
EQUIDISTRIBUTION UNDER THE GAUSS MAP

MANUEL W. LUETHI

Abstract. Notes on our seminar

1. Definitions and notation

For notational purposes we assume that 0 is not a natural number.

2. Continued Fraction expansion, Gauss map and the geodesic flow

By p
q ∈ Q we always mean an element r ∈ Q and a choice p ∈ Z, q ∈ N such

that gcd(p, q) = 1 and r = p
q .

2.1. Continued fraction expansion. Let F(N) denote the set of finite words over
the alphabet N. We define a continued fraction expansion as a map from Z×F(N)
to Q. Given a word [a0 : a1 : · · · : an] of length n + 1, n ∈ N ∪ {0}, with letters
a0, . . . , an ∈ N, we define

Q([a0; a1 : · · · : an]) = a0

if n = 0 and inductively set

Q([a0; a1 : · · · : an]) = a0 +
1

Q([a1; · · · : an])

if n ∈ N.

Definition 2.1. A continued fraction expansion (cfe) is a sequence of partial frac-
tions [a0; a1 : · · · : an].

We will write [a0; a1 : · · · ] to denote the cfe with partial fractions [a0; a1 : · · · :
an]. Note that strictly speaking rational numbers do not have a continued fraction
expansion. We will say more about this after having proven certain properties of
the partial fractions associated with a continued fraction expansion.

In what follows, we will omit mentioning Q, i.e. we identify [a0; a1 : · · · : an] with
its image under Q.

Lemma 2.2 ([EW11, Lem. 3.1]). Let [a0; a1 : a2 : · · · ] be a cfe. Given n ∈ N∪{0}
let pn ∈ Z and qn ∈ N coprime such that

pn
qn

= [a0; a1 : · · · : an]

for all n ∈ N. Set p−1 = 1, q−1 = 0, p−2 = 0, q−2 = 1. Then the sequence
(pn, qn)n∈N is given inductively by(

pn+1 pn
qn+1 qn

)
=

(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
(n ∈ N ∪ {0}).

The proof is not hard but a bit delicate in terms of bookkeeping, as the induction
tries to deduce the statement for [a0; a1 : · · · : an] from [a1; a2 : · · · : an]. We refer
the reader to [EW11].
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Corollary 2.3. Let [a0; a1 : · · · ] be a cfe. Then

pn+1 = an+1pn + pn−1,

qn+1 = an+1qn + qn−1.

Corollary 2.4. Let [a0; a1 : · · · ] be a cfe. Then

∀n ∈ N qn ≥ 2
n−1
2 .

If a0 ≥ 0, then

∀n ∈ N pn ≥ 2
n−1
2 .

In what follows we will assume that a0 ≥ 0.

Corollary 2.5. For all n ∈ N we have

pnqn−1 − pn−1qn = (−1)n+1.

Corollary 2.6. For all n ∈ N we have

[a0; a1 : · · · : an] = a0 +

n∑
`=1

(−1)`+1

q`−1q`

Proof. The statement is clearly true for n = 1. Assume that the statement is true
for n ∈ N. Then

pn+1

qn+1
=
pn
qn

+
(−1)n+2

qnqn+1
= a0 +

n+1∑
`=1

(−1)`+1

q`−1q`
.

�

Corollary 2.7. Let [a0; a1 : · · · ] be a cfe. The sequence αn = [a0; a1 : · · · : an]
converges.

Definition 2.8. Let α ∈ (0,∞). A cfe [a0; a1 : · · · ] is a continued fraction expan-
sion of α if

α = lim
n→∞

[a0; a1 : · · · : an].

Proposition 2.9. Let [a0; a1 : · · · ] be a cfe. Then the limit α = limn→∞[a0; a1 :
· · · : an] is irrational. We have α ∈ (0, 1) if and only if a0 = 0. For every
α ∈ (0, 1) \Q there exists a cfe [0; a1 : · · · ] such that

α = lim
n→∞

[a0; a1 : · · · : an].

Moreover, it is uniquely determined by α.

Corollary 2.10. Let α ∈ (0,∞) \Q. Then

α = a0 +

∞∑
n=1

(−1)n+1

qn−1qn
,

where (pn, qn) is the sequence corresponding to the cfe [a0; a1 : · · · ] of α.

