
EFFECTIVE EQUIDISTRIBUTION AND SPECTRAL GAP

MANFRED EINSIEDLER

Abstract. In these notes we discuss some equidistribution problems with the
aim to give reasonable error rates, i.e. we are interested in effective statements.
We motivate some arguments by studying a concrete problem on a two-torus,
and then describe recent results on the equidistribution of semisimple orbits
obtained in joint work with G. Margulis and A. Venkatesh. We end by studying
the relationship between equidistribution of closed orbits and mixing proper-
ties. This leads to a way of transporting spectral gap from one group — via
an effective equidistribution result on a quotient by an irreducible lattice – to
another group. The latter topic is ongoing joint work with G. Margulis and
A. Venkatesh.

1. Purpose

These notes are the combination of a few lectures given on an effective equidis-
tribution theorem and related material. The main theorem that we discuss e.g.
describes how dense closed orbits xH of H = SO(2, 1)(R)◦ on SL(3,Z)\ SL(3,R)
with big volume have to be. A more general version of this was obtained in joint
work [7] with G. Margulis and A. Venkatesh and will be described in §6. A crucial
input to the method that we used in [7] was spectral gap — in §4 we state what is
used in general and prove the statement in the special case of SL(3,R) being the
acting group. We motivate these questions and give a brief historical discussion
in §2–§3. In §7 we outline the idea of ongoing joint work with G. Margulis and
A.Venkatesh. Most of the material herein is well known to experts, but we think
that assembling the material in these notes is worthwhile as it may help someone
reading [7].

The author would like to thank his coauthors and students for many discussions
on these topics. This research has been supported by the NSF-FRG collaborative
grant 0554373.

2. Model cases of equidistribution problems

2.1. (Too) General setup. Let us start with the following kind of equidistribution
problems (which we specialize later to a more concrete setup). Suppose T : X → X
is a continuous map on a compact metrizable space and x ∈ X . Then one can ask
about the distribution properties of the finite sequence of points

x, T (x), T 2(x), . . . , T n−1(x) ∈ X.

We can specify the question more concretely by defining the measure
∫

fdδx,n =
1

n

n−1
∑

ℓ=0

f(T ℓ(x)) for all f ∈ C(X),
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and asking about the behavior of δx,n for large n and a given x. If δx,n converges
for n → ∞ in the weak∗ topology to some measure µ, then we say that the orbit
of x equidistributes (w.r.t. µ). If we have a reasonable error for the expression
∣

∣

∫

fdδx,n−
∫

fdµ
∣

∣ for smooth functions, then we speak of effective equidistribution.
If T is ergodic with respect to an invariant probability measure µ, one knows

that δx,n converges to µ in the weak∗ topology as n → ∞ for µ-a.e. x ∈ X by
Birkhoff’s pointwise ergodic theorem, i.e. a.e. orbit equidistributes w.r.t. µ. This
is an interesting statement and can be quite useful in applications, but it does by
no means provide a complete answer to the problem. For instance, it does not say
anything about orbits of points x ∈ X that are not typical for µ. Moreover, if we
want to work with large but fixed n then again this provides no information about
δx,n as the general ergodic theorem does not provide an effective error rate.

2.2. Rotation on the circle T. In the generality discussed above, one cannot
hope to say anything about a given point x ∈ X and also not anything — even if x
is typical for an ergodic measure µ — about the speed of approximation. However,
there are cases where both can be achieved.

Still in the same generality as above, if T has only one invariant probability
measure on X , say µ, then more is true: For every point x one has that δx,n
converges in the weak∗ topology to µ — and does so uniformly. It is easy to
give an example for this, as e.g. the circle rotation defined by T (x) = x + α for
x ∈ T = R/Z and some fixed irrational α ∈ R (with addition being understood
modulo Z) preserves only the Lebesuge measure mT and δx,n converges to mT for
any x ∈ T. Moreover, one can also answer the refined question for an error rate
but this requires1 additional assumptions on α: If α is not a Liouville number and
f ∈ C∞(X), then

∣

∣

∣

1

n

n−1
∑

ℓ=0

f(x+ ℓα)−

∫

T

fdλ
∣

∣

∣ <
1

n
S(f),

where S(f) depends on the function f (respectively on the sizes of the first few
derivatives f, f ′, f ′′, ...., f (L) with L dependent on α). This is quite well known
and can be proven directly for characters ek(x) = exp(2πikx) (using the geometric
series and the assumption on α), and then can be boot-strapped to any smooth
function f by an application of the Cauchy-Schwarz inequality. Instead of proving
this, we give a proof of a different effective equidistribution statement on T2 below.

2.3. Polynomial curves on T2. Let us study now two2 polynomials p1(t), p2(t) for
t ∈ [0, 1] of degree ≤ D and how the corresponding curve3 {(p1(t), p2(t)) : t ∈ [0, 1]}
behaves modulo Z2 as a subset of T2. I.e. we wish to estimate

(1)
∣

∣

∣

∫ 1

0

f(p1(t), p2(t))dt −

∫

T2

f(x)dx
∣

∣

∣

for a given smooth f defined on T2. Clearly, if e.g. p2 = 0 then there will not be
a reasonable estimate for (1) as the curve in questions stays in a subtorus, more

1If one asks for a weaker form of an effective error rate, then one can do any irrational α. We
refer to the work of Green and Tao [11] for what one can say without the Liouville-assumption.

2The only reason for restricting the dimension to 2 is just to restrict the number of parameters
in this discussion.

3The continuous setting is in some aspects easier than the discrete one considered before, but
is also more relevant to the following discussion.
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generally the same holds if (p1(t), p2(t)) is close to a rational line for all t ∈ [0, 1].
To avoid this problem, let us assume that there exists some L and T such that for
any integer n ∈ Z2 we have that the polynomial

pn(t) = (n1p1 + n2p2)(t) = c0 + c1t+ · · ·+ cDtD

is nonconstant and moreover that4

(2) max
j=1,...,D

|cj | ≥ T for all n ∈ Z2 with ‖n‖L ≤ T.

