Equidistribution on affine symmetric spaces

1 Sources

- Eskin-McMullen - Mixing, Counting, and Equidistribution in Lie Groups
- Schlichtkrull - Hyperfunctions and Harmonic Analysis on Symmetric Spaces
- Knapp - Representation Theory of semisimple groups: Beyond an introduction

2 Affine Symmetric Spaces

Definition 2.1. Let G be a connected semi-simple Lie group with finite center. Let $\sigma : G \to G$ be an involution (i.e. a Lie group automorphism with $\sigma^2 = \text{id}$) and let $H < G$ the fixpoint set of σ. Then G/H is called affine symmetric space and H is called a symmetric group.

Recall that G is semisimple if its Lie algebra \mathfrak{g} is a direct sum of simple Lie algebras. The differential of σ at the identity gives a Lie automorphism that is an involution, also denoted by σ. Any linear involution is diagonalizable - splitting into $\pm \sigma$-eigenspaces. This decomposition keeps holding in the group level, where however, only one eigenspace is a lie algebra. For a decomposition $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{b}$ we can then write $\sigma(g) = hb$.

Example 2.2. Let $G = \text{SL}_n(\mathbb{R})$ the group of $n \times n$-matrices of det 1 and $\sigma(g) = g^{-T}$ inverse transpose. $\text{stab}(\sigma) = \text{SO}_n(\mathbb{R})$. More generally, any classical Lie group that is closed under transposition. For an involution σ with H compact, G/H defines a Riemannian symmetric space.

Example 2.3. $G \times G/G$ where G is diagonally embedded comes from the convolution $\sigma(g, h) = \sigma(h, g)$. $\{ M \in \text{Mat}_{dd}(\mathbb{R}) | \text{det} M = 1 \} = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R})/\Delta \text{SL}_2(\mathbb{R})$

Example 2.4. $\text{SL}_2(\mathbb{R})/A$ where A the diagonal group coming from $\sigma : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \to \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$.

Example 2.5. We let $I_{p,q} = (\text{id}_p, -\text{id}_q)$, $p + q = n$, and define $\sigma_{p,q}$ the involution on $\text{SL}_n(\mathbb{R})$ obtained by conjugation with $I_{p,q}$. The isotropy group is by definition $\text{SO}_{p,q}(\mathbb{R})$, the group of orientation preserving isometries of the indefinite form $\sum_{i=1}^q x_{i+p}^2 - \sum_{i=1}^p x_i^2$. Note that $\text{SO}_{1,1}(\mathbb{R})$ is the diagonal group in $\text{SL}_2(\mathbb{R}) \simeq \text{SO}_{1,2}(\mathbb{R})$. One can also take $G = \text{SO}_{p,q}(\mathbb{R})$, and $\sigma_{p',q'}$ giving rise to some $\text{SO}_{p',q'}(\mathbb{R}) < \text{SO}_{p,q}(\mathbb{R})$. Of particular importance is $\text{SO}_{p,q-1}(\mathbb{R}) < \text{SO}_{p,q}(\mathbb{R})$ from $I_{p+q-1,1}$ since $\text{SO}_{p,q}(\mathbb{R})/\text{SO}_{p,q-1}(\mathbb{R})$ is identified with the hyperboloid $\sum_{i=1}^q x_{i+p}^2 - \sum_{i=1}^p x_i^2 = 1$.

Any involution σ on G induces an involution on \mathfrak{g}, which we shall denote by the same letter. Then \mathfrak{g} splits into σ-eigenspaces for the eigenvalues ± 1

$$\mathfrak{g} = \mathfrak{h}_\sigma \oplus \mathfrak{q}_\sigma.$$

In particular \mathfrak{h} is the Lie algebra of H. Note that we have

$$[\mathfrak{h}_\sigma, \mathfrak{h}_\sigma] \subset \mathfrak{h}_\sigma, \quad [\mathfrak{h}_\sigma, \mathfrak{q}_\sigma] \subset \mathfrak{q}_\sigma, \quad [\mathfrak{q}_\sigma, \mathfrak{q}_\sigma] \subset \mathfrak{h}_\sigma$$

and for any decomposition with such brackets relations there is an involution giving raise to this decomposition.

