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Preface

This book is devoted to some of the interesting recently discovered interac-
tions between Analytic Number Theory and the Theory of Dynamical Systems.
Analytical Number Theory has a very long history. Many people associate
its starting point with the work of Dirichet on L-functions in 1837, where he
proved his famous result about infinitely many primes in arithmetic progres-
sions. Since then, analytical methods have played a crucial role in proving
many important results in Number Theory. For example, the study of the
Riemann zeta function allowed to uncover deep information about the distri-
bution of prime numbers. Hardy and Littlewood developed their circle method
to establish first explicit general estimates for the Waring problem. Later,
Vinogradov used the idea of the circle method to create his own method of
exponential sums which allowed him to solve, unconditionally of the Rie-
mann hypothesis, the ternary Goldbach conjecture for all but finitely many
natural numbers. Roth also used exponential sums to prove the existence of
three-term arithmetic progressions in subsets of positive density. One of the
fundamental questions which arise in the investigation of exponential sums, as
well as many other problems in Number Theory, is how rational numbers/vec-
tors are distributed and how well real numbers/vectors can be approximated
by rationals. Understanding various properties of sets of numbers/vectors that
have prescribed approximational properties, such as their size, is the subject
of the metric theory of Diophantine approximation, which involves an inter-
esting interplay between Arithmetic and Measure Theory. While these topics
are now considered as classical, the behaviour of exponential sums is still not
well understood today, and there are still many challenging open problems
in Diophantine approximation. On the other hand, in the last decades there
have been several important breakthroughs in these areas of Number Theory
where progress on long-standing open problems has been achieved by utilising
techniques which originated from the Theory of Dynamical Systems. These

ix



x Preface

developments have uncovered many profound and very promising connections
between number-theoretic and dynamical objects that are at the forefront of
current research. For instance, it turned out that properties of exponential sums
are intimately related to the behaviour of orbits of flows on nilmanifolds; the
existence of given combinatorial configurations (e.g. arithmetic progressions)
in subsets of integers can be established through the study of multiple recur-
rence properties for dynamical systems; and Diophantine properties of vectors
in the Euclidean spaces can be characterised in terms of excursions of orbits of
suitable flows in the space of lattices.

The material of this book is based on the Durham Easter School, ‘Dynam-
ics and Analytic Number Theory’, that was held at the University of Durham
in Spring 2014. The intention of this school was to communicate some of
these remarkable developments at the interface between Number Theory and
Dynamical Systems to young researchers. The Easter School consisted of a
series of mini-courses (with two to three lectures each) given by Tim Austin,
Manfred Einsiedler, Giovanni Forni, Alex Kontorovich, Sanju Velani and
Trevor Wooley, and a talk by Yann Bugeaud presenting a collection of recent
results and open problems in Diophantine approximation. The event was very
well received by more than 60 participants, many of them PhD students from
all around the world. Because of the great interest of young researchers in
this topic, we decided to encourage the speakers to write contributions to this
Proceedings volume.

One of the typical examples where both classical and dynamical approaches
are now actively developing and producing deep results is the theory of Dio-
phantine approximation. One of the classical problems in this area asks how
well a given n-dimensional vector x ∈ Rn can be approximated by vectors with
rational coefficients. More specifically, one can ask: what is the supremum λ(x)
of the values λ such that the inequality

||qx − p||∞ < Q−λ (1)

has infinitely many integer solutions Q ∈ N, q ∈ N, p ∈ Zn satisfying q ≤ Q?
This type of problem is referred to as a simultaneous Diophantine approxima-
tion. There is also a dual Diophantine approximation problem which asks for
the supremum ω(x) of the values ω such that the inequality

|(x,q)− p| < Q−ω (2)

has infinitely many solutions Q ∈ N, q ∈ Zn , p ∈ Z with q �= 0 and ||q||∞ ≤
Q. It turns out that there are various relations between the exponents λ(x) and
ω(x). Chapter 2 provides an overview of known relations between these and
some other similar exponents. It mostly concentrates on the case where x lies
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on the so-called Veronese curve which is defined by x(t) := (t, t2, . . . , tn)

with real t . This case is of particular importance for number theorists since it
has implications for the question about the distribution of algebraic numbers of
bounded degree. For example, condition (2) in this case transforms to |P(t)| <
Q−ω where P(t) is a polynomial with integer coefficients. For large Q this
implies that x is very close to the root of P , which is an algebraic number.

Metric theory of Diophantine approximation does not work with particular
vectors x. Instead it deals with the sets of all vectors x satisfying inequali-
ties like (1) or (2) for infinitely many Q ∈ N, q ∈ N, p ∈ Zn (respectively,
Q ∈ N, q ∈ Zn , p ∈ Z, q �= 0). The central problem is to estimate the mea-
sure and the Hausdorff dimension of such sets. This area of Number Theory
was founded at the beginning of the twentieth century with Khintchine’s work
which was later generalised by Groshev. In the most general way they showed
that, given a function ψ : R≥0 → R≥0, the set of m × n matrices A which
satisfy the inequality

||Aq − p||∞ < ψ(||q||∞)

with p ∈ Zn and q ∈ Zm , has either zero or full Lebesgue measure. The
matrices A satisfying this property are usually called ψ-well approximable.
Furthermore, with some mild conditions on ψ , the Lebesgue measure of the
set of ψ-well approximable matrices is determined by the convergence of a
certain series which involves ψ . Later, many other results of this type were
established, some of them with help of the classical methods and others by
using the ideas from homogeneous dynamics.

Chapter 1 describes several powerful ‘classical’ techniques used in metric
theory of Diophantine approximation, such as the Mass Transference Prin-
ciple, ubiquitous systems, Cantor sets constructions and winning sets. The
Mass Transference Principle allows us to get results about the more sensi-
tive Hausdorff measure and Hausdorff dimension of sets of well approximable
matrices or similar objects as soon as results about their Lebesgue measure
are known. Ubiquitous systems provide another powerful method originat-
ing from works of A. Baker and W. Schmidt. It enables us to obtain the
‘full Lebesgue measure’-type results in various analogues of the Khintchine–
Groshev theorem. Finally, Chapter 1 introduces the generalised Cantor set
construction technique, which helps in investigating badly approximable num-
bers or vectors. It also relates such sets with so-called winning sets developed
by W. Schmidt. The winning sets have several surprising properties. For
example, they have the maximal possible Hausdorff dimension and, even
though such sets may be null in terms of Lebesgue measure, their countable
intersection must also be winning.
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Chapter 3 is devoted to the study of exponential sums. Given a real
polynomial P(x) = ak xk + · · · + a1x + a0, the Weyl sums are defined as

WN :=
N−1∑
n=0

e2π i P(n).