We fix L and think of T being a very large number (but without actually taking the
limit T → ∞ as one often would do in ergodic theory). We wish to estimate (1) by a
negative power of T (which will depend on D) times a constant that depends on the
sizes of the first few partial derivatives of f (where the number of derivatives used
will depend on L). As this section’s main purpose is to introduce some ideas in a
very concrete setup, we make no claims regarding the optimality5 of the estimates.
We refer to [2] for the case of expanded images of a fixed curve where the Van der
Corput lemma (see e.g. [10, pg. 146]) is used to prove a sharper estimate. Instead
of using Van der Corput we will combine harmonic with more geometric arguments
as this generalize more easily to the context considered later.

2.3.1. Characters first. We start the calculation for the desired estimate by the
case where f(x) = en(x) = exp(2πi(n1x1 + n2x2)) is a character. The following
argument is relatively simple but requires some games with exponents and hence a
few constants that we will optimize at the end.

By definition of pn we have en((p1(t), p2(t)) = exp(2πipn(t)). We assume first
that ‖n‖L ≤ T . By our assumption (2) and the equivalence of norms on the space
of polynomials of degree ≤ D − 1 we have6

S = max
t∈[0,1]

|p′
n
(t)| ≫ T

and similarly

max
t∈[0,1]

|p′′
n
(t)| ≪ S.

As p′
n
(t) is a polynomial of degree D − 1 we can easily convince ourselves that

the Lebesgue measure of the points t ∈ [0, 1] where |p′
n
(t)| is much smaller than S

must in fact be small. In fact, for the polynomial 1
S p

′
n
on [0, 1] of supremum norm

about equal to one, the value of this polynomial can only be small, say smaller than
Sα−1, roughly speaking, close to the roots. Here the worst case happens if all the
D − 1 roots are equal, in which case 1

S p
′
n
(t) is smaller than Sα−1 on an interval of

size S
α−1
D−1 . More formally, this estimate follows from the interpolation formula for

polynomials, see for instance [12, Prop. 3.2], and gives that

(3) mR

({

t ∈ [0, 1] : |p′
n
(t)| < Sα

})

≪ S
α−1

D ,

4Clearly, making a restriction on the n for which we require (2), will lead to a stronger result.
In particular, with this restriction one can apply the result (5) to the case of a flow (p1(t), p2(t)) =
T (t, αt) whenever α is not a Liouville number.

5This is partly but not only because we will be wasteful at places in the estimates if this helps
to keep the expressions tidy.

6Implicit constants in the ≪-notation we allow to depend on D.



4 MANFRED EINSIEDLER

where α ∈ (0, 1) is to be determined later. Vaguely speaking, for any α we will be
able to ignore those t with |p′

n
(t)| < Sα as we are aiming to obtain an estimate

involving a negative power of T .
Next we fix some β ∈ (0, 1), again to be determined later, and divide [0, 1] into

subintervals of size S−β and one interval that may be shorter than that. Let I
be one such interval of length ≤ S−β and assume that for some t0 ∈ I we have
|p′

n
(t0)| ≥ Sα. Then as the second derivative is bounded by ≪ S on [0, 1] we have

for any t ∈ [0, 1] that

pn(t) = pn(t0) + (t− t0)p
′
n
(t0) +O((t − t0)

2S).

By choosing t ∈ I and β > 1
2 we can make the error term here of the form

|(t− t0)
2|S ≤ S−2β+1.

As the derivative of exp(2πi·) is of absolute value 2π we have with these choice that
∣

∣

∣en
(

(p1(t), p2(t)
)

− exp
(

2πi‖n‖(pn(t0) + (t− t0)p
′
n
(t0))

)

∣

∣

∣ ≪ S−2β+1.

We make that approximation because it is trivial to integrate an exponential func-
tion, which leads to

∣

∣

∣

∫

I

exp
(

2πi(pn(t0) + (t− t0)p
′
n
(t0))

)

dt
∣

∣

∣ ≪
∣

∣p′
n
(t0)

∣

∣

−1
≤ S−α

Together we get
∣

∣

∣

∫

I

en
(

(p1(t), p2(t)
)

dt
∣

∣

∣ ≪ S−α + S−2β+1mR(I).

We are summing this estimate over all intervals I that contain some t0 with
|p′

n
(t0)| ≥ Sα, of which there are at most Sβ +1 ≪ Sβ, and add the integral of the

trivial estimate ‖en‖∞ = 1 over the remaining intervals. As the union of the latter
intervals is contained in the set in (3), we obtain

∣

∣

∣

∫ 1

0

en
(

(p1(t), p2(t)
)

dt
∣

∣

∣ ≪ S−αSβ + S−2β+1 + S
α−1
D .

It is clear that if we choose e.g. β = 3
5 and α = 4

5 , then all of the exponents
are negative. A slightly better negative exponent is achieved by setting all the
exponents equal and solving for α and β, which then turns the right hand side into

≪ S− 1
2D+3 . Using in addition S ≫ T gives for all n ∈ Z2 \ {0} that

(4)
∣

∣

∣

∫ 1

0

en
(

(p1(t), p2(t)
)

dt
∣

∣

∣
≪ T− 1

2D+3 ‖n‖L.

2.3.2. Bootstrapping to any smooth function. Using Cauchy-Schwarz and the rela-
tion between smoothness and Fourier-coefficients we can now generalize (4) to an
estimate for (1). In fact, we claim that

(5)
∣

∣

∣

∫ 1

0

f(p1(t), p2(t))dt−

∫

T2

f(x)dx
∣

∣

∣ ≪ T− 1
2D+3SL+2(f)

whenever p1, p2 are polynomials of degree ≤ D satisfying (2) and f ∈ C∞(T2). We
note that the error is independent of the starting point of the curve (p1(0), p2(0))
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and of the particular polynomial as long as it satisfies our assumptions. Here SL+2

is the L2-Sobolev norm of f of degree L+ 2 defined by

SL+2(f)
2 =

∫

|f(x)|2dx+

∫

∣

∣

( ∂

∂x1

)L+2
f(x)

∣

∣

2
dx+

∫

∣

∣

( ∂

∂x2

)L+2
f(x)

∣

∣

2
dx

=
∑

n∈Z2

(

1 + (2π)L+2‖n‖2(L+2)
)

|f̂(n)|2

To obtain (5) recall also that the Fourier series f =
∑

n∈Z2 f̂(n)en converges

uniformly for f ∈ C∞(T2). Hence we may sum (4) multiplied by f̂(n) over all
n ∈ Z2 \ {0} to obtain

∣

∣

∣

∫ 1

0

f(p1(t), p2(t))dt−

∫

T2

f(x)dx
∣

∣

∣ ≪ T− 1
2D+3

∑

n∈Z2\{0}

|f̂(n)|‖n‖L

Here the sum on the right hand side can be estimated via Cauchy-Schwarz

∑

n∈Z2\{0}

|f̂(n)|‖n‖L =
∑

n∈Z2\{0}

|f̂(n)|‖n‖L+2 1

‖n‖2
≪

(

∑

n∈Z2\{0}

|f̂(n)|2‖n‖2(L+2)
)

1
2

where we used that ( 1
‖n‖2 )n∈Z2\{0} belons to ℓ2. As the last expression is ≤ SL+2(f)

this finishes the proof of (5).

