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Plan of the talk

▶ On the theorem

▶ The invertible extension
▶ Certain conditional measures as translates of a measure on a group.
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Theorem
Let 𝕋 def= ℝ/ℤ and consider the maps 𝑆2(𝑥) def= 2𝑥 and 𝑆3(𝑥) def= 3𝑥.

Assume that 𝜇 ∈ 𝒫(𝕋) invariant under 𝑆2 and 𝑆3,
satisfies 𝑆−1

2 𝐴 = 𝑆−1
3 𝐴 = 𝐴 if and only if 𝜇(𝐴) ∈ {0, 1} (namely 𝜇 is

ergodic for the joint action of 𝑆2 and 𝑆3)
and ℎ𝜇(𝑆2) > 0.
Then 𝜇 = 𝑚𝕋 where 𝑚𝕋 is the Haar measure on 𝕋.
Remark.
1. It actually holds that
ℎ𝜇(𝑆2) > 0 ⟺ ℎ𝜇(𝑆3) > 0 ⟺ ℎ𝜇(𝑆𝑚

2 𝑆𝑛
3 ) > 0 for some 𝑚, 𝑛 ∈ ℕ.

We will briefly explain how to show this later on
2. The proof simplifies considerably if one assumes that 𝜇 is 𝑇3 ergodic.
Open question (Furstenberg). Is it true that the Haar measure
of 𝕋 is the unique non-atomic measure invariant under 𝑆2 and 𝑆3?
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An implication of Rudolph’s theorem
Furstenberg proved the following topological version of the mentioned
open question.

Theorem. Assume that 𝐴 ⊆ 𝕋 is a forward invariant under 𝑆2 and 𝑆3
(namely ∀𝑥 ∈ 𝐴, 𝑆𝑖𝑥 ∈ 𝐴, for 𝑖 ∈ {2, 3}). Then either 𝐴 is finite or 𝐴 is
dense.
By Rudolph’s theorem we obtain the following result which can give some
insight (in some cases) that Furstenberg’s result can’t.
Corollary from Rudolph’s theorem (Exercise 9.3.2. ELW
book). Let 𝜇 be an 𝑆3 invariant and ergodic probability measure with
positive entropy. Then 𝜇 almost every 𝑥 ∈ ℝ/ℤ has a dense orbit under
𝑆2.
Example. Consider the middle third cantor set

𝐶 = {
∞

∑
𝑖=1

𝑎𝑖
3𝑖 ∣ 𝑎𝑖 ∈ {0, 2}} ,

which is clearly 𝑆3 invariant. The bernouli shift on two symbols gives 𝐶
an 𝑆3 invariant ergodic meaure 𝜇𝐶 with positive entropy.
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The invertible extension

We will change the setting to the space

𝑋 def= {𝑥 ∈ 𝕋ℤ2 ∣ 𝑥n+e1
= 2𝑥𝑛, 𝑥n+e2

= 3𝑥𝑛, ∀n ∈ ℤ2} ,

which will allow us to understand the dynamics more clearly.
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𝑋 is a closed subgroup of the compact group 𝕋ℤ2 hence 𝑋 is a compact
abelian group with respect to the induced topology 𝜏𝑋.

Let 𝐼 ⊆ ℤ2 be a finite set and for each n ∈ 𝐼 let 𝐸n ⊆ 𝕋 be an open set,
and define

[𝐸n]n⊆𝐼
def= {𝑥 ∈ 𝑋 ∣ 𝑥n ∈ 𝐸n, n ∈ 𝐼} .

Then the sets [𝐸n]n⊆𝐼 form a basis for 𝜏𝑋.
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Cylindrical sets in view of coordinate projections
Let

𝜋𝑚,𝑛 ∶ 𝑋 → 𝕋,
be the projection to the (𝑚, 𝑛) coordinate, namely 𝜋𝑚,𝑛(𝑥) = 𝑥𝑚,𝑛.