The study of Weyl sums has a long history that goes back to foundational
works of Hardy, Littlewood, and Weyl. When the coefficients of the polyno-
mial P(X) satisfy a suitable irrationality condition, then it is known that for
some w ∈ (0, 1),

WN = O(N 1−w) as N → ∞,

and improving the value of the exponent in this estimate is a topic of current
research. This problem has been approached recently by several very different
methods. The method of Wooley is based on refinements of the Vinogradov
mean value theorem and a new idea of efficient congruencing, and the method
of Flaminio and Forni involves the investigation of asymptotic properties of
flows on nilmanifolds using renormalisation techniques. It is quite remarkable
that the exponents w obtained by the Flaminio–Forni approach, which is deter-
mined by optimal scaling of invariant distributions, essentially coincide with
the exponents derived by Wooley using his method of efficient congruencing.

As discussed in Chapter 3, flows on nilmanifolds provide a very convenient
tool for investigating the distribution of polynomial sequences modulo one and
modelling Weyl sums. We illustrate this by a simple example. Let

N :=
⎧⎨⎩[p, q, r] :=

⎛⎝ 1 p r
0 1 q
0 0 1

⎞⎠ : p, q, r ∈ R

⎫⎬⎭
denote the three-dimensional Heisenberg group, and � be the subgroup con-
sisting of matrices with integral entries. Then the factor space M := �\N
provides the simplest example of a nilmanifold. Given an upper triangular
nilpotent matrix X = (xi j ), the flow generated by X is defined by

φX
t (m) = m exp(t X) with m ∈ M.

More explicitly, exp(t X) = [x12t, x23t, x13t + x12x23t2/2]. The space M con-
tains a two-dimensional subtorus T defined by the condition q = 0. If we
take x23 = 1, then the intersection of the orbit φX

t (�e) with this torus gives
the sequence of points [x12n, 0, x13n + x12n2/2] with n ∈ N. Hence, choos-
ing suitable matrices X , the flows φX

t can be used to model values of general
quadratic polynomials P modulo one. Moreover, this relation can be made
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much more precise. In particular, with a suitable choice of a test function F on
M and m ∈ M ,

N−1∑
n=0

e2π i P(n) =
∫ N

0
F(φX

t (m)) dt + O(1).

This demonstrates that quadratic Weyl sums are intimately related to averages
of one-parameter flows on the Heisenberg manifold. A more elaborate con-
struction discussed in detail in Chapter 3 shows that general Weyl sums can
be approximated by integrals along orbits on higher-dimensional nilmanifolds.
Chapter 3 discusses asymptotic behaviour of orbits averages on nilmanifolds
and related estimates for Weyl sums.

Dynamical systems techniques also provide powerful tools to analyse com-
binatorial structures of large subsets of integers and of more general groups.
This active research field fusing ideas from Ramsey Theory, Additive Combi-
natorics, and Ergodic Theory is surveyed in Chapter 4. We say that a subset
E ⊂ Z has positive upper density if

d̄(E) := lim sup
N−M→∞

|E ∩ [M, N ]|
N − M

> 0.

Surprisingly, this soft analytic condition on the set E has profound combina-
torial consequences, one of the most remarkable of which is the Szemerédi
theorem. It states that every subset of positive density contains arbitrarily long
arithmetic progressions: namely, configurations of the form a, a + n, . . . , a +
(k − 1)n with arbitrary large k. It should be noted that the existence of three-
term arithmetic progressions had previously been established by Roth using
a variant of the circle method, but the case of general progressions required
substantial new ideas. Shortly after Szemerédi’s work appeared, Furstenberg
discovered a very different ingenious approach to this problem that used
ergodic-theoretic techniques. He realised that the Szemerédi theorem is equiv-
alent to a new ergodic-theoretic phenomenon called multiple recurrence. This
unexpected connection is summarised by the Furstenberg correspondence prin-
ciple which shows that, given a subset E ⊂ Z, one can construct a probability
space (X, μ), a measure-preserving transformation T : X → X , and a
measurable subset A ⊂ X such that μ(A) = d̄(E) and

d̄(E ∩ (E −n)∩· · ·∩ (E − (k −1)n)) ≥ μ(A∩T −n(A)∩· · ·∩T−(k−1)n(A)).

This allows the proof of Szemerédi’s theorem to be reduced to establishing the
multiple recurrence property, which shows that if μ(A) > 0 and k ≥ 1, then
there exists n ≥ 1 such that

μ(A ∩ T −n A ∩ · · · ∩ T −(k−1)n A) > 0.
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This result is the crux of Furstenberg’s approach, and in order to prove it, a
deep structure theorem for general dynamical systems is needed. Furstenberg’s
work has opened a number of promising vistas for future research and started
a new field of Ergodic Theory – ergodic Ramsey theory, which explores the
existence of combinatorial structures in large subsets of groups. This is the
subject of Chapter 4. In view of the above connection it is of fundamental
importance to explore asymptotics of the averages

1

N

N−1∑
n=0

μ(A ∩ T−n(A) ∩ · · · ∩ T−(k−1)n(A)),

and more generally, the averages

1

N

N−1∑
n=0

( f1 ◦ T n) · · · ( fk−1 ◦ T (k−1)n) (3)

for test functions f1, . . . , fk−1 ∈ L∞(μ). The existence of limits for these
averages was established in the groundbreaking works of Host, Kra, and
Ziegler. Chapter 4 explains an elegant argument of Austin which permits the
proof of the existence of limits for these multiple averages as well as multiple
averages for actions of the group Zd .