3. Equidistribution of unipotent and closed orbits on homogeneous

spaces

3.1. Unipotent orbits. We replace the setup of a single transformation on a com-
pact space discussed in §2.1 by a one-parameter flow, i.e. an action of R, on a
homogeneous space. Let X = Γ\G be a quotient of a linear group G by a lattice
Γ, and let U =

{

ut = exp(tw) : t ∈ R
}

< G be a one-parameter unipotent sub-
group — here w is a nilpotent element of the Lie algebra of G. Then instead of
the above we consider the pieces of orbits xu[0,T ] = {xut : 0 ≤ t ≤ T } for points
x ∈ X . For this Ratner [15] has shown that the normalized image of the Lebesgue
measure on xu[0,T ] converges to a natural measure on X — as before we say the
orbit equidistributes with respect to this measure. This natural invariant measure
on X is for many points7 the Haar measure on X , but the theorem applies to any
point as follows. For a given x Ratner proves [15] that the orbit closure xU ⊂ X
is of the form xL for some closed connected subgroup L < G and that this orbit
supports an L-invariant probability measure, the Haar measure mxL, this is known
as Raghunathan’s conjecture. Then the measure on xu[0,T ] converges in the weak∗

topology to mxL. However, the problem of estimating the error in this theorem
and in this generality is wide open.

A special case of the above setup is given by U =

{

ut =

(

1 t
0 1

)

: t ∈ R

}

acting

onX = Γ\ SL2(R), i.e. the horocycle flow on the unit tangent bundle of a hyperbolic
surface. If X = Γ\ SL(2,R) is compact, then the equidistribution of orbits has been

7Unlike the abstract ergodic theorem Ratner’s theorem establishes precisely for which points
this is true.
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established by Furstenberg [9] already much earlier. Moreover, in this case error
rates are known:

∣

∣

1

T

∫

f(xut)dt−

∫

fdmX

∣

∣

∣ ≪ S(f)T−δ,

where mX is the Haar measure on X , S(f) is a Sobolev norm of the function
f and δ > 0 is a constant which depends on the spectral properties of X . In
particular, this error is independent of the starting point x. We refer the reader
to [3], [17, Sect. 9.3.1], and [8] for more details. If X is noncompact with finite
volume, e.g. X = SL(2,Z)\ SL(2,R), then the above error is again more delicate.
This is because, in X there are periodic orbits for the action of U . Even assuming
that x is not periodic, x could in fact be very close to a periodic orbit for U which
makes it impossible to give an error that is independent of x.

3.2. Equidistribution of closed orbits. A problem related to the distribution
of pieces of the orbit is the distribution of closed orbits. Here a toy problem is
the effective distribution properties of rational lines in the two-dimensional torus
(which is a special case of the discussion in §2.3).

3.2.1. Periodic horocycles. A more interesting case concerns the distribution prop-
erties of closed horocyle orbits on noncompact quotients. Here an error rate has
been established by Sarnak [16]. We now describe this result for SL(2,Z)\ SL(2,R)
and outline the argument from [17, Sect. 9] which establishes a slightly weaker form
of the effective equidistribution.

We start by recalling that periodic orbits of U are easily visualized using the
unit tangent bundle of the hyperbolic plane H = {z ∈ C : Im(z) > 0}. Here the
fundamental domain for SL(2,Z) is the triangle bounded by Re(z) = ± 1

2 and the
unit circle. In this picture the horocycle transports vectors along the horocycle
normal to the vector, and horocycles are horizontal lines and circles touching the
real axis. In particular, we can visualize periodic orbits for the horocycle flow as
horizontal line segments cutting through the fundamental domain with the arrows
pointing up. Let y be the y-coordinate of the points in the orbit and write Py for
the periodic orbit. Going up inside the fundamental domain (i.e. for y → ∞) the
length of the periodic orbit, which equals 1

y goes to zero and the orbit escapes to

infinity.
However, as y → 0 we can still draw periodic orbits as horizontal lines outside the

standard fundamental domain. If we draw Py for small y inside the fundamental
domain (applying the appropriate isometries from SL(2,Z)) the orbit will look
much more complicated, but will be periodic of large length 1

y . In fact, the orbit Py

becomes equidistributed in X as y → 0. Moreover, as Sarnak showed (in greater
generality and with more information regarding δ) this can be made effective, i.e.

∣

∣

∫

Py

f −

∫

X

fdmX

∣

∣ ≪ yδS(f)

for any f ∈ C∞
c (X). Here

∫

Py
f denotes the normalized integral over the periodic

orbit Py.

3.2.2. Outline of a proof. The geodesic flow is hyperbolic, i.e. inside the 3-dimensional
space X there are three special directions:

(0) the orbit direction of the geodesic flow,
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(s) the horocycle direction (corresponding to U) which is contracted by the
geodesic flow in forward time (the stable direction), and

(u) the opposite horocycle direction (corresponding to

(

1 0
∗ 1

)

) which is ex-

panded (the unstable direction).

