Definitions and Notations

Def. A win-lose game Γ is a collection of objects:

$$(x_0, x_I, x_{II}, x, f, S, S_I, S_{II})$$

- $x_0 \in X$
- $x_I \cap x_{II} = \emptyset$, $x_I \cup x_{II} = X$
- $f : X \setminus \{x_0\} \to X$ onto
 $$\forall x \in X \exists n \geq 0 \text{ s.t. } f^n(x) = x_0$$
- S is the set of all sequences satisfying:
 $$S(0) = x_0 \quad \forall i > 0 : s(i) = f(s(i+1))$$
- $S_I \cap S_{II} = \emptyset$, $S_I \cup S_{II} = S$

* a play of Γ is an element of S. Player I wins if it belongs to S_I.

Def. If $\Gamma = (x_0, x_I, x_{II}, x, f, S, S_I, S_{II})$ is a game, the set

$$\Sigma_I(\Gamma)$$ - the set of strategies for player I

$$= \{ \sigma \in X^{x_I} : \forall x \in f^{-1}(x) \}$$

$\Sigma_I(\Gamma)$ defined respectively

* we'll denote the elements of Σ_{II} by τ for the comments
\(S = (S_1, T_2) \) is the unique play which results if the two players pick the strategies \(S_1, T_2 \).

Satisfying:
- \(S(0) = X_0 \)
- \(S(n) \in X_1 \rightarrow S(n+1) = S(S(n)) \)
- \(S(n) \notin X_2 \rightarrow S(n+1) = T(S(n)) \)

Def. If a win-lose game, \(\Sigma_{w}(\Gamma) \) the sets of all winning strategies.

\[\Sigma_{w}(\Gamma) = \{ S \in \Sigma_{w}(\Gamma) : \forall T \in \Sigma_{w}(\Gamma), <S, T> \in S1 \} \]

\[\Sigma_{w}(\Gamma) \text{ respectively} \]

Def. A win-lose game \(\Gamma \) is strictly determined

if \(\Sigma_{w}(\Gamma) \neq \emptyset \) or \(\Sigma_{w}(\Gamma) \neq \emptyset \)

The Indeterminacy Theorem

We construct an example of an infinite game with perfect information which is not strictly determined.

\[X = \bigcup_{n \in \mathbb{N}} X_n \]

\[S = \bigcup_{n \in \mathbb{N}} S_n \]

\[X_1 = \bigcup_{n \in \mathbb{N}} X_{1,n} \]

\[X_2 = \bigcup_{n \in \mathbb{N}} X_{2,n} \]

\(X_0 \) - the sequence of length 0.
1. \(|\Sigma_{\text{r}}(\Gamma)| = |\Sigma_{\text{p}}(\Gamma)| = 2^{\aleph_0}\)

Proof: every function from \(X_1\) to \(\{0,1\}\) determines and is determined by a strategy \(\sigma \in \Sigma_{\text{r}}(\Gamma)\).

\[\Rightarrow |\Sigma_{\text{r}}(\Gamma)| = |\{0,1\}^{X_1}| = 2^{\aleph_0}\]

2. \(\forall \tau \in \Sigma_{\text{r}}(\Gamma), \quad |S_{\tau_0}| = \{|\langle \sigma_0, \tau \rangle | \tau \in \Sigma_{\text{r}}(\Gamma)\}| = 2^{\aleph_0}\)

\(\forall \sigma_0 \in \Sigma_{\text{r}}(\Gamma), \quad |S_{\sigma_0}| = \{|\langle \sigma_0, \tau \rangle | \tau \in \Sigma_{\text{r}}(\Gamma)\}| = 2^{\aleph_0}\).

Proof: By the map \(\Psi : \{0,1\}^\mathbb{N} \rightarrow S_{\sigma_0}\), \(\{a_n\}_{n=0}^\infty \rightarrow s\)

where \(S(0) = \sigma_0\), \(S(2n+1) = a_n\), \(S(2n) = \tau_0(S(2n-1))\)

\(S \in S_{\sigma_0}\), because for each such play, there is \(\tau_0 \in \Sigma_{\text{r}}(\Gamma)\) s.t. \(S = \langle \sigma_0, \tau_0 \rangle\).

Moreover, the map is injective.

\[\Rightarrow 2^{\aleph_0} = |\{0,1\}^\mathbb{N}| \leq |S_{\sigma_0}| \leq |\mathbb{N}| = 2^{\aleph_0}\]

Using Axioms of Choice

Let \(\alpha\) be the least ordinal s.t. there are \(2^{\aleph_0}\) ordinals less than \(\alpha\).

By (1) we can index the strategies in \(\Sigma_{\text{r}}(\Gamma)\) as \(\sigma_\beta\), \(\beta \in \{\mathfrak{t} | \mathfrak{t} < \alpha\}\).