A number of important applications of the Theory of Dynamical Systems
to Number Theory involve analysing the distribution of orbits on the space
of unimodular lattices in Rd+1. This space, which will be denoted by Xd+1,
consists of discrete cocompact subgroups of Rd+1 with covolume one. It can
be realised as a homogeneous space

Xd+1 
 SLd+1(R)/SLd+1(Z).

which allows us to equip Xd+1 with coordinate charts and an invariant finite
measure. Some of the striking applications of dynamics on the space Xd+1

to problems of Diophantine approximation are explored in Chapter 5. It was
realised by Dani that information about the distribution of suitable orbits on
Xd+1 can be used to investigate the existence of solutions of Diophantine
inequalities. In particular, this allows a convenient dynamical characterisation
of many Diophantine classes of vectors in Rd discussed in Chapters 1 and 2
to be obtained, such as, for instance, badly approximable vectors, very well
approximable vectors, singular vectors. This connection is explained by the
following construction. Given a vector v ∈ Rd , we consider the lattice

�v := {(q, qv + p) : (q,p) ∈ Z × Zd},
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and a subset of the space Xd+1 defined as

Xd+1(ε) := {� : � ∩ [−ε, ε]d+1 �= {0}}.
Let gQ := diag(Q−d , Q, . . . , Q). If we establish that the orbit gQ� visits the
subset Xd+1(ε), then this will imply that the systems of inequalities

|q| ≤ εQd and ‖qv − p‖∞ ≤ ε

Q

have a non-trivial integral solution (q,p) ∈ Z×Zd . When ε ≥ 1, the existence
of solutions is a consequence of the classical Dirichlet theorem, but for ε < 1,
this is a delicate property which was studied by Davenport and Schmidt. Vec-
tors for which the above system of inequalities has a non-trivial solution for
some ε ∈ (0, 1) and all sufficiently large Q are called Dirichlet-improvable.
Chapter 5 explains how to study this property using dynamical systems tools
such as the theory of unipotent flow. This approach proved to be very success-
ful. In particular, it was used by Shah to solve the problem posed by Davenport
and Schmidt in the 60s. He proved that if φ : (0, 1) → Rd is an analytic curve
whose image is not contained in a proper affine subspace, then the vector φ(t)
is not Dirichlet-improvable for almost all t . Chapter 5 explains Shah’s proof of
this result.

Chapter 5 also discusses how dynamical systems techniques can be used
to derive asymptotic counting results. Although this approach is applicable in
great generality, its essence can be illustrated by a simple example: counting
points in lattice orbits on the hyperbolic upper half-plane H. We recall that the
group G = PSL2(R) acts on H by isometries. Given � = PSL2(Z) (or, more
generally, a discrete subgroup � of G with finite covolume), we consider the
orbit � · i in H. We will be interested in asymptotics of the counting function

N (R) := |{γ · i : dH(γ · i, i) < R, γ ∈ �}|,
where dH denotes the hyperbolic distance in H. Since H 
 G/K with K =
PSO(2), the following diagram:

suggests that the counting function N (R) can be expressed in terms of the
space

X := �\G.
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This idea, which goes back to the work of Duke, Rudnick, and Sarnak, is
explained in detail in Chapter 5. Ultimately, one shows that N (R) can be
approximated by combinations of averages along orbits �K g as g varies over
some subset of G. This argument reduces the original problem to analysing the
distribution of the sets �K g inside the space X which can be carried out using
dynamical systems techniques.

The space X introduced above is of fundamental importance in the The-
ory of Dynamical Systems and Geometry because it can be identified with
the unit tangent bundle of the modular surface �\H. Of particular inter-
est is the geodesic flow defined on this space, which plays a central role
in Chapter 6. This chapter discusses recent striking applications of the
sieving theory for thin groups, developed by Bourgain and Kontorovich,
to the arithmetics of continued fractions and the distribution of periodic
geodesic orbits. It is well known in the theory of hyperbolic dynamical
systems that one can construct periodic geodesic orbits with prescribed
properties. In particular, a single periodic geodesic orbit may exhibit a
very peculiar behaviour. Surprisingly, it turns out that the finite packets
of periodic geodesic orbits corresponding to a given fundamental discrim-
inant D become equidistributed as D → ∞. This remarkable result was
proved in full generality by Duke, generalising previous works of Linnik
and Skubenko. While Duke’s proof uses elaborate tools from analytic num-
ber theory (in particular, the theory of half-integral modular forms), now
there is also a dynamical approach developed by Einsiedler, Lindenstrauss,
Michel, and Venkatesh. They raised a question whether there exist infinitely
many periodic geodesic orbits corresponding to fundamental discriminants
which are contained in a fixed bounded subset of X . Chapter 6 outlines an
approach to this problem, which uses that the geodesic flow dynamics is
closely related to the symbolic dynamics of the continued fractions expan-
sions. In particular, a quadratic irrational with a periodic continued fraction
expansion

α = [a0, a1, . . . , a�]

corresponds to a periodic geodesic orbit. Moreover, the property of having
a fundamental discriminant can be characterised in terms of the trace of the
matrix

Mα :=
(

a0 1
1 0

)(
a1 1
1 0

)
· · ·
(

a� 1
1 0

)
,
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and the corresponding geodesic orbit lies in a fixed bounded set of X if ai ≤
A for all i for a fixed A > 0. Hence, the original question reduces to the
investigation of the semigroup

�A :=
〈(

a 1
1 0

)
: a ≤ A

〉+
∩ SL2(R),

and the trace map tr : �A → N. The semigroup �A arises naturally in con-
nection with several other deep problems involving periodic geodesic orbits
and continued fractions. Chapter 6 outlines a promising approach to the Arith-
metic Chaos Conjecture formulated by McMullen, which predicts that there
exists a fixed bounded subset of the space X such that, for all real quadratic
fields K , the closure of the set of periodic geodesic orbits defined over K
and contained in this set has positive entropy. Equivalently, in the language of
continued fractions, McMullen’s conjecture predicts that for some A < ∞,
the set

{α = [a0, a1, . . . , a�] ∈ K : all a j ≤ A}
has exponential growth as � → ∞. Since

α ∈ Q(
√

tr(Mα)2 − 4),

this problem also reduces to the analysis of the map tr : �A → N. Chap-
ter 6 also discusses progress on the Zaremba conjecture regarding continued
fraction expansions of rational fractions. As is explained in Chapter 6, all these
problems can be unified by the far-reaching Local-Global Conjectures describ-
ing the distribution of solutions of F(γ ) = n, γ ∈ �A, where F is a suitable
polynomial map.

We hope that this book will help to communicate the exciting material
written by experts in the field and covering a wide range of different top-
ics which are, nevertheless, in many ways connected to a broad circle of
young researchers as well as to other experts working in Number Theory or
Dynamical Systems.
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Metric Diophantine Approximation: Aspects of
Recent Work

Victor Beresnevich1, Felipe Ramírez2 and Sanju Velani1

Abstract

In these notes, we begin by recalling aspects of the classical theory of metric
Diophantine approximation, such as theorems of Khintchine, Jarník, Duffin–
Schaeffer and Gallagher. We then describe recent strengthening of various
classical statements as well as recent developments in the area of Diophan-
tine approximation on manifolds. The latter includes the well approximable,
the badly approximable and the inhomogeneous aspects.