Example 2.6. Let $\mathfrak{g} = \text{sl}_n(\mathbb{R})$ and $\sigma(X) = -X^T$ inverse transpose. Then the above decomposition is between symmetric and skew-symmetric traceless matrices.
Definition 2.7. We shall write \(\text{ad}_X \) the map \(Y \mapsto [X,Y] \). The killing form \(B(X,Y) = \text{Tr}(\text{ad}_X \circ \text{ad}_Y) \) is non-degenerate iff \(G \) is semi-simple and negative definite if \(G \) is compact. An involution \(\theta \) is called Cartan involution if \(B_\theta = -B(X,\theta(Y)) \) is symmetric and positive definite. Note that the adjoint of \(\text{ad}_X \) with respect to this inner product becomes \(-\text{ad}_X \), and thus selfadjoint on \(p_\theta \).

Example 2.8. For \(sl_n(\mathbb{R}) \), \(B(X,Y) = 2n \text{Tr}(XY) \), so that \(B_\theta(X,Y) = -2n \text{Tr}(X\theta(Y)) = 2n \text{Tr}(XY^T) \). But \(\text{Tr}(XY^T) \) is an inner product on the space of \(n \times n \) matrices making \(\theta \) a Cartan involution.

Proposition 2.9. \(B_\theta \) is symmetric and positive definite

- \(\mathfrak{t} \perp \mathfrak{p} \) with respect to both \(B \) and \(B_\theta \)

Definition 2.10. The decomposition \(\mathfrak{h}_\theta \oplus \mathfrak{q}_\theta \) for a Cartan involution \(\theta \) is called a Cartan pair.

Example 2.11. For \(sl_n(\mathbb{R}) = \mathfrak{t} \oplus \mathfrak{p} = so_n(\mathbb{R}) \). Since \(\mathfrak{p} \) consists of symmetric matrices, any \(Y \in \mathfrak{p} \) can be diagonalized, \(Y = kZk^{-1} = \text{Ad}_k Z \) for some \(Z \) diagonal (and traceless) and \(k \in K \). Let \(\mathfrak{a} \subset \mathfrak{g} \) be the diagonal traceless matrices then \(\mathfrak{p} = \text{Ad}_K \mathfrak{a} \).

Theorem 2.12. A Cartan involution is unique up to an inner automorphism, i.e. \(\theta = f \circ \theta' \circ f^{-1} \) and \(f = \text{Ad}_g \) for some \(g \in G \). For any involution \(\sigma \), there exists a Cartan convolution that commutes with \(\sigma \).

Theorem 2.13. For a Cartan pair \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p} \), \(K \) is a maximal compact subgroup of \(G \). Let \(\mathfrak{a} \) be a maximal abelian subspace of \(\mathfrak{p} \) and \(A = \exp \mathfrak{a} \). Then \(G = K \exp \mathfrak{p} \) (in fact \((k,\mathfrak{t}) \to k \exp \mathfrak{t} \)) is a diffeo, \(\mathfrak{p} = \bigcup_{k \in K} \text{Ad}_k \mathfrak{a} \) (in fact for any maximal \(\mathfrak{a}, \mathfrak{a}' \in \mathfrak{p} \) are \(K \)-conjugates and \(G = KA'K \)).

Proof. Assume \(G \) is a classical group, say \(G \subset GL(C,n) \) and \(\theta \) is Inverse conjugate transpose. Then there is a unique polar decomposition \(g = k \exp X \) with \(k \) unitary and \(X \) Hermitian (exp is surjective on the positive definite Hermitian matrices since it is on diagonal matrices). Now \(k^T = k^{-1} \), \(XT = X \theta(g) = k \exp -X \), \(\theta(g)^{-1} Y = \exp 2X \)

which implies \(\exp X \in G \) (using the fact that \(\exp X \) in an algebraic group then \(X \) is in the Lie algebra). Since \(g \in G \), also \(k \in G \cap U(n) = K \) is compact. We see that \(K \) must be maximal, since else it contains an element of \(\exp \mathfrak{p} \) but any non-trivial element gives an unbounded subgroup.