Let α ∈ R \ Q. Then the cfe [a0; a1 : · · · ] of α gives rise to a sequence of
rational numbers pn

qn
= [a0; a1 : · · · : an] which approximate α. We will see that

these approximations are optimal in some sense. As α is irrational, it follows from
general properties of alternating series that

pn
qn

< α <
pn+1

qn+1

for all even n ∈ N.
Let n ∈ N, then ∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1

qnqn+1
≤ 2

1
2−n.
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One advantage of cfe is that we can give pretty precise bounds on the error term in
the sense that we can also bound it from below. This needs a bit more (elementary)
preparation.

Let ` ∈ N ∪ {0}. Then

(`+ 1)pn + pn−1

(`+ 1)qn + qn−1
− `pn + pn−1

`qn + qn−1
=

pnqn−1 − pn−1qn
((`+ 1)qn + qn−1)(`qn + qn−1)

,

i.e. the sign of the above expression solely depends on n. In particular, we get that

pn+1

qn+1
=
an+1pn + pn−1

an+1qn + qn−1
> · · · > pn−1

qn−1

for odd n and similarly

pn+1

qn+1
=
an+1pn + pn−1

an+1qn + qn−1
< · · · < pn−1

qn−1

for even n. In particular∣∣∣∣α− pn
qn

∣∣∣∣ > ∣∣∣∣pn + pn+1

qn + qn+1
− pn
qn

∣∣∣∣ ≥ 1

qn(qn + qn+1)
.

Definition 2.11 (Best approximation of real numbers). Let α ∈ R \Q. A rational
number p

q ∈ Q is called a best approximation (of the second kind) of α if for any
r
s ∈ Q with 1 ≤ s ≤ q we have

|qα− p| ≥ |sα− r| =⇒ p

q
=
r

s
.

Remark 2.12. Let p
q be a best approximation and let (r, s) ∈ Z×N\{(p, q)} such

that 1 ≤ s ≤ q. Then∣∣∣∣α− r

s

∣∣∣∣ =
1

s
|sα− r| ≥ 1

q
|qα− p| >

∣∣∣∣α− p

q

∣∣∣∣.
Theorem 2.13 ([Kh64, Thm. 16]). Let α ∈ R \ Q with partial fractions pn

qn
asso-

ciated to its cfe. Let r ∈ Q be a best approximation. Then there exists some n ∈ N
such that

r =
pn
qn
.

If n ∈ N, then pn
qn

is a best approximation.

Remark 2.14. A similar discussion can be carried out for rational numbers. In
this case one asks how well a rational number with possibly large denominator
can be approximated by rational numbers of small denominator. In this case the
sequence of approximations eventually stabilizes. We omit this discussion here for
the simplicity of exposition.

2.2. The Gauss map and the Gauss measure. We use the following notation.
Given α ∈ R, we let

[α] = sup{k ∈ Z : k ≤ α}
denote the integral part of α. We call {α} = α− [α] the fractional part of α.

Definition 2.15 (Gauss map). Define G : [0, 1)→ [0, 1) by

α =

{
0 if α = 0,

{ 1
α} otherwise.

Lemma 2.16. Let α ∈ [0, 1]. The following are equivalent.

(1) There exists n ∈ N ∪ {0} such that Gn(α) = 0.
(2) α ∈ Q.
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Proof. We can without loss of generality assume that α 6= 0. In order to check
that (2) implies (1), note that G(α) ∈ Q ∩ [0, 1) for any α ∈ Q ∩ (0, 1) and either
G(α) = 0 or the denominator of G(α) is strictly smaller than the denominator of α.
Hence the desired implication.

For the opposite implication, note that for any α ∈ [0, 1) \ Q we also have
G(α) 6∈ Q. Iterating this argument shows that Gn(α) 6= 0 for all n ∈ N. �

We denote by ν the Gauss measure on [0, 1) given by

ν(a, b) =
1

log 2

∫ b

a

1

1 + x
dx

for all 0 ≤ a < b < 1.

Theorem 2.17 ([EW11, Lem. 3.5 and Prop. 9.25]). ν is G invariant and ergodic.