Now let B be a small box (using the above three directions as “directions for the
sides”) around the periodic orbit P1 (the periodic orbit for U going through i), then

〈f, gt · χB〉 → mX(B)

∫

X

fdmX as t → ±∞

by the Howe-Moore theorem on vanishing of matrix coefficients or (equivalently)
the mixing property of the geodesic flow. Here 〈·, ·〉 is the inner product in L2(X),
χB is the characteristic function, gt· denotes the unitary action of the geodesic flow
on L2(X), and mX denotes the Haar measure on X . However, gt · χB equals the

characteristic function of Bt = B

(

e−
t
2

e
t
2

)

, which we should think of as a box

around the periodic orbit Pe−t . The distance of points in this new box to the new
periodic orbit in the direction of geodesic flow is unchanged, and in the direction
of the opposite horocycle flow has decreased exponentially. Hence for f ∈ Cc(X)
and large enough t we have (by uniform continuity and the careful construction of
a thin enough box)

∫

P
e−t

f ≈
1

mX(B)

∫

Bt

fdmX =
1

mX(B)
〈f, gt · χB〉 ≈

∫

X

f,

which can be made more precise to give a proof of the (noneffective) claim.
Using f ∈ C∞

c one can use the same argument as above (the method in [16] is
different and gives a better constant for δ), replacing the box with a smooth box-
like function, and replacing the Howe-Moore theorem with the effective decay of
matrix coefficients as discussed in §4.

3.2.3. More general closed orbits. More generally, one may ask about the distribu-
tion properties of closed, finite volume orbits xH of closed subgroups H ⊂ G on
quotients X = Γ\G. If H is generated by unipotent subgroups, a theorem of Mozes
and Shah [13] describes limits of such finite volume orbits — the limit measure is
again a Haar measure mxL just as in Ratner’s theorem. However, also just as in
Ratner’s equidistribution theorem for individual orbits, the problem of establishing
an error rate in this generality is wide open. We will discuss in §6 a special case
where an error rate has been obtained in joint work with Margulis and Venkatesh
[7].

4. Effective decay of matrix coefficients and spectral gap

We assume G is a closed linear semisimple group. We say we have effective decay

of matrix coefficients for X = Γ\G if there exists some δ > 0 such that

(6)
∣

∣〈g · f1 − ∫ f1dmX , f2 − ∫ f2dmX〉
∣

∣ ≪ ‖g‖−δS(f1)S(f2),

where g ∈ G, f1, f2 ∈ C∞
c (X), and ‖g‖ denotes the maximum of the matrix entries

of g. As before S(f) denotes a Sobolev norm of f .
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Also we say that the action of G on X has a spectral gap if there exists some
nonnegative χ ∈ Cc(G) with

∫

G χ(g)dmG(g) = 1 such that for any f ∈ L2(X) with
∫

X
fdmX = 0 we have ‖χ ∗ f‖2 ≤ θ‖f‖2 for some fixed θ < 1. Here

χ ∗ f(x) =

∫

χ(g)f(xg) for x ∈ X

may be thought of as the average of the images g · f of f under the unitary trans-
formation induced by right multiplication by g on X with respect to the weights
χ(g). As χ ∗ 1 = 1 the assumption that θ < 1 amounts to having a gap in the
spectrum of the operator χ∗.

Both of the above notions generalize to more general unitary representations of
G, in both notions we restrict ourself to representations without fixed vectors (or
equivalently the orthogonal complement of the space of vectors fixed under G). The
existence of a spectral gap θ < 1 that is independent of the unitary representation is
the well-known property (T) of the group G. We recall that SL(3,R) has property
(T), but that SL(2,R) does not have property (T).

From representation theory one knows that (6) is equivalent to spectral gap for
the G-action on L2(X) (where δ and the gap 1 − θ are related). We refer to [7,
Sect. 6] and the references there for a discussion of this equivalence.

4.1. Effective decay for SL(3,R). Spectral gap, in the form of effective decay of
matrix coefficients, is an essential input for establishing effective equidistribution
for homogeneous spaces, and so we would like to discuss where it comes from.
However, instead of describing the general argument for establishing spectral gap
and effective decay of matrix coefficients on “congruence” quotients, which would
be quite hard in these short notes, we will give a direct proof of the effective decay
of matrix coefficients for unitary representations of SL(3,R). I.e. we will prove (6)
by showing

(7)
∣

∣〈g · v, w〉
∣

∣ ≪ ‖g‖−
3
8S(v)S(w),

whenever v, w are smooth vectors belonging to a Hilbert space H which has a
unitary action of SL(3,R) on it and does not contain any SL(3,R)-fixed vectors.
E.g. this will apply to the subspace of L2(Γ\ SL(3,R)) of functions of integral zero
for any lattice Γ. Again we will use a Sobolev norm S(v) for smooth vectors v ∈ H
which we define below. The argument we present is an effectivization of the proof
that SL(3,R) has property (T) and is likely well known to experts of the field.

4.1.1. Smooth vectors and the Sobolev norm. Let π be a unitary representation
of SL(3,R) on a Hilbert space H, for which we will also write π(g)v = g · v for
g ∈ SL(3,R) and v ∈ H. A vector v ∈ H is called smooth if all partial derivates
of g 7→ π(g)v as a map from G to H exist. Taking a basis e1, . . . , e8 of the Lie
algebra sl3 of SL(3,R) we can define the Sobolev norm (of degree one) by S(v)2 =

‖v‖2 +
∑8

j=1

∥

∥

(

∂
∂t exp(tej) · v

)∣

∣

t=0

∥

∥

2
where the sum is over all partial derivatives

corresponding to the basis elements.

4.2. Spectral measures. We will also be needing some basic properties of the
spectral measures which we recall next. Let π be a unitary representation of R2.
Then t → 〈π(t)v, v〉 is a positive definite function and so equals

∫

R2 exp(2πit ·

s)dµv,v(s) for some finite measure µv,v on R2 by Bochner’s theorem. We will
refer to µv,v as the spectral measure of v. These are used in the theory of unitary
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representations of R2 to define the projection-valued measureEB onH for any Borel
subset B ⊂ R2 which have the property that the spectral measure µEBv,EBv is the
restriction of µv,v to B. The map EB is an orthogonal projection commuting with
π(t) for all t ∈ R2, satisfies that ER2 is the identity and that EB1∪B2

= EB1
+EB2

whenever B1, B2 ⊂ R2 are disjoint. In particular, if H does not contain any vectors
fixed under R2, then µv,v({0}) = 0. Finally, we note that if v, w ∈ H have singular
spectral measures, then v and w are orthogonal.

We will be using these tools for the restriction of the unitary representation of
SL(3,R) to the subgroup

U =

{





1 0 t1
0 1 t2
0 0 1



 : t ∈ R2

}

.