Given \(\mathfrak{a}, \mathfrak{a}' \) take \(Z, Z' \) such that no root \(\Sigma^a \) resp. \(\Sigma^a' \) vanishes. Consider the curve \(K \ni k \mapsto B(\text{Ad}_k Z, Z') \).

Let \(k \in K \) be the minimum (which exists by compactness of \(K \)). Its derivative,

\[
B(\text{ad}_H \text{Ad}_k Z, Z') = B([\text{Ad}_k Z, Z'], H) = 0
\]

for \(H \in \mathfrak{t} \) vanishes, but \(B(H, H) < 0 \) for any \(H \in \mathfrak{t} \), and thus \([\text{Ad}_k Z, Z'] = 0 \). Since \(Z' \) has non-trivial projection to any \(\mathfrak{g}_k \), \(\text{Ad}_k Z \in \mathfrak{g}_0 \). Since \(\mathfrak{g}_0 = \mathfrak{a} \oplus \mathfrak{m} \), \(\mathfrak{m} \perp \mathfrak{t} \) and as \(\text{Ad}_k Z \in \mathfrak{p} \), \(\text{Ad}_k Z \in \mathfrak{a}' \).

By symmetry of the argument, \(\text{Ad}_k Z \in \mathfrak{a}' \). Note also \(Z_\theta(Z) = Z_\theta \) generates the centralizer by construction. But \(\mathfrak{a}' \) commutes now with \(Z \) implying that \(\mathfrak{a}' \subset \text{Ad}_k \mathfrak{a} \), and by maximality they are equal.

\(KAK \) follows from the previous statements.

Theorem 2.14. Let \(\sigma \) be an involution of \(G \) with affine symmetric group \(H \) and giving rise to \(\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q} \). Let \(\theta \) be a commuting Cartan decomposition with symmetry group \(K \) giving rise to \(\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{p} \). Let \(\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{q} \) be a maximal abelian subspace, \(A = \exp \mathfrak{a} \). Then \(G \subset HAK \).

Proof Sketch. Step 1: \((X,Y,k) \mapsto \exp X \exp Y k \) from \((\mathfrak{p} \cap \mathfrak{h}) \times (\mathfrak{p} \cap \mathfrak{q}) \times K \) to \(G \) is a local diffeo onto. Diffgeo by local dimensions argument. Assuming a decomposition \(g = \exp X \exp Y k \) for the moment. Since \(\theta(g^{-1}) = \theta(k^{-1} \exp -Y \exp -X) = k^{-1} \exp(Y) \exp(X) \), we have

\[
g\theta(g^{-1}) = \exp X \exp 2Y \exp X
\]

We already know \(G = \exp \mathfrak{p} K \) uniquely, and we want to assume \(g = \exp S \) for \(S \in \mathfrak{p} \), in particular \(\theta(g^{-1}) = g \) and the LHS is \(\exp 2S \) Apply \(\sigma \), to see \((\sigma \text{ fixes } \mathfrak{h} \text{ thus } X) \)

\[
\exp 2\sigma(S) = \exp X \exp -2Y \exp X.
\]
Introduce the dual image is also open. Thus everything. Now also multiplication from A take a subsequence where the Combining both gives exp 2σ(S) = exp 2X exp −2S exp 2X and thus exp −S exp 2σ(S) exp −S = (exp −S exp 2X exp −S)^2 which we may rewrite as exp 2X = exp S exp T exp S with exp 2T = exp −S exp 2σ(S) exp −S These formulas show that X and Y are uniquely determined, and how to construct them given g.

