilon \leq \int_{[0,1]} f^{-} & d m
\end{aligned} \quad \leq \liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{[a, b]}\left(x_{j}\right) \quad \begin{aligned}
& \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{[a, b]}\left(x_{j}\right) \leq \int_{[0,1]} f^{-} d m \leq b-a+2 \varepsilon
\end{aligned}
$$

Thus,

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{[a, b]}\left(x_{j}\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{[a, b]}\left(x_{j}\right)=b-a
$$

as required. Conversely, approximate f with simple functions.

Definition 3.2. A point $x \in X$ is called generic (with respect to μ and T) if the sequence of points along the orbit $\left(T^{n} x\right)_{n \in \mathbb{N}}$ is equidistributed with respect to μ.

Remark. If μ and ν are T-invariant probability measures and $x \in X$ is generic with respect to both μ and ν, then $\mu=\nu$. Since for any $f \in C_{c}(X)$,

$$
\int_{X} f \mathrm{~d} \mu=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x\right)=\int_{X} f \mathrm{~d} \nu
$$

The notion of a generic point is closely related to Birkhoff's ergodic theorem. The main difference being that Birkhoff's ergodic theorem fixes a function, while generic points allows us to use the "ergodic property" for a large family of functions as the next proposition shows:
Proposition 3.1. Suppose T is ergodic, then μ-almost all $x \in X$ are generic with respect to μ and T.
Proof. Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a dense sequence in $C_{c}(X)$. Let $n \in \mathbb{N}$, by Theorem 2.1, there exists a set of measure zero E_{n}, such that for any $x \in X \backslash E_{n}$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f_{n}\left(T^{j} x\right)=\int_{X} f_{n} \mathrm{~d} \mu
$$

Denote $X^{\prime}=X \backslash \bigcup_{n=1}^{\infty} E_{n}$, then $\mu\left(X^{\prime}\right)=1$. We claim that every $x \in X^{\prime}$ is generic. Indeed, let $x_{0} \in X^{\prime}, f \in C_{c}(X)$ and $\varepsilon>0$, there exists $n \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon
$$

for all $x \in X$. Hence,
$\int_{X} f \mathrm{~d} \mu-\varepsilon \leq \liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f_{n}\left(T^{j} x_{0}\right) \leq \limsup _{N \rightarrow \infty} \frac{1}{N} \sum_{j=0}^{N-1} f_{n}\left(T^{j} x_{0}\right) \leq \int_{X} f \mathrm{~d} \mu+\varepsilon$.
Taking $\varepsilon \rightarrow 0$ we obtain,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=0}^{n-1} f\left(T^{j} x_{0}\right)=\int_{X} f \mathrm{~d} \mu
$$

While Proposition 3.1 proves that almost every point is generic, can we to construct a generic point for a given T ?
Example 3.2. Any normal number in base b, is a generic point with respect to m and T_{b}. Let x be a normal number in base b, when proving Theorem 2.2 we showed that for any interval $I_{b}(n, k)=\left[\frac{k}{b^{n}}, \frac{k+1}{b^{n}}\right.$) condition (III) in Weyl's criterion holds for $\left(T_{b}^{n} x\right)_{n \in \mathbb{N}}$. Thus, it holds for any interval of the form $\left[\frac{k}{b^{n}}, \frac{\ell}{b^{m}}\right)$ with $k<\ell$. We can use those intervals to approximate all other intervals and show condition (III) which would imply the equidistribution of $\left(T_{b}^{n} x\right)_{n \in \mathbb{N}}$.

