RAGHUNATHAN'S CONJECTURES FOR SL $(2, R)$

BY
Marina Ratner*
Department of Mathematics, University of California at Berkeley, Berkeley, California, U.S.A. 94720

Abstract

ABS'TRACT In this paper I give simple proofs of Raghunathan's conjectures for $\operatorname{SL}(2, R)$. These proofs incorporate in a simplified form some of the ideas and methods I used to prove the Raghunathan's conjectures for general connected Lie groups.

Introduction

The purpose of this paper is to present simple proofs of Raghunathan's conjectures for $\operatorname{SL}(2, R)$.

More specifically, let \mathbf{G} be a Lie group with the Lie algebra \mathfrak{G}, Γ a discrete subgroup of \mathbf{G} and $\pi: \mathbf{G} \rightarrow \Gamma \backslash \mathbf{G}$ the covering projection $\pi(\mathbf{g})=\Gamma \mathbf{g}, \mathbf{g} \in \mathbf{G}$. The group \mathbf{G} acts by right translations on $\Gamma \backslash \mathbf{G}, x \rightarrow x \mathbf{g}, x \in \Gamma \backslash \mathbf{G}, \mathbf{g} \in \mathbf{G}$. A subset $A \subset \Gamma \backslash \mathbf{G}$ is called homogeneous if there is $\mathbf{x} \in \mathbf{G}$ and a closed subgroup $\mathbf{H} \subset \mathbf{G}$ such that $\mathbf{x H x} \mathbf{x}^{-1} \cap \Gamma$ is a lattice in $\mathbf{x H x}{ }^{-1}$ and $A=\pi(\mathbf{x}) \mathbf{H}$. A Borel probability measure μ on $\Gamma \backslash \mathbf{G}$ is called algebraic if there exists $x \in \Gamma \backslash \mathbf{G}$ and a closed subgroup $\mathbf{H} \subset \mathbf{G}$ such that $x \mathbf{H}$ is homogeneous and μ is the \mathbf{H}-invariant Borel probability measure supported on $x \mathbf{H}$.

A subgroup $\mathbf{U} \subset \mathbf{G}$ is called unipotent if for each $\mathbf{u} \in \mathbf{U}$ the map $\operatorname{Ad}_{\mathbf{u}}: \mathfrak{G} \rightarrow$ \mathfrak{G} is a unipotent linear transformation of \mathfrak{G}.

Here are the two Raghunathan's conjectures.

[^0]Conjecture 1 (Raghunathan's Topological Conjecture): Let \mathbf{G} be a connected Lie group and \mathbf{U} a unipotent subgroup of \mathbf{G}. Then given any lattice $\boldsymbol{\Gamma}$ in \mathbf{G} and any $x \in \Gamma \backslash \mathbf{G}$, the closure $\overline{x \mathbf{U}}$ of the orbit $x \mathbf{U}$ in $\Gamma \backslash \mathbf{G}$ is homogeneous.

Conjecture 2 (Raghunathan's Measure Conjecture): Let \mathbf{G} be a connected Lie group and \mathbf{U} a unipotent subgroup of \mathbf{G}. Then given any lattice Γ of \mathbf{G}, every ergodic U-invariant Borel probability measure on $\Gamma \backslash \mathbf{G}$ is algebraic.

In fact, Raghunathan proposed a weaker version of Conjecture 1. This version and Conjecture 2 were stated by Dani [D1] for reductive \mathbf{G} and by Margulis [M1, Conjectures 2 and 3] for general \mathbf{G}.

Conjectures 1 and 2 for nilpotent \mathbf{G} were proved earlier by Parry $[\mathrm{P}]$ and Furstenberg [F1] and for $\mathbf{G}=\mathrm{SL}(2, R)$ by Hedlund [H], Furstenberg [F2] and Dani [D1].

Recently Conjecture 1 and a stronger verison of Conjecture 2 were proved in [R1-4]. More specifically, we proved the following theorems.

Theorem A (Orbit closures for unipotent actions): Let \mathbf{G} be a connected Lie group and \mathbf{U} a unipotent subgroup of \mathbf{G}. Then given any lattice $\boldsymbol{\Gamma}$ of \mathbf{G} and any $x \in \mathbf{\Gamma} \backslash \mathbf{G}$ the closure $\overline{x \mathbf{U}}$ of the orbit $x \mathbf{U}$ in $\Gamma \backslash \mathbf{G}$ is homogeneous.

Theorem B (Classification of invariant measures for unipotent actions): Let \mathbf{G} be a connected Lie group and \mathbf{U} a unipotent subgroup of \mathbf{G}. Then given any discrete subgroup Γ (not necessarily a lattice) of \mathbf{G}, every ergodic \mathbf{U}-invariant Borel probability measure on $\boldsymbol{\Gamma} \backslash \mathbf{G}$ is algebraic.

Now let $\mathbf{U}=\{\mathbf{u}(t)=\exp t u: t \in R\}, u \in \mathfrak{G}$ be a one-parameter subgroup of \mathbf{G}. A point $x \in \Gamma \backslash \mathbf{G}$ is called generic for \mathbf{U} if there exists a closed subgroup $\mathbf{H} \subset \mathbf{G}$ such that $\mathbf{U} \subset \mathbf{H}, \overline{x \mathbf{U}}=x \mathbf{H}$ is homogencous and $\frac{1}{t} \int_{0}^{t} f(x \mathbf{u}(s)) d s \rightarrow \int_{\Gamma \backslash \mathbf{G}} f d \nu_{\mathbf{H}}$ for every bounded continuous function f on $\Gamma \backslash \mathbf{G}$, where $\nu_{\mathbf{H}}$ denotes the \mathbf{H} invariant Borel probability measure on $\Gamma \backslash \mathbf{G}$, supported on $x \mathbf{H}$. Similarly, one defines generic points for one-generator subgroups $\mathbf{U}=\left\{\mathbf{u}^{k}: k \in \mathbb{Z}\right\}$ of $\mathbf{G}, \mathbf{u} \in \mathbf{G}$.
In [R4] we proved the following theorem.
Theorem C (Uniform distribution of unipotent orbits): Let \mathbf{G} be a connected Lie group, Γ a lattice in \mathbf{G} and \mathbf{U} a one-parameter or one-generator unipotent subgroup of \mathbf{G}. Then every point $x \in \Gamma \backslash \mathbf{G}$ is generic for \mathbf{U}.
Theorem C was conjectured by Margulis in [M2, Conjectures 3 and 4]. For $\mathbf{G}=\mathrm{SL}(2, R)$ Theorem C was proved by Dani and Smillie in [DS]. Also recently
N. Shah [Sh] proved Theorem C for semisimple G of real rank one by other methods.

We conjecture the following version of Theorem C for arbitrary Γ (not necessarily lattices).

Conjecture D: Let G be a connected Lie group, Γ a discrete subgroup of \mathbf{G} and \mathbf{U} a unipotent subgroup of \mathbf{G}. Suppose that $x \in \Gamma \backslash \mathbf{G}$ and $\overline{x \mathbf{U}}$ is compact in $\Gamma \backslash \mathbf{G}$. Then 1) $\overline{x \mathbf{U}}$ is homogeneous; 2) if U is a one-parameter or one-generator subgroup of \mathbf{G} then x is generic for \mathbf{U}.

The purpose of this paper is to take the simplest case of $\mathbf{G}=\operatorname{SL}(2, R)$ and to demonstrate in a simplified form some of the ideas and techniques we use to prove Theorems A, B and C. For $\mathbf{G}=\mathrm{SL}(2, R)$ we consider

$$
\mathbf{U}=\left\{\mathbf{u}(t)=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right]: t \in R\right\} \quad \text { and } \quad \mathbf{A}=\left\{\left[\begin{array}{ll}
e^{t} & \\
& e^{-t}
\end{array}\right]: t \in R\right\}
$$

The action of \mathbf{U} on $\Gamma \backslash \mathbf{G}$ is called the horocycle flow and the action of \mathbf{A} on $\Gamma \backslash \mathbf{G}$ the geodesic flow. Theorems A, B, C and Conjecture D for $\mathbf{G}=\mathrm{SL}(2, R)$ take the following form.

Theorem 1 (Orbit closures for horocycle flows): Let Γ be a lattice in $\mathbf{G}=$ $\mathrm{SL}(2, R)$ and $x \in \Gamma \backslash \mathbf{G}$. Then either $\overline{x \mathbf{U}}=\Gamma \backslash \mathbf{G}$ or the orbit $x \mathbf{U}=\bar{x} \overline{\mathbf{U}}$ is periodic.

Theorem 2 (Classification of invariant measures for horocycle flows): Let Γ be a discrete subgroup of $\mathbf{G}=\mathrm{SL}(2, R)$ and μ an ergodic \mathbf{U}-invariant Borel probability measure on $\Gamma \backslash \mathbf{G}$. Then either 1) Γ is a lattice and μ is \mathbf{G}-invariant or 2) μ is supported on a periodic orbit of U.

Theorem 3 (Uniform distribution of horocycle orbits): Let Γ be a lattice in $\mathbf{G}=\mathrm{SL}(2, R)$. Then every point $x \in \Gamma \backslash \mathbf{G}$ is generic for \mathbf{U}. Equivalently, if $x \in \Gamma \backslash \mathbf{G}$ and $x \mathbf{U}$ is not a periodic orbit, then $\frac{1}{t} \int_{0}^{t} f(x \mathbf{u}(s)) d s \rightarrow \int_{\Gamma \backslash G} f d \nu_{\mathbf{G}}$ for every bounded continuous function f on $\Gamma \backslash \mathbf{G}$, where $\nu_{\mathbf{G}}$ denotes the \mathbf{G}-invariant Borel probability measure on $\Gamma \backslash \mathbf{G}$.

Theorem 4: Let Γ be a discrete subgroup of $\mathbf{G}=\operatorname{SL}(2, R)$, which is not a lattice. Suppose that $x \in \Gamma \backslash \mathbf{G}$ and $\overline{x \mathbf{U}}$ is compact in $\Gamma \backslash \mathbf{G}$. Then $x \mathbf{U}=\overline{x \mathbf{U}}$ is a periodic orbit.

Also we include the following theorem, proved earlier in [Sa] by other methods.

Theorem 5 (Equidistribution of closed horocycles): Let Γ be a nonuniform lattice in $\mathbf{G}=\mathrm{SL}(2, R)$ and let $P=\{x \in \Gamma \backslash \mathbf{G}: x \mathrm{U}$ is a periodic orbit $\}$. Then

$$
\lim _{T(x) \rightarrow \infty} \frac{1}{T(x)} \int_{0}^{T(x)} f(x \mathbf{u}(s)) d s=\int_{\Gamma \backslash \mathbf{G}} f d \nu_{\mathbf{G}}
$$

for every bounded continuous function f on $\Gamma \backslash \mathbf{G}$, where $x \in P$ and $T(x)>0$ denote the period of the periodic orbit $x \mathbf{U}$.

The paper is organized as follows. In section 2 we give short and rather elementary proofs of Theorem 2 for lattices, Theorem 1, Theorem 5 and Theorem 3. These proofs use in an essential way a special feature of U called "horosphericity" of \mathbf{U} with respect to \mathbf{A}. This feature is not necessarily possessed by unipotent U in general \mathbf{G}. Because of this, the proofs in section 2 can not be extended to general G. This obstacle is removed in sections 3 and 4, where we give different yet still simple proofs of Theorems 3 and 2. Moreover, section 4 handles the case of arbitrary discrete Γ (not necessarily lattices). The proofs in sections 3 and 4 incorporate in a simple form some of the ideas and techniques used to prove Theorems A, B and C in [R1-4]. Also we prove Theorem 4 in section 4. The argument in the proof of this theorem can be used to prove Conjecture D for semisimple \mathbf{G} of real rank one. Sections 3 and 4 can be read independently of section 2 and section 4 independently of section 3 . We note that all our proofs are totally different from the proofs obtained by other authors.

Finally, we point out a profound contrast in the dynamical behavior of the horocycle and the geodesic flows on $\Gamma \backslash S L(2, R)$. It was shown by Sinai $[S]$ and Bowen, Ruelle [BR] that there are infinitely many ergodic A-invariant Borel probability measures all supported on $\Gamma \backslash G$, which are not algebraic. Also there exist points $x \in \Gamma \backslash G$ for which the closures $\overline{x \overline{\mathbf{A}}}$ of geodesic orbits are not smooth manifolds. These facts put geodesic actions in a striking contrast with the rigid behavior of horocycle actions, given in Theorems 1, 2 and 3.

