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Reminder from previous lectures

Let G be a locally compact semigroup equipped with a measure µ acting con-
tinuously on a compact metric space X .

Let (B,B, β) be the associated Bernouli space .
Let ν be a µ - stationary measure on X:

µ ∗ ν =

ˆ

G

g∗νdµ(g)

then for β - almost b ∈ B , b = b1, b2, .... we have a limit measure

νb = lim
n→∞

(b1 · · · bn)∗ν

We also have for every m ∈ N for β ⊗ µ∗m - a.e (b, g) ∈ B ×G

lim
n→∞

(b1 · · · bng)∗ν = νb

Moreover, ν can be represented as an average of νb :

ν =

ˆ

B

νbdβ(b)

Some required de�nitions

Let V be a �nite dimensional real vector space , let G = GL(V ) , and let
Γ ≤ GL(V ) be a subsemigroup. We have an action Γ y V by matrx-by-vector
multiplication .

De�nition. (Irreducibility) We say that the action Γ y V is irreducible if for
every subspace W ⊂ V :

ΓW = W ⇒ W = 0 or W = V .
The action is strongly irreducible if for subspaces {Vk}lk=1 :⋃
Vk is Γ− stable ⇒ ∃i.Vi = V or V1 = ... = Vl = {0}
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De�nition. (Proximal dimension) : Let rΓ be the smallest integer such that
∃π ∈ End(V ) of rank rΓ such that

π = lim
n→∞

λngn

where λn ∈ R , gn ∈ Γ .
If rΓ = 1 , Γ is called proximal.

Fact. If ∃f ∈ Γ with a unique eigenvalue of maximal absolute value, then Γ is
proximal. If Γ is also strongly irreducible then the converse is also true.

De�nition. The Grassmannian Gr(V ) is the space of all r− dimensional sub-
spaces of V . It has the structure of a compact metric space by

d(X,Y ) =| PrX − PrY |
where PrX is the orthogonal projection on X .
Note that P(V ) = G1(V )

Stationary measures on the projective space and the Fursten-

berg boundary map

Let µ be a probability measure on GL(V ) and let Γµ be the smallest closed
subsemigroup of G such that µ(Γµ) = 1.

The following result deals with the construction of The Furstenberg bound-
ary map .

Theorem 1. (Furstenberg boundary map) . Let µ be a probability measure
on GL(V ). Assume Γµ is strongly irreducible. Let r = rΓ be the proximal
dimension. Then

a) There is a borel map ξ : B → Gr(V ) such that for β almost any b ∈ B
, for every nonzero limit point f = limλnb1...bn , im(f) = ξ(b) . In particular
rank(f) = r.

b) Let ν be a µ−stationary Borel probability measure on P(V ). Then, for
β − almost any b ∈ B, ξ(b) is the smallest vector subspace Vb of V such that
νb(P(Vb)) = 1

Corollary. (The proximal case) : Let µ be a Borel probability measure on
GL(V ) such that Γµ is proximal and strongly irreducible. Then the µ stationary
measure ν on P (V ) is unique. Let ξ : B → P(V ) be the Furstenberg map . then,
forβ - a.e b ∈ B, νb = δξ(b) (the Dirac Mass) . For β−almost any b ∈ B, every
nonzero limit point f ∈ End(V ) of a sequence λnb1...bn with λn ∈ R has rank
one and admits the line ξ(b) as its image.

Proof. (of the corollary) : The Corollary follows by Theorem 1 in the proximal
case (r = 1) . The uniqueness is due to the fact that

ν =

ˆ

B

δξ(b)dβ(b)
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(which can also be written as ν = ξ∗β)

Note that in this case we have an example of a dynamical system, in which
the space is a compact metric space, where the invariant measure is unique.
Which was exactly the setting for the lecture 2 weeks ago.

Before proving the theorem we shall prove a lemma about stationary mea-
sures on the grassmanian. Note that Γµ naturally acts on the Grassmanian.