Note that by the Mautner phenomenon we have no R2-fixed vectors in H as we
assumed that there are no SL(3,R)-invariant vectors.

We note that the subgroup SL(2,R) embedded into the upper left corner of
SL(3,R) normalizes the subgroup U . This leads to a relationship of the spectral
measure of v and of g · v for g ∈ SL(2,R). In fact, we claim that µg·v,g·v =
(g−1)T∗ µv,v. This follows from uniqueness of the measure in Bochner’s theorem and
the equation

〈π(t)g · v, g · v〉 = 〈π(g−1t)v, v〉 =

∫

R2

exp(2πi(g−1t) · s)dµv,v(s)

=

∫

R2

exp(2πit · ((g−1)T s)dµv,v(s).

Here we used that

(

g−1 0
0 1

)





1 0 t1
0 1 t2
0 0 1





(

g 0
0 1

)

belongs to U and is the element

corresponding to g−1t.

4.3. Eigenfunctions of SO(2) first. We assume first that v, w ∈ H are eigen-
functions of SO(2), i.e. that for the matrix kθ ∈ SO(2) corresponding to a rotation
by angle θ we have kθ · v = exp(iθn)v and kθ · w = exp(iθm)v for some n,m ∈ Z.
In this case we have 〈π(t)kθ · v, kθ · v〉 = 〈π(t)v, v〉 which shows that the spectral
measures of v and kθ · v are the same. This implies that the spectral measure of v,
and similarly for w, is invariant under SO(2).

We claim that for such eigenfunctions v, w we have

(8) |〈ar · v, w〉| ≪ e−|r|/2‖v‖‖w‖ where ar =





e−r 0 0
0 er 0
0 0 1



 ,

where as before we assume H does not contain any SL(3,R)-invariant vectors. We
assume that r > 0, the argument for the other case is similar. We show this by
splitting both v and w into two components v = vmain + vvertical and w = wmain +
whorizontal. Here vvertical is defined as the image of v under the orthogonal projection
defined by the set

{

(t2, t1) :
∣

∣

t2
t1

∣

∣ ≥ er
}

which is a sector shaped neighborhoods of

the t2-axis of angle ≪ e−r. Hence by invariance of the spectral measure under
SO(2) we get ‖vvertical‖

2 ≪ e−r‖v‖2. Similary, whorizontal is defined as the image of
w under the orthogonal projection defined by

{

(t2, t1) :
∣

∣

t2
t1

∣

∣ ≤ e−r
}

which also has
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‖whorizontal‖ ≪ e−r‖w‖. The other two vectors vmain and wmain are defined as the
projections w.r.t. the complements of these sets. Recall that the spectral measure of
vmain is supported on

{

(t2, t1) :
∣

∣

t2
t1

∣

∣ < er
}

and that the spectral measure of ar ·vmain

is the push forward of the spectral measure of vmain under (a−1
r )T = a−1

r . This
shows that the spectral measure of ar · vmain is supported on

{

(t2, t1) :
∣

∣

t2
t1

∣

∣ < e−r
}

and so ar · vmain is orthogonal to wmain as their spectral measures are supported on
disjoint sets. Applying this to

|〈ar · v, w〉| ≤ |〈ar · vmain, wmain〉|+ |〈ar · vmain, whorizontal〉|

+ |〈ar · vvertical, wmain〉|+ |〈ar · vvertical, whorizontal〉|,

we get that the first term is zero, and the other are bounded by ≪ e−r/2‖v‖‖w‖
which gives (8).

4.4. Bootstrapping to general vectors and general group elements. We
first extend (8) to any diagonal matrix

a =





er1 0 0
0 er2 0
0 0 er3





with r1 + r2 + r3 = 0 and any two smooth vectors v, w ∈ H to say

(9) |〈a · v, w〉| ≪ e−
1
4
|r2−r1|S(v)S(w).

To obtain this we decompose v =
∑

n∈Z
vn and w =

∑

m∈Z
wm into eigenfunctions

for SO(2) — by smoothness these sums converge absolutely. Next notice that

a =





er1+
1
2
r3 0 0

0 er2+
1
2
r3 0

0 0 1









e−
1
2
r3 0 0

0 e−
1
2
r3 0

0 0 er3



 = ar2+ 1
2
r3c

where ar2+ 1
2
r3 = a 1

2
(r2−r1) is as in (8) and c commutes with SO(2). The latter

implies that vn is mapped under c again to eigenfunctions of SO(2). Therefore, we
may apply (8) to each c · vn and wm to get

|〈a · v, w〉| ≤
∑

m,n∈Z

|〈a 1
2
(r2−r1)c · vn, wm〉| ≪ e−

1
4
|r2−r1|

∑

m,n∈Z

‖vn‖‖wm‖.

However, the last sum on the right may be written as the product of
∑

n∈Z
‖vn‖

and the corresponding sum for wm. Notice that the derivative of vn along some
element r of the Lie algebra of SO(2) equals

( ∂

∂t
exp(tr) · vn

)∣

∣

t=0
= nvn

and so
(

∂
∂t exp(tr) · v

)∣

∣

t=0
=

∑

n∈Z
nvn, and that the terms in the last sum are all

orthogonal to each other. Hence Cauchy-Schwarz gives

∑

n∈Z

‖vn‖ = ‖v0‖+
∑

n∈Z\{0}

1

n
‖nvn‖ ≪ ‖v0‖+

∥

∥

( ∂

∂t
exp(tr) · v

)∣

∣

t=0

∥

∥ ≪ S(v),

where we used that r can be expressed as a linear combination of the basis elements
e1, . . . , e8 ∈ sl3 that we used to define S(v). This gives (9).
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To make (9) closer to (7) we notice that in (9) we could have proven the same

statement with either e−
1
4
|r3−r2|S(v)S(w) or with e−

1
4
|r3−r1|S(v)S(w) on the right.