1. Preliminaries

Henceforth unless otherwise stated we shall denote by \mathbf{G} the group $\operatorname{SL}(2, R)$ of all 2×2 real matrices with determinant 1 , equipped with a left invariant Riemannian
metric. There are the following basic one-parameter subgroups of \mathbf{G} :

$$
\begin{aligned}
\mathbf{U} & =\left\{\mathbf{u}(t)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]: t \in R\right\} \\
\mathbf{A} & =\left\{\mathbf{a}(t)=\left[\begin{array}{ll}
e^{t} & \\
& e^{-t}
\end{array}\right]: t \in R\right\} \\
\mathbf{H} & =\left\{\mathbf{h}(t)=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]: t \in R\right\}
\end{aligned}
$$

These subgroups of \mathbf{G} satisfy the following commutation relations

$$
\begin{align*}
& \mathbf{u}(s) \mathbf{a}(t)=\mathbf{a}(t) \mathbf{u}\left(s e^{-2 t}\right) \\
& \mathbf{h}(s) \mathbf{a}(t)=\mathbf{a}(t) \mathbf{h}\left(s e^{2 t}\right), \quad s, t \in R \tag{1.1}
\end{align*}
$$

Let \mathbf{W} denote the subgroup of \mathbf{G} generated by \mathbf{A} and \mathbf{H}. For $\mathbf{x} \in \mathbf{G}, \delta>0$ define $\mathbf{W}(\mathbf{x} ; \delta)=\{\mathbf{x a}(\tau) \mathbf{h}(b):|\tau|<\delta,|b|<\delta\}$. It is a fact that if $\delta>0$ is sufficiently small then for each $\mathbf{y} \in \mathbf{W}(\mathbf{x} ; \delta)$ and each $0 \leq s \leq 1$ there is a unique $\alpha(\mathbf{y}, s)>0$, $\alpha(\mathbf{y}, 0)=0$ increasing in s and continuous in ($\mathbf{y}, s)$ such that

$$
\psi_{s}(\mathbf{y})=\mathbf{y u}(\alpha(\mathbf{y}, s)) \in \mathbf{W}(\mathbf{x u}(s) ; 10 \delta)
$$

The map $\psi_{s}, 0 \leq s \leq 1$ is a homeomorphism from $\mathbf{W}(\mathbf{x} ; \delta)$ onto a neighborhood of $\mathbf{x u}(s)$ in $\mathbf{W}(\mathbf{x u}(s), 10 \delta)$. Define

$$
\mathbf{V}(\mathbf{x} ; \delta, 1)=\bigcup\left\{\psi_{s}(\mathbf{W}(\mathbf{x} ; \delta)): 0 \leq s \leq 1\right\} .
$$

Then

$$
\mathbf{V}(\mathbf{x} ; \delta, \mathbf{1})=\bigcup\left\{\sigma_{\mathbf{y}}(1): \mathbf{y} \in \mathbf{W}(\mathbf{x} ; \delta)\right\}
$$

where

$$
\sigma_{\mathbf{y}}(1)=\{\mathbf{y} \mathbf{u}(s): 0 \leq s \leq \alpha(\mathbf{y}, 1)\} \subset \mathbf{y} \mathbf{U} .
$$

For $\mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta)$ define

$$
\varphi_{\mathbf{y}, \mathbf{z}}\left(\psi_{s}(\mathbf{y})\right)=\psi_{s}(\mathbf{z}) \in \psi_{s}(\mathbf{W}(\mathbf{x} ; \delta)) .
$$

The $\operatorname{map} \varphi_{\mathbf{y}, \mathbf{z}}$ is a diffeomorphism from $\sigma_{\mathbf{y}}(1)$ onto $\sigma_{\mathbf{z}}(1)$. Also $\varphi_{\mathbf{y}, \mathbf{z}}(\mathbf{p})$ is C^{∞} in $(\mathbf{y}, \mathbf{z}, \mathbf{p}), \mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta), \mathbf{p} \in \sigma_{\mathbf{y}}(1)$. This implies that given $\varepsilon>0$ there is $\delta_{0}=\delta_{0}(\varepsilon)>0$ such that if $0<\delta<\delta_{0}$ then

$$
\begin{equation*}
\left|\frac{\lambda(B)}{\lambda\left(\varphi_{\mathbf{y}, \mathbf{z}}(B)\right)}-1\right|<0.01 \varepsilon \tag{1.2}
\end{equation*}
$$

for all Borel subsets $B \subset \sigma_{\mathbf{y}}(1)$ and all $\mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta)$. Here λ denotes the length measure on $\mathbf{y U}$ in which $\lambda\{\mathbf{y u}(s): 0 \leq s \leq t\}=t$ for all $t \geq 0$.

For a large $t>0$ let $\tau=\tau(t)=(\ln t) / 2$ and let

$$
\begin{aligned}
\mathbf{W}(\mathbf{x} ; \delta, t) & =\mathbf{W}(\mathbf{x a}(\tau), \delta) \mathbf{a}(-\tau)=\left\{x \mathbf{a}(r) \mathbf{h}(b):|r|<\delta,|b|<\delta t^{-1}\right\} \\
\mathbf{V}(\mathbf{x} ; \delta, t) & =\mathbf{V}(\mathbf{x a}(\tau), \delta, 1) \mathbf{a}(-\tau)
\end{aligned}
$$

Also for $\mathbf{y} \in \mathbf{W}(\mathbf{x} ; \delta, t)$ and $0 \leq s \leq t$ let

$$
\begin{aligned}
\alpha(\mathbf{y}, s) & =\alpha(\mathbf{y a}(\tau), s / t) t \\
\psi_{s}(\mathbf{y}) & =\mathbf{y u}(\alpha(\mathbf{y}, s)) \\
\sigma_{\mathbf{y}}(t) & =\left\{\psi_{s}(\mathbf{y}): 0 \leq s \leq t\right\}=\{\mathbf{y} \mathbf{u}(s): 0 \leq s \leq \alpha(\mathbf{y}, t)\}
\end{aligned}
$$

It follows from (1.1) that

$$
\psi_{s}(\mathbf{y}) \in \mathbf{W}(\mathbf{x} \mathbf{u}(s) ; 10 \delta, t)
$$

for all $0 \leq s \leq t$ and all $\mathbf{y} \in \mathbf{W}(\mathbf{x} ; \delta, t)$. Also

$$
\lambda\left(\sigma_{\mathbf{y}}(t)\right)=\alpha(\mathbf{y}, t), \quad \lambda\left(\sigma_{\mathbf{x}}(t)\right)=t
$$

and

$$
\mathbf{V}(\mathbf{x} ; \delta, t)=\bigcup\left\{\sigma_{\mathbf{y}}(t): \mathbf{y} \in \mathbf{W}(\mathbf{x} ; \delta, t)\right\}
$$

For $\mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta, t)$ define $\varphi_{\mathbf{y}, \mathbf{z}}: \sigma_{\mathbf{y}}(t) \rightarrow \sigma_{\mathbf{z}}(t)$ by $\varphi_{\mathbf{y}, \mathbf{z}}\left(\psi_{s}(\mathbf{y})\right)=\psi_{s}(\mathbf{z}), 0 \leq s \leq$ t. It follows from (1.2) that if $0<\delta<\delta_{0}(\varepsilon)$ then

$$
\begin{equation*}
\left|\frac{\lambda(B)}{\lambda\left(\varphi_{\mathbf{y}, \mathbf{z}}(B)\right)}-1\right|<0.01 \varepsilon \tag{1.3}
\end{equation*}
$$

for all Borel subsets $B \subset \sigma_{\mathbf{y}}(t)$, all $\mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta, t)$ and all $t>0$.
Now let f be a bounded uniformly continuous function on G. Given $\varepsilon>0$ let $\delta_{f}=\delta_{f}(\varepsilon)>0$ be such that if $\mathbf{y}, \mathbf{z} \in \mathbf{G}$ and $d_{G}(\mathbf{y}, \mathbf{z})<\delta_{f}$ then

$$
|f(\mathbf{y})-f(\mathbf{z})|<0.01 \varepsilon
$$

(Here d_{G} denotes the left invariant metric on G.) Define

$$
\begin{aligned}
\omega_{f}(\varepsilon) & =0.1 \min \left\{\delta_{f}(\varepsilon), \delta_{0}\left(\varepsilon C_{f}^{-1}\right)\right\} \\
S_{f}(\mathbf{y}, t) & =\frac{1}{t} \int_{0}^{t} f(\mathbf{y u}(s)) d s, \quad t>0, \quad \mathbf{y} \in \mathbf{G}
\end{aligned}
$$

where $C_{f}=\max \{1,|f| \infty\}$. It follows from (1.3) that if $0<\delta<\omega_{f}(\varepsilon)$ then

$$
\begin{equation*}
\left|S_{f}(\mathbf{y}, \alpha(\mathbf{y}, t))-S_{f}(\mathbf{z}, \alpha(\mathbf{z}, t))\right|<0.1 \varepsilon \tag{1.4}
\end{equation*}
$$

for all $\mathbf{y}, \mathbf{z} \in \mathbf{W}(\mathbf{x} ; \delta, t)$ and all $t>0$.
Now let Γ be a discrete subgroup of \mathbf{G} and $\pi: \mathbf{G} \rightarrow \Gamma \backslash \mathbf{G}=X$ the covering projection $\pi(\mathbf{g})=\Gamma \mathbf{g}, \mathbf{g} \in \mathbf{G}$. The group \mathbf{G} acts by right translations on X, $x \rightarrow x \mathbf{g}, x \in X, \mathbf{g} \in \mathbf{G}$.

For $x \in X, \mathbf{x} \in \pi^{-1}\{x\}$ let

$$
\begin{aligned}
W(x ; \delta, t) & =\pi(\mathbf{W}(\mathbf{x} ; \delta, t)), \quad t>0 \\
V(x ; \delta, t) & =\pi(\mathbf{V}(\mathbf{x} ; \delta, t)) .
\end{aligned}
$$

Now suppose that π is one-to-one on $\mathbf{W}(\mathbf{x} ; \delta, t)$. For $y \in W(x ; \delta, t)$ define

$$
\alpha(y, s)=\alpha(\mathbf{y}, s), \quad 0 \leq s \leq t
$$

where $\mathbf{y}=\pi^{-1}\{y\} \cap \mathbf{W}(\mathbf{x} ; \delta, t)$. These notations will be used in Section 2.
For $r>0, g \in G$ define

$$
\mathbf{E}(\mathbf{g} ; r)=\{\mathbf{g a}(\tau) \mathbf{U K}: r<\tau<\infty\}
$$

where

$$
K=\left\{r(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]: 0 \leq \theta \leq 2 \pi\right\} .
$$

Let Γ be a nonuniform lattice in \mathbf{G}. Then there are $r_{0}>1, \mathbf{g}_{1}, \ldots, \mathbf{g}_{n} \in \mathbf{G}$ and $\boldsymbol{\gamma}_{1}, \ldots, \boldsymbol{\gamma}_{n} \in \Gamma$ with $\mathbf{g}_{i}^{-1} \boldsymbol{\gamma}_{i} \mathbf{g}_{i} \in \mathbf{U}^{-}=\{\mathbf{u}(s): s<0\} i=1, \ldots, n$ such that if we define $\mathbf{E}_{i}=\mathbf{E}\left(\mathbf{g}_{i}, r_{0}\right), \Gamma_{i}=\left\{\gamma_{i}^{k}: k \in \mathbb{Z}\right\}, \tilde{\Gamma}=\Gamma-\{\mathbf{e}\}$ then $X-\cup\left\{\pi\left(\mathbf{E}_{i}\right): i=\right.$ $1, \ldots, n\}$ is compact in $X=\Gamma \backslash G$ and

$$
\begin{align*}
& \boldsymbol{\gamma}_{i} \mathbf{E}_{i}=\mathbf{E}_{i}, \quad i=1, \ldots, n, \\
& \gamma \mathbf{E}_{i} \cap \mathbf{E}_{i}=\emptyset, \quad \boldsymbol{\gamma} \in \Gamma-\Gamma_{i}, \quad i=1, \ldots, n, \\
& \gamma \mathbf{E}_{i} \cap \mathbf{E}_{j}=\emptyset, \quad i \neq j, \quad \boldsymbol{\gamma} \in \Gamma, \tag{1.5}\\
& d_{\mathbf{G}}(\mathbf{x}, \tilde{\Gamma} \mathbf{x})=d_{\mathbf{G}}\left(\mathbf{x}, \boldsymbol{\gamma}_{i} \mathbf{x}\right), \quad i=1, \ldots, n, \quad \mathbf{x} \in \mathbf{E}_{i} .
\end{align*}
$$

Proposition 1.1: Let $K=X-\cup\left\{\pi\left(\mathbf{E}_{i}\right): i=1, \ldots, n\right\}$-a compact subset of $X=\Gamma \backslash \mathbf{G}$. If $x \in X$ and $x \mathbf{U}$ is not a periodic orbit, then there exists a sequence $\tau_{n} \rightarrow \infty$ such that $x \mathbf{a}\left(\tau_{n}\right) \in K$ for all n.

Proof: Suppose to the contrary that there exists $\tau_{0}>0$ such that $x \mathbf{a}(\tau) \notin K$ for all $\tau \geq \tau_{0}$. Then there exists $i \in\{1, \ldots, n\}$ such that $\mathbf{x a}(\tau) \in \bigcup\left\{\gamma \mathrm{E}_{i}: \gamma \in \Gamma\right\}$ for all $\tau \geq \tau_{0}, \mathbf{x} \in \pi^{-1}\{x\}$, since $\pi\left(\mathbf{E}_{j}\right) \cap \pi\left(\mathbf{E}_{k}\right)=\emptyset, j \neq k$. Because $\bigcup\left\{\gamma \mathbf{E}_{i}: \boldsymbol{\gamma} \in \Gamma\right\}$ is a disjoint union, there is $\mathbf{x}_{0} \in \pi^{-1}\{x\}$ such that $\mathbf{x}_{0} \mathbf{a}(\tau) \in \mathrm{E}_{i}$ for all $\tau \geq \tau_{0}$. But this happens if and only if $\mathbf{x}_{0} \in \mathbf{g}_{i} \mathbf{A U}$. Hence $x \mathbf{U}$ is a periodic orbit. This gives a contradiction.

