Stationary Measures On The Projective Space

Roie Salama

December 24, 2018

Reminder from previous lectures

Let G be a locally compact semigroup equipped with a measure μ acting continuously on a compact metric space X .

Let (B, \mathcal{B}, β) be the associated Bernouli space .

Let ν be a μ - stationary measure on X:

$$\mu \ast \nu = \int\limits_G g_\ast \nu d\mu(g)$$

then for β - almost $b\in B$, $b=b_1,b_2,\ldots$ we have a limit measure

$$\nu_b = \lim_{n \to \infty} (b_1 \cdots b_n)_* \nu$$

We also have for every $m \in \mathbb{N}$ for $\beta \otimes \mu^{*m}$ - a.e $(b,g) \in B \times G$

$$\lim_{n \to \infty} (b_1 \cdots b_n g)_* \nu = \nu_b$$

Moreover, ν can be represented as an average of ν_b :

$$\nu = \int\limits_{B} \nu_b d\beta(b)$$

Some required definitions

Let V be a finite dimensional real vector space , let G = GL(V), and let $\Gamma \leq GL(V)$ be a subsemigroup. We have an action $\Gamma \curvearrowright V$ by matrx-by-vector multiplication.

Definition. (Irreducibility) We say that the action $\Gamma \curvearrowright V$ is irreducible if for every subspace $W \subset V$:

 $\Gamma W = W \Rightarrow W = 0$ or W = V. The action is strongly irreducible if for subspaces $\{V_k\}_{k=1}^l$:

 $\bigcup V_k \text{ is } \Gamma - stable \Rightarrow \exists i. V_i = V \text{ or } V_1 = \dots = V_l = \{0\}$

Definition. (Proximal dimension) : Let r_{Γ} be the smallest integer such that $\exists \pi \in End(V)$ of rank r_{Γ} such that

$$\pi = \lim_{n \to \infty} \lambda_n g_n$$

where $\lambda_n \in \mathbb{R}$, $g_n \in \Gamma$.

If $r_{\Gamma} = 1$, Γ is called proximal.

Fact. If $\exists f \in \Gamma$ with a unique eigenvalue of maximal absolute value, then Γ is proximal. If Γ is also strongly irreducible then the converse is also true.

Definition. The Grassmannian $G_r(V)$ is the space of all r – dimensional subspaces of V. It has the structure of a compact metric space by

$$d(X,Y) = |Pr_X - Pr_Y|$$

where Pr_X is the orthogonal projection on X. Note that $\mathbb{P}(V) = G_1(V)$

Stationary measures on the projective space and the Furstenberg boundary map

Let μ be a probability measure on GL(V) and let Γ_{μ} be the smallest closed subsemigroup of G such that $\mu(\Gamma_{\mu}) = 1$.

The following result deals with the construction of The Furstenberg boundary map .

Theorem 1. (Furstenberg boundary map). Let μ be a probability measure on GL(V). Assume Γ_{μ} is strongly irreducible. Let $r = r_{\Gamma}$ be the proximal dimension. Then

a) There is a borel map $\xi : B \to G_r(V)$ such that for β almost any $b \in B$, for every nonzero limit point $f = \lim \lambda_n b_1 \dots b_n$, $im(f) = \xi(b)$. In particular rank(f) = r.

b) Let ν be a μ -stationary Borel probability measure on $\mathbb{P}(V)$. Then, for β -almost any $b \in B$, $\xi(b)$ is the smallest vector subspace V_b of V such that $\nu_b(\mathbb{P}(V_b)) = 1$

Corollary. (The proximal case) : Let μ be a Borel probability measure on GL(V) such that Γ_{μ} is proximal and strongly irreducible. Then the μ stationary measure ν on P(V) is unique. Let $\xi : B \to \mathbb{P}(V)$ be the Furstenberg map. then, for β - a.e. $b \in B$, $\nu_b = \delta_{\xi(b)}$ (the Dirac Mass). For β - almost any $b \in B$, every nonzero limit point $f \in End(V)$ of a sequence $\lambda_n b_1 \dots b_n$ with $\lambda_n \in R$ has rank one and admits the line $\xi(b)$ as its image.

Proof. (of the corollary) : The Corollary follows by Theorem 1 in the proximal case (r = 1). The uniqueness is due to the fact that

$$\nu = \int\limits_{B} \delta_{\xi(b)} d\beta(b)$$

(which can also be written as $\nu = \xi_* \beta$)

Note that in this case we have an example of a dynamical system, in which the space is a compact metric space, where the invariant measure is unique. Which was exactly the setting for the lecture 2 weeks ago.

Before proving the theorem we shall prove a lemma about stationary measures on the grassmanian. Note that Γ_{μ} naturally acts on the Grassmanian.

Lemma 2. Let μ be a Borel probability measure on GL(V) and $\nu \ a \ \mu$ -stationary probability measure on $G_{r_0}(V)$ for some $r_0 > 0$, and let $W \subset V$ a proper subspace of V.

a) If Γ_{μ} is irreducible then $\nu(G_{r_0}(W)) \neq 1$

b) If Γ_{μ} is strongly irreducible then $\nu(G_{r_0}(W)) = 0$

Proof. a) Let $A = \{W \subset V \mid \nu(G_{r_0}(W)) = 1\}$. We wish to prove that $A = \{V\}$. Let

 $W_0 = \cap A$

Note that W_0 can be represented as a finite intersection (exercise). Therefore, $\nu(G_{r_0}(W_0)) = 1$. Now, since ν is a stationary measure :

$$1 = \nu(G_{r_0}(W_0)) = \int_G \nu(G_{r_0}(g^{-1}W_0))d\mu(g)$$

and so for μ - almost any $g \in G$

$$\nu(G_{r_0}(g^{-1}W_0)) = 1$$

In other words $gW_0 = W_0$ for a.e g.