We claim that

min(e−
1
4
|r2−r1|, e−

1
4
|r3−r2|, e−

1
4
|r3−r1|) ≤ ‖a‖−

3
8 ,

which then shows that (7) holds for all diagonal matrices. To prove the above,

assume that r3 ≥ r2 ≥ r1. Then ‖a‖ = er3 and er1 ≤ e
1
2
(r1+r2) which together with

r1 + r2 + r3 = 0 gives

er1−r3 ≤ e
1
2
(r1+r2+r3)e−

3
2
r3 = e−

3
2
r3 = ‖g‖−

3
2 ,

which proves the claim and so (7) in this case.
To prove (7) for all g ∈ SL(3,R) we recall that g = k1ak2 for some k1, k2 ∈ SO(3)

and some diagonal matrix a by the Cartan decomposition of g in SL(3,R). As SO(3)
is compact, ‖g‖ and ‖a‖ are bounded by some multiplies of each others. Similarly,
S(k2 · v) ≪ S(v) and S(k−1

1 w) ≪ S(w). Together this gives using (9)

|〈g · v, w〉| = |〈a · (k2 · v), k
−1
1 · w〉| ≪ ‖g‖−

3
8S(v)S(w),

which proves (7).

4.5. Groups without property (T). As we mentioned before the above argu-
ment is the effectivization of the proof that SL(3,R) has property (T). However,
e.g. SL(2,R) and SU(m, 1)(R) do not have property (T). For these groups spectral
gap (respective effective decay of matrix coefficients) is not an automatic property
for any unitary representation. However, Selberg showed that the SL(2,R)-action
on congruence quotients Γ\ SL(2,R) has a spectral gap — in fact there is a uniform
spectral gap that is independent of Γ. In this case and in similar cases the spectral
gap is a property of the space and not of the group.

5. An effective pointwise ergodic theorem

For the main theorem of [7], which we will discuss in §6, a pointwise ergodic
theorem was needed and also proven in [7, Prop. 9.2]. As we outline now this is a
consequence of the effective decay of matrix coefficients (6) discussed earlier (but
we we will refer to [7] for the last step of the argument).

There are two basic types of non-compact one-parameter subgroups of semisimple
groups G ⊆ SL(n,R): Diagonalizable subgroups and unipotent subgroups. The
estimate in (6) can be used to establish an effective ergodic theorem for both of
them, but as the unipotent case may seem a bit more delicate and at the same
time is the case that will be used later, let us focus on that case. Hence suppose
ut = exp(tp) is a unipotent one-parameter subgroup defined by some nilpotent
element p in the Lie algebra of G. Then we notice that t ≪ ‖ut‖ ≪ tn as the
entries of the matrix ut are polynomials in t and so (6) is the statement that
matrix coefficients decay at a polynomial rate with respect to the time parameter
of the subgroup. (For diagonalizable subgroups (6) would be exponential decay of
matrix coefficients.)

5.1. A single function and a given time first. For f ∈ C∞
c (X) and T > 0 we

define the discrepancy at x by

DT (f)(x) =
1

T

∫ T

0

f(xut)dt−

∫

X

fdmX ,
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it measures how far the time average over [0, T ] is away from the expected value.
Using Fubini’s theorem several times as well as that ut ∈ G preserves mX we get

∫

|DT (f)|
2dmX =

1

T 2

∫ T

0

∫ T

0

∫

X

f(xut1)f(xut2)dmXdt2dt1−

2Re
1

T

∫ T

0

∫

X

f(xut)dmXdt

∫

X

fdmX +
∣

∣

∣

∫

X

fdmX

∣

∣

∣

2

=

1

T 2

∫ T

0

∫ T

0

(

〈ut1−t2 · f, f〉 −
∣

∣∫
X
fdmX

∣

∣

2
)

dt2dt1.

Now notice that for most (t1, t2) ∈ [0, T ]2 we have that |t1 − t2| is quite big, and so

the expression within the last integral is quite small. More precisely, if |t1−t2| > T
1
2 ,

then by (6) we have that
∣

∣

∣〈ut1−t2 · f, f〉 −
∣

∣∫
X
fdmX

∣

∣

2
∣

∣

∣ ≪ T−1
2
δS(f)2

while the integral over the part |t1− t2| ≤ T
1
2 is bounded by the area ≤ TT

1
2 times

the trivial estimate ≪ ‖f‖2∞ of the integrand. Together this gives
∫

|DT (f)|
2dmX ≪ T− 1

2
δS(f)2 + T− 1

2 ‖f‖2∞.

We can simplify this as follows. If we modify our notion of Sobolev norm, we can
make sure that

‖f‖∞ ≪ S(f),

see [7, Lemma 5.1.1]. This is not entirely trivial, because in fact, we claim that one
can modify the norm in such a way that S(f) is still the norm of a pre-Hilbert-space
strucure (i.e. is an Hermitian norm) on C∞

c (X) — this is not important right now,
but will be for the last step of the argument. If additionally we also assume w.l.o.g.
that δ ≤ 1 then we have

∫

|DT (f)|
2dmX ≪ T−1

2
δS(f)2.

This shows that

(10) W 2mX

({

x ∈ X : DT (f)(x) ≥ W
})

≪ T− 1
2
δS(f)2

for any W > 0. We still have some freedom in W – asking for a better estimate,
i.e. a smaller value of W , will make the estimate of the set worse. To achieve a

reasonable estimate on the set, we set W = T− 1
6
δS(f) which makes the above into

(11) mX

({

x ∈ X : DT (f)(x) ≥ T− 1
6
δS(f)

})

≪ T− 1
6
δ.

This is already an effective version of the pointwise ergodic theorem: For a given
f ∈ C∞

c (X) and T > 0 we know that the average of f over the [0, T ]-orbit of x

is T− 1
6
δS(f) close to

∫

X fdmX except possibly for a set of points x of measure

≪ T− 1
6
δ. However, this is not yet very satisfactory as the exceptional set is still

allowed to depend on f and on T .
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5.2. A single function with large enough times. It is relatively easy to obtain
the following strengthening of the above: There exists some ǫ > 0 such that for a
given f ∈ C∞

c (X) we have that for any T0 the average of f over the [0, T ]-orbit of
x is T−ǫS(f) close to

∫

X
fdmX for all T ≥ T0 except possible for a set of measure

≪ T−ǫ
0 . I.e. at some cost in the exponents we can make the set independent of

the particular time interval [0, T ] that we use to average and still get a very good
estimate on the measure of the exceptional points if we only restrict ourself to large
enough times T ≥ T0.

To prove the above let M = 12 1
δ . Then we may apply (11) for Tn = nM which

gives

mX

({

x ∈ X : DT (f)(x) ≥ T
− 1

6
δ

n S(f)
})

≪ n−2.