2. Finite volume homogeneous spaces of $\operatorname{SL}(2, R)$

A) ClaSsification of invariant measures and orbit closures for horocycle flows.

Proof of Theorem 2 for Lattices: Let Γ be a lattice in G and ν the G-invariant Borel probability measure on $\Gamma \backslash \mathbf{G}=X$. It suffices to show that if $x \in X$ and $x \mathbf{U}$ is not a closed (periodic) orbit then there is a sequence $t_{n} \dagger \infty, n \rightarrow \infty$ such that

$$
\begin{equation*}
S_{f}\left(x, t_{n}\right) \rightarrow f_{\nu}=\int_{X} f d \nu, \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

for every bounded uniformly continuous function on X.
So suppose that $x \mathbf{U}$ is not a closed orbit. By Proposition 1.1 there exist a compact subset $K \subset X$ and a sequence $\tau_{n} \uparrow \infty$ such that $x \mathbf{a}\left(\tau_{n}\right) \in K$ for all $n=1,2, \ldots$. We claim that $t_{n}=e^{2 r_{n}}, n=1,2, \ldots$ satisfies (2.1). Indeed, let f be as above and for a given $\varepsilon>0$ let $\omega_{f}(\varepsilon)=\omega_{\tilde{f}}(\varepsilon)$, where \tilde{f} is the lift of f to G. Since K is compact, there are $0<\delta<0.01 \omega_{f}(\varepsilon)$ and $\eta>0$ such that π is one-to-one on $\mathbf{W}(\mathbf{x} ; \delta)$ and

$$
\nu\left(\pi\left(\mathbf{V}_{0.1 \varepsilon C_{f}^{-1}}(\mathbf{x} ; \delta, 1)\right)\right)>\eta
$$

for all $\mathbf{x} \in \pi^{-1}(K)$, where

$$
\mathbf{V}_{r}(\mathbf{x} ; \delta, t)=\bigcup\left\{\psi_{s}(\mathbf{W}(\mathbf{x} ; \delta, t)): 0 \leq s \leq r\right\}, \quad 0 \leq r \leq t
$$

Since the action of \mathbf{U} on (X, ν) is ergodic there are $t_{0}>0$ and a subset $Y \subset X$ with $\nu(Y)>1-0.1 \eta$ such that

$$
\left|S_{f}(y, t)-f_{\nu}\right|<0.01 \varepsilon
$$

for all $y \in Y, t \geq t_{0}$. Now let $n_{0} \geq 1$ be so big that $t_{n} \geq 100 t_{0}$ for all $n \geq n_{0}$ and let $x_{n}=x \mathbf{a}\left(\tau_{n}\right) \in K, n \geq n_{0}$. Then

$$
\begin{aligned}
& V\left(x ; \delta, t_{n}\right)=V\left(x_{n} ; \delta, 1\right) \mathbf{a}\left(-\tau_{n}\right) \\
& \nu\left(\pi\left(\mathbf{V}_{0.1 \varepsilon C_{f}^{-1} t_{n}}\left(\mathbf{x} ; \delta, t_{n}\right)\right)>\eta, \mathbf{x} \in \pi^{-1}\{x\}\right.
\end{aligned}
$$

This implies that

$$
\pi\left(\mathbf{V}_{0.1 e C_{1}^{-1} t_{n}}\left(\mathbf{x} ; \delta, t_{n}\right)\right) \cap Y \neq \emptyset
$$

and hence there is $y_{n} \in W\left(x ; \delta, t_{n}\right), n \geq n_{0}$ such that

$$
\left|S_{f}\left(y_{n}, \alpha\left(y_{n}, t_{n}\right)\right)-f_{\nu}\right|<0.5 \varepsilon .
$$

This gives via (1.4) that

$$
\left|S_{f}\left(x, t_{n}\right)-f_{\nu}\right|<\varepsilon
$$

for all $n \geq n_{0}$. This completes the proof of the Theorem.
Proof of Theorem 1: It follows from the proof of Theorem 2 just given that if $x \mathbf{U}$ is not a closed orbit, then $x \mathbf{U} \cap G \neq \emptyset$ for every open subset $G \subset X$. This implies that $\overline{x \mathbf{U}}=X$.

Note 2.1: The proof of Theorem 2 shows that if $X=\Gamma \backslash \mathbf{G}$ is compact then $S_{f}(x, t) \rightarrow f_{\nu}, t \rightarrow \infty$ for all $x \in X$. Hence the action of U on X is uniquely ergodic. Other proofs of this fact are given in [F2], [B] and [EP]. Our proof of the unique ergodicity of \mathbf{U} for compact $\Gamma \backslash \mathbf{G}$ applies also to the uniformly parametrized horocycle flow associated with the geodesic flow on the unit tangent bundle of a compact surface of variable negative curvature.
B) Equidistribution of closed horocycles.

Proof of Theorem 5: It suffices to show that

$$
S_{f}(x, T) \rightarrow f_{\nu}, \quad T \rightarrow \infty
$$

for every bounded uniformly continuous function f on $X=\Gamma \backslash \mathbf{G}$, where $T=$ $T(x)>0, x \in P$ denotes the period of the periodic orbit $x \mathbf{U}$.

So let f and $\varepsilon>0$ be given and let $\omega_{f}(\varepsilon)$ be as in the proof of Theorem 2. Let $0<\delta<\omega_{f}(\varepsilon)$ be so small that π is one-to-one on $\mathbf{V}(\mathbf{z} ; \delta, 1)-\psi_{1}(\mathbf{W}(\mathbf{z} ; \delta))$ for every $\mathbf{z} \in \mathbf{G}$ for which $\pi(\mathbf{z}) \mathbf{U}$ is a periodic orbit of period 1 . Let

$$
\eta=\nu\left(\pi\left(\mathbf{V}_{0.01 e C_{f}^{-1}}(\mathbf{z} ; \delta, 1)\right)\right)
$$

where $\mathbf{V}_{\mathbf{r}}(\mathbf{z} ; \delta, 1)$ is as in the proof of Theorem 2. Since the action of \mathbf{U} on (X, ν) is ergodic, there are $t_{0}>1$ and $Y \subset X$ with $\nu(Y)>1-0.1 \eta$ such that

$$
\left|S_{f}(y, t)-f_{\nu}\right|<0.01 \varepsilon
$$

for all $y \in Y, t \geq t_{0}$. Arguing as in the proof of Theorem 2 we conclude that

$$
\left|S_{f}(x, T)-f_{\nu}\right|<\varepsilon
$$

for all $x \in P$ with $T(x)>5 t_{0}$. This completes the proof of the theorem.
C) Uniform distribution of horocycle orbits. The reader is advised to skip this section unless he or she is particularly interested in seeing a proof of Theorem 3 which does not use Theorem 2. (Also Lemma 2.2 below is of independent interest.) A much better proof of Theorem 3 is given in Section 3 below.

Let Γ be a nonuniform lattice in \mathbf{G} and let $r_{0}>1, \mathbf{g}_{i}, \Gamma_{i}, \mathbf{E}_{i}, i=1, \ldots, n$ be as in (1.5). If $r_{0}>0$ is sufficiently large then there is $\rho>0$ such that

$$
\left\{\mathbf{x} \in \mathbf{G}: d_{\mathbf{G}}(\mathbf{x}, \tilde{\Gamma} \mathbf{x}) \leq 3 \rho\right\} \subset\left\{\gamma \mathbf{E}_{i}: \gamma \in \Gamma, i=1, \ldots, n\right\}
$$

and if

$$
\boldsymbol{\gamma} \mathbf{x}(p) \in \mathbf{W}(\mathbf{x} ; 0.1 \rho)
$$

for some $\mathbf{x} \in \mathrm{E}_{i}, i=1, \ldots, n, 0 \leq p \leq \rho$ and some $\mathbf{e} \neq \boldsymbol{\gamma} \in \Gamma$ then $\boldsymbol{\gamma} \in \Gamma_{i}$. Now we choose $0<d<0.1 \rho$ such that

$$
\mathbf{x u}(s) \in \mathbf{E}_{\mathbf{i}}
$$

for all $|s| \leq 3 d$ and all $\mathbf{x} \in \mathbf{E}_{i}$ with $d_{\mathbf{G}}(\mathbf{x}, \tilde{\Gamma} \mathbf{x}) \leq 3 d, i=1, \ldots, n$.
Henceforth we assume for convenience that $d=1$. Now let $\mathbf{x}=\mathbf{g}_{i} \mathbf{a}(t) \mathbf{u}(s) \mathbf{r}(\theta)$ $\in \mathbf{E}_{i}$ for some i and suppose that

$$
\begin{equation*}
\gamma \mathbf{x u}(p)=\mathbf{x a}(\tau) \mathbf{h}(b) \in \mathbf{W}(\mathbf{x} ; \delta) \tag{2.2}
\end{equation*}
$$

for some $\mathbf{e} \neq \gamma \in \Gamma_{i}, p \in R$ and $0<\delta<\varepsilon_{0}=0.01$. Then

$$
\mathbf{u}(q) \mathbf{r}(\theta) \mathbf{u}(p)=\mathbf{r}(\theta) \mathbf{a}(\tau) \mathbf{h}(b)
$$

where $\mathbf{u}(q)=\mathbf{a}(-t) \mathbf{g}_{i}^{-1} \gamma \mathrm{~g}_{i} \mathbf{a}(t) \in \mathbf{U}, q \neq 0$. Using this relation one can compute that

$$
\begin{align*}
e^{\tau} & =1-q \cos \theta \sin \theta \\
p & =-q e^{-\tau} \cos ^{2} \theta \tag{2.3}\\
b & =-q e^{\tau} \sin ^{2} \theta
\end{align*}
$$

This shows that if $p \neq 0$ then $p>0$ if and only if $q<0$. Also $b \geq 0$, whenever $p>0$ and
$p(q, \theta)$ is decreasing in q for all q and all $0 \leq \theta \leq 2 \pi$,
$|\tau(q, \theta)|$ and $b=b(q, \theta)$ are decreasing for all
$-\infty<q<0$ and all θ with $\cos \theta \sin \theta \geq 1 / 2 q$

Relation (2.4) implies that if

$$
\begin{equation*}
\boldsymbol{\gamma}_{i} \mathbf{x u}(p) \in \mathbf{W}(\mathbf{x} ; \delta) \tag{2.6}
\end{equation*}
$$

for some $0 \leq p \leq 2$ then

$$
\begin{equation*}
p=\min \{s \geq 0: \gamma \mathbf{x} \mathbf{u}(s) \in \mathbf{W}(\mathbf{x} ; \delta) \text { for some } \mathbf{e} \neq \gamma \in \Gamma\} \tag{2.7}
\end{equation*}
$$

Also it follows from (2.4) and (2.5) that if (2.2) holds for some $0 \leq p \leq 2$ and $\cos \theta \sin \theta \geq 1 / 2 q$ (in particular, when $\tau \geq 0$) then (2.6) holds and hence so does (2.7).

Now let $\mathbf{y}=\mathbf{x a}(\tau) \mathbf{h}(b) \in \mathbf{W}(\mathbf{x} ; \delta)$ and let $\alpha(\mathbf{y}, s) \geq 0,0 \leq s \leq 1$ be as in Section 1. Then

$$
\mathbf{y} \mathbf{u}(\alpha(\mathbf{y}, s))=\mathbf{x u}(s) \mathbf{a}(\tau(s)) \mathbf{h}(b(s))
$$

where

$$
\begin{align*}
\alpha(\mathbf{y}, s) & =\frac{s}{e^{2 \tau}-s b}, \\
\tau(s) & =\tau(\mathbf{y}, s)=\ln \left(e^{\tau}-s b e^{-\tau}\right), \tag{2.8}\\
b(s) & =b(\mathbf{y}, s)=b\left(1-b s e^{-2 \tau}\right) .
\end{align*}
$$

Now let $0<\delta<0.01 \varepsilon_{0}$ be fixed and suppose that (2.2) holds for some $\mathbf{x} \in \mathbf{G}$, $0<p \leq 1, \mathbf{e} \neq \gamma \in \Gamma$ and some $|\tau|,|b|<\delta$. Then $b \geq 0$ by (2.3). Also

$$
\boldsymbol{\gamma} \mathbf{x}_{\boldsymbol{s}} \mathbf{u}\left(p_{s}\right) \in \psi_{s}(\mathbf{W}(\mathbf{x} ; \delta))
$$

for all $0 \leq s \leq 1$ and some $p_{s} \geq 0, p_{0}=p$, where $\mathbf{x}_{s}=\mathbf{x u}(s)$. It follows then from (2.8) that

$$
\begin{equation*}
0 \leq p_{s}=\frac{s}{e^{2 \tau}-b s}-s+p, \quad p_{s} \leq 2 \quad \text { for } 0 \leq s \leq 1 \tag{2.9}
\end{equation*}
$$

Relation (2.3) shows that $p_{\bar{s}}=0$ if and only if

$$
\begin{equation*}
\bar{s}=\left(e^{2 \tau}-e^{\tau}\right) / b, \quad \tau \neq 0, \quad b>0, \quad p=\bar{s}\left(1-e^{-\tau}\right) \tag{2.10}
\end{equation*}
$$