Similarly, \(\tau_\beta \in \Sigma_{\text{p}}(\Gamma)\).

Choose \(\sigma_0 \in S_{\tau_0}\), and choose \(\tau_0 \in S_{\sigma_0}\), \(\tau_0 \neq \sigma_0\).

Proceed inductively: if \(S_\beta, \tau_\beta\) have been chosen for all \(\mathfrak{t} < \beta < \alpha\)

\(|\{\tau_\beta | \mathfrak{t} < \beta\}| < 2^{\aleph_0} \rightarrow S_{\tau_\beta} \setminus \{\tau_\beta | \mathfrak{t} < \beta\} \neq \emptyset\)

Choose one element and call it \(S_\beta\).
Similarly, \(S_\rho \setminus \{ s_\rho \mid \rho \leq \beta \} \neq \emptyset \), call one of its elements \(\tau \).

Define \(A = \{ s_\tau \mid \tau \leq \omega \} \), \(B = \{ t_\tau \mid \tau < \omega \} \), \(A, B \subseteq S \).

We show that \(A \cap B = \emptyset \), i.e. \(\forall \gamma, \beta \ s_\gamma \neq t_\beta \).

Case I if \(\gamma < \beta \) \(\rightarrow t_\beta \in S_\rho \setminus \{ s_\rho \mid \rho \leq \beta \} \rightarrow t_\beta \notin S_\rho \setminus \{ s_\rho \mid \rho \leq \beta \} \)

Case II if \(\gamma > \beta \) \(\rightarrow s_\gamma \notin S_\rho \setminus \{ s_\rho \mid \rho \leq \beta \} \rightarrow s_\gamma \notin S_\rho \setminus \{ s_\rho \mid \rho \leq \beta \} \)

We now partition \(S \) into two sets \(S_A, S_B \) s.t. \(AC S_A, BC S_B \).

Finally, we show that \(\Sigma^w_1 (\gamma) = \Sigma^w_\Pi (\gamma) = \emptyset \).

Let \(\omega \in \Sigma^w_1 (\gamma) \), so it has an index, say \(\beta \).

By the construction, there is a play \(t_\beta \) s.t. \(t_\beta \in S_\rho \).

Hence, there is \(\tau \in \Sigma^w_\Pi (\gamma) \) s.t. \(\sigma_\gamma, t_\gamma = t_\beta \in BC S_\Pi \)

\[\sigma_\gamma \notin \Sigma^w_1 (\gamma) \rightarrow \Sigma^w_1 (\gamma) = \emptyset \]

Symmetrically, \(\Sigma^w_\Pi (\gamma) = \emptyset \)

Thus \(\gamma \) is not strictly determined.

Reminder - Transfinite Induction: /Recursion

1. Define \(X_\alpha \)
2. Given \(X_\beta \) for all \(\beta < \alpha \), define \(X_{\alpha+1} \)
3. Given \(X_\beta \) for all \(\beta < \delta \) define \(X_\delta \)

\(\alpha + \beta = \alpha (\cup \beta) \)

\(\alpha \downarrow \)

Successor ordinals

Limit ordinals

\(UX, X \) is the set of previous ordinals
It is also a Schmidt game:

Recall - (F, G)-games

- $\mathcal{N} \subset \mathcal{M}$, $S \subseteq \mathcal{M}$ is the winning set
- $\alpha : \mathcal{N} \to \mathcal{P}(\mathcal{M})$
- ψ-functions: $\psi : \mathcal{N} \to \mathcal{P}(\mathcal{N})$

$s.t. \forall C \in \mathcal{P}(B) \quad \alpha(C) \in \alpha(B)$

- F, G are ψ-functions, move 1: $B_1 \in \mathcal{N}$
- move $\alpha : \mathcal{N} \to \mathcal{P}(\mathcal{N})$
- F, G are ψ-functions, move 2: $W_i \in F(B_i)$
- $B_i \in G(W_{i-1})$
- $W_{i+1} \in F(B_i)$

$\alpha(B_1) \supset \alpha(W_1) \supset \alpha(B_2) \supset \alpha(W_2) \supset \ldots$

if $\bigcap_{i=1}^{\infty} \alpha(B_i) = \bigcap_{i=1}^{\infty} \alpha(W_i) \subset S$ the White is the winner.