We reduce to show Step 2: exp p ∩ q ⊂ HAK.

Define g_0 = t_0 ⊕ p_0 = (t ∩ h) ⊕ (p ∩ q). By the bracket relations of involution, it is a sub lie algebra. Since σ and θ commute, θ preserves the eigenspace decomposition with respect to σ, and thus preserves g_0 but also the decomposition g_0 = t_0 ⊕ p_0 (σ acts by ±1, so any intersection of an eigenspace is preserved). The associated Lie group G_0 is by definition reductive, and again allows a K_0A_0K_0 decomposition where A_0 = A and K_0 = H ∩ K. We now conclude that exp p ∩ q ⊂ G_0 ⊂ HAK.

The maps ad_Z for Z ∈ a are commuting, and as remarked before, selfadjoint with respect to B_θ. Introduce the dual a^* and for λ ∈ a^*,
\[g_λ = \{ X ∈ g : ad_Z(X) = λ(Z)X \text{ for all } Z ∈ a \} \]
Let Σ consists of all λ ≠ 0 with g_λ, the set of restricted roots. Having chosen a basis on a^*, one might introduce an ordering on Σ let Σ^+ be the positive restricted roots. A root in Σ^+ is called simple if it cannot be written as sum as any other two. Remark: Given a basis of a^* coming from elements of Σ, then these are simple with respect to some choice of Σ^+ if any other root in Σ^+ can be expressed in either all positive or all negative integer coefficients.

Example 2.15. Let E_{ij} be the elementary matrices in sl_n(ℝ) and Z = diag(h_1, ..., h_n) ∈ a then ad_Z(E_{ij}) = (h_i - h_j)E_{ij}. Let e_j ∈ a^* by e_j(H) = h_j, then e_i - e_j are precisely such λ for which g_λ ≠ 0 forming Σ. Taking the order induced from e_1, ..., e_n, a root is positive if the first coefficient is positive in that basis (so that e_1 - e_n is the largest positive root and e_{n-1} - e_n the smallest), and e_i - e_{i+1} form a base of simple positive roots.

Theorem 2.16.
- \[g = g_0 ⊕ \sum_{λ ∈ Σ^+} g_λ \] (orthogonal sum)
- \[[g_λ, g_μ] ⊂ g_{λ+μ} \]
- \[θg_λ = g_{−λ} \text{ and hence } λ ∈ Σ \text{ implies } −λ ∈ Σ. \] Same for σ.
- \[g_λ ⊥ g_μ \text{ with respect to } B_θ \]

We study now the Lie subalgebra of g,
\[n = \sum_{λ ∈ Σ^+} g_λ \]

Theorem 2.17. Assume for the moment that σ = θ. Then the above theorem can be extended to say
\[g_0 = a ⊕ m \]
and the Iwasawa decomposition:
\[g = k ⊕ a ⊕ n \]
and K × A × N → G is a diffeo onto.

Proof. Any X ∈ I has non-zero projection to m or \[\sum_{Σ^+} g_{−λ} \text{ together with } g = n + g_0 + n \] making k + a + n a direct sum. It is everything since
\[a + m + (n + n) ⊃ Z + X_0 + \sum X_λ = (X_0 + \sum (X_{−λ} + θX_{−λ})) + Z + \sum (X_λ - θX_{−λ}) ∈ k + a + n \]
For the group level one uses that if \[g = g ⊕ t \] of two subalgebras then the differential of the multiplication map vanishes nowhere. The image is closed since K is compact and AN are closed (for any subsequence, take a subsequence where the K part converges, then take limit in AN, still of product form). The image is also open. Thus everything. Now also multiplication from A × N to AN is smooth and onto. \[\square \]
Definition 2.18. The hyperplanes in $\mathfrak{a} \simeq \mathfrak{a}^*$ defined by $\ker \lambda$ cut \mathfrak{a} into finitely many open regions $\{C\}$ called Weyl chambers. For any set of simple roots $\Delta \subset \Sigma$ there is a unique C_Δ defined by the intersection of the half-spaces $\lambda > 0$ in \mathfrak{a} where $\lambda \in \Delta$, and Σ_Δ denotes the positive roots with respect to Δ, i.e. those λ for which $\lambda(\mathcal{W}_\Delta) > 0$. Denote by $\mathfrak{n}_\Delta = \sum_{\lambda \in \Sigma_\Delta} \mathfrak{g}_\lambda$ and