For $0 \leq s \leq 1$ define

$$
\beta_{s}=\beta_{s}(\mathbf{x}, \delta)=\min \left\{t \geq 0: \gamma \mathbf{x}_{s} \mathbf{u}(t) \in \psi_{s}(\mathbf{W}(\mathbf{x} ; \delta)) \text { for some } \mathbf{e} \neq \gamma \in \Gamma\right\}
$$

Lemma 2.1: Let $0<\varepsilon<0.1 \varepsilon_{0}$ be given. Suppose that $\beta_{0}=\beta_{0}(\mathbf{x}, \delta)>0$ for some $0<\delta<\varepsilon^{5}$. Then there exists $0 \leq s_{0} \leq 1$ such that

$$
\begin{equation*}
\beta_{s} \geq \frac{1}{2} \min \left\{1, \beta_{0} \varepsilon^{2}\right\} \tag{2.11}
\end{equation*}
$$

for all $s \notin\left[(1-\varepsilon) s_{0},(1+\varepsilon) s_{0}\right], 0 \leq s \leq 1$.
Proof: We have

$$
\boldsymbol{\gamma}_{s} \mathbf{x}_{s} \mathbf{u}\left(\boldsymbol{\beta}_{s}\right) \in \psi_{s}(\mathbf{W}(\mathbf{x} ; \delta))
$$

for all $0 \leq s \leq 1$ and some $\mathbf{e} \neq \gamma_{s} \in \Gamma$. Let

$$
S=\left\{s \in[0,1]: \beta_{s}<\frac{1}{2}\right\}
$$

It follows from the definition of ρ and d that if $s \in S$ then we can assume $\mathbf{x}_{s} \in \mathbf{E}_{i}, \gamma_{s} \in \Gamma_{i}$ for some $i \in\{1, \ldots, n\}$. Then $\mathbf{x}_{s} \in \mathbf{E}_{i}, 0 \leq \beta_{s} \leq 1, \gamma_{s} \in \Gamma_{i}$ for all $0 \leq s \leq 1$. Also we can assume that

$$
\begin{equation*}
\mathbf{g}_{i}^{-1} \boldsymbol{\gamma}_{s} \mathbf{g}_{i} \in \mathbf{U}^{-} \tag{2.12}
\end{equation*}
$$

since this is so when $\beta_{s}>0$ (by (2.3)) and if $\beta_{s}=0$ and (2.12) does not hold, then we can replace γ_{s} by γ_{s}^{-1}. Then

$$
\boldsymbol{\gamma}_{s} \times \mathbf{x}\left(r_{s}\right)=\operatorname{xa}\left(\tau_{s}\right) \mathbf{h}\left(b_{s}\right) \in \mathbf{W}(\mathbf{x} ; \delta)
$$

for some $0<\beta_{0} \leq r_{s} \leq 1$ and all $s \in[0,1]$. Assume first that

$$
\tau_{s}<0 \quad \text { for all } s \in[0,1]
$$

Then

$$
\beta_{s} \geq r_{s} \geq \beta_{0}
$$

for all $s \in[0,1]$ by (2.9), since $b_{s} \geq 0$. Then s_{0} can be chosen arbitrary in (2.11). Now assume that

$$
\tau_{\tilde{s}} \geq 0 \quad \text { for some } \tilde{\mathcal{s}} \in[0,1]
$$

It follows then from (2.5) that

$$
\boldsymbol{\gamma}_{i} \mathbf{x}_{s} \mathbf{u}\left(p_{s}\right) \in \psi_{s}(\mathbf{W}(\mathbf{x}, \delta))
$$

for all $s \in[0,1]$ and some $0 \leq p_{s} \leq 1, p_{0}=p \geq \beta_{0}>0$. Then

$$
\boldsymbol{\gamma}_{s}=\boldsymbol{\gamma}_{i}, \quad \beta_{\boldsymbol{s}}=p_{s}
$$

for all $s \in[0,1]$ by (2.7). Write $\tau_{s}=\tau \geq 0, b_{s}=b \geq 0$. If $b=0$ then $\tau=0$ and $\beta_{s}=\beta_{0}$ for all s by (2.3) and (2.9). Then s_{0} can be chosen arbitrary in (2.11). So assume that $b>0$ and let $\bar{s}>0$ be as in (2.10). Then $p_{\bar{s}}=0$ and $p=\bar{s}\left(1-e^{-\tau}\right)$. Now let $s_{\varepsilon}=\tilde{s}(1 \pm \varepsilon)$. Using (2.10) and substituting s_{ε} instead of s into (2.9) we obtain

$$
p_{s_{e}}=(1 \pm \varepsilon) c(\bar{s})+p
$$

where

$$
\begin{aligned}
c(\bar{s}) & =\bar{s}\left[\frac{e^{-\tau}}{1 \mp \varepsilon\left(e^{\tau}-1\right)}-1\right] \\
& =\bar{s}\left[e^{-\tau}\left(1 \pm \varepsilon\left(e^{\tau}-1\right)+\rho(\varepsilon, \tau)\right)-1\right] \\
& =-p \pm \varepsilon p+\rho_{1}(\varepsilon, \tau, \bar{s}) \\
\left|\rho_{1}(\varepsilon, \tau, \bar{s})\right| & =\left|\bar{s} e^{-\tau} \rho(\varepsilon, \tau)\right| \leq 2 \varepsilon^{2}\left(e^{\tau}-1\right)^{2} \bar{s} \leq \tau p
\end{aligned}
$$

Then

$$
p_{s_{c}}=\varepsilon^{2} p+(1 \pm \varepsilon) \rho_{1}(\varepsilon, \tau, \bar{s}) \geq \frac{1}{2} \varepsilon^{2} p
$$

since $0 \leq \tau<\delta<\varepsilon^{5}$. Set $s_{0}=\min \{\bar{s}, 1-\varepsilon\}$. Then

$$
p_{s} \geq \frac{1}{2} \varepsilon^{2} p \geq \frac{1}{2} \varepsilon^{2} \beta_{0}
$$

for all $s \in\left[0,(1-\varepsilon) s_{0}\right] \cup\left[(1+\varepsilon) s_{0}, 1\right]$, since p_{s} decreases in s on $[0, \bar{s}]$ and increases in s for $s>s$ by (2.9). This completes the proof of the lemma.

Now let $0<\xi(\delta)<\delta$ be such that

$$
\mathbf{W}\left(\mathbf{x}_{s} ; \xi(\delta)\right) \subset \psi_{s}(\mathbf{W}(\mathbf{x} ; \delta))
$$

for all $0 \leq s \leq 1$. Define

$$
\beta(\mathbf{x}, \delta)=\beta_{0}(\mathbf{x}, \delta)
$$

It follows from Lemma 2.1 that if $\beta(\mathbf{x}, \delta)>0$ for some $0<\delta<\varepsilon^{5}$ then there exists $s_{0} \in[0,1]$ such that

$$
\beta\left(\mathbf{x}_{s}, \xi(\delta)\right)>\frac{1}{2} \min \left\{1, \varepsilon^{2} \beta(\mathbf{x}, \delta)\right\}
$$

for all $s \in\left[0,(1-\varepsilon) s_{0}\right] \cup\left[(1+\varepsilon) s_{0}, 1\right]$. Now define

$$
\beta(\mathbf{x} ; \delta, t)=\min \{s \geq 0: \gamma \mathbf{x} \mathbf{u}(s) \in \mathbf{W}(\mathbf{x} ; \delta, t) \text { for some } \mathbf{e} \neq \boldsymbol{\gamma} \in \Gamma\}, \quad t \geq 1
$$

Then

$$
\beta(\mathbf{x} ; \delta, t)=\beta(\mathbf{x a}(r), \delta) t, \quad \beta(\mathbf{x} ; \delta, 1)=\beta(\mathbf{x}, \delta)
$$

where $e^{2 r}=t$. We get the following
Corollary 2.1: Let $0<\varepsilon<0.01 \varepsilon_{0}$ be given and let $\beta(\mathbf{x} ; \delta, t)>0$ for some $0<\delta<\varepsilon^{5}$. Then there exists $s_{0} \in[0, t]$ such that

$$
\beta\left(\mathbf{x}_{s} ; \xi(\delta), t\right) \geq \frac{1}{2} \min \left\{t, \varepsilon^{2} \beta(\mathbf{x}, \delta, t)\right\}
$$

for all $s \in\left[0,(1-\varepsilon) s_{0}\right] \cup\left[(1+\varepsilon) s_{0}, t\right]$, where $\mathbf{x}_{s}=\mathbf{x u}(s)$.
Lemma 2.2: Suppose that $1<\beta<2 t$ for some $t \geq 1,0<\delta<0.01 \varepsilon_{0}$, where $\beta=\beta(\mathbf{x} ; \delta, t)$. Then there exists $\mathbf{y}_{\mathbf{x}} \in \mathbf{W}(\mathbf{x} ; \sqrt{10 \delta}, \beta)$ such that $\pi\left(\sigma_{\mathbf{y}_{\mathbf{x}}}(\beta)\right)$ is a closed (periodic) U-orbit in $\Gamma \backslash \mathbf{G}$ of length (period) $\alpha\left(\mathbf{y}_{\mathbf{x}}, \beta\right.$). (Here $\sigma_{\mathbf{y}_{\mathbf{x}}}(\beta)$ and $\alpha\left(\mathbf{y}_{\mathbf{x}}, \beta\right)$ are as in Section 1.)

Proof: Let $r=\frac{1}{2} \ln \beta$ and $\mathbf{z}=\mathbf{x a}(r)$. Then

$$
\gamma \mathbf{z} \mathbf{u}(1)=\mathbf{z a}(\tau) \mathbf{h}(b) \in \mathbf{W}(\mathbf{z} ; \delta, t / \beta)
$$

for some $\mathrm{e} \neq \gamma \in \Gamma$. It follows from the definition of ρ and d that we can assume $\mathbf{z} \in \mathbf{E}_{i}, \boldsymbol{\gamma} \in \Gamma_{i}$ for some $i=1, \ldots, n$. Then (2.3) holds with $p=1$ and
$\frac{1}{2} \leq|q|=\left|p e^{\tau}+b e^{-\tau}\right| \leq 2$, since $|\tau|,|b| \leq 2 \delta$. This implies that $\sin ^{2} \theta \leq 4 \delta$ and hence

$$
\begin{equation*}
\text { either }|\theta| \leq \sqrt{6 \delta} \text { or }|\pi-\theta| \leq \sqrt{6 \delta} \tag{2.13}
\end{equation*}
$$

if δ is sufficiently small. Then $\cos \theta \sin \theta \geq \frac{1}{2 q}$ and hence

$$
\boldsymbol{\gamma}_{\mathbf{i}} \mathbf{z u}\left(p^{\prime}\right) \in \mathbf{W}(\mathbf{z} ; \delta, t / \beta)
$$

for some $p^{\prime} \geq 0$ by (2.5). It follows then from (2.4) and the definition of β that $\boldsymbol{\gamma}=\boldsymbol{\gamma}_{i}, p^{\prime}=1$. But $\mathbf{z}=\mathbf{z}^{\prime} \mathbf{r}(\theta)$ for some \mathbf{z}^{\prime} with $\boldsymbol{\gamma}_{i} \mathbf{z}^{\prime} \mathbf{u}(s)=\mathbf{z}^{\prime}$ for some $s>0$. It follows then from (2.13) that there is $\mathbf{y}_{\boldsymbol{z}} \in \mathbf{W}(\mathbf{z} ; \sqrt{10 \delta})$ such that $\pi\left(\sigma_{\boldsymbol{y}_{\mathbf{z}}}(1)\right)$ is a closed U-orbit in $\Gamma \backslash \mathbf{G}$ of length $\alpha\left(\mathbf{y}_{\mathbf{z}}, 1\right)$. This completes the proof of the lemma if we set $\mathbf{y}_{\mathbf{x}}=\mathbf{y}_{\mathbf{z}} \mathbf{a}(-r)$.

Proof of Theorem 3: It suffices to prove that if $x \in \Gamma \backslash \mathbf{G}=X$ and $x \mathbf{U}$ is not a closed orbit then

$$
S_{f}(x, t) \rightarrow f_{\nu}, \text { when } t \rightarrow \infty
$$

for every bounded uniformly continuous function f on X.
So let $0<\tilde{\varepsilon}<0.01 \varepsilon_{0}$ and f as above be given. Let $\varepsilon=\tilde{\varepsilon} C_{f}^{-1}$ and let $\omega_{f}(\varepsilon)$ be as in the proof of Theorem 2. Let $0<\delta<\left[\min \left\{\varepsilon, \omega_{f}\left(\varepsilon^{10}\right)\right\}\right]^{100}$ be so small that π is one-to-one on $\mathbf{V}(\mathbf{z} ; \delta, 1)-\psi_{1}(\mathbf{W}(\mathbf{z}, \delta))$ for every $\mathbf{z} \in \mathbf{G}$ for which $\pi(\mathbf{z}) \mathrm{U}$ is a closed U -orbit in X of length 1 . Let

$$
\eta=\nu\left(\pi\left(\mathbf{V}_{\mathbf{z}^{5}}(\mathbf{z}, \xi(\delta) / 2,1)\right)\right.
$$

where $\mathrm{V}_{r}(\mathbf{z} ; \delta, 1)$ is as in the proof of Theorem 2 and $0<\xi(\delta)<\delta$ as in Corollary 2.1.

