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Assume that p € P(T) invariant under S, and Ss,

satisfies S5 A = S;1A = A if and only if u(A) € {0,1} (namely u is
ergodic for the joint action of S, and S;)

and h,(S;) > 0.

Then p = my where my is the Haar measure on T.

Remark.

1. It actually holds that

h,(S3) >0 < h,(S;) >0 < h,(S3"Sy) > 0 for some m,n € N.
We will briefly explain how to show this later on

2. The proof simplifies considerably if one assumes that p is T ergodic.
Open question (Furstenberg). s it true that the Haar measure
of T is the unique non-atomic measure invariant under S, and S;3?
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An implication of Rudolph’s theorem

Furstenberg proved the following topological version of the mentioned
open question.

Theorem. Assume that A C T is a forward invariant under S, and S,
(namely Vz € A, S;z € A, for i € {2,3}). Then either A is finite or A is
dense.

By Rudolph’s theorem we obtain the following result which can give some
insight (in some cases) that Furstenberg's result can't.

Corollary from Rudolph’s theorem (Exercise 9.3.2. ELW
book). Let ;1 be an S invariant and ergodic probability measure with
positive entropy. Then p almost every © € R/Z has a dense orbit under
Ss.

Example. Consider the middle third cantor set

o0 a,i
c—{z;gimie{og}},

which is clearly S5 invariant. The bernouli shift on two symbols gives C'
an S5 invariant ergodic meaure .~ with positive entropy.
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The invertible extension

We will change the setting to the space

def 2
X = {x €T | @i, =22, Thie, = 3T,, VN € ZQ},

which will allow us to understand the dynamics more clearly.

D = 1
9z

two choices e . . .
3z 6z /‘\
L L L .
T 2z /‘\4m
L . .

three choices
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X = {x e T | Type, = 2Ty, Tyie, = 3T,, VR E ZQ}

n?

X is a closed subgroup of the compact group T2 hence X is a compact
abelian group with respect to the induced topology 7.

Let I C 72 be a finite set and for each n € I let E,, C T be an open set,
and define

def

B, -, ={zeX|z,€E,, nel}.

nCIl

Then the sets [E,] _, form a basis for 7.
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Cylindrical sets in view of coordinate projections
Let
nt X =T,

be the projection to the (m,n) coordinate, namely 7, ,.(z) = z,, ,,
Observe that for I C 72 finite, if my = min,,,{(m,n) € I'} and
ng = min,, {(m,n) € I'}, then

[En]ngl = {.’I} exX | xmov’ﬂo € ﬂ 52(mm0)53(nn0)Em,”} =

(m,n)el

mo)no (( ﬂ S (m— mo (n— nO)E )

m,n)el

def _
Hence 7, , =7 {nﬁ generate the topology, and moreover

o7 T 2 Tpn- We conclude

Tm—l,n = 'm,n> Tm,n—l

Tm,n / Tx-
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The borel o-algebra

Definition. Let B; be the borel o-algebra on T.
The o-algebra generated by the (m,n) € Z* coordinate B, ,, is defined
to be

B el (Br)

m,n

Then we conclude that B,, , , 2 38, ., B, ., 1235, ,, and

\/ZO:0 \/iz0 B_n—n = Bx, where By is the Borel o-algebra on X.

z

[x]Bmm ={yeX| Lab = Ya,b Ya>m, b> n}
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X
T

Lemma (without pI‘OOf). Assume that p is S, and S5 invariant
borel probability measure on T.

m n
T9T}
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S
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—
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Shift maps

We consider the left shift map 75 (), ) def T (41, and the down shift

map T5() (1, n) d:efx(m’nﬂ) which are invertible and keep X invariant.

m n
T9T}
E—

X
Trm,,n l
T Sy Sy

—_——

S

Tm,n

—

Lemma (without pI‘OOf). Assume that p is S, and S5 invariant
borel probability measure on T.

Then there exists a borel probability measure py on X which is T, T}
invariant and (ﬂmm)*ux = p for all (m,n) € 72 .

Moreover, if 11 is ergodic for the joint S,,5; action, then pix is ergodic
for the joint T}, T5 action.
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def 1
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Then h, (T5,8x) = h, (S5, &y)-
In fact:

n n

H, (\/T5 (') = H, (\/ 7" (S3°€))

=0 Tyomy=mpoSy =0
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Consider the partition & &' {l0,4),[%,2),...[3,1)}, and
def 1

Ex = To.0(6r)-
Then hHX(TQ,fx) = h,,(Ss, &)
In fact:
H, \/T57 (') = H, (V7" (57))
=0 Thomg=myoSy =0
= HJ(\/ S
(mo), mx=p 1=0

By the same argument h,, (T3,&x) = h, (S35, &)
Now &y and & are generators for both .S, and S5, thus we get

Corollary. h, (T},&x) = h,(S,,&) = h,(S)), for I € {2,3}.
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The reduction of the problem

Assuming that py is 15,75 invariant and ergodic, such that
h, (Ty,&x) > 0, our goal will be to show

Hx
hHX <T27 £X) = 10g(2)

This will finish our proof by the following assertion.
Lemma. h,(S,) =log(2) <= p is the Haar measure.

Proof. Consider the generator &, = {[0, 2),[3, 1)} for S,.

o N-1 o, . -
The partition \/ S5 i€y consists of 2V dyadic intervals
def
Iin =

[k
all j< N

N JTV) °f length k. Once we will show that ;) = > for
and N € N, it will follow that = my.
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Assume for contradiction that there exists I; y such that |I; x| # 5w
Now recall that in general, if £ is a partition of IV elements then
H,(&) <logN and

H,(&) =logN < v(P)= %, VP e

Hence

1 N 1
NH“ (\/ SQ’&) <w log(2V) = log(2).

=0

and since h,(S;) = h, (S5, &) = inf, o, +H, (\/;:01 Sg’fv), we have a

contradiction.
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By the future formula for entropy h, (T5,€x) = H,, (§x | A1), where

def - 1
A S \/ Ty'ex =Ty 'my ' By
=1

Lemma. For each n € N we have
(T3™ex) VA =75 By =Ex VA

Proof. We are trying to show T3 "¢y V Ty 'y By = my' By

Note that 75 "¢y V Ty 'y By C o' By. So to prove equality it suffices to
show that Je > 0 such that any interval of length smaller then € is in
S3mér V Sytmgt By, where & = {[0,1/6),..,[5/6,1)}.

Proof by picture

0 = — 1

Proof of the picture: Note that if |z —a| < 23}”1 and z € (a b) such that
b—a= 23n+1 then its impossible that = + € (a+ dn,b + %) In fact, if we
assume the contrary, then
1 1 ’1 j
2.37 2.3 |2 3n

which is a contradiction.

1 J 1
—‘I—a‘§‘$+§) ( +§’<b—azm,
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For n > 0 we get
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(T5"Ex) VA =Ex VA = ExVTTA =T3 (Ex V Ay)

For n > 0 we get
h‘,uX(T27£X) = H;zx(gX | Al) =

H, (T3¢x | T3A) =
H, (TPex VTPA; | TA) =
H, (ExVT3A | T3A) =

H, (Ex | T3AL).

Let 4% \/Zo:O T35 A, which is the o-algebra generated by the

coordinates in the right-half plane {(m,n) € Z* | m > 0}.
Then T3' A, /A and

By (T, 6x) = H, o (6x | AL) = Tim H,, (€x | T Ay = H,,  (6x | A).



