Geometric and arithmetic aspects of approximation vectors - Section 5 Throughout the lecture we will work with $(X, \mathcal{B}_X, \{a_t\}, \mu)$, where

- X is a locally compact second countable Hausdorff space
- \mathcal{B}_X is the Borel σ -algebra.
- $\{a_t\}_{t\in\mathbb{R}}$ is a one-parameter group which acts <u>continuously</u> on X
- μ is a Borel probability measure.

 $\mathcal{S} \in \mathcal{B}_X$ is a μ -cross section, i.e.

∃X₀ ⊂ X measurable {a_t}-invariant with μ(X₀) = 1 and S ∩ X₀ is a Borel cross section for X₀: for every x ∈ X₀,

$$\{t \in \mathbb{R} : a_t x \in \mathcal{S}\} \subset \mathbb{R}$$

is discrete and unbounded from below and from above.

• The return time function is Borel.

Example to have in mind: irrational flow in \mathbb{T}^2 , \mathcal{S} is the *x*-axis.

Moreover, we will assume that $S \subset X$ is locally compact second countable as well.

For $E \in \mathcal{B}_X$ and $I \subset \mathbb{R}$

$$E^I = \{a_t x : x \in E, t \in I\}.$$

Recall that we saw that there exists a measure μ_S on S such that (among other things), for every Borel $E \subset S$

$$\mu_{\mathcal{S}}(E) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \mu(E^{(0,\varepsilon)}).$$

 $\mu_{\mathcal{S}}$ is called the cross-section measure of μ . We will assume that $\mu_{\mathcal{S}}$ is finite. Let $E \subset \mathcal{S}, x \in X$ and T > 0. we denote

$$N(x, T, E) = \#\{t \in [0, T] : a_t x \in E\}.$$

A Borel $E \subset X$ is μ -JM (Jordan measurable) if $\mu(\partial_X E) = 0$. <u>Definition + lemma:</u> $x \in X$ is called (a_t, μ) generic if $\frac{1}{T} \int_0^T \delta_{a_t x} dt \to \mu$ as $T \to \infty$. $x \in X$ is (a_t, μ) generic if and only if for any μ -JM set $E \subset X$,

$$\frac{1}{T} \int_0^T \chi_E(a_t x) dt \to \mu(E).$$

Let $S' \subset S$ be μ_S -JM with $\mu_S(S') > 0$. $x \in X$ is called $(a_t, \mu_S|_{S'})$ generic if the sequence of visits of $\{a_tx : t > 0\}$ to S' equidistributes w.r.t. $\frac{1}{\mu_S(S')}\mu_S|_{S'}$. $x \in X$ is $(a_t, \mu_S|_{S'})$ generic if and only if for any μ_S -JM set $E \subset S'$,

$$\frac{N(x,T,E)}{N(x,T,\mathcal{S}')} \to_T \frac{\mu_{\mathcal{S}}(E)}{\mu_{\mathcal{S}}(\mathcal{S}')}.$$

Our goal will be to understand the relation between (a_t, μ) and (a_t, μ_S) genericity. Since this is a topological property we will add some topological requirements:

Recall that the first return time of $x \in S$ is $\min\{t > 0 : a_t x \in S\}$ and that for $\varepsilon > 0$,

$$S_{\geq \varepsilon} = \{ x \in S : \text{ first return time of } x \text{ to } S \text{ is } \geq \varepsilon \}$$
$$S_{<\varepsilon} = S \setminus S_{\geq \varepsilon}.$$

<u>Definition</u>: S is μ -reasonable if

- for all sufficiently small ε , the sets $S_{\geq \varepsilon}$ are μ_S -JM.
- $\exists \mathcal{U} \subset \mathcal{S}$ open in \mathcal{S} such that the map $(0,1) \times \mathcal{U} \to X$, $(t,x) \mapsto a_t x$ is open and $\mu((cl_X(S) \setminus \mathcal{U})^{(0,1)}) = 0$.

We assume from now on that S is μ -reasonable.

<u>Lemma 5.5</u>: $\forall \mu_{\mathcal{S}}$ -JM set $E \subset \mathcal{S}$ and interval $I \subset [0, 1]$, E^I is μ -JM. <u>Prop 5.6</u>: $\forall (a_t, \mu)$ generic $x \in X$, $\forall \varepsilon > 0$ and $\forall \mu_S$ -JM set $E \subset \mathcal{S}_{\geq \varepsilon}$

$$\lim_{T\to\infty}\frac{1}{T}N(x,T,E)=\mu_{\mathcal{S}}(E).$$

Proof: By the last lemma, $E^{(0,\varepsilon)}$ is μ -JM and thus

$$\frac{1}{T}N(x,T,E) = \frac{1}{T}\left(\frac{1}{\varepsilon}\int_0^T \chi_{E^{(0,\varepsilon)}}(a_t x)dt + O(1)\right) \to \frac{1}{\varepsilon}\mu(E^{(0,\varepsilon)}) = \mu_{\mathcal{S}}(E)$$

(second equality due to lemma 4.9, last one due to properties of μ_{S}).