Since the action of U on (X, ν) is ergodic, there are $l_{0}>1$ and $Y \subset X$ with $\nu(Y)>1-0.1 \eta$ such that

$$
\left|S_{f}(y, t)-f_{\nu}\right|<\varepsilon^{10}
$$

for all $y \in Y, t \geq l_{0}$. Arguing as in the proof of Theorem 2 we conclude that if $z \mathrm{U}$ is a closed orbit of length $l \geq 5 l_{0}$ then

$$
\begin{equation*}
\left|S_{f}(z, l)-f_{\nu}\right| \leq 2 \tilde{\varepsilon}^{5} \tag{2.14}
\end{equation*}
$$

Since $x \mathbf{U}$ is not a closed orbit it follows from (2.3) that there exists $t_{0} \geq 10 l_{0} / \varepsilon^{4}$ such that

$$
\begin{equation*}
\beta(\mathbf{x} ; \delta, t) \geq 10 l_{0} / \varepsilon^{4}, \quad \mathbf{x} \in \pi^{-1}\{x\} \tag{2.15}
\end{equation*}
$$

for all $t \geq t_{0}$. We claim that

$$
\begin{equation*}
\left|S_{f}(x, t)-f_{\nu}\right|<\tilde{\varepsilon} \tag{2.16}
\end{equation*}
$$

for all $t \geq t_{0}$.
Indeed, let $t \geq t_{0}$. It follows from (2.15) and Corollary 2.1 that there exists $s_{0} \in[0, t]$ such that

$$
\beta\left(\mathbf{x}_{s} ; \xi(\delta), t\right) \geq 10 l_{0}
$$

for all $s \in\left[0,\left(1-\varepsilon^{2}\right) s_{0}\right] \cup\left[\left(1+\varepsilon^{2}\right) s_{0},\left(1-\varepsilon^{2}\right) t\right]=T$. To prove (2.16) for t it suffices to show that for each $s \in T$ there is $l_{0} \leq t(s) \leq t-s$ such that

$$
\begin{equation*}
\left|S_{f}\left(x_{s}, t(s)\right)-f_{\nu}\right|<\tilde{\varepsilon}^{2} \tag{2.17}
\end{equation*}
$$

So let $s \in T$. If π is one-to-one on $\mathrm{V}_{t-s}\left(\mathbf{x}_{s}, \xi(\delta) / 2, t\right), \mathbf{x}_{s} \in \pi^{-1}\left\{x_{s}\right\}$ then arguing as in the proof of Theorem 2 we obtain

$$
\left|S_{f}\left(x_{s}, t-s\right)-f_{\nu}\right|<\tilde{\varepsilon}^{2}
$$

We set $t(s)=t-s$ in this case. Now assume that π is not one-to-one on $\mathbf{V}_{t-s}\left(\mathbf{x}_{s}, \xi(\delta) / 2, t\right)$. Then there are $r \in[0, t-s], \mathbf{y} \in \psi_{r}\left(\mathbf{W}\left(\mathbf{x}_{s}, \xi(\delta) / 2, t\right)\right.$ such that

$$
\gamma \mathbf{y} \mathbf{u}(p) \in \psi_{r}\left(\mathbf{W}\left(\mathbf{x}_{s}, \xi(\delta) / 2, t\right)\right.
$$

for some $p \geq 0$ and some $\mathbf{e} \neq \gamma \in \Gamma$. This implies via (2.8) that

$$
\gamma \mathbf{x}_{s} \mathbf{u}\left(r^{\prime}\right) \in \mathbf{W}\left(\mathbf{x}_{s} ; \xi(\delta), t\right)
$$

for some $0<r^{\prime}<(t-s)\left(1+\epsilon^{8}\right)$. This gives

$$
10 l_{0} \leq \beta\left(\mathbf{x}_{s} ; \xi(\delta), t\right) \leq(t-s)\left(1+\varepsilon^{8}\right)
$$

Set $\rho(s)=\beta\left(\mathbf{x}_{s}, \xi(\delta), t\right)$. It follows then from Lemma 2.2 that there is $y_{s} \in$ $W\left(x_{s}, \sqrt{10 \xi(\delta)}, \rho(s)\right)$ such that $\sigma_{y_{\mathrm{s}}}(\rho(s))$ is a closed U-orbit of length $\alpha\left(y_{s}, \rho(s)\right)$. Set $t(s)=\rho(s)$ if $\rho(s) \leq t-s$ and $t(s)=t-s$ if $\rho(s)>t-s$. Relation (2.17) now follows from (2.14) and our choice of δ. This completes the proof of the theorem.
D) Comments. Our proofs of Theorems $1,2,3$ and 5 used the fact that \mathbf{U} is a horospherical subgroup for $\mathbf{a}(\tau), \tau>0$, i.e. $\mathbf{U}=\{\mathbf{g} \in \mathbf{G}: \mathbf{a}(-n \tau) \mathbf{g a}(n \tau) \rightarrow \mathbf{e}$, $n \rightarrow \infty\}$. This is not necessarily true if \mathbf{U} is a one-parameter unipotent subgroup of a general Lie group G. Because of this, our proofs can not be extended to the general case. In Section 3 and Section 4 (which handles arbitrary discrete Γ) we give proofs of Theorems 3 and 2 , which can be extended to the general case. This was done in [R, 1-4]. Note that an analog of Theorem 2 for general horospherical U is given in [R1, Theorem 4] (see also [D1] and [V]).

3. A better proof of Theorem 3

In this section we give a better proof of Theorem 3, which incorporates in a simple form some of the ideas used to prove Theorem C (see [R4, Proof of Theorem 2.1]). The proof uses Theorem 2.
Let Γ be a lattice in $\mathbf{G}=\operatorname{SL}(2, R)$. We will need the following theorem.
Theorem 3.1: Given $\varepsilon>0$ there is a compact $K(\varepsilon) \subset X=\Gamma \backslash \mathbf{G}$ such that if $\mathbf{U}=\{\mathbf{u}(s): s \in R\}$ is a one-parameter unipotent subgroup of $\mathbf{G}, z \in X$ and $z \mathbf{U}$ is not a periodic orbit then

$$
\begin{equation*}
\int_{0}^{t} \chi_{K(0)}(z \mathbf{u}(s)) d s \geq(1-\varepsilon) t \tag{3.1}
\end{equation*}
$$

for all $t \geq t_{0}$ and some $t_{0}=t_{0}(z, \mathrm{U}, \varepsilon)>0$, where χ_{K} denotes the characteristic function of K.

A general version of this theorem was proved in [D2, Theorem 3.5] and used in [R4, Proof of Theorem 2.1].
Let $\mathrm{U}=\{\mathbf{u}(t)=\exp t u: t \in R\}, u \in \mathcal{G}$ be a one-parameter unipotent subgroup of G and $v \in \mathfrak{B}$. Then $\left|A d_{u(s)}(v)\right|^{2}$ is a polynomial in s of degree ≤ 4, where $\operatorname{Ad}_{\mathbf{g}}(v)=\left.\frac{d}{d t}\left(\mathbf{g}^{-1}(\exp t v) \mathbf{g}\right)\right|_{t=0}, \mathbf{g} \in \mathbf{G}$. This fact plays an important role in the proof of Theorem 3.1. Indeed, we prove the following

Lemma 3.1: Let $\mathcal{P}(k)$ be the set of all real (or complex) polynomials of degree $\leq k$. Then given $\varepsilon>0$ and $\theta>0$ there is $0<\delta=\delta(\varepsilon, \theta, k)<\theta$ such that if $P \in \mathcal{P}(k)$ and

$$
\begin{equation*}
\max \{|P(s)|: 0 \leq s \leq t\}=\theta \tag{3.2}
\end{equation*}
$$

for some $t>0$ then

$$
\lambda\{s \in[0, t]:|P(s)| \geq \delta\}>(1-\varepsilon) t
$$

where λ denotes the length measure on R with $\lambda([0, t])=t$.
Proof: Using a standard scaling argument it suffices to assume that $t=1$ in (3.2). Let $C([0,1])$ denote the Banach space of all continuous functions on $[0,1]$ with the supremum norm. For $f \in C([0,1]), \alpha \geq 0$ and $\varepsilon>0$ define

$$
\begin{aligned}
A(f, \alpha) & =\{x \in[0,1]:|f(x)| \geq \alpha\} \\
\varphi_{\varepsilon}(f) & =\sup \{\alpha \geq 0: \lambda(A(f, \alpha)) \geq 1-\varepsilon\}
\end{aligned}
$$

It is easy to see that $\left|\varphi_{\varepsilon}(f)-\varphi_{\varepsilon}(g)\right| \leq|f-g|$ for all $f, g \in C([0,1])$ and hence $\varphi_{\varepsilon}(f)$ is continuous on $C([0,1])$. Now let

$$
\mathcal{P}_{\theta}=\left\{P \in \mathcal{P}(k):|P|_{[0,1]}=\theta\right\}
$$

Then \mathcal{P}_{θ} is a closed and bounded subset of the finite dimensional subspace $\mathcal{P}(k) \subset$ $C([0,1])$. Hence \mathcal{P}_{θ} is compact and hence $\varphi_{\varepsilon}(P) \geq \delta_{0}$ for all $P \in \mathcal{P}_{\theta}$ and some $\delta_{0}=\delta_{0}(\varepsilon, \theta, k)>0$. This completes the proof.

Now let $\tilde{\Gamma}=\Gamma-\{\mathbf{e}\}$ and for $\mathbf{x} \in \mathbf{G}$ let

$$
\Delta(\mathbf{x})=d_{\mathbf{G}}(\mathbf{x}, \tilde{\Gamma} \mathbf{x})
$$

Also let $\mathbf{E}_{i}, \boldsymbol{\gamma}_{i}, i=1, \ldots, n$ and $\rho>0$ be as on page 10 . For $0<r<\rho$, $i=1, \ldots, n$ define

$$
\mathbf{E}_{i}(r)=\left\{\mathbf{x} \in \mathbf{E}_{i}: \Delta(\mathbf{x}) \leq r\right\} \subset \mathbf{E}_{i}(\rho) \subset \mathbf{E}_{i}
$$

Now suppose that \mathbf{U} is a one-parameter subgroup of \mathbf{G} and

$$
d_{\mathbf{G}}\left(\mathbf{x} \mathbf{u}(s), \boldsymbol{\gamma}_{\mathbf{i}} \times \mathbf{x}(s)\right) \leq \theta
$$

for all $0 \leq s \leq t$, some $t>0, \mathbf{x} \in \mathbf{E}_{i}, i \in\{1, \ldots, n\}$ and $0<\theta<0.5 \rho$. Then

$$
\begin{equation*}
\mathbf{x u}(s) \in \mathbf{E}_{i}(\theta), \quad d_{\mathbf{G}}\left(\mathbf{x u}(s), \gamma_{i} \mathbf{x u}(s)\right)=\Delta(\mathbf{x u}(s)) \tag{3.3}
\end{equation*}
$$

for all $0 \leq s \leq t$ by the definition of \mathbf{E}_{i} and $\mathbf{E}_{i}(\theta)$.

It follows from the definition of $\mathbf{E}_{\boldsymbol{i}}$ that if $\mathrm{x} \in \mathbf{G}$ and $\Delta(\mathbf{x}) \leq \rho$ then there is a unique $i \in\{1, \ldots, n\}$ and $\tilde{\boldsymbol{\gamma}}_{\mathbf{x}} \in \Gamma$ such that $\tilde{\boldsymbol{\gamma}}_{\mathbf{x}} \mathbf{x} \in \mathbf{E}_{i}$. Then defining $\gamma_{x}=\tilde{\gamma}_{\mathbf{x}}^{-1} \boldsymbol{\gamma}_{i} \tilde{\gamma}_{\mathbf{x}}$ we get

$$
\Delta\left(\tilde{\gamma}_{\mathbf{x}} \mathbf{x}\right)=d_{\mathbf{G}}\left(\tilde{\gamma}_{\mathbf{x}} \mathbf{x}, \boldsymbol{\gamma}_{\mathbf{i}} \tilde{\gamma}_{\mathbf{x}} \mathbf{x}\right)=d_{\mathbf{G}}\left(\mathbf{x}, \boldsymbol{\gamma}_{\mathbf{x}} \mathbf{x}\right)=\Delta(\mathbf{x})
$$

This implies via (3.3) that if

$$
d_{\mathbf{G}}\left(\mathbf{x u}(s), \gamma_{\mathbf{x}} \mathrm{xu}(s)\right) \leq \theta
$$

for all $0 \leq s \leq t$ and some $t>0, \mathbf{x} \in \mathbf{G}, 0<\theta<0.5 \rho$ then

$$
\begin{equation*}
d_{\mathbf{G}}\left(\mathbf{x u}(s), \boldsymbol{\gamma}_{\mathbf{x}} \mathbf{x u}(s)\right)=\Delta(\mathbf{x u}(s)) \tag{3.4}
\end{equation*}
$$

for all $0 \leq s \leq t$.
Proof of Theorem 3.1: Let $\varepsilon>0$ be given and let $0<\theta<\min \{1,0.5 \rho\}$ be so small that if $d_{\mathbf{G}}(\mathbf{x}, \mathbf{y}) \leq 2 \theta$ for some $\mathbf{x}, \mathbf{y} \in \mathbf{G}$ then $\mathbf{y}=\mathbf{x} \exp v$ for some $v \in \mathfrak{G}$ with $|v|=d_{\mathbf{G}}(\mathbf{x}, \mathbf{y})$. Let $0<\delta^{2}=\delta\left(0.1 \varepsilon, \theta^{2} / 4,4\right)<\theta^{2} / 4$ be as in Lemma 3.1 for $k=4$. Let

$$
K(\varepsilon)=\left\{x \in X: \Delta(\mathbf{x}) \geq \delta, \mathbf{x} \in \pi^{-1}\{x\}\right\}
$$