Proof of invariance. It suffices to show that ν(G−1(0, b)) = ν((0, b)) for all b ∈
(0, 1). As [0, 1) \ Q is a G-invariant set of full ν-measure, it suffices to check that
the statement is true for (0, b) \Q. For α ∈ (0, 1) \Q one checks that

0 < G(α) < b ⇐⇒ ∃n ∈ N 1
n+b < α < 1

n .

Hence b ∈ (0, 1) yields

ν(G−1(0, b)) =
∑
n∈N

ν
(
( 1
n+b ,

1
n )
)
.

One calculates

ν
(
( 1
n+b ,

1
n )
)

=
1

log 2
log

(
n+ 1

n

n+ 1

n+ 1 + b

)
and therefore

ν
(
G−1(0, b)

)
=

1

log 2
log

(∏
n∈N

n+ 1

n

n+ b

n+ 1 + b

)
=

log(1 + b)

log 2
= ν

(
(0, b)

)
.

�

Remark 2.18. The Gauss map and the continued fraction expansion are closely
related. Let α ∈ [0, 1) \ Q and let [0; a1 : · · · ] be the cfe of α. Then a1 = [ 1

α ],

a2 = [ 1
G(α) ], a3 = [ 1

G2(α) ] and more generally

an =

[
1

Gn−1(α)

]
for all n ∈ N.

2.3. Continued fractions and the geodesic flow on the space of lattices.
We let G = SL2(R) and Γ = SL2(Z). Denote X = G/Γ. Recall that X identifies
with the space of unimodular lattices in R2 by the map

gΓ 7→ gZ2.

In what follows we will use the following notation.

A =

{
at =

(
et 0
0 e−t

)
: t ∈ R

}
U =

{
uα =

(
1 −α
0 1

)
: α ∈ R

}
.

Note that

uαZ2 =

{(
m− nα

n

)
: n,m ∈ Z

}
and

UΓ ∼= R/Z.
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Definition 2.19. Let Λ = gZ2 be a lattice in R2. A vector v = ( v1v2 ) ∈ Λ is a
best approximation if there are no w = (w1

w2
) ∈ Λ \ {0,±v} such that |wi| ≤ |vi| for

i = 1, 2.

Fix a matrix g = ( a bc d ) ∈ G. The standard action of G on R2 corresponds to
simultaneous evaluations of the linear forms (x, y) 7→ ax+ by and (x, y) 7→ cx+ dy.
Therefore, being a best approximation corresponds to an integer vector which gives
a “good approximation of 0” for both linear forms simultaneously.

Lemma 2.20. Let α ∈ R. Then v ∈ uαZ2 \Z×{0} is a best approximation if and
only if v = ±uα( pnqn ) for a partial fraction pn

qn
of α.

Proof. A vector v = uα(mn ) is a best approximation if and only if for all (m
′

n′
) ∈

Z \ Z × {0} with |n′| ≤ |n| and |m′ − n′α| ≤ |m − nα| we have (m
′

n′
) = ±(mn ). In

particular, m
n is a best approximation for α and hence the claim. �

Theorem 2.21 (Minkowski’s convex body theorem, cf. [Ne99, Ch. I, Thm. 4.4]).
Let Λ ⊆ R2 be a unimodular lattice and let C ⊆ R2 a centrally symmetric, convex
subset. Suppose that vol(C) > 4. Then

Λ ∩ C 6= {0}.

Proof. We show that there exist distinct v, w ∈ Λ such that 1
2C + v ∩ 1

2C +w 6= ∅.
Assuming this, there are x1, x2 ∈ C such that 1

2 (x1 − x2) = v −w ∈ Λ \ {0}. Thus
v − w ∈ C as x1, x2 ∈ C and as C is centrally symmetric, convex.

So assume that the statement was not true and let F be a fundamental paral-
lelogram for Λ, i.e.

F = {t1v1 + t2v2 : 0 ≤ t1, t2 < 1}
for a basis v1, v2 ∈ R2 of Λ. Then we have in particular that(

F ∩ ( 1
2C + v)

)
∩
(
F ∩ ( 1

2C + w)
)

= ∅
for all pairs of distinct elements v, w ∈ Λ and hence

1 = vol(F ) ≥
∑
v∈Λ

vol
(
F ∩ ( 1

2C + v)
)

=
∑
v∈Λ

vol
(
(F − v) ∩ 1

2C
)
.