Our goal is to replace the assumption $E \subset S_{\geq \varepsilon}$ with a weaker one. For $\delta > 0$, let

$$\begin{split} \Delta_{\mathcal{S},\delta} &\coloneqq \{ x \in \mathcal{S} : \forall \varepsilon > 0, \limsup_{T \to \infty} \frac{1}{T} N(x, T, \mathcal{S}_{<\varepsilon}) > \delta \} \\ \Delta_{\mathcal{S}} &\coloneqq \bigcup_{\delta > 0} \Delta_{\mathcal{S},\delta} \end{split}$$

(and as always $\Delta_{\mathcal{S}}^{\mathbb{R}} = \{a_t x : x \in \Delta_{\mathcal{S}}, t \in \mathbb{R}\}$). <u>Prop. 5.7:</u> $\forall (a_t, \mu)$ generic $\underline{x \in X \setminus \Delta_{\mathcal{S}}^{\mathbb{R}}}$ which is and any μ_S -JM set $E \subset \mathcal{S}$,

$$\lim_{T \to \infty} \frac{1}{T} N(x, T, E) = \mu_{\mathcal{S}}(E).$$

<u>Proof</u>: Since S is reasonable, for any small enough $\varepsilon > 0$, $E \cap S_{\geq \varepsilon}$ is μ_S -JM. By last prop,

$$\liminf_{T} \frac{1}{T} N(x, T, E) \ge \lim_{T} \frac{1}{T} N(x, T, E \cap \mathcal{S}_{\ge \varepsilon}) = \mu_{\mathcal{S}}(E \cap \mathcal{S}_{\ge \varepsilon}).$$

Since the sets $\mathcal{S}_{\geq\varepsilon}$ exhaust $\mathcal{S},$ it follows that

$$\liminf_{T} \frac{1}{T} N(x, T, E) \ge \mu_{\mathcal{S}}(E).$$

Fix $\delta > 0$. Since $x \notin \Delta_{\mathcal{S}}^{\mathbb{R}}$, $\exists \varepsilon > 0$ such that

$$\limsup_{T} \frac{1}{T} N(x, T, \mathcal{S}_{<\varepsilon}) \le \delta$$

(and we may assume ε is small enough). Therefore,

$$\limsup_{T} \frac{1}{T} N(x, T, E) = \limsup_{T} \frac{1}{T} (N(x, T, E \cap S_{\geq \varepsilon}) + \frac{1}{T} N(x, T, S_{<\varepsilon}))$$
$$\leq \mu_{\mathcal{S}}(E \cap S_{\geq \varepsilon}) + \delta \leq \mu_{\mathcal{S}}(E) + \delta.$$

Since δ was arbitrary, we are done.

<u>Theorem 5.11</u>: Let $\mathcal{S}' \subset \mathcal{S}$ be $\mu_{\mathcal{S}}$ -JM such that $\mu_{\mathcal{S}}(\mathcal{S}') > 0$ and let $x \in X \setminus \Delta_{\mathcal{S}}^{\mathbb{R}}$ be (a_t, μ) generic. Then x is $(a_t, \mu_{\mathcal{S}}|_{\mathcal{S}'})$ generic.

<u>Proof:</u> We need to show that for any $\mu_{\mathcal{S}}$ -JM set $E \subset \mathcal{S}'$,

$$\lim_{T} \frac{N(x, T, E)}{N(x, T, S')} = \frac{\mu_{\mathcal{S}}(E)}{\mu_{\mathcal{S}}(S')}$$

and we already know the convergence of both enumerator and denominator by Prop 5.7.

In the last theorem we assume that $x \in X \setminus \Delta_{\mathcal{S}}^{\mathbb{R}}$, but we don't know yet if there are many such x? or maybe its an empty set?

 $\underline{\operatorname{Lemma 5.8:}}\ \mu_{\mathcal{S}}(\Delta_{\mathcal{S}})=0 \text{ and } \mu(\Delta_{\mathcal{S}}^{\mathbb{R}})=0.$

<u>Proof:</u> By the properties of the measure μ_{S} , the latter follows from the former. To show the former, it suffices to show that for any fixed $\delta > 0$, $\mu(\Delta_{S,\delta}) = 0$. Take $0 < \varepsilon_1 < \varepsilon_0$ small enough so that

$$\mu_{\mathcal{S}}(\mathcal{S}_{\geq \varepsilon_0}) > 0, \qquad \mu_{\mathcal{S}}(\mathcal{S}_{<\varepsilon_1}) < \delta.$$