So we get that the set

$$G_{W_0} = \{g \mid gW_0 = W_0\}$$

is a closed subsemigroup of full measure and so $\Gamma \subset G_{W_0}$. By irreducibility, $W_0 = V$ as desired.

b) let $r \geq r_0$ be the smallest integer such that there exists $W \subset V$ with $\nu(G_{r_0}(W)) \neq 0$. We wish to show that $r = \dim V$. By minimality, for $W_1 \neq W_2$ in $G_r(V)$ we have that $\nu(G_{r_0}(W_1 \cap W_2)) = 0$. And so for countable family of subspaces

 $\{W_j\}_{j\in\mathbb{N}}$

$$\sum_{j} \nu(G_{r_0}(W_j)) = \nu(\bigcup_{j} G_{r_0}(W_j)) \le 1$$

Hence, for any m > 0 there are finitely many $W \subset V$ such that $\nu(G_{r_0}(W)) \ge m$. Let

$$m = \sup_{W \in G_r} \nu(G_{r_0}(W))$$

Now define

$$M = \{ W \in G_{r_0}(V) \mid \nu(G_{r_0}(W)) = m \}$$

so M is finite and non empty. Like before, we have

$$\nu(G_{r_0}(W_0)) = \int_G \nu(G_{r_0}(g^{-1}W_0))d\mu(g)$$

for any $W \in M$. And so for μ - almost $g \in G$, $g^{-1}W_0 \in M$. So the finite union $\cup M$ is Γ_{μ} - stable, and so by strong irreducibility, $V \in M$. In particular, $r = \dim V$.

We shall now prove Theorem 1 . Note that every $f \in End(V)$ induces a continuous map $\mathbb{P}(V) \setminus \mathbb{P}(kerf) \to \mathbb{P}(V)$.

Proof. Let ν be a μ stationary measure on $\mathbb{P}(V)$. Then for μ almost $g \in G$ and β almost $b \in B$

$$(b_1 \cdot \ldots \cdot b_n g)_* \nu \to \nu_b$$

Now define $\xi(b)$ to be the smallest vector subspace of V such that

$$\nu_b(\mathbb{P}(\xi(b))) = 1$$

Let $f \in End(b)$, $f = \lim \lambda_n b_1 \cdots b_n$ a nonzero limit point with $\lambda_n \in \mathbb{R}$. For any $g \in G$, $ker(fg) \subseteq V$ and so $\nu(\mathbb{P}(ker(fg))) = 0$ by Lemma 1. So fg induces a well defined continuous map $\mathbb{P}(V) \to \mathbb{P}(V)$.

We claim that for a.e $b \in B$, and a.e $g \in G$:

1)

$$(fg)_*\nu = \nu_b$$

indeed, take some test function $\varphi \in C(\mathbb{P}(V))$, then

$$\int_{P(V)} \varphi(x)d((fg)_*\nu)(x) = \int_{P(V)} \varphi(fgx)d\nu(x)$$
$$= \int_{P(V)} \varphi(\lim \lambda_n b_1 \cdots b_n g(x))d\nu(x) \underbrace{=}_{continuity} \int_{P(V)} \lim \varphi(\lambda_n b_1 \cdots b_n gx)d\nu(x)$$

$$= \int_{P(V)} \lim \varphi(b_1 \cdots b_n gx) d\nu(x) \underbrace{=}_{dominated-convergence} \lim \int_{P(V)} \varphi(b_1 \cdots b_n gx) d\nu(x)$$
$$= \lim \int_{P(V)} \varphi(x) d((b_1 \cdots b_n g)_* \nu(x)) = \int_{P(V)} \varphi(x) d\nu_b(x)$$

Now, the elements $q \in G$ where the equality in 1) occurs form a closed subsemigroup of measure 1 (the proof that it's closed is similar to the above argument) . And so we have (1) for every $g \in \Gamma_{\mu}$. Now, since we also have for a.e b

$$\nu_b = \lim_{n \to \infty} (b_1 \cdots b_n)_* \nu$$

we could also deduce (in the same manner with g = id) :

 $f_*\nu = \nu_b$

From this (and the way we defined $\xi(b)$), we deduce that $\nu(f^{-1}\xi(b)) = 1$ and so by lemma 1, $f^{-1}(\xi(b)) = V$.

In other words , $\xi(b) = Imf$.

So we proved that every limit point has the same image $\xi(b)$, and so $\xi(b)$ is independent of the choice of stationary measure ν and limit point f.

We are left to prove that $dim(\xi(b)) = r$. By the definition of r there exists $\pi \in End(V)$ with rank r such that

$$\pi = \lim_{n \to \infty} \lambda_n g_n$$

where $\lambda_n \in \mathbb{R}$ and $g_n \in V$. Note that since Γ_μ is irreducible, we may choose π such that

 $f\pi \neq 0$

 $(kerf \neq V \text{ and so we can always find } g \text{ such that } g\pi \notin Kerf)$.

By Lemma 1, $\nu(kerf\pi) = 0$. By equation (1) applied to $g = g_n$ and taking limit

$$(f\pi)_*\nu = \nu_b$$

As before we get $\xi(b) = im(f\pi)$ and so $dim(\xi(b)) \leq r$ (remember r is the rank of π).

Therefore, by minimality (definition of r) :

$$dim(\xi(b)) = r$$

as desired.