As
R2 =

⊔
v∈Λ

(F − v),

this implies 4 ≥ vol(C), which is absurd. �

Minkowski’s theorem implies the following.

Proposition 2.22. Let Λ be a lattice in R2. Then one of the following is true.

(1) The set of best approximations in Λ is infinite.
(2) Λ ∩ ({0} × R) 6= {0}.

Proof. Assume that Λ ∩ ({0} × R) = {0}. Denote by 2% the length of a shortest
vector in Λ. Let S ⊆ Λ be a finite (possibly empty) set of best approximations.
Denote by S1 ⊆ R the projection of S to the first coordinate and by |S1| the set
consisting of the absolute values of its elements. Define

r = min{|S1| ∪ {%}}.
Given s ∈ (0,∞) let

Cr,s = {v = ( v1v2 ) ∈ R2 : |v1| ≤ r
2 , |v2| ≤ s

2}.
Then Cr,s is centrally symmetric and convex, Cr,s ∩ S = ∅ and lims→∞ vol(Cr,s) =
∞. By Minkowski’s convex body theroem, there exists a minimal s such that
Cr,s∩Λ 6= {0}. Note that by definition of r and by the assumption that Λ intersects
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the vertical axis trivially, for any element ( v1v2 ) in the intersection the vector ( v1
−v2 )

is not contained in the intersection. In particular, any element in this intersection
is a best approximation. �

Lemma 2.23. Let X ′ ⊆ X be the set of lattices intersecting the vertical axis triv-
ially. Then X ′ has full measure with respect to the G-invariant probability measure
on X.

Proof. Assume that Λ ⊆ R2 is a lattice that contains a non-trivial vector in {0}×R.
We claim that Λ can be represented by a lower-triangular matrix. So let g =
( a bc d ) ∈ SL2(R) such that gZ2 = Λ. If b = 0, there is nothing to show. If a = 0,
let k = ( 0 1

−1 0 ) and note that gk is a lower-triangular matrix such that Λ = gkZ2.
Hence we are left with the case that ab 6= 0. By assumption there exist m,n ∈ Z,
mn 6= 0, such that ma + nb = 0. We can assume without loss of generality that
m,n are coprime. Let k, ` ∈ Z such that kn− `m = 1. Then γ = ( k m` n ) ∈ Γ, gγ is
lower-triangular, and gγZ2 = Λ.

Let B denote the group of lower-triangular matrices in G. Then clearly BΓ /Γ ⊆
X \X ′.

Combining the two cases, we have show that X \ X ′ equals BΓ /Γ. This is a
lower dimensional subset and in particular has measure zero. �

We note the following Corollary of the proof.

Corollary 2.24. X ′ is A-invariant.

For what follows it will be useful to introduce the following notation. Let Λ ⊆ R2

be a lattice. Then Λ+ denotes the elements in Λ whose second coordinate is at least
1. In what follows we let

Y = {y ∈ [1,∞)N : y1 = 1,∀n ∈ N yn < yn+1, lim inf
n→∞

yn =∞}

equipped with the restriction of the product topology. We define a function f1 :
X ′ → Y by attaching to a lattice Λ ∈ X ′ the sequence (in increasing order) of
second coordinates of best approximations contained in Λ+, rescaled so that the
first entry in the sequence equals 1.

Lemma 2.25. Let Λ ∈ X ′ and let y ∈ Y . Then

∀n ∈ N yn+2 = an+2yn+1 + yn

for some sequence a ∈ NN.

Proof. We refer to [Ka13, Ch. 10]. �

Lemma 2.26. Let Λ ⊆ R2 a unimodular lattice and v ∈ Λ \ {0}. Let t ∈ R. The
following are equivalent.

(1) v is a best approximation in Λ.
(2) atv is a best approximation in atΛ.

Proof. This is immediate. �

Corollary 2.27. Let T : Y → Y denote the left-shift, i.e. T (y)i = yi+1 for all
i ∈ N. For every t ≥ 0 and for every Λ ∈ X ′ there exists some n ∈ N ∪ {0} such
that f1(atΛ) = Tn ◦ f1(Λ).