1.1 Background: Dirichlet and Bad

1.1.1 Dirichlet’s Theorem and Two Important Consequences

Diophantine approximation is a branch of number theory that can loosely be
described as a quantitative analysis of the density of the rationals Q in the reals
R. Recall that to say that Q is dense in R is to say that:

for any real number x and ε > 0 there exists a rational number p/q (q > 0) such
that |x − p/q| < ε.

In other words, any real number can be approximated by a rational number
with any assigned degree of accuracy. But how ‘rapidly’ can we approximate
a given x ∈ R?

Given x ∈ R and q ∈ N, how small can we make ε? Trivially, we can take any
ε > 1/2q . Can we do better than 1/2q?

1 VB and SV are supported in part by EPSRC Programme Grant: EP/J018260/1.
2 FR is supported by EPSRC Programme Grant: EP/J018260/1.

1
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The following rational numbers all lie within 1/(denominator)2 of the circle
constant π = 3.141 . . . :

3

1
,

22

7
,

333

106
,

355

113
,

103993

33102
. (1.1)

This shows that, at least sometimes, the answer to the last question is ‘yes’. A
more complete answer is given by Dirichlet’s theorem, which is itself a simple
consequence of the following powerful fact.

Pigeonhole Principle If n objects are placed in m boxes and n > m, then
some box will contain at least two objects.

Theorem 1.1.1 (Dirichlet, 1842) For any x ∈ R and N ∈ N, there exist
p, q ∈ Z such that∣∣∣∣x − p

q

∣∣∣∣ < 1

q N
and 1 ≤ q ≤ N . (1.2)

The proof can be found in most elementary number theory books. However,
given the important consequences of the theorem and its various hybrids, we
have decided to include the proof.

Proof As usual, let [x] := max{n ∈ Z : n ≤ x} denote the integer part of the
real number x and let {x} = x − [x] denote the fractional part of x . Note that
for any x ∈ R we have that 0 ≤ {x} < 1.

Consider the N + 1 numbers

{0x}, {x}, {2x}, . . . , {N x} (1.3)

in the unit interval [0, 1). Divide [0, 1) into N equal semi-open subintervals as
follows:

[0, 1) =
N−1⋃
u=0

Iu where Iu :=
[

u

N
,

u + 1

N

)
, u = 0, 1, . . . , N−1. (1.4)

Since the N + 1 points (1.3) are situated in the N subintervals (1.4), the
Pigeonhole principle guarantees that some subinterval contains at least two
points, say {q2x}, {q1x} ∈ Iu , where 0 ≤ u ≤ N − 1 and q1, q2 ∈ Z with
0 ≤ q1 < q2 ≤ N . Since the length of Iu is N−1 and Iu is semi-open we have
that

|{q2x} − {q1x}| < 1

N
. (1.5)
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We have that qi x = pi + {qi x} where pi = [qi x] ∈ Z for i = 1, 2. Returning
to (1.5) we get

|{q2x}−{q1x}| = |q2x − p2 − (q1x − p1)| = |(q2 −q1)x − (p2 − p1)|. (1.6)

Now define q = q2 − q1 ∈ Z and p = p2 − p1 ∈ Z. Since 0 ≤ q1, q2 ≤ N
and q1 < q2 we have that 1 ≤ q ≤ N . By (1.5) and (1.6), we get

|qx − p| < 1

N
whence (1.2) readily follows.

The following statement is an important consequence of Dirichlet’s theorem.

Theorem 1.1.2 (Dirichlet, 1842) Let x ∈ R�Q. Then there exist infinitely
many integers q, p such that gcd(p, q) = 1, q > 0 and∣∣∣∣x − p

q

∣∣∣∣ < 1

q2
. (1.7)

Remark 1.1.3 Theorem 1.1.2 is true for all x ∈ R if we remove the condition
that p and q are coprime; that is, if we allow approximations by non-reduced
rational fractions.

Proof Observe that Theorem 1.1.1 is valid with gcd(p, q) = 1. Otherwise
p/q = p′/q ′ with gcd(p′, q ′) = 1 and 0 < q ′ < q ≤ N and |x − p/q| =
|x − p′/q ′| < 1/(q N ) < 1/(q ′N ).

Suppose x is irrational and that there are only finitely many rationals
p1

q1
,

p2

q2
, . . . ,

pn

qn
,

where gcd(pi , qi ) = 1, qi > 0 and∣∣∣∣x − pi

qi

∣∣∣∣ < 1

q2
i

for all i = 1, 2, . . . , n. Since x is irrational, x − pi
qi

�= 0 for i = 1, . . . , n. Then
there exists N ∈ N such that∣∣∣∣x − pi

qi

∣∣∣∣ > 1

N
for all 1 ≤ i ≤ n.

By Theorem 1.1.1, there exists a reduced fraction
p

q
such that∣∣∣∣x − p

q

∣∣∣∣ < 1

q N
≤ 1

N
(1 ≤ q ≤ N ).

Therefore, p
q �= pi

qi
for any i but satisfies (1.7). A contradiction.
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Theorem 1.1.2 tells us in particular that the list (1.1) of good rational approx-
imations to π is not just a fluke. This list can be extended to an infinite
sequence, and furthermore, such a sequence of good approximations exists
for every irrational number. (See §1.1.2.)

Another important consequence of Theorem 1.1.1 is Theorem 1.1.4. Unlike
Theorem 1.1.2, its significance is not so immediately clear. However, it will
become apparent during the course of these notes that it is the key to the two
fundamental theorems of classical metric Diophantine approximation: namely,
the theorems of Khintchine and Jarník.

First, some notational matters. Unless stated otherwise, given a set X ⊂ R,
we will denote by m(X) the one-dimensional Lebesgue measure of X . And we
will use B(x, r) to denote (x − r, x + r) ⊂ R, the ball around x ∈ R of radius
r > 0.

Theorem 1.1.4 Let [a, b] ⊂ R be an interval and k ≥ 6 be an integer. Then

m

⎛⎝[a, b] ∩
⋃

kn−1<q≤kn

⋃
p∈Z

B
(

p
q ,

k
k2n

)⎞⎠ ≥ 1
2 (b − a)

for all sufficiently large n ∈ N.