$$N_\Delta = \langle \exp \mathfrak{n}_\Delta \rangle, \quad A_\Delta = \exp \mathcal{C}_\Delta$$

Any Weyl chamber contains exactly one root, the maximal element with respect to the ordering.

Example 2.19. Picture of triangulation of equilateral triangles coming from A_2. If α, β are two simple roots $\alpha + \beta$ is maximal and contained in the cone of the corresponding Weyl chamber. It is the highest weight of the adjoint representation.

Proposition 2.20. There exists a a shrinking family of open neighborhoods N_e of $e \in N_\Delta$ invariant under conjugation by A_Δ, i.e. for any open $e \in U$ there is $V_e \subset O$ with

$$e \in a^{-1}V_0a \subset V_e \subset U$$

for any $a \in A_\Delta$.

Proof. Let $X = \sum_{\lambda \in \Sigma^+} x_\lambda X_\lambda \in \mathfrak{n}$ where X_λ spans the one-dimensional space \mathfrak{g}_λ. Let $c_a : N \to N$ the conjugation map $n \mapsto ana^{-1}$, its derivative acts on \mathfrak{n} by $\text{Ad}(a) : \mathfrak{n} \to \mathfrak{n}$ which is related the previous adjoint action by $\text{Ad}(\exp Z) = \exp(\text{ad} Z)$, and so $\text{Ad}(a^{-1})X_\lambda = \exp(-\lambda(Z))$ for $a \in \exp Z \in A_\Delta$.

$$\text{Ad}(a^{-1})X = \sum_{\lambda \in \Sigma^+} x_\lambda \exp(-\lambda(Z))X_\lambda \in \mathfrak{n}$$

and we see that a^{-1} contracts as $\lambda(Z) > 0$. Take V_e to be a product neighbourhood. \qed

Theorem 2.21. Let $M = Z_K(A)$, then $H \times M \times A \times N \to G$ is open in a neighborhood of the identity in G.

Proof. It suffices to show $\mathfrak{h} + \mathfrak{m} + \mathfrak{a} + \mathfrak{n} = \mathfrak{g}$. We have $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{g}_0 \oplus \mathfrak{h}$.

We decompose any X with respect to that decomposition and thus assume $X \in \mathfrak{n} \oplus \mathfrak{g}_0$. For the \mathfrak{n} part we observe that also $\sigma(\mathfrak{g}_0) = \mathfrak{g}_{-\lambda}$ since

$$[Z, \sigma(X)] = \sigma([\sigma(Z), X]) = -\sigma([Z, X]) = -\lambda(Z)\sigma(X)$$

for $X \in \mathfrak{g}_\lambda$ and $X + \sigma(X) \in \mathfrak{h}$.

Thus for any $X \in \mathfrak{n} = \bigoplus_{\lambda \in \Sigma^+} \mathfrak{g}_{-\lambda}$,

$$X = (X + \sigma(X)) - \sigma(X) \in \mathfrak{h} \oplus \mathfrak{n}.$$
3 Wavefront Lemma

Theorem 3.1. For any open neighbourhood U of $e \in G$ there is $V \subset G$ open such that

$$HVg \subset HgU$$

for all $g \in AK$.

