
Geometric and arithmetic aspects of approximation vectors - Section 5

Throughout the lecture we will work with (X,BX , {at}, µ), where

• X is a locally compact second countable Hausdorff space

• BX is the Borel σ-algebra.

• {at}t∈R is a one-parameter group which acts continuously onX

• µ is a Borel probability measure.

S ∈ BX is a µ-cross section, i.e.

• ∃X0 ⊂ X measurable {at}-invariant with µ(X0) = 1 and S ∩X0 is a Borel cross section for

X0: for every x ∈ X0,

{t ∈ R : atx ∈ S} ⊂ R

is discrete and unbounded from below and from above.

• The return time function is Borel.

Example to have in mind: irrational flow in T2, S is the x-axis.

Moreover, we will assume that S ⊂ X is locally compact second countable as well.

ForE ∈ BX and I ⊂ R

EI = {atx : x ∈ E, t ∈ I}.

Recall that we saw that there exists ameasureµS onS such that (among other things), for every Borel

E ⊂ S

µS(E) = lim
ε→0

1

ε
µ(E(0,ε)).

µS is called the cross-section measure of µ. We will assume that µS is finite.

LetE ⊂ S , x ∈ X and T > 0. we denote

N(x, T,E) = #{t ∈ [0, T ] : atx ∈ E}.
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ABorelE ⊂ X is µ-JM (Jordan measurable) if µ(∂XE) = 0.

Definition + lemma: x ∈ X is called (at, µ) generic if 1
T

∫ T

0
δatxdt → µ as T → ∞. x ∈ X is (at, µ)

generic if and only if for any µ-JM setE ⊂ X ,

1

T

∫ T

0

χE(atx)dt → µ(E).

Let S ′ ⊂ S be µS-JM with µS(S ′) > 0. x ∈ X is called (at, µS |S′) generic if the sequence of visits

of {atx : t > 0} to S ′ equidistributes w.r.t. 1
µS(S′)

µS |S′ . x ∈ X is (at, µS |S′) generic if and only if

for any µS-JM setE ⊂ S ′,
N(x, T,E)

N(x, T,S ′)
→T

µS(E)

µS(S ′)
.

Our goal will be to understand the relation between (at, µ) and (at, µS) genericity. Since this is a

topological property we will add some topological requirements:

Recall that the first return time of x ∈ S is min{t > 0 : atx ∈ S} and that for ε > 0,

S≥ε = {x ∈ S : first return time of x to S is ≥ ε}

S<ε = S\S≥ε.

Definition: S is µ-reasonable if

• for all sufficiently small ε, the sets S≥ε are µS-JM.

• ∃U ⊂ S open inS such that themap (0, 1)×U → X , (t, x) 7→ atx is open andµ((clX(S)\U)(0,1)) =

0.

We assume from now on that S is µ-reasonable.

Lemma 5.5: ∀ µS-JM setE ⊂ S and interval I ⊂ [0, 1],EI is µ-JM.

Prop 5.6: ∀ (at, µ) generic x ∈ X , ∀ε > 0 and ∀µS-JM setE ⊂ S≥ε

lim
T→∞

1

T
N(x, T,E) = µS(E).
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Proof: By the last lemma,E(0,ε) is µ-JM and thus

1

T
N(x, T,E) =

1

T
(
1

ε

∫ T

0

χE(0,ε)(atx)dt+O(1)) → 1

ε
µ(E(0,ε)) = µS(E)

(second equality due to lemma 4.9, last one due to properties of µS ).

Our goal is to replace the assumptionE ⊂ S≥ε with a weaker one. For δ > 0, let

∆S,δ := {x ∈ S : ∀ε > 0, lim sup
T→∞

1

T
N(x, T,S<ε) > δ}

∆S :=
∪
δ>0

∆S,δ

(and as always∆R
S = {atx : x ∈ ∆S , t ∈ R}).

Prop. 5.7: ∀ (at, µ) generic x ∈ X\∆R
S which is and any µS-JM setE ⊂ S ,

lim
T→∞

1

T
N(x, T,E) = µS(E).

Proof: Since S is reasonable, for any small enough ε > 0,E ∩ S≥ε is µS-JM. By last prop,

lim inf
T

1

T
N(x, T,E) ≥ lim

T

1

T
N(x, T,E ∩ S≥ε) = µS(E ∩ S≥ε).

Since the sets S≥ε exhaust S , it follows that

lim inf
T

1

T
N(x, T,E) ≥ µS(E).