Proof By Dirichlet’s theorem, for any x ∈ I := [a, b] there are coprime
integers p, q with 1 ≤ q ≤ kn satisfying |x − p/q| < (qkn)−1. We therefore
have that

m(I ) = m

⎛⎝I ∩
⋃

q≤kn

⋃
p∈Z

B
( p

q
,

1

qkn

)⎞⎠
≤m

⎛⎝I ∩
⋃

q≤kn−1

⋃
p∈Z

B
( p

q
,

1

qkn

)⎞⎠+ m

⎛⎝I ∩
⋃

kn−1<q≤kn

⋃
p∈Z

B
( p

q
,

k

k2n

)⎞⎠.
Also, notice that

m

⎛⎝I ∩
⋃

q≤kn−1

⋃
p∈Z

B
( p

q
,

1

qkn

)⎞⎠ = m

⎛⎝I ∩
⋃

q≤kn−1

bq+1⋃
p=aq−1

B
( p

q
,

1

qkn

)⎞⎠
≤ 2
∑

q≤kn−1

1

qkn

(
m(I )q + 3

)
≤ 3

k
m(I )
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for large n. It follows that for k ≥ 6,

m

⎛⎝I ∩
⋃

kn−1<q≤kn

⋃
p∈Z

B
(

p
q ,

k
k2n

)⎞⎠ ≥ m(I )− 3
k m(I ) ≥ 1

2 m(I )

for large n.

1.1.2 Basics of Continued Fractions

From Dirichlet’s theorem we know that for any real number x there are
infinitely many ‘good’ rational approximates p/q; but how can we find them?
The theory of continued fractions provides a simple mechanism for generating
them. We collect some basic facts about continued fractions in this section. For
proofs and a more comprehensive account, see, for example, [57, 66, 80].

Let x be an irrational number and let [a0; a1, a2, a3, . . .] denote its continued
fraction expansion. Denote its nth convergent by

pn

qn
:= [a0; a1, a2, a3, . . . , an].

Recall that the convergents can be obtained by the following recursion

p0 = a0, q0 = 1,

p1 = a1a0 + 1, q1 = a1,

pk = ak pk−1 + pk−2, qk = akqk−1 + qk−2 for k ≥ 2,

and that they satisfy the inequalities

1

qn(qn+1 + qn)
≤
∣∣∣x − pn

qn

∣∣∣ < 1

qnqn+1
. (1.8)

From this it is clear that the convergents provide explicit solutions to the
inequality in Theorem 1.1.2 (Dirichlet); that is,∣∣∣∣x − pn

qn

∣∣∣∣ ≤ 1

q2
n

∀n ∈ N.

In fact, it turns out that for irrational x the convergents are best approximates
in the sense that if 1 ≤ q < qn , then any rational p

q satisfies∣∣∣∣x − pn

qn

∣∣∣∣ < ∣∣∣∣x − p

q

∣∣∣∣ .
Regarding π = 3.141 . . . , the rationals (1.1) are the first five convergents.
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1.1.3 Competing with Dirichlet and Losing Badly

We have presented Dirichlet’s theorem as an answer to whether the trivial
inequality |x − p/q| ≤ 1/2q can be beaten. Naturally, one may also ask if
we can do any better than Dirichlet’s theorem. Let us formulate this a little
more precisely. For x ∈ R, let

‖x‖ := min{|x − m| : m ∈ Z}
denote the distance from x to the nearest integer. Dirichlet’s theorem (Theorem
1.1.2) can be restated as follows: for any x ∈ R, there exist infinitely many
integers q > 0 such that

q ‖qx‖ ≤ 1. (1.9)

Can we replace right-hand side of (1.9) by arbitrary ε > 0? In other words,
is it true that lim infq→∞ q‖qx‖ = 0 for every x? One might notice that (1.8)
implies that there certainly do exist x for which this is true. (One can write
down a continued fraction whose partial quotients grow as fast as one pleases.)
Still, the answer to the question is ‘no’. It was proved by Hurwitz (1891) that,
for every x ∈ R, we have q ‖qx‖ < ε = 1/

√
5 for infinitely many q > 0, and

that this is the best possible answer in the sense that the statement becomes
false if ε < 1/

√
5.

The fact that 1/
√

5 is the best possible answer is relatively easy to see.
Assume that it can be replaced by

1√
5 + ε

(ε > 0, arbitrary).

Consider the Golden Ratio x1 =
√

5+1
2 , root of the polynomial

f (t) = t2 − t − 1 = (t − x1)(t − x2),

where x2 = 1−√
5

2 . Assume there exists a sequence of rationals pi
qi

satisfying∣∣∣∣x1 − pi

qi

∣∣∣∣ < 1

(
√

5 + ε)q2
i

.

Then, for sufficiently large values of i , the right-hand side of the above
inequality is less than ε and so∣∣∣∣x2 − pi

qi

∣∣∣∣ ≤ |x2 − x1| +
∣∣∣∣x1 − pi

qi

∣∣∣∣ < √
5 + ε.

It follows that

0 �=
∣∣∣∣ f ( pi

qi

)∣∣∣∣ < 1

(
√

5 + ε)q2
i

· (√5 + ε)

=⇒
∣∣∣∣q2

i f

(
pi

qi

)∣∣∣∣ < 1.
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However, the left-hand side is a strictly positive integer. This is a contradiction,
for there are no integers in (0, 1) – an extremely useful fact.

The above argument shows that if x =
√

5+1
2 then there are at most finitely

many rationals p/q such that∣∣∣∣x − p

q

∣∣∣∣ < 1

(
√

5 + ε)q2
.

Therefore, there exists a constant c(x) > 0 such that∣∣∣∣x − p

q

∣∣∣∣ > c(x)

q2 ∀ p/q ∈ Q.

All of this shows that there exist numbers for which we cannot improve Dirich-
let’s theorem arbitrarily. These are called badly approximable numbers and are
defined by

Bad := {x ∈ R : inf
q∈N

q‖qx‖ > 0}

= {x ∈ R : c(x) := lim inf
q→∞ q‖qx‖ > 0}.

Note that if x is badly approximable then for the associated badly approx-
imable constant c(x) we have that

0 < c(x) ≤ 1√
5
.

Clearly, Bad �= ∅ since the Golden Ratio is badly approximable. Indeed, if
x ∈ Bad then t x ∈ Bad for any t ∈ Z�{0} and so Bad is at least countable.

Bad has a beautiful characterisation via continued fractions.

Theorem 1.1.5 Let x = [a0; a1, a2, a3, . . .] be irrational. Then

x ∈ Bad ⇐⇒ ∃ M = M(x) ≥ 1 such that ai ≤ M ∀ i.

That is, Bad consists exactly of the real numbers whose continued fractions
have bounded partial quotients.