Proof. Assume first that $g \in A$. Then $g \in \exp(\mathcal{L})$ for some Weyl chamber. Let N be the corresponding unipotent subgroup, with a contraction invariant neighborhoods V_N. We also let V_M, V_A, neighbourhoods in M and A and put $V = HV_MV_AV_N$ a neighbourhood of G by $HMAN$ decomposition, by which we may also assume that $V_MV_AV_N \subset U$

$$HVg = HV_MV_AV_NV_N \subset H_MV_AV_NV_N \subset HgU$$

This $V = V_C$ depends on the Weyl chamber, and we take the intersection of all of them.

For general $g = ak$, we may choose that $U' \subset U$ which is K-conjugation invariant and take V coming the above construction for a. Then

$$HVg = HVak \subset HaU'k = Hakk^{-1}U'k = Hgk^{-1}U'k \subset HgU$$

4 Equidistribution

Let $\Gamma < G$ be a lattice and let $X = \Gamma \backslash G$. We assume that Γ projects densely onto G/G' for any G' normal noncompact Liegroup $G' \subset G$. This implies that $L^2(X)$ does not contain non-trivial G_i-invariant vectors for any i, and therefore, by Howe-Moore,

Theorem 4.1. The action of G on X is mixing, that is for any $\alpha, \beta \in L^2(X)$,

$$\int_X \alpha(xg)\beta(x)dx \to \frac{1}{m(X)} \int_X \alpha \int_X \beta$$

Assume that H is such that $\Gamma \cap H$ intersects H in a lattice. Then ΓH is a closed orbit of finite volume, naturally identified with $\Gamma \backslash H \backslash H$ of measure $m(Y)$ induced by a fixed Haar measure on H. We may push these measures to measures on $\Gamma \backslash Hg$. Theorem 4.2. The translates $Yg, Y = \Gamma H$ become equidistributed in X as $Hg \to \infty$ in H/G:

$$\frac{1}{m(Y)} \int_{Yg} \alpha(y)dy \to \frac{1}{m(X)} \int_X \alpha(x)dx.$$

for any $\alpha \in C_c(X)$.

Proof. Let $Hg_n \to \infty$ in $H \backslash G$, $g_n \in AK$. Let (U, ϵ) such that $\alpha(gu)$ is ϵ-close to $\alpha(g)$ fpr all $u \in U$. By the wave front lemma, there is $HVg \subset HgU$ for all g in AK and by mixing,

$$\frac{1}{m(YV)} \int_{YVg_n} \alpha(g)dg = \frac{1}{m(YV)} \int_{\Gamma \backslash G} \chi_{YV}(g)\alpha(gg_n)dg \to \frac{1}{m(X)} \int_X \alpha(g)dg.$$

The LHS is a convex combination of the integrals

$$\frac{1}{m(Y)} \int_{Yg_nu} \alpha(h)dh$$

which are ϵ-close to $\frac{1}{m(Y)} \int_{Yg_n} \alpha(h)dh$.

\(\square \)
5 Counting

Theorem 5.1. \[\left| \{ M \in \text{Mat}_{dd}(\mathbb{Z}) \mid \det M = a, \| M \| \leq R \} \right|
\asymp c_a R^{d(d-1)} \]

\[V = \{ M \in \text{Mat}_{dd}(\mathbb{R}) \mid \det M = a \} = \text{SL}_2(\mathbb{R}) \times \text{SL}_2(\mathbb{R}) / \text{SL}_2(\mathbb{R}). \] Claim: \(V(\mathbb{Z}) \) finite union of \(\Gamma = \text{SL}_2(\mathbb{Z}) \times \text{SL}_2(\mathbb{Z}) \)-orbits. Action of \(G \times G \) on \(V \) by \(gMh^{-1} \). \(H = \Delta G \). The maximal abelian space \(a \) is \(A' = \{ (a, a^{-1}) \} \in A \times A \), and \(G \times G = (K \times K) A'H \)

Theorem 5.2. \(V_a \) level set of the standard quadratic surface of signature \((m, n)\), \(a \in \mathbb{Z} \) and assume \(V(\mathbb{Z}) \) not empty then \[|V(\mathbb{Z}) \cap B^Y_R| \asymp c_m R^{m+n-2} \]