Observe that for 𝐼 ⊆ ℤ2 finite, if 𝑚0 = min𝑚{(𝑚, 𝑛) ∈ 𝐼} and
𝑛0 = min𝑚{(𝑚, 𝑛) ∈ 𝐼}, then

[𝐸n]n⊆𝐼 = {𝑥 ∈ 𝑋 ∣ 𝑥𝑚0,𝑛0
∈ ⋂

(𝑚,𝑛)∈𝐼
𝑆−(𝑚−𝑚0)

2 𝑆−(𝑛−𝑛0)
3 𝐸𝑚,𝑛} =

𝜋−1
𝑚0,𝑛0

⎛⎜
⎝

⋂
(𝑚,𝑛)∈𝐼

𝑆−(𝑚−𝑚0)
2 𝑆−(𝑛−𝑛0)

3 𝐸𝑚,𝑛⎞⎟
⎠

.

Hence 𝜏𝑚,𝑛
def= 𝜋−1

𝑚,𝑛𝜏𝕋 generate the topology, and moreover
𝜏𝑚−1,𝑛 ⊇ 𝜏𝑚,𝑛, 𝜏𝑚,𝑛−1 ⊇ 𝜏𝑚,𝑛. We conclude

𝜏𝑚,𝑛 ↗ 𝜏𝑋.
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The borel 𝜎-algebra

Definition. Let ℬ𝕋 be the borel 𝜎-algebra on 𝕋.

The 𝜎-algebra generated by the (𝑚, 𝑛) ∈ ℤ2 coordinate ℬ𝑚,𝑛 is defined
to be

ℬ𝑚,𝑛
def= 𝜋−1

𝑚,𝑛(ℬ𝕋)

Then we conclude that ℬ𝑚−1,𝑛 ⊇ ℬ𝑚,𝑛, ℬ𝑚,𝑛−1 ⊇ ℬ𝑚,𝑛, and
⋁∞

𝑛=0 ⋁∞
𝑚=0 ℬ−𝑚,−𝑛 = ℬ𝑋, where ℬ𝑋 is the Borel 𝜎-algebra on 𝑋.

xm,n

Determined

[𝑥]ℬ𝑚,𝑛
= {𝑦 ∈ 𝑋 ∣ 𝑥𝑎,𝑏 = 𝑦𝑎,𝑏, ∀𝑎 ≥ 𝑚, 𝑏 ≥ 𝑛}

.
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Shift maps

We consider the left shift map 𝑇2(𝑥)(𝑚,𝑛)
def= 𝑥(𝑚+1,𝑛) and the down shift

map 𝑇3(𝑥)(𝑚,𝑛)
def= 𝑥(𝑚,𝑛+1) which are invertible and keep 𝑋 invariant.

𝑋 𝑇 𝑚
2 𝑇 𝑛

3 //

𝜋𝑚,𝑛
��

𝑋
𝜋𝑚,𝑛
��

𝕋 𝑆𝑚
2 𝑆𝑛

3 // 𝕋

Lemma (without proof). Assume that 𝜇 is 𝑆2 and 𝑆3 invariant
borel probability measure on 𝕋.
Then there exists a borel probability measure 𝜇𝑋 on 𝑋 which is 𝑇2,𝑇3
invariant and (𝜋𝑚,𝑛)∗ 𝜇𝑋 = 𝜇 for all (𝑚, 𝑛) ∈ ℤ2 .
Moreover, if 𝜇 is ergodic for the joint 𝑆2,𝑆3 action, then 𝜇𝑋 is ergodic
for the joint 𝑇2, 𝑇3 action.
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Consider the partition 𝜉𝕋
def= {[0, 1

6 ) , [ 1
6 , 2

6 ) , ..., [ 5
6 , 1)}, and

𝜉𝑋
def= 𝜋−1

0,0(𝜉𝕋).
Then ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) = ℎ𝜇(𝑆2, 𝜉𝕋).
In fact:

𝐻𝜇𝑋
(

𝑛
⋁
𝑖=0

𝑇 −𝑖
2 (𝜋−1

0 𝜉𝕋)) =⏟
𝑇2∘𝜋0=𝜋0∘𝑆2

𝐻𝜇𝑋
(

𝑛
⋁
𝑖=0

𝜋−1
0 (𝑆−𝑖

2 𝜉𝕋))

=⏟
(𝜋0)∗𝜇𝑋=𝜇

𝐻𝜇(
𝑛

⋁
𝑖=0

𝑆−𝑖
2 𝜉𝕋)

By the same argument ℎ𝜇𝑋
(𝑇3, 𝜉𝑋) = ℎ𝜇(𝑆3, 𝜉𝕋).