-a compact subset of X. Now let U be a one-parameter unipotent subgroup of \mathbf{G} and $z \in X$. Suppose that $z \mathbf{U}$ is not a periodic orbit. If $z \mathbf{u}(s) \in K(\varepsilon)$ for all $s \geq 0$ then we are done. Otherwise there exists $s_{0} \geq 0$ such that $z \mathbf{u}\left(s_{0}\right) \notin K(\varepsilon)$. Then there is $i \in\{1, \ldots, n\}$ and $\mathbf{y} \in \mathbf{E}_{\mathbf{i}}$ such that $\pi(\mathbf{y})=z \mathbf{u}\left(s_{0}\right)$ and

$$
d_{\mathbf{G}}\left(\mathbf{y}, \boldsymbol{\gamma}_{i} \mathbf{y}\right)<\delta
$$

Then $\boldsymbol{\gamma}_{\mathbf{i}} \mathbf{y}=\mathbf{y} \exp v$ for some $v \in \mathfrak{G}$ with $|v|<\delta$ and $\exp v \notin \mathbf{U}$ since $z \mathbf{U}$ is not periodic. Hence there is $\tau>0$ such that

$$
\begin{align*}
& d_{G}\left(\mathbf{y u}(\tau), \gamma_{i} \mathbf{y} \mathbf{u}(\tau)\right)=\theta \\
& d_{G}\left(\mathbf{y u}(s), \gamma_{i} \mathbf{y} \mathbf{u}(s)\right) \leq \theta \tag{3.5}
\end{align*}
$$

for all $0 \leq s \leq \tau$. Hence

$$
\begin{equation*}
\Delta(\mathbf{w})=\theta \quad \text { where } \mathbf{w}=\mathbf{y} \mathbf{u}(\tau) \tag{3.6}
\end{equation*}
$$

by (3.3) and (3.5). Now let $t>1$. Define

$$
F(\mathbf{w}, t)=\{s \in[0, t]: \Delta(\mathbf{w} \mathbf{u}(s))<\delta\}
$$

and let $s_{1}=\sup F(\mathbf{w}, t), \mathbf{w}_{1}=\mathbf{w u}\left(s_{1}\right)$. Then

$$
d_{G}\left(\mathbf{w}_{1}, \boldsymbol{\gamma}_{\mathbf{w}_{1}} \mathbf{w}_{1}\right) \leq \delta
$$

where $\gamma_{w_{1}}$ is as in (3.4). It follows from (3.6) that

$$
d_{\mathbf{G}}\left(\mathbf{w}, \gamma_{\mathbf{w}_{1}} \mathbf{w}\right)>0.5 \theta
$$

Hence there is $0<r_{1}<s_{1}$ such that

$$
\begin{aligned}
& d_{G}\left(\mathbf{w}_{1} \mathbf{u}\left(r_{1}-s_{1}\right), \boldsymbol{\gamma}_{\mathbf{w}_{1}} \mathbf{w}_{1} \mathbf{u}\left(r_{1}-s_{1}\right)\right)=0.5 \theta \\
& d_{\mathbf{G}}\left(\mathbf{w}_{1} \mathbf{u}(-s), \boldsymbol{\gamma}_{\mathbf{w}_{1}} \mathbf{w}_{1} \mathbf{u}(-s)\right) \leq 0.5 \theta
\end{aligned}
$$

for all $s \in\left[0, s_{1}-r_{1}\right]$. It follows then from (3.4) and Lemma 3.1 that

$$
\lambda\left\{s \in\left[0, s_{1}-r_{1}\right]: \mathbf{w}_{1} \mathbf{u}(-s) \in \mathbf{K}(\varepsilon)\right\}>(1-0.1 \varepsilon)\left(s_{1}-r_{1}\right)
$$

where $K(\varepsilon)=\pi^{-1}(K(\varepsilon))$. Hence

$$
\lambda\left\{s \in I_{1}: \mathbf{w u}(s) \in \mathbf{K}(\varepsilon)\right\} \geq(1-\varepsilon) \lambda\left(I_{1}\right)
$$

where $I_{1}=\left[r_{1}, t\right]$. By repeated application of this argument we obtain $s_{1}>s_{2}>$ $\cdots>s_{m}>0, r_{1}>r_{2}>\cdots>r_{m}=0, s_{k+1}<r_{k}<s_{k}, k=1, \ldots, m-1$ such that

$$
s_{k}=\sup \left(F(\mathbf{w}, t) \cap\left[0, r_{k-1}\right]\right), \quad r_{0}=t, \quad k=1, \ldots, m
$$

and

$$
\begin{aligned}
& \lambda\left\{s \in I_{k}: \mathbf{w u}(s) \in \mathrm{K}(\varepsilon)\right\} \geq(1-0.1 \varepsilon) \lambda\left(I_{k}\right) \\
& I_{k}=\left[r_{k}, r_{k-1}\right], \quad[0, t]=\bigcup_{k=1}^{m} I_{k}
\end{aligned}
$$

This implies (3.1) if we set $t_{0}=100\left(s_{0}+\tau\right) / \varepsilon$. This completes the proof of the theorem.

Now let $x \in X$ be fixed. Let $C_{0}(X)$ denote the Banach space of all real continuous functions on X vanishing at infinity with the supremum norm and let $C_{0}^{*}(X)$ denote the dual of $C_{0}(X)$. For $t>0$ define $T_{x, t} \in C_{0}^{*}(X)$ by

$$
T_{x, t}(f)=\frac{1}{t} \int_{0}^{t} f(x \mathbf{u}(s)) d s, \quad f \in C_{0}(X)
$$

Then $\left|T_{x, t}\right| \leq 1$. Let \mathcal{T}_{x} denote the set of all limit points in the weak *-topology on $C_{0}^{*}(X)$ of the set $\left\{T_{x, t}: t>0\right\}$ when $t \uparrow \infty$. For each $T \in \mathcal{T}_{x}$ there is a unique Borel measure μ_{T} on X such that

$$
T(f)=\int_{X} f d \mu_{T}, \quad f \in C_{0}(X)
$$

It is clear that $\mu_{T}(X) \leq 1$ and μ_{T} is \mathbf{U}-invariant. Write $M(x, \mathbf{U})=\left\{\mu_{T}: T \in \mathcal{T}_{x}\right\}$. For each $\mu \in M(x, \mathrm{U})$ there is a subsequence $t_{n}=t_{n}(\mu) \uparrow \infty, n \rightarrow \infty$ such that

$$
T\left(t_{n}, f\right)=T_{x, t_{n}}(f) \rightarrow \int_{X} f d \mu
$$

for all $f \in C_{0}(X)$.
The proof of the following lemma uses standard arguments and can be found in [R4, Proposition 1.2]. In this lemma A_{δ} denotes the δ-neighborhood of $A \subset X$ in X.

Lemma 3.2: Let $\mu \in M(x, \mathrm{U})$ and let $0<t_{n}=t_{n}(\mu) \uparrow \infty$ be as above. Let $K \subset X$ be a compact subset of X. Then, given $\varepsilon>0$ there is $\delta_{0}=\delta_{0}(\varepsilon, K)>0$ such that

$$
\mu(K) \leq \liminf _{n \rightarrow \infty} T\left(t_{n}, \chi_{\kappa_{\delta}}\right) \leq \underset{n \rightarrow \infty}{\limsup } T\left(t_{n}, \chi_{\kappa_{\delta}}\right) \leq \mu(K)+\varepsilon
$$

for all $0<\delta<\delta_{0}$.
This lemma implies via Theorem 3.1 that $\mu(X)=1$ for all $\mu \in M(x, \mathbf{U})$.
Let $\mu \in M(x, \mathbf{U})$ and let $Y_{\mu} \subset \overline{x \mathbf{U}}$ be the support of μ. Let $\left\{\left(C(y), \mu_{C(y)}\right): y \in\right.$ $\left.Y_{\mu}^{\prime}\right\}$ be the ergodic decomposition of the action of \mathbf{U} on $\left(Y_{\mu}, \mu\right), Y_{\mu}^{\prime} \subset Y_{\mu}, \mu\left(Y_{\mu}^{\prime}\right)=$ 1. Let $\bar{C}(y)$ denote the support of $\mu_{C(y)}$ and let $\xi_{\mu}=\left\{\bar{C}(y): y \in Y_{\mu}^{\prime}\right\}$. It follows from Theorem 2 that if $\bar{C}(y) \in \xi_{\mu}$ then either $\bar{C}(y)=X$ and $\mu_{C(y)}$ is G-invariant or $\vec{C}(y)=y \mathbf{U}$ is a periodic orbit of \mathbf{U} with $\mu_{C(y)}$ being the normalized length measure on $y \mathbf{U}$. Let $\zeta_{\mu}=\{C \in \xi: C$ is a periodic orbit of $\mathbf{U}\}$.

Proof of Theorem 3: It suffices to prove that if $\beta_{\mu}=\mu\left(\cup\left\{C: C \in \zeta_{\mu}\right\}\right)>0$ for some $\mu \in M(x, \mathrm{U})$ then $x \mathrm{U}$ is a periodic orbit.

Indeed, let $\beta=\beta_{\mu}>0$ for some $\mu \in M(x, \mathbf{U})$. Let $K=K(0.01 \beta)$ be as in Theorem 3.1 and let D be a compact subset of $\cup\left\{C: C \in \zeta_{\mu}\right\}$ with $\mu(D)>0.9 \beta$. It follows then from (1.1) that there exists $\tau>0$ such that $D \mathrm{a}(\tau) \subset X-K$. Lemma 3.2 implies that

$$
\liminf _{n \rightarrow \infty} T_{x, t_{n}}\left(\chi_{D_{\delta}}\right) \geq 0.9 \beta
$$

for all small $\delta>0$. Hence

$$
\liminf T_{z, t_{n} e^{-2 r}}\left(\chi_{\left(D_{\mathbf{a}}(\tau)\right)_{s}}\right) \geq 0.9 \beta
$$

for all small $\delta>0$, where $z=x \mathbf{a}(\tau)$. This implies that relation (3.1) does not hold for z and $\varepsilon=0.01 \beta$. Then $z \mathrm{U}$ must be periodic by Theorem 3.1. Hence so is $x \mathbf{U}$, since $\mathbf{a}(\tau)$ normalizes \mathbf{U}. This proves our theorem.

4. Arbitrary homogeneous spaces of $\operatorname{SL}(2, R)$

A) Classification of invariant measures for horocycle flows. In this section we shall prove Theorem 2 . Thus we assume that Γ is an arbitrary discrete subgroup of \mathbf{G}. Since \mathbf{G} is unimodular, $\Gamma \backslash \mathbf{G}$ carries a σ-finite \mathbf{G}-invariant Borel measure ν.

The central role in the proof of Theorem 2 is played by a dynamical property of U , called the R-property which was first introduced in [R5]. To state it we turn again to $\mathbf{W}(\mathbf{x} ; \delta)$ defined in Section 1 for a small $0<\delta<0.1$. It follows from (2.8) that if $\mathbf{y}=\mathbf{x a}(\tau) \mathbf{h}(b) \in \mathbf{W}(\mathbf{x} ; \delta)$ and $b s<e^{2 \tau}$ for some $s \in R$ then

$$
\mathbf{y} \mathbf{u}(\alpha(\mathbf{y}, s))=\mathbf{x u}(s) \mathbf{a}(\tau(\mathbf{y}, s)) \mathbf{h}(b(\mathbf{y}, s))
$$

where $\tau(\mathbf{y}, s), b(\mathbf{y}, s)$ and $\alpha(\mathbf{y}, s)$ are as in (2.8). Relations (2.8) imply the following statement.

THE R-PROPERTY FOR HOROCYCLE FLOWS. There exist $0<\eta<1$ and $C>1$ such that if

$$
\max \{|\tau(\mathbf{y}, s)|: 0 \leq s \leq t\}=|\tau(\mathbf{y}, t)|=\theta
$$

for some $t>1, \mathbf{y} \in \mathbf{W}(\mathbf{x}, \delta), 10 \delta<\theta<0.5$ then

$$
\begin{equation*}
\frac{\theta}{2} \leq|\tau(\mathbf{y}, s)| \leq \theta, \quad|b(\mathbf{y}, s)| \leq \frac{C \theta}{t} \tag{4.1}
\end{equation*}
$$

for all $s \in[(1-\eta) t, t]$.
This property has been extended to simply connected unipotent subgroups of general Lie groups G in [R1]. It plays a crucial role in the proof of Theorem B.