Proof It follows from (1.8) that

1

q2
n (an+1 + 2)

≤
∣∣∣x − pn

qn

∣∣∣ < 1

an+1q2
n
, (1.10)

and from this it immediately follows that if x ∈ Bad, then

an ≤ max{|ao|, 1/c(x)}.
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Conversely, suppose the partial quotients of x are bounded, and take any
q ∈ N. Then there is n ≥ 1 such that qn−1 ≤ q < qn . On using the fact that
convergents are best approximates, it follows that∣∣∣∣x − p

q

∣∣∣∣ ≥ ∣∣∣∣x − pn

qn

∣∣∣∣ ≥ 1

q2
n (M + 2)

= 1

q2(M + 2)

q2

q2
n
.

It is easily seen that

q

qn
≥ qn−1

qn
≥ 1

M + 1
,

which proves that

c(x) ≥ 1

(M + 2)(M + 1)2
> 0,

hence x ∈ Bad.

Recall that a continued fraction is said to be periodic if it is of the form
x = [a0; . . . , an, an+1, . . . , an+m]. Also, recall that an irrational number α is
called a quadratic irrational if α is a solution to a quadratic equation with
integer coefficients:

ax2 + bx + c = 0 (a, b, c ∈ Z, a �= 0).

It is a well-known fact that an irrational number x has periodic continued frac-
tion expansion if and only if x is a quadratic irrational. This and Theorem 1.1.5
imply the following corollary.

Corollary 1.1.6 Every quadratic irrational is badly approximable.

The simplest instance of this is the Golden Ratio, a root of x2−x −1, whose
continued fraction is

√
5 + 1

2
= [1; 1, 1, 1, . . . ] := [ 1 ],

with partial quotients clearly bounded.
Indeed, much is known about the badly approximable numbers, yet several

simple questions remain unanswered. For example:

Folklore Conjecture The only algebraic irrationals that are in Bad are the
quadratic irrationals.

Remark 1.1.7 Though this conjecture is widely believed to be true, there is no
direct evidence for it. That is, there is no single algebraic irrational of degree
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greater than two whose membership (or non-membership) in Bad has been
verified.

A particular goal of these notes is to investigate the ‘size’ of Bad. We will
show:

(a) m(Bad) = 0,
(b) dim Bad = 1,

where dim refers to the Hausdorff dimension (see §1.3.1). In other words, we
will see that Bad is a small set in that it has measure zero in R, but it is a large
set in that it has the same (Hausdorff) dimension as R.

Let us now return to Dirichlet’s theorem (Theorem 1.1.2). Every x ∈ R

can be approximated by rationals p/q with ‘rate of approximation’ given by
q−2 – the right-hand side of inequality (1.7) determines the ‘rate’ or ‘error’
of approximation by rationals. The above discussion shows that this rate of
approximation cannot be improved by an arbitrary constant for every real num-
ber – Bad is non-empty. On the other hand, we have stated above that Bad is
a zero-measure set, meaning that the set of points for which we can improve
Dirichlet’s theorem by an arbitrary constant is full. In fact, we will see that if
we exclude a set of real numbers of measure zero, then from a measure theo-
retic point of view the rate of approximation can be improved not just by an
arbitrary constant but by a logarithm (see Remark 1.2.8).

1.2 Metric Diophantine Approximation: The Classical
Lebesgue Theory

In the previous section, we have been dealing with variations of Dirichlet’s
theorem in which the right-hand side or rate of approximation is of the form
εq−2. It is natural to broaden the discussion to general approximating func-
tions. More precisely, for a function ψ : N → R+ = [0,∞), a real number x
is said to be ψ-approximable if there are infinitely many q ∈ N such that

‖qx‖ < ψ(q). (1.11)

The function ψ governs the ‘rate’ at which the rationals approximate the reals
and will be referred to as an approximating function.

One can readily verify that the set of ψ-approximable numbers is invariant
under translations by integer vectors. Therefore, without any loss of general-
ity, and to ease the ‘metrical’ discussion which follows, we shall restrict our
attention to ψ-approximable numbers in the unit interval I := [0, 1). The set
of such numbers is clearly a subset of I and will be denoted by W (ψ); i.e.
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W (ψ) := {x ∈ I : ‖qx‖ < ψ(q) for infinitely many q ∈ N}.
Notice that in this notation we have that

Dirichlet’s theorem (Theorem 1.1.2) =⇒ W (ψ) = I if ψ(q) = q−1.

Yet, the existence of badly approximable numbers implies that there exist
approximating functions ψ for which W (ψ) �= I . Furthermore, the fact that
m(Bad) = 0 implies that we can have W (ψ) �= I while m(W (ψ)) = 1.

A key aspect of the classical theory of Diophantine approximation is to
determine the ‘size’ of W (ψ) in terms of:

(a) Lebesgue measure;
(b) Hausdorff dimension; and
(c) Hausdorff measure.

From a measure theoretic point of view, as we move from (a) to (c) in the above
list, the notion of size becomes subtler. In this section we investigate the ‘size’
of W (ψ) in terms of one-dimensional Lebesgue measure m.

We start with the important observation that W (ψ) is a lim sup set of balls.
For a fixed q ∈ N, let

Aq(ψ) := {x ∈ I : ‖qx‖ < ψ(q)}

:=
q⋃

p=0

B
( p

q
,
ψ(q)

q

)
∩ I . (1.12)

Note that

m
(

Aq(ψ)
)

� 2ψ(q) (1.13)

with equality when ψ(q) < 1/2 since then the intervals in (1.12) are disjoint.
The set W (ψ) is simply the set of real numbers in I which lie in infinitely

many sets Aq(ψ) with q = 1, 2, . . . i.e.

W (ψ) = lim sup
q→∞

Aq(ψ) :=
∞⋂

t=1

∞⋃
q=t

Aq(ψ)

is a lim sup set. Now notice that for each t ∈ N

W (ψ) ⊂
∞⋃

q=t

Aq(ψ),

i.e. for each t , the collection of balls B(p/q, ψ(q)/q) associated with the sets
Aq(ψ) : q = t, t + 1, . . . form a cover for W (ψ). Thus, it follows via (1.13)
that
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m
(
W (ψ)
) ≤ m

( ∞⋃
q=t

Aq(ψ)

)

≤
∞∑

q=t

m
(

Aq(ψ)
)

≤ 2
∞∑

q=t

ψ(q). (1.14)

Now suppose
∞∑

q=1

ψ(q) < ∞.

Then given any ε > 0, there exists t0 such that for all t ≥ t0
∞∑

q=t

ψ(q) <
ε

2
.

It follows from (1.14), that

m
(
W (ψ)
)
< ε.

But ε > 0 is arbitrary, whence

m
(
W (ψ)
) = 0

and we have established the following statement.

Theorem 1.2.1 Let ψ : N → R+ be a function such that
∞∑

q=1

ψ(q) < ∞.