Fix δ > 0. Since x /∈ ∆R
S , ∃ε > 0 such that

lim sup
T

1

T
N(x, T,S<ε) ≤ δ
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(and we may assume ε is small enough). Therefore,

lim sup
T

1

T
N(x, T,E) = lim sup

T

1

T
(N(x, T,E ∩ S≥ε) +

1

T
N(x, T,S<ε))

≤µS(E ∩ S≥ε) + δ ≤ µS(E) + δ.

Since δ was arbitrary, we are done.

Theorem 5.11: Let S ′ ⊂ S be µS-JM such that µS(S ′) > 0 and let x ∈ X\∆R
S be (at, µ) generic.

Then x is (at, µS |S′) generic.

Proof: We need to show that for any µS-JM setE ⊂ S ′,

lim
T

N(x, T,E)

N(x, T,S ′)
=

µS(E)

µS(S ′)

and we already know the convergence of both enumerator and denominator by Prop 5.7.

In the last theorem we assume that x ∈ X\∆R
S , but we don’t know yet if there are many such x? or

maybe its an empty set?

Lemma 5.8: µS(∆S) = 0 and µ(∆R
S) = 0.

Proof: By the properties of the measure µS , the latter follows from the former. To show the former,

it suffices to show that for any fixed δ > 0, µ(∆S,δ) = 0. Take 0 < ε1 < ε0 small enough so that

µS(S≥ε0) > 0, µS(S<ε1) < δ.

Consider the ergodic decomposition of µ:

µ =

∫
νdΘ(ν)

that is,Θ is a probability measure on P(X) and forΘ-a.e. ν, ν is an {at}-invariant ergodic measure

onX . Then forΘ− a.e.ν, the sets S≥ε0 ,S<ε1 are ν-JM and S is a ν cross section.
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Our goal is to prove that for such ν, for ν-a.e. x,

lim
T

1

T
N(x, T,S<ε1) = νS(S<ε1).

Since νS(S<ε1) < δ (why??), it will imply that νS(∆S,δ) = 0 and hence also µS(∆S,δ) = 0.

Recall that ϕ : S → S is the first return map: for x ∈ S , if t > 0 is the first return time of x to S then

FSx = atx. Then (S, 1
νS(S)

νS , ϕ) is an ergodic dynamical system and if we denoteNT = N(x, T,S)

then forE ⊂ S and νS-a.e. x

N(x, T,E)

NT

=
1

NT

NT−1∑
n=0

χE(ϕ
nx) →T

∫
χEd

νS
νS(S)

=
νS(E)

νS(S)
,

so we can choose F ⊂ S of full νS measure such that this convergence holds for every y ∈ F and

E = S≥ε0 ,E = S<ε1 . Thus

lim
T→∞

1
T
N(y, T,S<ε1)

1
T
N(y, T,S≥ε0)

=
νS(S<ε1)

νS(S≥ε0)
.

Replace F with a smaller set of full νS-measure of (at, ν) generic points. We already know that

the denominator of LHS converges to this of RHS for every y ∈ F by Prop. 5.6, so we have the

enumerator convergence which is what we wanted.

We also want another variant of this theorem with different assumptions.

Definition: LetM ∈ N andE ⊂ S Borel. We say thatE isM -tempered if for µS-a.e. x,

#{t ∈ [0, 1] : atx ∈ E} < M.

E is tempered if it is tempered for someM .

Theorem 5.11(ii): Let S ′ ⊂ S be µS-JM and tempered such that µS(S ′) > 0. Then every (at, µ)

generic x ∈ X is (at, µS |S′) generic.

If time allows:
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Lemma 5.5: For any µS-JM setE ⊂ S and interval I ⊂ [0, 1],EI is µ-JM.

Proof sketch: Assume for concreteness that I = [τ1, τ2] is a closed interval. Since S is µ-reasonable,

∃U ⊂ S open inS such that themap (0, 1)×U → X , (t, x) 7→ atx is open andµ((clX(S)\U)(0,1)) =

0. It is possible to show that

∂X(E
I) ⊂ (clX(S)\U)I ∪ aτ1S ∪ aτ2S ∪ ∂S(E)I .

All sets on the RHS are µ-null: the first one by the choice of U .

The fourth one sinceE is µS-JM and by the relation between µ, µS .

The second and third one because µS finite implies µ(S) = 0. (µ(S) ≤ µ(S(0,ε)) ≤ µS(S)ε = ε)
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