In our example:

- $\mathcal{N} = \bigcup_{n=1}^{\infty} 10, 11^n$
- $\mathcal{M} = 10, 11^n$
- $\alpha : \bigcup_{n=1}^{\infty} 10, 11^n \to \mathcal{P}(10, 11^n)$

$\alpha(\langle a_1, a_2, \ldots, a_n \rangle) = \{ x_1, x_2, \ldots, x_n \in 10, 11^n : x_1 = a_1, x_2 = a_2, \ldots, x_n = a_n \}$

- $F : \bigcup_{n=1}^{\infty} 10, 11^n \to \mathcal{P}(\bigcup_{n=1}^{\infty} 10, 11^n)$

$F(\langle a_1, a_2, \ldots, a_n \rangle) = \{ x_1, x_2, \ldots, x_n \in 10, 11^{n+1} : x_1 = a_1, x_2 = a_2, \ldots, x_n = a_n \}$

indeed, $\alpha(\langle a_1, \ldots, a_n \rangle) \subseteq \alpha(\langle a_1, \ldots, a_n \rangle)$
The Topology of infinite game

Von Neumann has proved that finite games with perfect information are strictly determined.

\[x \in X \quad U(x) = \{ s \mid s \in S \text{ and, for some } i, s(i) = x \} \]

* a neighborhood of \(s \) is any \(U(x) \) containing \(s \)

Theorem: the neighborhoods of points of \(s \) determine a Hausdorff topology for \(S \). In this topology \(S \) is totally disconnected.

\[
\text{open game - when } S_x \text{ is open}
\]

Definition: A win-lose game \(\mathcal{G}' = (x', x'_1, x'_2, f', x' \setminus f', S, S^1_1, S^1_2) \) is a sub-game of \(\mathcal{G} \) if:

\[
x'_0 = x_0 \quad x'_1 \subseteq x_1 \quad x'_2 \subseteq x_2 \quad f' = f \setminus x'
\]

\[
S^1_1 = S^1_1 \cap S' \quad S^1_2 = S^2_2 \cap S'
\]

Theorem: if \(\mathcal{G}' \) is a sub-game of \(\mathcal{G} \) then \(S' \) is closed, non-empty subset of \(S \).

Proof: Since \(\mathcal{G}' \) is a game, \(S' \) cannot be empty.

Let \(s \in S \setminus S' \). For some \(n \), \(s(n) \notin x' \) from the definitions.

Now if \(t \in U(s(n)) \) then \(t(s) = s(n) \notin x' \). \(\Rightarrow U(s(n)) \subseteq S \setminus S' \)

\(\Rightarrow S \setminus S' \) contains a neighborhood of \(S \). \(\Rightarrow S \setminus S' \) open.
Thm 5: If F is a game, $\emptyset \neq F \subseteq S$ is closed, then there is a unique subgame of F whose space is F.

(With its relative topology)

Notation: If $\emptyset \neq F \subseteq S$ is closed, then the corresponding game is F_x.

If F is a neighborhood $U(x)$ we'll denote F_x.

Def:
1. $F \cap F' = (x_0, x, x, f, s, S, S \cap S', s \setminus s')$
2. $F \cup F' = (x_0, x, x, f, s, S, S \cup S', s \setminus s')$

Define only for games with the same x_0, x, x, f.

(3) $-F = (x_0, x, x, f, s, S, S, S')$ "The negative"

Example for not strictly determined subgame.

Def: A win-lose game F is absolutely determined if all subgames of F and $-F$ are strictly determined.

Thm 6: The union of an open game and absolutely determined game, is strictly determined.

Cor.: An open or closed game is strictly determined.
Proof of the cor. Apply Thm 6 to the case where the absolutely determined game is \(\Gamma = (x_0, x_1, x_2, r, s, \emptyset, \emptyset) (S_I = \emptyset) \).

For the closed game, take \((x, x_1, x_2, x_3, r, s_1, s_2, s_I, \overline{s_I})\) which is open correspondences between \(\Sigma_1(\Gamma) \) and \(\Sigma_2(\Gamma) \),
\(\Sigma_3(\Gamma) \) and \(\Sigma_2(\Gamma) \).

Proof of Thm 6: Let \(G \subseteq S \) be open, and let \(\Gamma \) be absolutely determined.

We show that \(\Gamma' = (x_0, x_1, x_2, r, s, \emptyset U G, S_1 \setminus G) \) is strictly determined.

Define \(\Gamma^* = (x_0, x_1, x_2, r, s, G, S_1 \setminus G) \) - The open game

\(W^*_i = \{ x | \Sigma^w_i (\Gamma^*_x) \neq \emptyset \} \) - "Winning positions" for player \(I \)

\(F = S \setminus \cup_{x \in W^*_1} U(x) \) - closed set

If \(U(x) \subseteq G \) then every \(s \in \Sigma s_1 (x) \) will win for player \(I \), so \(x \in W^*_1 \).

\(G \) is open, so it's the union of all neighborhoods contained in it.

Hence, \(G \subseteq \bigcup_{x \in W^*_1} U(x) \) [for every \(s \in G \), there is \(U(x) \) s.t. \(s \subseteq U(x) \subseteq G \)]

\(F \cap G = \emptyset \)

If \(x \in W^*_1 \) then any \(s \in \Sigma^w I (x) \) will win \(\Gamma' \).