Now let μ be an ergodic \mathbf{U}-invariant Borel probability measure on $X=\Gamma \backslash \mathbf{G}$ and let $\Lambda=\Lambda(\mu)=\{g \in \mathbf{G}$: the action of \mathbf{g} on X preserves $\mu\}$. Then $\Lambda(\mu)$ is a closed subgroup of \mathbf{G} and $\mathrm{U} \subset \Lambda(\mu)$. Let

$$
\mathbf{Q}=\{\mathbf{a}(r) \mathbf{u}(s): r, s \in R\}
$$

Then \mathbf{Q} normalizes \mathbf{U}.

Lemma 4.1: Suppose that $\mathbf{Q}-\boldsymbol{\Lambda} \neq \emptyset$. Then there exists $Y \subset X, \mu(Y)=1$ such that $Y \cap Y \mathbf{q}=\emptyset$ for all $\mathbf{q} \in \mathbf{Q}-\Lambda$.

Proof: First let us show that for every $\mathbf{q} \in \mathbf{Q}-\Lambda$ there is $X_{\mathbf{q}} \subset X, \mu\left(X_{\mathbf{q}}\right)=1$ and $\varepsilon(\mathbf{q})>0$ such that

$$
\begin{equation*}
X_{\mathbf{q}} \cap X_{\mathbf{q}} \mathbf{g}=\emptyset \tag{4.2}
\end{equation*}
$$

for all $\mathbf{g} \in \mathbf{q} \mathbf{Q}_{\varepsilon(\mathbf{q})}(\mathbf{e})=\mathbf{Q}_{\boldsymbol{e}(\mathbf{q})}(\mathbf{q})$, where $\mathbf{Q}_{\varepsilon}(\mathbf{e})$ denotes the ε-ball at \mathbf{e} in \mathbf{Q}.
For $\mathbf{q} \in \mathbf{Q}-\boldsymbol{\Lambda}$ define

$$
\mu_{\mathbf{q}}(E)=\mu(E \mathbf{q})
$$

for every Borel subset $E \subset X$. It is clear that μ_{q} is an ergodic \mathbf{U}-invariant measure on X, since \mathbf{q} normalizes \mathbf{U}. Also $\mu_{\mathbf{q}} \neq \mu$, since $\mathbf{q} \notin \Lambda$. Then $\mu_{\mathbf{q}}$ is singular with respect to μ and hence there exists $E_{\mathbf{q}} \subset X$ such that

$$
\mu\left(E_{\mathbf{q}}\right)=1 \text { and } \mu_{\mathbf{q}}\left(E_{\mathbf{q}}\right)=\mu\left(E_{\mathbf{q}} \mathbf{q}\right)=0 .
$$

Let $E_{\mathbf{q}}^{\prime}=E_{\mathbf{q}}-E_{\mathbf{q}} \mathbf{q}$. Then $\mu\left(E_{\mathbf{q}}^{\prime}\right)=1$ and

$$
E_{\mathbf{q}}^{\prime} \cap E_{\mathbf{q}}^{\prime} \mathbf{q}=\emptyset .
$$

Now let K be a compact subset of E_{q}^{\prime} with $\mu(K)>0.99$. Then there is $\varepsilon=$ $\varepsilon(\mathbf{q})>0$ such that

$$
\begin{equation*}
d_{X}(K, K \mathbf{q}) \geq \varepsilon . \tag{4.3}
\end{equation*}
$$

Since \mathbf{U} acts ergodically on (X, μ) there is $X_{\mathbf{q}} \subset X, \mu\left(X_{\mathbf{q}}\right)=1$ such that

$$
\begin{equation*}
S_{\chi_{K}}(x, t)=\frac{1}{t} \int_{0}^{t} \chi_{K}(x \mathbf{u}(s)) d s \rightarrow \mu(K), \quad t \rightarrow \infty \tag{4.4}
\end{equation*}
$$

for all $x \in X_{\mathbf{q}}$. We claim that (4.2) holds for all $\mathbf{g} \in \mathbf{Q}_{\boldsymbol{\varepsilon}(\mathbf{q})}(\mathbf{q})$. Indeed, suppose to the contrary that

$$
X_{\mathbf{q}} \cap X_{\mathbf{q}} g \neq \emptyset
$$

for some $\mathbf{g} \in \mathbf{Q}_{\varepsilon(\mathbf{q})}(\mathbf{q})$. Then there is $x \in X_{\mathbf{q}}$ such that $x=y \mathbf{g}$ for some $y \in X_{\mathbf{q}}$. We have $\mathbf{g}=\mathbf{a}(\tau) \mathbf{u}(r)$ for some $\tau, r \in R$. Also $y \mathbf{u}(s) \mathbf{g}=x \mathbf{u}\left(s e^{-2 \tau}\right)$ for all $s \in R$. It follows from (4.4) that there is $t>1$ such that

$$
\begin{aligned}
S_{\chi_{K}}(y, t) & \geq 0.9, \\
S_{\chi_{K}}\left(x, e^{-2 \tau} t\right) & \geq 0.9 .
\end{aligned}
$$

This implies that there is $0 \leq s \leq t$ such that

$$
y \mathbf{u}(s)=z \in K \text { and } z \mathbf{g} \in K
$$

But $z \mathbf{g}=z \mathbf{q} \mathbf{p}$ for some $\mathbf{p} \in \mathbf{Q}_{\varepsilon(\mathbf{q})}(\mathbf{e})$. Hence

$$
d_{X}(z \mathbf{g}, z \mathbf{q})<\varepsilon(\mathbf{q})
$$

in contradiction with (4.3). This proves (4.2).
We have

$$
\mathbf{Q}-\mathbf{\Lambda} \subset \bigcup_{i=1}^{\infty} \mathbf{Q}_{\varepsilon\left(\mathbf{q}_{i}\right)}\left(\mathbf{q}_{i}\right)
$$

for some $\mathbf{q}_{i} \in \mathbf{Q}-\mathbf{\Lambda}, i=1,2, \ldots$. Let

$$
Y=\bigcap_{i=1}^{\infty} X_{\mathbf{q}_{i}}
$$

Then $\mu(Y)=1$ and

$$
Y \cap Y \mathbf{g}=\emptyset
$$

for all $\mathbf{g} \in \mathbf{Q}-\boldsymbol{\Lambda}$ by (4.2). This completes the proof of the lemma.
A more general version of Lemma 4.1 is proved in [R1, Theorem 2.2].
Theorem 4.1: Suppose $\mathbf{A} \not \subset \Lambda(\mu)$. Then μ is supported on a closed orbit of \mathbf{U}.
Proof: Since $\mathbf{A} \not \subset \Lambda$ and Λ is a closed subgroup of \mathbf{G} there is $0<\theta<0.1$ such that

$$
\mathbf{a}(\tau) \notin \mathbf{\Lambda}
$$

for all $0<|\tau| \leq \theta$. We can assume that $\theta<\delta_{0}(0.1)$ where $\delta_{0}(\varepsilon)$ is as in (1.2).
Thus $\mathbf{a}(\tau) \in \mathbf{Q}-\mathbf{\Lambda}$ for all $0<|\tau| \leq \theta$. Let $Y \subset X, \mu(Y)=1$ be as in Lemma 4.1 and let $0<\eta<1$ be as in the R-property. Then there are a compact $K \subset Y, \mu(K)>1-10^{-3} \eta$ and $\delta=\delta(K)>0$ such that

$$
\begin{equation*}
d_{X}(K, K a(\tau)) \geq \delta \tag{4.5}
\end{equation*}
$$

for all $\theta / 2 \leq|\tau| \leq \theta$. Since the action of U on (X, μ) is ergodic, there are $F \subset X$, $\mu(F)>0$ and $t_{0} \geq 1$ such that

$$
\begin{equation*}
S_{\chi_{K}}(x, t) \geq 1-10^{-2} \eta \tag{4.6}
\end{equation*}
$$

for all $x \in F, t \geq t_{0}$.
Now let $0<\xi<0.01 \theta$ be so small that if $\max \{|\tau(\mathbf{y}, s)|: 0 \leq s \leq t\}=|\tau(\mathbf{y}, t)|=$ θ for some $\mathbf{y} \in \mathbf{W}(\mathbf{x} ; \xi), \mathbf{x} \in \mathbf{G}$ and $t \geq 1$ then

$$
t \geq 10 t_{0} \text { and } C \theta / t \leq 0.01 \delta
$$

Here $C \geq 1$ is as in (4.1). We claim that if $x, y \in F$ and $d_{X}(x, y)<\xi$ then

$$
y \in Q(x ; \xi)=\{x \mathbf{a}(r) \mathbf{u}(s):|r|,|s|<\xi\}
$$

Indeed, suppose to the contrary that $y \notin Q(x ; \xi)$. We can assume without loss of generality that $y=x \mathbf{a}(\tau) \mathbf{h}(b) \in W(x ; \xi)$. Then $b \neq 0$. It follows then from (2.8) that there is $t=t(y)>0$ such that $|\tau(y, t)|=\theta=\max \{|\tau(y, s)|: 0 \leq s \leq t\}$. Then $t \geq t_{0}$ and $\alpha(y, t) \geq t_{0}$ by our choice of ξ and θ. It follows then from (4.6) that

$$
\begin{aligned}
S_{\chi_{K}}(x, t) & \geq 1-0.01 \eta \\
S_{\chi_{K}}(y, \alpha(y, t)) & \geq 1-0.01 \eta
\end{aligned}
$$

This implies by our choice of θ that there is $s \in[(1-\eta) t, t]$ such that

$$
x \mathbf{u}(s) \in K \text { and } x \mathbf{u}(s) \mathbf{a}(\tau(y, s)) \mathbf{h}(b(y, s)) \in K
$$

Then

$$
\frac{\theta}{2} \leq|\tau(y, s)| \leq \theta, \quad|b(y, s)| \leq C \theta / t \leq 0.1 \delta
$$

by the R-property. This gives

$$
d_{X}(K, K \mathbf{a}(\tau(y, s))) \leq 0.1 \delta
$$

in contradiction with (4.5).
Now let $x \in F \cap Y$ be such that $\mu\left(F \cap O_{\varepsilon}(x)\right)>0$ for all $\varepsilon>0$, where $O_{\varepsilon}(x)$ denotes the ε-ball at x in X. We have just shown that

$$
\mu(Q(x ; \xi) \cap Y)>0
$$

This implies via Lemma 4.1 that

$$
Q(x ; \xi) \cap Y \subset x \mathbf{U}
$$

since $x \in Y$. Hence $\mu(x \mathbf{U})=1$, since \mathbf{U} acts ergodically on (X, μ). This completes the proof of the theorem.

Now we shall prove the following

Theorem 4.2: Suppose $\mathbf{A} \subset \Lambda(\mu)$. Then Γ is a lattice and μ is \mathbf{G}-invariant.
To prove this theorem we need the following lemma.
Lemma 4.2: Suppose $\mathbf{A} \subset \boldsymbol{\Lambda}(\mu)$. Then the action of \mathbf{A} on (X, μ) is mixing.
Proof: It suffices to show that

$$
\int_{X} \varphi(x) f(x \mathbf{a}(-\tau)) d \mu \rightarrow 0, \text { when } \tau \rightarrow \infty
$$

for any two bounded uniformly continuous functions φ and f on X with $f_{\mu}=$ $\int_{X} f d \mu=0$.

So let $\varepsilon>0$ be given and let $0<\delta<1$ be such that

$$
\begin{equation*}
|\varphi(x)-\varphi(z)|<\varepsilon \tag{4.7}
\end{equation*}
$$

for all $x, z \in X, d_{X}(x, z)<\delta$. Since the action of \mathbf{U} on (X, μ) is ergodic there are $t_{0}>1$ and $Y \subset X, \mu(Y)>1-\varepsilon$ such that

$$
\begin{equation*}
\left|S_{f}(y, t)\right|<\varepsilon \tag{4.8}
\end{equation*}
$$

for all $y \in Y, t \geq t_{0}$.
Now let $\tau_{0}>0$ be such that $e^{-2 \tau_{0}} t_{0}=\delta$ and let $\tau \geq \tau_{0}$. Write

$$
Y_{\tau}=Y \mathbf{a}(\tau), \quad \mu\left(Y_{\tau}\right)=\mu(Y)>1-\varepsilon
$$

since $\mathbf{a}(\tau) \in \Lambda(\mu)$. We have using (4.7)

$$
\begin{aligned}
I(\tau) & =\int_{X} \varphi(x) f(x \mathbf{a}(-\tau)) d \mu \\
& =\frac{1}{\delta} \int_{0}^{\delta}\left(\int_{X} \varphi(x \mathbf{u}(s)) f(x \mathbf{u}(s) \mathbf{a}(-\tau)) d \mu\right) d s \\
& =\int_{X}\left(\frac{1}{\delta} \int_{0}^{\delta} \varphi(x \mathbf{u}(s)) f(x \mathbf{u}(s) \mathbf{a}(-\tau)) d s\right) d \mu \\
& =\int_{X} \varphi(x)\left[\frac{1}{\delta} \int_{0}^{\delta} f\left(x \mathbf{a}(-\tau) \mathbf{u}\left(e^{2 \tau} s\right)\right) d s\right] d \mu+\varepsilon_{1} \\
& =\int_{X} \varphi(x)\left[\frac{1}{s_{\tau}} \int_{0}^{s_{\tau}} f(x \mathbf{a}(-\tau) \mathbf{u}(s)) d s\right] d \mu+\varepsilon_{1} \\
& =\int_{Y_{\tau}} \varphi(y) S_{f}\left(y \mathbf{a}(-\tau), s_{\tau}\right) d \mu+\varepsilon_{1}+\varepsilon_{2}
\end{aligned}
$$

where $s_{\tau}=\delta e^{2 \tau} \geq t_{0}, y \mathbf{a}(-\tau) \in Y$ whenever $y \in Y_{\tau}$ and $\left|\varepsilon_{1}\right|,\left|\varepsilon_{2}\right| \leq C_{1} \varepsilon$ for some $C_{1}>0$. This gives via (4.8)

$$
|I(\tau)| \leq C \varepsilon
$$

for all $\tau \geq \tau_{0}$ and some $C>0$. This completes the proof of the lemma.
A more general version of this lemma is proved in [R1, Theorem 5].
Thus we assume that $\mathbf{A} \subset \Lambda(\mu)$. Then μ is preserved by the action of $\mathbf{Q}=$ $\{\mathbf{a}(\tau) \mathbf{u}(s): \tau, s \in R\}$ on X.