Then

m(W (ψ)) = 0.

This theorem is in fact a simple consequence of a general result in
probability theory.

1.2.1 The Borel–Cantelli Lemma

Let (�,A, μ) be a measure space with μ(�) < ∞ and let Eq (q ∈ N) be a
family of measurable sets in �. Also, let

E∞ := lim sup
q→∞

Eq :=
∞⋂

t=1

∞⋃
q=t

Eq ;
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i.e. E∞ is the set of x ∈ � such that x ∈ Ei for infinitely many i ∈ N.
The proof of the Theorem 1.2.1 mimics the proof of the following funda-

mental statement from probability theory.

Lemma 1.2.2 (Convergence Borel–Cantelli) Suppose that
∞∑

q=1
μ(Eq) < ∞.

Then

μ(E∞) = 0.

Proof The proof is left as an exercise for the reader.

To see that Theorem 1.2.1 is a trivial consequence of the above lemma,
simply put � = I = [0, 1], μ = m and Eq = Aq(ψ) and use (1.13).

Now suppose we are in a situation where the sum of the measures diverges.
Unfortunately, as the following example demonstrates, it is not the case that if∑

μ(Eq) = ∞ then μ(E∞) = μ(�) or indeed that μ(E∞) > 0.

Example Let Eq = (0, 1
q ). Then

∑∞
q=1 m(Eq) = ∑∞

q=1
1
q = ∞. However,

for any t ∈ N we have that
∞⋃

q=t

Eq = Et ,

and thus

E∞ =
∞⋂

t=1

Et =
∞⋂

t=1

(0, 1
t ) = ∅,

implying that m(E∞) = 0.

The problem in the above example is that the sets Eq overlap ‘too much’ –
in fact, they are nested. The upshot is that in order to have μ(E∞) > 0, we not
only need the sum of the measures to diverge but also that the sets Eq (q ∈ N)
are in some sense independent. Indeed, it is well known that if we had pairwise
independence in the standard sense; i.e. if

μ(Es ∩ Et ) = μ(Es)μ(Et ) ∀s �= t,

then we would have μ(E∞) = μ(�). However, we very rarely have this strong
form of independence in our applications. What is much more useful to us is
the following statement, whose proof can be found in [58, 90].

Lemma 1.2.3 (Divergence Borel–Cantelli) Suppose that
∑∞

q=1 μ(Eq) = ∞
and that there exists a constant C > 0 such that
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Q∑
s,t=1

μ(Es ∩ Et ) ≤ C

⎛⎝ Q∑
s=1

μ(Es)

⎞⎠2

(1.15)

holds for infinitely many Q ∈ N. Then

μ(E∞) ≥ 1/C .

The independence condition (1.15) is often referred to as quasi-indepen-
dence on average, and, together with the divergent sum condition, it guarantees
that the associated lim sup set has positive measure. It does not guarantee full
measure (i.e. that μ(E∞) = μ(�)), which is what we are trying to prove, for
example, in Khintchine’s theorem. But this is not an issue if we already know
(by some other means) that E∞ satisfies a zero-full law (which is also often
called a zero-one law) with respect to the measure μ, meaning a statement
guaranteeing that

μ(E∞) = 0 or μ(�).

Happily, this is the case with the lim sup set W (ψ) of ψ-well approximable
numbers [38, 37, 58].

Alternatively, assuming � is equipped with a metric such that μ becomes
a doubling Borel measure, we can guarantee that μ(E∞) = μ(�) if we can
establish local quasi-independence on average [14, §8]; i.e. we replace (1.15)
in the above lemma by the condition that

Q∑
s,t=1

μ
(
(B ∩ Es) ∩ (B ∩ Et)

) ≤ C

μ(B)

⎛⎝ Q∑
s=1

μ(B ∩ Es)

⎞⎠2

(1.16)

for any sufficiently small ball B with centre in � and μ(B) > 0. The constant
C is independent of the ball B. Recall that μ is doubling if μ(2B) � μ(B) for
balls B centred in �. In some literature such measures are also referred to as
Federer measures.

The Divergence Borel–Cantelli Lemma is key to determining m(W (ψ)) in
the case where

∑∞
q=1 ψ(q) diverges – the subject of the next section and the

main substance of Khintchine’s theorem. Before turning to this, let us ask our-
selves one final question regarding quasi-independence on average and positive
measure of lim sup sets.

Question. Is the converse to Divergence Borel–Cantelli true? More pre-
cisely, if μ(E∞) > 0 then is it true that the sets Et are quasi-independent
on average?
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The following theorem is a consequence of a more general result established
in [29].

Theorem 1.2.4 Let (�, d) be a compact metric space equipped with a Borel
probability measure μ. Let Eq (q ∈ N) be a sequence of balls in � such
that μ(E∞) > 0. Then, there exists a strictly increasing sequence of integers
(qk)k∈N such that

∑∞
k=1 μ(Eqk ) = ∞ and the balls Eqk (k ∈ N) are quasi-

independent on average.

1.2.2 Khintchine’s Theorem

The following fundamental statement in metric Diophantine approximation (of
which Theorem 1.2.1 is the ‘easy case’) provides an elegant criterion for the
‘size’ of the set W (ψ) expressed in terms of Lebesgue measure.

Theorem 1.2.5 (Khintchine, 1924) Let ψ : N → R+ be a monotonic
function. Then

m(W (ψ)) =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψ(q) < ∞ ,

1 if
∑∞

q=1 ψ(q) = ∞ .

Remark 1.2.6 It is worth mentioning that Khintchine’s original statement
[64] made the stronger assumption that qψ(q) is monotonic.

Remark 1.2.7 The assumption that ψ is monotonic is only required in the
divergent case. It cannot in general be removed – see §1.2.2.1.

Remark 1.2.8 Khintchine’s theorem implies that

m(W (ψ)) = 1 if ψ(q) = 1

q log q
.

Thus, from a measure theoretic point of view the ‘rate’ of approximation given
by Dirichlet’s theorem can be improved by a logarithm.

Remark 1.2.9 As mentioned in the previous section, in view of Cassels’ zero-
full law [38] (also known as zero-one) we know that m(W (ψ)) = 0 or 1
regardless of whether or not ψ is monotonic.
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Remark 1.2.10 A key ingredient to directly establishing the divergent part is
to show that the sets

A∗
s = A∗

s (ψ) :=
⋃

2s−1≤q<2s

q⋃
p=0

B
( p

q
,
ψ(2s)

2s

)
∩ I

are quasi-independent on average. Notice that:

● for ψ monotonic, W (ψ) ⊃ W ∗(ψ) := lim sups→∞ A∗
s (ψ);

● if ψ(q) < q−1, the balls in A∗
s (ψ) are disjoint and so

m(A∗
s (ψ)) � 2sψ(2s);

● for ψ monotonic,
∑

ψ(q) �∑ 2sψ(2s).