If \(x \in W^*_1 \), then there is \(s \in S \) s.t. \(s(x) \in W^*_1 \) \(\forall i \) \(r(x) \).

\(\Rightarrow s \in F \) so \(F \neq \emptyset \) and we can look at the subgame \(\Gamma_f \).

\(\Gamma \) is absolutely determined so it's enough to show:

Because subgames are strictly determined

\((A) \) If \(\Sigma^w I (\Gamma_f) = \emptyset \) \(\Rightarrow \Sigma^w I (\Gamma') \neq \emptyset \)

\((B) \) If \(\Sigma^w (\Gamma_f) \neq \emptyset \) \(\Rightarrow \Sigma^w (\Gamma') \neq \emptyset \).
Proof of A: \{X_{T} \in W_{T}^* \text{ choose } \sum_{I}^{w}(P_{x}) \}.

Choose \sum_{I}^{w}(P_{f}) and let \sigma_{0} be any extension of \sigma_{1}.

Existence: There is \sigma \in \Sigma_{I}^{w}(P_{1}) s.t for each \tau \in \Sigma_{II}^{w}(P_{1}) either

(*) \langle \sigma_{1}, \tau \rangle = \langle \sigma_{0}, \tau \rangle \in F \text{ or}

(**) for some \ x \in W_{1}^* and \tau \in \Sigma_{II}^{w}(P_{x}) : \langle \sigma_{1}, \tau \rangle = \langle \sigma_{x}, \tau \rangle

\bullet \text{If (*)}, there is \tau_{1} \in \Sigma_{II}^{w}(P_{f}) \text{ s.t.} \langle \sigma_{1}, \tau \rangle = \langle \sigma_{0}, \tau \rangle = \langle \tau_{1}, \tau \rangle.

Since \tau_{1} \in \Sigma_{II}^{w}(P_{f}) \text{, } \langle \sigma_{1}, \tau \rangle \in \Sigma_{II} \land F \subset S_{II} \text{ we have}

\bullet \text{If (**)}, then since \sigma \in \Sigma_{II}^{w}(P_{x}^*), \langle \sigma_{1}, \tau \rangle \text{ belong to } G.

\Rightarrow \langle \sigma_{1}, \tau \rangle \in S_{II} \cup G \Rightarrow \sigma \in \Sigma_{II}^{w}(P_{1})

Proof of B: Choose \tau_{f} \in \Sigma_{II}^{w}(P_{f}). We define a winning strategy for player II in \eta_{1}.

If \ x \in X_{II} \text{ choose } \tau_{(x)} = \tau_{f}(x). \text{ So } \tau_{(x)} \notin f^{-1}(W_{1}^*)

If \ x \notin X_{II} \text{ choose any element of } f^{-1}(x).

Let \sigma \in \Sigma_{II}^{w}(P_{1}).

\bullet \text{If } \langle \sigma, \tau \rangle \in F \text{ (By lemma u.s.), by the fact that } \tau_{f} \in \Sigma_{II}^{w}(P_{f}) \text{,}

\langle \sigma, \tau \rangle \in F \setminus S_{II} = \left(\left\{ x \in X_{II}^* \mid \Sigma_{II}^{w}(P_{x}) \neq \emptyset \right\} \right) \cup G. \text{ and we are done.}

\bullet \text{If } \langle \sigma, \tau \rangle \notin F \text{ then } \langle \sigma, \tau \rangle \in \sigma_{II} \cup \left(\Sigma_{II}^{w}(P_{x}) \right) \text{ i.e. there's a least integer } n \geq 0

\text{ s.t } s(n) \in W_{I}^* \text{ s.t } \Sigma_{II}^{w}(P_{s(n)}) \neq \emptyset \rightarrow \Sigma_{I}^{w}(P_{s(n)}) \neq \emptyset

\text{Ex: } \Sigma_{II}^{w}(P_{x}) \neq \emptyset \rightarrow \Sigma_{II}^{w}(P_{x}) \neq \emptyset

\text{But if } s(n) \notin X_{II} \text{, then there would be } y \in f^{-1}(s(n-1)) \setminus W_{I}^*. \text{ (Ex.)}

\text{Lemma u.s.}

\Rightarrow \text{by the definition of } \tau_{1}, \text{ } s(n) \rightarrow \tau_{s(n)} \notin f^{-1}(s(n-1)) \setminus W_{I}^*. \text{ (Ex.)}
Cor 10. An open or closed game is absolutely determined.

Cor 13. An intersection and union of open or closed game with absolutely determined game is strictly determined.

(Martin 1975) - A Borel game is determined.

[If S_1 is Borel set, then P is determined]