Consider the ergodic decomposition of μ :

$$\mu = \int \nu d\Theta(\nu)$$

that is, Θ is a probability measure on $\mathcal{P}(X)$ and for Θ -a.e. ν , ν is an $\{a_t\}$ -invariant ergodic measure on X. Then for $\Theta - a.e.\nu$, the sets $\mathcal{S}_{\geq \varepsilon_0}$, $\mathcal{S}_{<\varepsilon_1}$ are ν -JM and \mathcal{S} is a ν cross section. Our goal is to prove that for such ν , for ν -a.e. x,

$$\lim_{T} \frac{1}{T} N(x, T, \mathcal{S}_{<\varepsilon_1}) = \nu_{\mathcal{S}}(\mathcal{S}_{<\varepsilon_1}).$$

Since $\nu_{\mathcal{S}}(\mathcal{S}_{<\varepsilon_1}) < \delta$ (why??), it will imply that $\nu_{\mathcal{S}}(\Delta_{\mathcal{S},\delta}) = 0$ and hence also $\mu_{\mathcal{S}}(\Delta_{\mathcal{S},\delta}) = 0$. Recall that $\phi : \mathcal{S} \to \mathcal{S}$ is the first return map: for $x \in \mathcal{S}$, if t > 0 is the first return time of x to \mathcal{S} then $F_{\mathcal{S}}x = a_t x$. Then $(\mathcal{S}, \frac{1}{\nu_{\mathcal{S}}(\mathcal{S})}\nu_{\mathcal{S}}, \phi)$ is an ergodic dynamical system and if we denote $N_T = N(x, T, \mathcal{S})$ then for $E \subset \mathcal{S}$ and $\nu_{\mathcal{S}}$ -a.e. x

$$\frac{N(x,T,E)}{N_T} = \frac{1}{N_T} \sum_{n=0}^{N_T-1} \chi_E(\phi^n x) \to_T \int \chi_E d\frac{\nu_S}{\nu_S(S)} = \frac{\nu_S(E)}{\nu_S(S)},$$

so we can choose $F \subset S$ of full ν_S measure such that this convergence holds for every $y \in F$ and $E = S_{\geq \varepsilon_0}, E = S_{<\varepsilon_1}$. Thus

$$\lim_{T \to \infty} \frac{\frac{1}{T} N(y, T, \mathcal{S}_{<\varepsilon_1})}{\frac{1}{T} N(y, T, \mathcal{S}_{\geq\varepsilon_0})} = \frac{\nu_{\mathcal{S}}(\mathcal{S}_{<\varepsilon_1})}{\nu_{\mathcal{S}}(\mathcal{S}_{\geq\varepsilon_0})}.$$

Replace F with a smaller set of full ν_{S} -measure of (a_{t}, ν) generic points. We already know that the denominator of LHS converges to this of RHS for every $y \in F$ by Prop. 5.6, so we have the enumerator convergence which is what we wanted.

We also want another variant of this theorem with different assumptions.

Definition: Let $M \in \mathbb{N}$ and $E \subset S$ Borel. We say that E is M-tempered if for μ_S -a.e. x,

$$#\{t \in [0,1] : a_t x \in E\} < M.$$

E is tempered if it is tempered for some M.

<u>Theorem 5.11(*ii*)</u>: Let $S' \subset S$ be μ_S -JM and tempered such that $\mu_S(S') > 0$. Then every (a_t, μ) generic $x \in X$ is $(a_t, \mu_S|_{S'})$ generic.

If time allows:

<u>Lemma 5.5</u>: For any $\mu_{\mathcal{S}}$ -JM set $E \subset \mathcal{S}$ and interval $I \subset [0, 1]$, E^I is μ -JM.

<u>Proof sketch</u>: Assume for concreteness that $I = [\tau_1, \tau_2]$ is a closed interval. Since S is μ -reasonable, $\exists \mathcal{U} \subset S$ open in S such that the map $(0, 1) \times \mathcal{U} \to X$, $(t, x) \mapsto a_t x$ is open and $\mu((cl_X(S) \setminus \mathcal{U})^{(0,1)}) = 0$. It is possible to show that

$$\partial_X(E^I) \subset (\operatorname{cl}_X(\mathcal{S}) \setminus \mathcal{U})^I \cup a_{\tau_1} \mathcal{S} \cup a_{\tau_2} \mathcal{S} \cup \partial_{\mathcal{S}}(E)^I.$$

All sets on the RHS are μ -null: the first one by the choice of \mathcal{U} .

The fourth one since E is μ_{S} -JM and by the relation between μ, μ_{S} .

The second and third one because $\mu_{\mathcal{S}}$ finite implies $\mu(\mathcal{S}) = 0$. ($\mu(S) \le \mu(S^{(0,\varepsilon)}) \le \mu_{\mathcal{S}}(S)\varepsilon = \varepsilon$)