Proof. The second coordinates of best approximations in atΛ are of the form e−ty,
where why is the second coordinate of a best approximation in Λ. Choose n ∈
N ∪ {0} minimal such that f1(Λ)n ≥ et. �
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Lemma 2.28. f1 is continuous outside of

{Λ ∈ X ′ : Λ ∩ (R× {0, 1}) 6=},

i.e. on a full measure set.

2.4. The theorem and its proof. Let us state the main

Theorem 2.29 ([SW19, Thm. 13.1]). Fix α ∈ (0, 1) and suppose that the orbit
{atuαΓ : t ≥ 0} is equidistributed in G/Γ. Then the orbit {Gn(α) : n ∈ N∪{0}} is
equidistributed with respect to the Gauss measure.

Remark 2.30. • If α ∈ Q, then {atuαΓ : t ≥ 0} does not equidistribute in
G/Γ. It might behave wildly but once t exceeds the log of the denominator
of α, it wanders off into the cusp along a vertical line. So there was no harm
in the restriction of the discussion of cfe to irrational α. Note also that for
irrational α the lattice uαZ2 intersects the vertical axis trivially.

• The cfe of irrational numbers defines a map (0, 1) \ Q → NN. As argued
previously, this map is a bijection. Let σ denote the left-shift on NN, i.e. for
all y ∈ NN and for all n ∈ N we have

σ(y)n = yn+1.

Then the diagram in (2.1) commutes.

(2.1)

(0, 1) \Q G
//

cfe
��

(0, 1) \Q

cfe
��

NN
σ

// NN

The push-forward of the Gauss measure ν under the cfe hence defines a
shift-invariant ergodic probability measure ν̃ on NN.

• Courtesy of the previous statement, the orbit of α under the Gauss map
equidistributes with respect to the Gauss measure ν if and only if the orbit
of the cfe equidistributes under the left-shift with respect to the induced
measure ν̃.

Lemma 2.31. Let Λ ∈ X ′ and assume that the forward orbit {atΛ} equidistributes
in X with respect to the G-invariant probability measure. Then the orbit {(Tn ◦
f1)(Λ) : n ∈ N} equidistributes in Y with respect to some probability measure which
is independent of Y .

Proof. We need to show that for F in a suitable class of test-functions there is some
positive linear functional λ such that

1

n

n−1∑
`=0

(F ◦ T ` ◦ f1)(Λ)
n→∞−→ λ(F )

and c(1) = 1. As Y is a metric space, the right notion is the notion of weak
convergence and the right set of test functions is the set of bounded, continuous
funtions on Y . Note that Y is not locally compact.

Given a bounded, continuous function F : Y → R define F ′ : Y → R by

F ′(y) =
∑
n∈N
yn<e

(F ◦ Tn)(y).

The sum in the definition of F ′ is finite by definition of Y . In fact, the recursive
relation implies that on f1(X ′) the sum has at most three summands. Therefore
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F ′ is bounded and continuous on f1(X ′). Let Λ ∈ X ′ and let y = f1(Λ). Then
1 ≤ e−ty` < e if and only if log y` − 1 < t ≤ log y`. Therefore

(F ′ ◦ f1)(atΛ) =
∑
n∈N

1≤e−tyn<e

(F ◦ Tn)(y)

and thus for all n ∈ N∫ log yn

0

(F ′ ◦ f1)(atΛ)dt =

∫ log yn

0

∑
`∈N

1≤e−ty`<e

(F ◦ T `)(y)dt

=

n∑
k=1

∫ log yk

log yk−1

∑
`∈N

1≤e−ty`<e

(F ◦ T `)(y)dt

=

n∑
`=1

(F ◦ T `)(y).

Rearranging, we get

(2.2)
1

n

n∑
`=1

(F ◦ T `)(y) =
log yn
n

1

log yn

∫ log yn

0

(F ′ ◦ f1)(atΛ)dt.