Now 𝜉𝑋 and 𝜉𝕋 are generators for both 𝑆2 and 𝑆3, thus we get
Corollary. ℎ𝜇𝑋

(𝑇𝑙, 𝜉𝑋) = ℎ𝜇(𝑆𝑙, 𝜉𝕋) = ℎ𝜇(𝑆𝑙), for 𝑙 ∈ {2, 3}.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Consider the partition 𝜉𝕋
def= {[0, 1

6 ) , [ 1
6 , 2

6 ) , ..., [ 5
6 , 1)}, and

𝜉𝑋
def= 𝜋−1

0,0(𝜉𝕋).

Then ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = ℎ𝜇(𝑆2, 𝜉𝕋).

In fact:

𝐻𝜇𝑋
(

𝑛
⋁
𝑖=0

𝑇 −𝑖
2 (𝜋−1

0 𝜉𝕋)) =⏟
𝑇2∘𝜋0=𝜋0∘𝑆2

𝐻𝜇𝑋
(

𝑛
⋁
𝑖=0

𝜋−1
0 (𝑆−𝑖

2 𝜉𝕋))

=⏟
(𝜋0)∗𝜇𝑋=𝜇

𝐻𝜇(
𝑛

⋁
𝑖=0

𝑆−𝑖
2 𝜉𝕋)

By the same argument ℎ𝜇𝑋
(𝑇3, 𝜉𝑋) = ℎ𝜇(𝑆3, 𝜉𝕋).

Now 𝜉𝑋 and 𝜉𝕋 are generators for both 𝑆2 and 𝑆3, thus we get
Corollary. ℎ𝜇𝑋

(𝑇𝑙, 𝜉𝑋) = ℎ𝜇(𝑆𝑙, 𝜉𝕋) = ℎ𝜇(𝑆𝑙), for 𝑙 ∈ {2, 3}.
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The reduction of the problem

Assuming that 𝜇𝑋 is 𝑇2,𝑇3 invariant and ergodic, such that
ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) > 0, our goal will be to show

ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = log(2).

This will finish our proof by the following assertion.
Lemma. ℎ𝜇(𝑆2) = log(2) ⟺ 𝜇 is the Haar measure.
Proof. Consider the generator 𝜉0

def= {[0, 1
2 ), [ 1

2 , 1)} for 𝑆2.
The partition ⋁𝑁−1

𝑖=0 𝑆−𝑖
2 𝜉𝕋 consists of 2𝑁 dyadic intervals

𝐼𝑗,𝑁
def= [ 𝑗

2𝑁 , 𝑗+1
2𝑁 ) of length 1

2𝑁 . Once we will show that 𝜇(𝐼𝑗,𝑁) = 1
2𝑁 for

all 𝑗 ≤ 𝑁 and 𝑁 ∈ ℕ, it will follow that 𝜇 = 𝑚𝕋.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The reduction of the problem

Assuming that 𝜇𝑋 is 𝑇2,𝑇3 invariant and ergodic, such that
ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) > 0, our goal will be to show

ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = log(2).

This will finish our proof by the following assertion.

Lemma. ℎ𝜇(𝑆2) = log(2) ⟺ 𝜇 is the Haar measure.
Proof. Consider the generator 𝜉0

def= {[0, 1
2 ), [ 1

2 , 1)} for 𝑆2.
The partition ⋁𝑁−1

𝑖=0 𝑆−𝑖
2 𝜉𝕋 consists of 2𝑁 dyadic intervals

𝐼𝑗,𝑁
def= [ 𝑗

2𝑁 , 𝑗+1
2𝑁 ) of length 1

2𝑁 . Once we will show that 𝜇(𝐼𝑗,𝑁) = 1
2𝑁 for

all 𝑗 ≤ 𝑁 and 𝑁 ∈ ℕ, it will follow that 𝜇 = 𝑚𝕋.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The reduction of the problem

Assuming that 𝜇𝑋 is 𝑇2,𝑇3 invariant and ergodic, such that
ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) > 0, our goal will be to show

ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = log(2).