Now let $x \in X$ and $H(x ; \delta)=\{x \mathbf{h}(s):|s| \leq \delta\}$. If $0<\delta<0.1$ is sufficiently small then for each $y \in Q(x ; \delta)$ and each $z \in H(x ; \delta)$ the intersection $H(y ; 10 \delta) \cap$ $Q(z ; 10 \delta)$ consists of exactly one point $p=p(y, z)$. Define

$$
\begin{aligned}
H(y) & =H(p)=\{p(y, v): v \in H(x ; \delta)\} \\
Q(z) & =Q(p)=\{p(w, z): w \in Q(x ; \delta)\} \\
B_{\delta}(x) & =\bigcup_{y \in Q(x ; \delta)} H(y)
\end{aligned}
$$

We have

$$
B_{\delta}(x)=\bigcup_{q \in H(p)} Q(q)=\bigcup_{r \in Q(p)} H(r)
$$

for all $p \in B_{\delta}(x)$. The set $B_{\delta}(x)$ is similar to the set $\cup\left\{\psi_{s}(W(x ; \delta)):|s| \leq \delta\right\}$ discussed in Section 1. We can assume without loss of generality that $\mu\left(B_{\delta / 2}(x)\right)>0$ and π is one-to-one on the 10δ-ball $\mathbf{O}_{10 \delta}(\mathbf{x})$ at $\mathbf{x} \in \pi^{-1}\{x\}$ in \mathbf{G}.

Define

$$
\Omega=\cup\left\{B_{\delta}(x) \mathbf{a}^{k}: k \in \mathbb{Z}\right\} .
$$

Then $\mu(\Omega)=1$, since the action of a on (X, μ) is ergodic. Also the action of a on (Ω, ν) is measure preserving. Let $\bar{\nu}$ be the Borel measure on X defined by $\bar{\nu}(D)=\nu(D \cap \Omega)$ for every Borel subset $D \subset X$.

Lemma 4.3: 1) $\nu(\Omega)<\infty$; 2) $\mu=\bar{\nu} / \nu(\Omega)$.
Proof: Let f be a continuous function on X with compact support. Since the action of a on (X, μ) is ergodic, there is a subset $C_{f} \subset B_{\delta}(x), \mu\left(C_{f}\right)=\mu\left(B_{\delta}(x)\right)$ such that if $y \in C_{f}$ then

$$
\begin{equation*}
S_{f, n}(y)=\sum_{i=0}^{n-1} f\left(y \mathbf{a}^{-i}\right) / n \rightarrow f_{\mu}=\int_{X} f d \mu, \quad n \rightarrow \infty \tag{4.9}
\end{equation*}
$$

Let $\tilde{C}_{f} \subset B_{\delta}(x), \mu\left(\tilde{C}_{f}\right)=\mu\left(B_{\delta}(x)\right)$ be such that if $z \in \tilde{C}_{f}$ then

$$
\lambda\left(C_{f} \cap Q(z)\right) / \lambda(Q(z))=1
$$

where λ denotes a \mathbf{Q}-invariant measure on $z \mathbf{Q}$. Pick $\tilde{z} \in \tilde{C}_{f}$ and define

$$
\begin{aligned}
& B_{f}=\cup\left\{H(y): y \in C_{f} \cap Q(\tilde{z})\right\} \subset B_{\delta}(x) \\
& \Omega_{f}=\cup\left\{B_{f} \mathbf{a}^{k}: k \in \mathbb{Z}\right\} \subset \Omega
\end{aligned}
$$

We have $\nu\left(B_{f}\right)=\nu\left(B_{\delta}(x)\right)$ and $\nu\left(\Omega_{f}\right)=\nu(\Omega)$. Now let $z \in B_{f}$. Then $z \in H(y)$ for some $y \in C_{f}$. We have

$$
d_{X}\left(z \mathbf{a}^{-n}, y \mathbf{a}^{-n}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

This and (4.9) imply that

$$
S_{f, n}(z) \rightarrow f_{\mu}, \quad n \rightarrow \infty
$$

for all $z \in B_{f}$, since f is uniformly continuous. Also

$$
\begin{equation*}
S_{f, n}(\omega) \rightarrow f_{\mu}, \quad n \rightarrow \infty \tag{4.10}
\end{equation*}
$$

for all $\omega \in \Omega_{f}$. Now let f be nonnegative with $f_{\mu} \neq 0$. It follows then from the Fatou's lemma that

$$
f_{\mu} \nu(\Omega)=\int_{\Omega_{j}} f_{\mu} d \nu \leq \lim _{n \rightarrow \infty} \int_{\Omega_{j}} S_{f, n} d \nu=\int_{\Omega} f d \nu<\infty
$$

This proves that $\nu(\Omega)<\infty$. Now we use (4.10) and the Lebesgue Dominated Convergence Theorem to get

$$
f_{\bar{\nu}}=\int_{\Omega} f d \nu=\int_{\Omega} S_{f, n} d \nu \rightarrow \int_{\Omega} f_{\mu} d \nu=f_{\mu} \nu(\Omega)
$$

for every continuous function f on X with compact support. This proves that $\mu=\bar{\nu} / \nu(\Omega)$.

Proof of Theorem 4.2: In view of Lemma 4.3 it remains to prove that $\nu=\bar{\nu}$. To do so it suffices to show that for every $p \in X$

$$
\nu\left(O_{0.1 \delta}(p)-\Omega\right)=0
$$

where $O_{\gamma}(p)=p \mathbf{O}_{\gamma}(\mathrm{e})$. Define

$$
\bar{\Omega}=\left\{\omega \in \Omega: \omega \mathbf{a}^{-n} \in B_{\delta / 2}(x) \text { for intinitely many } n \in \mathbb{Z}^{+}\right\} .
$$

We have $\mu(\bar{\Omega})=1$ and $\nu(\bar{\Omega})=\nu(\Omega)$, since $\mu=\hat{\nu}=\bar{\nu} / \nu(\Omega)$ and the action of a on (Ω, μ) is ergodic. If $\omega \in \bar{\Omega}$ then $H(\omega ; 10 \delta) \mathbf{a}^{-n} \subset H(y)$ for some $n \in \mathbb{Z}^{+}$and some $y \in B_{\delta}(x)$. This implies that

$$
H(\omega, 10 \delta) \subset \Omega
$$

for all $\omega \in \bar{\Omega}$, since Ω is a-invariant. In fact, $\omega \mathbf{H} \subset \Omega$ for all $\omega \in \bar{\Omega}$. Now let

$$
\hat{\Omega}=\{\omega \in \Omega: \lambda(\bar{\Omega} \cap Q(\omega ; 10 \delta)) / \lambda(Q(\omega, 10 \delta))=1\} .
$$

We have

$$
\begin{equation*}
\nu(\hat{\Omega})=\nu(\Omega) \tag{4.11}
\end{equation*}
$$

since $\hat{\nu}=\mu$ is \mathbf{Q}-invariant. It follows now from the definition of $\hat{\Omega}$ that if $\omega \in \hat{\Omega}$ then

$$
\begin{equation*}
\nu\left(B_{\delta}(\omega) \cap \Omega\right)=\nu\left(B_{\delta}(\omega)\right) \tag{4.12}
\end{equation*}
$$

This implies via (4.11) that

$$
\nu\left(B_{\delta}(\omega) \cap \hat{\Omega}\right)=\nu\left(B_{\delta}(\omega)\right)
$$

for all $\omega \in \hat{\Omega}$. Now let $p \in X$. Then we can find $x=\omega_{1}, \ldots \omega_{n}$ such that $\omega_{i} \in B_{\delta}\left(\omega_{i-1}\right) \cap \hat{\Omega}, i=2, \ldots, n$ and $O_{0.1 \delta}(p) \subset B_{\delta}\left(\omega_{n}\right)$. This implies via (4.12) that

$$
\nu\left(O_{0.1 \delta}(p)-\Omega\right)=0
$$

and proves that $\nu=\bar{\nu}$.
A similar proof for a more general case is given in [$R 2$, Section 7].
Proof of Theorem 2: The theorem follows from Theorems 4.1 and 4.2.
B) Orbit closures for horocycle flows. In this section we prove Theorem 4. Thus we assume that Γ is a discrete subgroup of \mathbf{G} and Γ is not a lattice. Suppose that $x \in \Gamma \backslash \mathbf{G}=X$ and $\overline{x \mathbf{U}}$ is compact in X. Let $M(x, \mathbf{U})$ be as in section 3. Then $\mu(X)=1$ for all $\mu \in M(x, \mathrm{U})$.
Proof of Theorem 4: Let $\mu \in M(x, \mathbf{U})$ and let $Y_{\mu} \subset \overline{x \mathbf{U}}$ denote the support of μ. By Theorem 2 there is $y \in Y_{\mu}$ such that $y \mathrm{U}$ is a periodic orbit. Since $\bar{x} \overline{\mathrm{U}}$ is compact, there are $r>1$ and $\varepsilon>0$ such that

$$
\begin{equation*}
d_{X}(y \mathbf{U}(r), x \mathbf{U})>\varepsilon \tag{4.13}
\end{equation*}
$$

Now suppose to the contrary that $x \mathbf{U}$ is not periodic. Since $y \mathbf{U} \subset \bar{x} \bar{U}$ there are $t>0$ and $z \in y \mathbf{U}$ such that

$$
p=x \mathbf{u}(t)=z \mathbf{a}(\tau) \mathbf{h}(b) \in W(z ; \delta)
$$

for some $|\tau|,|b|<\delta$ and $b \neq 0$, where $\delta>0$ is chosen so small that $\delta<0.01 \varepsilon e^{-r}$. It follows then from (2.8) that if $e^{\tau}-s b e^{-\tau}=e^{r}$ then

$$
\tau(y, s)=r, \quad|b(y, s)| \leq 0.1 \varepsilon
$$

Then

$$
d_{X}(p \mathbf{u}(\alpha(y, s)), z \mathbf{u}(s) \mathbf{a}(r))<0.1 \varepsilon
$$

in contradiction with (4.13), since $z \mathbf{u}(s) \in y \mathbf{U}$. This completes the proof of the theorem.

References

[B] R. Bowen, Weak mixing and unique ergodicity on homogeneous spaces, Isr. J. Math. 23 (1976), 267-273.
[BR] R. Bowen and D. Ruelle, The Ergodic Theory of Axiom A Flows, Invent. Math. 29 (1975), 181-204.
[D1] S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math. 64 (1981), 357-385.
[D2] S. G. Dani, On orbits of unipotent flows on homogeneous spaces, II, Ergodic Theory and Dynamical Systems 6 (1986), 167-182.
[DS] S. G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups, Duke Math. J. 5 (1984), 185-194.
[EP] R. Ellis and W. Perrizo, Unique ergodicity of flows on homogeneous spaces, Isr. J. Math. 29 (1978), 276-284.
[F1] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
[F2] H. Furstenberg, The unique ergodicity of the horocycle flow, in "Recent Advances in Topological Dynamics", Lecture Notes in Math. 318, Springer, Berlin (1972), 95-115.
[H] G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J. 2 (1936), 530-542.
[M1] G. A. Margulis, Discrete subgroups and ergodic theory, Proc. of the Conference in Honor of A. Selberg (1980), Oslo.
[M2] G. A. Margulis, Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory, Proc. of ICM (1990), Kyoto.
[P] W. Parry, Ergodic properties of affine transformations and flows on nilmanifolds, Amer. J. Math. 91 (1969), 757-771.
[R1] M. Ratner, Strict measure rigidity for unipotent subgroups of solvable groups, Invent. Math. 101 (1990), 449-482.
[R2] M. Ratner, On measure rigidity for unipotent subgroups of semisimple groups, Acta Math. 165 (1990), 229-309.
[R3] M. Ratner, On Raghunathan's measure conjecture, Ann. of Math. 134 (1991), 545-607.
[R4] M. Ratner, Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), 235-280.
[R5] M. Ratner, Horocycle flows: joining and rigidity of products, Ann. Math. 118 (1983), 277-313.
[Sa] P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein Series, Communications on Pure and Applied Math. 34 (1981), 719-739.
[S] Ya. G. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys 166 (1972), 21-69.
[Sh] N. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), 315-334.
[V] W. Veech, Unique ergodicity of horospherical flows, Amer. J. Math. 99 (1977), 827-859.

[^0]: * Partially supported by the NSF Grant DMS-8701840.

 Received November 3, 1991 and in revised form June 28, 1992