As Y is a separable, metric space and as the function F ′ ◦ f1 is continuous outside
of a set of measure zero, the equidistribution assumption on the orbit {atΛ : t ≥ 0}
implies that

lim
T→∞

1

T

∫ T

0

(F ′ ◦ f1)(atΛ)dt =

∫
G/Γ

(F ′ ◦ f1)(gΓ)dgΓ.

Hence from considering the special case F ≡ 1 constant, one obtains that the limit

c = lim
n→∞

log yn
n

exists and is independent of Λ. Moreover, the existence of this limit and (2.2)
together with the equidistribution imply the existence of the limit

λ(F ) = lim
n→∞

1

n

n∑
`=1

(F ◦ T `)(y).

It is clear that this defines a positive linear functional satisfying λ(1) = 1. �

Remark 2.32. Let us state explicitly that we have obtained

λ(F ) = c

∫
G/Γ

F ′ ◦ f1dgΓ

for all continuous, bounded functions on Y . In what follows we identify the func-
tional Λ with a probability measure, which we also denote by λ.

In order to prove the Theorem, we need the following

Lemma 2.33. Let

Yint = {y ∈ Y : ∃n ∈ N yn+1

yn
∈ Z}.

Then f−1
1 (Yint) is a nullset for the G-invariant probability measure on G/Γ.
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Proof of Theorem 2.29. Define f2 : Y → NN by f2(y) = ([yn+1/yn])n∈N. Note that
the diagram in (2.3) commutes.

(2.3) Y
T //

f2
��

Y

f2
��

NN
σ
// NN

Moreover, the measure λ is clearly T -invariant and therefore (f2)∗λ is σ-invariant.
Note that f2 is continuous at y unless there is some n ∈ N where yn+1/yn ∈ Z,

i.e. the set of discontinuities is contained in

{y ∈ Y : ∃n ∈ N yn+1

yn
∈ Z}.

As of Lemma 2.33 this is a null set with respect to the measure λ obtained in
Lemma 2.31, i.e. f2 is λ-a.e. continuous. In particular, if y ∈ Y equidistributes
under T in Y with respect to λ, then f2(y) equidistributes under σ in NN with
respect to (f2)∗λ.

For α ∈ (0, 1) \ Q, we note that by previous remarks f1(uαZ2) is precisely the
sequence of denominators in the partial fractions of the cfe of α. Letting [0; a1 : · · · ]
denote the cfe of α, the recursive relation for the denominators implies[

qn+1

qn

]
=

[
an+1 +

qn−1

qn

]
= an,

i.e. (f2 ◦ f1)(uαΓ) = (an)n∈N up to finitely many digits. This shows that the
sequence given by the cfe of α equidistributes with respect to (f2)∗λ. It remains to
show that (f2)∗λ agrees with the push-forward of the Gauss measure under the cfe
map.

By the Mautner phenomenon, {atΛ}t≥0 equidistributes in G/Γ for a.e. Λ. Note
that whenever a is a diagonal matrix and {atΛ}t≥0 equidistributes, then so does
{ataΛ}t≥0. Moreover, for all s ∈ R

at

(
1 0
s 1

)
=

(
1 0

e−2ts 1

)
at.

Let V = ±tU denote the group of lower triangular matrices with equal diagonal
entries. Then the group of lower triangular matrices in G is of the form AV , and
thus by the preceding arguments we have that for all Λ the following are equivalent:

(1) {atΛ}t≥0 equidistributes.
(2) {atgΛ}t≥0 for all loqer triangular g ∈ G.

On a neighborhood of the identity inG the Haar measure decomposes as the product
of a Haar measure on AV and the Lebesgue measure on R. In particular, for any
subsete S ⊆ R of positive Lebesgue measure, the set

{guαΓ : α ∈ S, g lower triangular} ⊆ G
/

Γ

has positive measure. Therefore the Mautner phenomenon and the preceding equiv-
alence implies that for Lebesgue a.e. α ∈ R the orbit {atuαΓ}t≥0 is equidistributed.
On the other hand, ergodicity of the Gauss map with respect to the Gauss measure
and the equivalence of the Gauss measure to the Lebesgue measure imply that for
Lebesgue almost every α ∈ (0, 1) the cfe of α equidistributes with respect to the
Gauss measure. Therefore (f2)∗λ = ν. �
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