This will finish our proof by the following assertion.
Lemma. ℎ𝜇(𝑆2) = log(2) ⟺ 𝜇 is the Haar measure.

Proof. Consider the generator 𝜉0
def= {[0, 1

2 ), [ 1
2 , 1)} for 𝑆2.

The partition ⋁𝑁−1
𝑖=0 𝑆−𝑖

2 𝜉𝕋 consists of 2𝑁 dyadic intervals
𝐼𝑗,𝑁

def= [ 𝑗
2𝑁 , 𝑗+1

2𝑁 ) of length 1
2𝑁 . Once we will show that 𝜇(𝐼𝑗,𝑁) = 1

2𝑁 for
all 𝑗 ≤ 𝑁 and 𝑁 ∈ ℕ, it will follow that 𝜇 = 𝑚𝕋.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The reduction of the problem

Assuming that 𝜇𝑋 is 𝑇2,𝑇3 invariant and ergodic, such that
ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) > 0, our goal will be to show

ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = log(2).

This will finish our proof by the following assertion.
Lemma. ℎ𝜇(𝑆2) = log(2) ⟺ 𝜇 is the Haar measure.
Proof. Consider the generator 𝜉0

def= {[0, 1
2 ), [ 1

2 , 1)} for 𝑆2.

The partition ⋁𝑁−1
𝑖=0 𝑆−𝑖

2 𝜉𝕋 consists of 2𝑁 dyadic intervals
𝐼𝑗,𝑁

def= [ 𝑗
2𝑁 , 𝑗+1

2𝑁 ) of length 1
2𝑁 . Once we will show that 𝜇(𝐼𝑗,𝑁) = 1

2𝑁 for
all 𝑗 ≤ 𝑁 and 𝑁 ∈ ℕ, it will follow that 𝜇 = 𝑚𝕋.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The reduction of the problem

Assuming that 𝜇𝑋 is 𝑇2,𝑇3 invariant and ergodic, such that
ℎ𝜇𝑋

(𝑇2, 𝜉𝑋) > 0, our goal will be to show

ℎ𝜇𝑋
(𝑇2, 𝜉𝑋) = log(2).

This will finish our proof by the following assertion.
Lemma. ℎ𝜇(𝑆2) = log(2) ⟺ 𝜇 is the Haar measure.
Proof. Consider the generator 𝜉0

def= {[0, 1
2 ), [ 1

2 , 1)} for 𝑆2.
The partition ⋁𝑁−1

𝑖=0 𝑆−𝑖
2 𝜉𝕋 consists of 2𝑁 dyadic intervals

𝐼𝑗,𝑁
def= [ 𝑗

2𝑁 , 𝑗+1
2𝑁 ) of length 1

2𝑁 . Once we will show that 𝜇(𝐼𝑗,𝑁) = 1
2𝑁 for

all 𝑗 ≤ 𝑁 and 𝑁 ∈ ℕ, it will follow that 𝜇 = 𝑚𝕋.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Assume for contradiction that there exists 𝐼𝑗,𝑁 such that |𝐼𝑗,𝑁 | ≠ 1
2𝑁 .

Now recall that in general, if 𝜉 is a partition of 𝑁 elements then
𝐻𝜈(𝜉) ≤ log 𝑁 and

𝐻𝜈(𝜉) = log 𝑁 ⟺ 𝜈(𝑃) = 1
𝑁 , ∀𝑃 ∈ 𝜉.