Call this exceptional set En, then mX(
⋃

n≥n0
En) ≪ n−1

0 for any real n0 > 0.

Now choose some T0 and define n0 = T
1
M

0 . Now let T ≥ T0 and let n = ⌈T
1
M ⌉ ≥

n0. Then |nM − T | ≪ nM−1 ≪ T
M−1

M = T 1− 1
M and from this it is easy to see that

∣

∣

∣

1

nM

∫ nM

0

f(xut)dt−
1

T

∫ T

0

f(xut)dt
∣

∣

∣ ≪ ‖f‖∞T− 1
M .

This gives for x /∈ En that

∣

∣

∣

1

T

∫ T

0

f(xut)dt−

∫

X

fdmX

∣

∣

∣ ≪ (T− 1
M + T− 1

6
δ)S(f).

Setting ǫ = min( 1
M , 1

6δ) =
1
12δ gives the desired estimate.

5.3. Bootstrapping to all functions f ∈ C∞
c (X). We fix some ǫ > 0. We say a

point x ∈ X is (T0, ǫ)-generic if

(12)
∣

∣

∣

1

T

∫ T

0

f(xut)dt−

∫

X

fdmX

∣

∣

∣ ≪ T−ǫS′(f)

for all T ≥ T0 and all f ∈ C∞
c (X). Then an even stronger effective version of the

pointwise ergodic theorem would be that there exists a choice of ǫ for which

mX

({

x : x is not (T0, ǫ)-generic
})

≪ T−ǫ
0 .

This can be obtained by the argument in [7, Sect. 9]. The hidden cost is that in
(12) a different notion of Sobolev norm S′ (defined using more derivatives) is used
than in (10). Allowing for that, gives us the possibility of making W in (10) also

depend on S′(f)
S(f) . The argument is in some way then similar to §2.3.2 and §4.4.

Using different Sobolev norms one can find an orthonormal basis f1, . . . , fk, . . .
w.r.t. S′(·) such that

∑∞
n=1 S(fn) is finite. This uses some ideas (relative traces of

Hermitian norms) of Bernstein and Reznikov [1]

6. Effective equidistribution for semisimple subgroups

We shall assume that:

• There is a semisimple Q-group G so that G = G(R)◦ and Γ is a congruence
subgroup of G(Q).

• H is a connected semisimple subgroup without compact factors.
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We note that in this context an H-orbit x0H ⊂ X = Γ\G is closed if and only if
it has finite volume.

Two examples of this setup are H = SO(2, 1)(R)◦ acting on SL(3,Z)\ SL(3,R),
and H = SL(k,R) embedded diagonally in SL(k,R)×SL(k,R) acting on SL(k,Z)×
SL(k,Z)\ SL(k,R) × SL(k,R) for k ≥ 2. In fact in both of these examples H is a
maximal subgroup, where a subgroup H ⊂ G is called maximal if there is no
subgroup S ⊂ G containing H with dimension strictly between the dimensions of
G and H .

6.1. Maximal subgroup theorem. In joint work with Margulis and Venkatesh
we proved last year [7] the following theorem8.

Theorem 1 ([7], simpler form). Let Γ, H ⊂ G be as above. Assume that H is a

maximal subgroup of G.

There exists δ > 0 depending only on G,H so that the Haar measure mx0H on

a closed orbit x0H is Vol−δ-close to mX , i.e. for any f ∈ C∞
c (X) we have

∣

∣

∣

∣

∫

x0H

f −

∫

X

f

∣

∣

∣

∣

≪ Vol−δ S(f),

where Vol denotes the volume9 of the orbit x0H .

Crucial input: This theorem has as the major input the spectral gap for the
H-action on L2(x0H) in a uniform way for all possible closed orbits x0H , i.e. δ
and the implicit constant as in the discussion of effective decay of matrix coefficients
(6) are not allowed to depend on x0.

• If H has property (T) as e.g. for H = SL(3,R), this holds always.
• If H does not have (T) as e.g. for H = SO(2, 1)(R)◦, the required statement
is property (τ) as established by Clozel [5] (building on work of Burger and
Sarnak [4]). This is where the congruence assumption on Γ is crucial, see
[7, Sect. 6].

6.2. A comment about the proof. Our proof has little to do with the outline
for the horocycle flow in §3.2.2, instead may be viewed as an effective version of
the measure classification theorem by Ratner and the limiting distribution theorem
due to Mozes and Shah (in the semisimple case considered here). It uses a version
of the effective ergodic theorem discussed in §5 (where the measure mX is replaced
by mx0H). The difference of the effective ergodic theorem in [7, Prop. 9.2] and
what we discussed in §5 is that in the former the average is not taken over initial
intervals [0, T ] but rather over long intervals very far away from the origin. More
precisely, in [7, Prop. 9.2] an error is obtained for the average of f over the interval
[TM , (T + 1)M ] which roughly speaking has length TM−1, and this error holds for
all points but those in a set of small measure. This is desirable, as the divergence of
two nearby points under a unipotent one-parameter subgroup in H is determined
by a polynomial. If this polynomial is unifomly bounded on [0, (T +1)M ] then it is
nearly constant on the interval [TM , (T +1)M ]. This allows the effectivization of a

8The first simpler version of the theorem was presented by Margulis in several talks before
our joint work and may also be approachable by other methods. In fact most of the work in [7]
goes into the discussion of possible intermediate subgroups where the argument becomes more
involved, see Theorem 2.

9The volume V ol is calculated in comparison with a fixed Haar measure on H, but the Haar
measure mx0H

is normalized to be a probability measure.
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particular argument that appears in Ratner’s work (the combination of the ergodic
theorem and polynomial divergence for unipotent orbits, see [14] and [15, pg. 244]),
we refer to [6] or [7, Sect. 2] for the ineffective argument in precisely the context
we need here.

6.3. More general version. The more general version of our theorem is the fol-
lowing.

Theorem 2 ([7], current form). Let Γ, H ⊂ G be as above. Assume that H has

finite centralizer in G. There exists δ > 0 depending only on G,H and V0 > 0
depending only on Γ, G,H so that, for any V ≥ V0 and any closed orbit x0H there

exists an intermediate subgroup H ⊆ S ⊆ G for which

• x0S is a closed S-orbit with volume < V , and

• the Haar measure on x0H is V −δ-close to the Haar measure on x0S, i.e.
for any f ∈ C∞

c (X) we have
∣

∣

∣

∣

∫

x0H

f −

∫

x0S

f

∣

∣

∣

∣

< V −δS(f).