Lemma 2. Let µ be a Borel probability measure on GL(V ) and ν a µ - station-
ary probability measure on Gr0(V ) for some r0 > 0 , and let W ⊂ V a proper
subspace of V .

a) If Γµ is irreducible then ν(Gr0(W )) 6= 1
b) If Γµ is strongly irreducible then ν(Gr0(W )) = 0

Proof. a) Let A = {W ⊂ V | ν(Gr0(W )) = 1} . We wish to prove that A = {V }.
Let

W0 = ∩A

Note that W0 can be represented as a �nite intersection (exercise) . There-
fore, ν(Gr0(W0)) = 1 . Now, since ν is a stationary measure :

1 = ν(Gr0(W0)) =

ˆ

G

ν(Gr0(g−1W0))dµ(g)

and so for µ− almost any g ∈ G

ν(Gr0(g−1W0)) = 1

In other words gW0 = W0 for a.e g.
So we get that the set

GW0
= {g | gW0 = W0}

is a closed subsemigroup of full measure and so Γ ⊂ GW0
. By irreducibility

, W0 = V as desired.
b) let r ≥ r0 be the smallest integer such that there exists W ⊂ V with

ν(Gr0(W )) 6= 0 . We wish to show that r = dimV . By minimality, forW1 6= W2

in Gr(V ) we have that ν(Gr0(W1 ∩W2)) = 0. And so for countable family of
subspaces
{Wj}j∈N ∑

j

ν(Gr0(Wj)) = ν(
⋃
j

Gr0(Wj)) ≤ 1

Hence, for anym > 0 there are �nitely manyW ⊂ V such that ν(Gr0(W )) ≥
m. Let

m = sup
W∈Gr

ν(Gr0(W ))
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Now de�ne

M = {W ∈ Gr0(V ) | ν(Gr0(W )) = m}

so M is �nite and non empty.
Like before, we have

ν(Gr0(W0)) =

ˆ

G

ν(Gr0(g−1W0))dµ(g)

for any W ∈M . And so for µ - almost g ∈ G , g−1W0 ∈M . So the �nite
union ∪M is Γµ- stable , and so by strong irreducibility , V ∈M . In particular,
r = dimV.

We shall now prove Theorem 1 . Note that every f ∈ End(V ) induces a
continuous map P(V )\P(kerf)→ P(V ) .

Proof. Let ν be a µ stationary measure on P(V ). Then for µ almost g ∈ G and
β almost b ∈ B

(b1 · ... · bng)∗ν → νb

Now de�ne ξ(b) to be the smallest vector subspace of V such that

νb(P(ξ(b))) = 1

Let f ∈ End(b) , f = limλnb1 · · · bn a nonzero limit point with λn ∈ R . For
any g ∈ G , ker(fg) ( V and so ν(P(ker(fg))) = 0 by Lemma 1. So fg induces
a well de�ned continuous map P(V )→ P(V ) .

We claim that for a.e b ∈ B, and a.e g ∈ G :
1)

(fg)∗ν = νb

indeed, take some test function ϕ ∈ C(P(V )), then

ˆ

P (V )

ϕ(x)d((fg)∗ν)(x) =

ˆ

P (V )

ϕ(fgx)dν(x)

=

ˆ

P (V )

ϕ(limλnb1 · · · bng(x))dν(x) =︸︷︷︸
continuity

ˆ

P (V )

limϕ(λnb1 · · · bngx)dν(x)

=

ˆ

P (V )

limϕ(b1 · · · bngx)dν(x) =︸︷︷︸
dominated−convergence

lim

ˆ

P (V )

ϕ(b1 · · · bngx)dν(x)

= lim

ˆ

P (V )

ϕ(x)d((b1 · ... · bng)∗ν(x)) =

ˆ

P (V )

ϕ(x)dνb(x)
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Now, the elements g ∈ G where the equality in 1) occurs form a closed
subsemigroup of measure 1 (the proof that it's closed is similar to the above
argument) . And so we have (1) for every g ∈ Γµ . Now, since we also have for
a.e b

νb = lim
n→∞

(b1 · · · bn)∗ν

we could also deduce (in the same manner with g = id) :

f∗ν = νb

From this (and the way we de�ned ξ(b) ) , we deduce that ν(f−1ξ(b)) = 1
and so by lemma 1 , f−1(ξ(b)) = V .

In other words , ξ(b) = Imf .
So we proved that every limit point has the same image ξ(b), and so ξ(b) is

independent of the choice of stationary measure ν and limit point f .
We are left to prove that dim(ξ(b)) = r. By the de�nition of r there exists

π ∈ End(V ) with rank r such that

π = lim
n→∞

λngn

where λn ∈ R and gn ∈ V .
Note that since Γµ is irreducible, we may choose π such that

fπ 6= 0

(kerf 6= V and so we can always �nd g such that gπ /∈ Kerf) .
By Lemma 1 , ν(kerfπ) = 0 . By equation (1) applied to g = gn and taking

limit

(fπ)∗ν = νb

As before we get ξ(b) = im(fπ) and so dim(ξ(b)) ≤ r (remember r is the
rank of π) .

Therefore, by minimality (de�nition of r) :

dim(ξ(b)) = r

as desired.
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