Hence
1
𝑁 𝐻𝜇 (

𝑁−1
⋁
𝑖=0

𝑆−𝑖
2 𝜉𝕋) < 1

𝑁 log(2𝑁) = log(2).

and since ℎ𝜇(𝑆2) = ℎ𝜇(𝑆2, 𝜉0) = inf𝑛≥1
1
𝑛 𝐻𝜇 (⋁𝑛−1

𝑖=0 𝑆−𝑖
2 𝜉𝕋), we have a

contradiction.
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𝑖=0 𝑆−𝑖
2 𝜉𝕋), we have a

contradiction.
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By the future formula for entropy ℎ𝜇𝑋 (𝑇2, 𝜉𝑋) = 𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝒜1), where

𝒜1
def=

∞
⋁
𝑖=1

𝑇 −𝑖
2 𝜉𝑋 = 𝑇 −1

2 𝜋−1
0 ℬ𝕋.

Lemma. For each 𝑛 ∈ ℕ we have
(𝑇 −𝑛

3 𝜉𝑋) ∨ 𝒜1 = 𝜋−1
0 ℬ𝕋 = 𝜉𝑋 ∨ 𝒜1

Proof. We are trying to show 𝑇 −𝑛
3 𝜉𝑋 ∨ 𝑇 −1

2 𝜋−1
0 ℬ𝕋 = 𝜋−1

0 ℬ𝕋.
Note that 𝑇 −𝑛

3 𝜉𝑋 ∨ 𝑇 −1
2 𝜋−1

0 ℬ𝕋 ⊆ 𝜋−1
0 ℬ𝕋. So to prove equality it suffices to

show that ∃𝜖 > 0 such that any interval of length smaller then 𝜖 is in
𝑆−𝑛

3 𝜉𝕋 ∨ 𝑆−1
2 𝜋−1

0 ℬ𝕋, where 𝜉𝕋 = {[0, 1/6), .., [5/6, 1)}.
Proof by picture

0 1

0 1

Proof of the picture: Note that if |𝑥 − 𝑎| < 1
2⋅3𝑛+1 and 𝑥 ∈ (𝑎, 𝑏) such that

𝑏 − 𝑎 = 1
2⋅3𝑛+1 then its impossible that 𝑥 + 1

2 ∈ (𝑎 + 𝑗
3𝑛 , 𝑏 + 𝑗

3𝑛 ). In fact, if we
assume the contrary, then

1
2 ⋅ 3𝑛 − 1

2 ⋅ 3𝑛+1 ≤ ∣ 1
2 − 𝑗

3𝑛 ∣ − |𝑥 − 𝑎| ≤ ∣(𝑥 + 1
2 ) − (𝑎 + 𝑗

3𝑛 )∣ < 𝑏 − 𝑎 = 1
2 ⋅ 3𝑛+1 ,

which is a contradiction.
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(𝑇 −𝑛
3 𝜉𝑋)∨𝒜1 = 𝜉𝑋 ∨𝒜1 ⟹ 𝜉𝑋 ∨𝑇 𝑛

3 𝒜1 = 𝑇 𝑛
3 (𝜉𝑋 ∨ 𝒜1)

For 𝑛 ≥ 0 we get
ℎ𝜇𝑋 (𝑇2, 𝜉𝑋) = 𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝒜1) =

𝐻𝜇𝑋 (𝑇 𝑛
3 𝜉𝑋 ∣ 𝑇 𝑛

3 𝒜1) =

𝐻𝜇𝑋 (𝑇 𝑛
3 𝜉𝑋 ∨ 𝑇 𝑛

3 𝒜1 ∣ 𝑇 𝑛
3 𝒜1) =

𝐻𝜇𝑋 (𝜉𝑋 ∨ 𝑇 𝑛
3 𝒜1 ∣ 𝑇 𝑛

3 𝒜1) =

𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝑇 𝑛
3 𝒜1).

Let 𝒜 def= ⋁∞
𝑛=0 𝑇 𝑛

3 𝒜1, which is the 𝜎-algebra generated by the
coordinates in the right-half plane {(𝑚, 𝑛) ∈ ℤ2 ∣ 𝑚 > 0} .
Then 𝑇 𝑛

3 𝒜1 ↗ 𝒜 and
ℎ𝜇𝑋 (𝑇2, 𝜉𝑋) = 𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝒜1) = lim𝑛→∞ 𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝑇 𝑛

3 𝒜1) = 𝐻𝜇𝑋 (𝜉𝑋 ∣ 𝒜).
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