One may read this statement as follows: If V = Vol(x0H) is very large we may
apply the theorem to this parameter and obtain some bigger group S ) H . The
orbit x0S of the higher dimensional group S has finite volume V ′ = Vol(x0S) (w.r.t.
to a Haar measure on S) and should be thought of as being less complicated since
V ′ < V . However, V ′ may still be large (x0S may still be complicated), so that one
may want to apply the theorem to the parameter V ′ to obtain a different group
S′ ) S whose orbit x0S

′ has smaller volume (is less complicated) at the cost of
obtaining a worse error statement. This may be continued until the volume of the
orbit of some group becomes less than V0 (e.g. if S′′ = G).

6.3.1. Visualization on T3. A toy model for this problem of intermediate orbits is
the image of long rational line L ⊂ R3 in a 3-dimensional torus L/Z3 ⊂ T3. It is
determined L = Rn by a single primitive vector n ∈ Z3 and the length of the closed
circle L/Z3 is precisely ‖n‖. As we mentioned in §3.2 it is quite easy to establish
an effective error for the distribution properties of a rational torus in T2. However,
unlike the case of a rational line in T2 the circle L/Z3 is contained in rational planes
P ⊂ R3. A rational plane is determined by a primitive orthogonal vector v ∈ Z3,
and one may check that ‖v‖ equals the area of the image torus P/Z3 — we will
also think of ‖v‖ as a measure of the complexity of P/Z3 inside T3. If ‖v‖ is much
smaller than ‖n‖ for some choice of the plane, then an effective error with an error
determined by ‖n‖ can only be given if we compare the Lebesgue measure on the
circle L/Z3 to the Lebesgue measure on the two-dimensional subtorus P/Z3. If
‖v‖ is also big (for all rational planes containing L), then one can also compare the
Lebesgue measure on the circle L/Z3 to the Lebesgue measure on T3 but the error
would be expressed in terms of the smallest ‖v‖.

7. Transportation of spectral gap

7.1. Hecke correspondences. The above theorem (in fact the maximal case in
Theorem 1) may be used in the context of G = SL2(R) × SL2(R) with Γ equal
to the product of SL2(Z) with itself. Then the Hecke correspondence T n

p (roughly
speaking) corresponds to big volume orbits inside X = Γ\G with respect to the
diagonal subgroup isomorphic to SL2(R), i.e. H∆ = {(g, g) : g ∈ SL2(R)}. These
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orbits are isomorphic to congruence quotients of SL2(R). The uniform effective
decay of matrix coefficients (which comes from Selberg’s theorem) for the action of
H∆ then implies a bound for the eigenvalue of the Hecke operator Tp. In that sense,
the theorem allows us to transport the spectral gap from one place to another (in
this case from ∞ to p).

7.2. General setup. Another instance of this transportation of spectral gap
can be set up as follows.

Let G1, G2 be simple groups, and suppose G2 has (T) but G1 has not. Let Γ be
an irreducible lattice in G = G1×G2, e.g. this is possible for G1 = SU(2, 1)(R) and
G2 = SL3(R). As we discussed in §4 (resp. §4.1 in the case of SL(3,R)) we then
have effective decay of matrix coefficients for the action of G2.

We wish to bound the matrix coefficients of G1 acting on X = Γ\G. Let H∆ =
{(g, g) : g ∈ G}. Notice that the diagonal orbit Γ× ΓH∆ ⊂ X ×X is ‘responsible’
for the inner product in the sense that the integral of f1 ⊗ f̄2 over this orbit equals
the inner product 〈f1, f2〉. In the same sense is the deformed orbit Γ × ΓH∆(g, e)
responsible for the matrix coefficients of g, i.e.

∫

f1 ⊗ f̄2dmΓ×ΓH∆(g,e) =

∫

X

f1(xg)f̄2(x)dmX
(x) = 〈g · f1, f2〉.

The volume of the deformed orbit Γ × ΓH∆(g, e) is roughly speaking a power of
‖g‖, more precisely bounded from above and below by multiples of powers of ‖g‖.
Hence effective equidistribution of the Haar measures on these orbits to the Haar
measure on X ×X gives effective decay of matrix coefficients.

However, notice that the theorem does not apply as the group giving the closed
orbit has been conjugated and does not remain fixed. (In the theorem the rate of
equidistribution is allowed to depend on the group H , which is changing in this
case.)

On a positive side, if g = (g1, e) then the simple factor of H∆ corresponding
to G2 remains (as a subgroup of G × G) fixed and this is the part with known
effective decay. In this case the method behind the proof of the theorem can be
used to show effective equidistribution and so decay of matrix coefficients for the
G1-action. In all of this, the rate (i.e. the δ appearing in the discussion) of decay
of matrix coefficients for G1 only depends on the spectral gap for G2 (but not on Γ).

7.3. Effective equidistribution implies a weak form of (τ). Using the above
construction for a p-adic group G2, one can prove a weaker version of property (τ)
for all simple algebraic groups of absolute higher rank (i.e. all groups except forms
of SL2 for which property (τ) has been known much longer).

So let G be a simple, simply connected algebraic Q-group of absolute rank ≥ 2.
Let G1 = G(R), G2 = G(Qp), and let Γ be commensurable with G(Z[ 1p ]), then

L2(Γ1\G) (with Γ1 = Γ ∩ G(Zp)) is contained in L2(Γ\G1 × G2). We choose p
such that G2 has Qp-rank ≥ 2. This gives that G2 has property (T), and so also
effective decay of matrix coefficients. The latter is the only input to the method
which establishes the result.

Hence the spectral gap of the G2-action and its independence from Γ gives also
some spectral gap of the G1-action on Γ1\G1 and in a uniform way (as long as
the lattice in G1 can be obtained from a lattice in G1 × G2 by intersection which
is always possible for congruence subgroups). We then obtain a proof of uniform
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spectral gap of the action of G1, a version of property (τ). We note that the gap
hereby obtained is probably quite bad in comparison to what Clozel obtained in
[5]. This is part of an ongoing joint work with Margulis and Venkatesh.
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