Notation. Throughout, the Vinogradov symbols � and � will be used to
indicate an inequality with an unspecified positive multiplicative constant. If
a � b and a � b, we write a � b and say that the two quantities a and b are
comparable.

The following is a simple consequence of Khintchine’s theorem.

Corollary 1.2.11 Let Bad be the set of badly approximable numbers. Then

m(Bad) = 0.

Proof Consider the function ψ(q) = 1/(q log q) and observe that

Bad ∩ I ⊂ Bad(ψ) := I�W (ψ).

By Khintchine’s theorem, m(W (ψ)) = 1. Thus m(Bad(ψ)) = 0 and so
m(Bad ∩ I) = 0.

1.2.2.1 The Duffin–Schaeffer Conjecture
The main substance of Khintchine’s theorem is the divergent case and it is
where the assumption that ψ is monotonic is necessary. In 1941, Duffin and
Schaeffer [48] constructed a non-monotonic approximating function ϑ for
which the sum

∑
q ϑ(q) diverges but m(W (ϑ)) = 0. We now discuss the

construction. We start by recalling two well-known facts: for any N ∈ N, p
prime, and s > 0,

Fact 1.
∑

q|N q =∏p|N (1 + p);
Fact 2.

∏
p(1 + p−s) = ζ(s)/ζ(2s).
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In view of Fact 2, we have that∏
p

(1 + p−1) = ∞.

Thus, we can find a sequence of square-free positive integers Ni (i = 1, 2, . . .)
such that (Ni , N j ) = 1 (i �= j) and∏

p|Ni

(1 + p−1) > 2i + 1. (1.17)

Now let

ϑ(q) =

⎧⎪⎨⎪⎩
2−i−1q/Ni if q > 1 and q|Ni for some i ,

0 otherwise.

(1.18)

As usual, let

Aq := Aq(ϑ) =
q⋃

p=0

B
( p

q
,
ϑ(q)

q

)
∩ I

and observe that if q|Ni (q > 1) then Aq ⊆ ANi and so⋃
q|Ni

Aq = ANi .

In particular,

m
( ⋃

q|Ni

Aq
) = m(ANi ) = 2ϑ(Ni ) = 2−i .

By definition,

W (ϑ) = lim sup
q→∞

Aq = lim sup
i→∞

ANi .

Now
∞∑

i=1

m(ANi ) = 1

and so the convergence Borel–Cantelli lemma implies that

m(W (ϑ)) = 0.

However, it can be verified (exercise) by using Fact 1 together with (1.17) that

∞∑
q=1

ϑ(q) =
∞∑

i=1

2−i−1 1

Ni

∑
q>1 : q|Ni

q = ∞.
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In the same paper [48], Duffin and Schaeffer provided an appropriate
statement for arbitrary ψ that we now discuss. The now famous Duffin–
Schaeffer conjecture represents a key open problem in number theory. The
integer p implicit in the inequality (1.11) satisfies∣∣∣∣x − p

q

∣∣∣∣ < ψ(q)

q
. (1.19)

To relate the rational p/q with the error of approximation ψ(q)/q uniquely,
we impose the coprimeness condition (p, q) = 1. In this case, let W ′(ψ)

denote the set of x in I for which the inequality (1.19) holds for infinitely
many (p, q) ∈ Z × N with (p, q) = 1. Clearly, W ′(ψ) ⊂ W (ψ). For any
approximating function ψ : N → R+ one easily deduces that

m(W ′(ψ)) = 0 if
∞∑

q=1

ϕ(q)
ψ(q)

q
< ∞.

Here, and throughout, ϕ is the Euler function.

Conjecture 1.2.12 (Duffin–Schaeffer, 1941) For any function ψ : N → R+

m(W ′(ψ)) = 1 i f
∞∑

q=1

ϕ(q)
ψ(q)

q
= ∞.

Remark 1.2.13 Let ϑ be given by (1.18). On using the fact that
∑

d|n ϕ(d) =
n, it is relatively easy to show (exercise) that

∞∑
q=1

ϕ(q)
ϑ(q)

q
< ∞.

Thus, although ϑ provides a counterexample to Khintchine’s theorem without
monotonicity, it is not a counterexample to the Duffin–Schaeffer conjecture.

Remark 1.2.14 It is known that m(W ′(ψ)) = 0 or 1. This is Gallagher’s
zero-full law [52] and is the natural analogue of Cassels’ zero-full law for
W (ψ).

Although various partial results have been established (see [58, 90]), the
full conjecture is one of the most difficult and profound unsolved problems
in metric number theory. In the case where ψ is monotonic it is relatively
straightforward to show that Khintchine’s theorem and the Duffin–Schaeffer
conjecture are equivalent statements (exercise).
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1.2.3 A Limitation of the Lebesgue Theory

Let τ > 0 and write W (τ ) for W (ψ : q → q−τ ). The set W (τ ) is usually
referred to as the set of τ -well approximable numbers. Note that in view of
Dirichlet (Theorem 1.1.2) we have that W (τ ) = I if τ ≤ 1 and so trivially
m(W (τ )) = 1 if τ ≤ 1. On the other hand, if τ > 1∑∞

q=1 q−τ < ∞
and Khintchine’s theorem implies that m(W (τ )) = 0. So for any τ > 1, the
set of τ -well approximable numbers is of measure zero. We cannot obtain any
further information regarding the ‘size’ of W (τ ) in terms of Lebesgue mea-
sure – it is always zero. Intuitively, the ‘size’ of W (τ ) should decrease as rate
of approximation governed by τ increases. For example, we would expect that
W (2015) is ‘smaller’ than W (2) – clearly W (2015) ⊂ W (2), but Lebesgue
measure is unable to distinguish between them. In short, we require a more del-
icate notion of ‘size’ than simply Lebesgue measure. The appropriate notion of
‘size’ best suited for describing the finer measure theoretic structures of W (τ )

and indeed W (ψ) is that of Hausdorff measures.

1.3 Metric Diophantine Approximation: The Classical
Hausdorff Theory

1.3.1 Hausdorff Measure and Dimension

In what follows, a dimension function f : R+ → R+ is a left continuous,
monotonic function such that f (0) = 0. Suppose F is a subset of Rn . Given a
ball B in Rn , let r(B) denote the radius of B. For ρ > 0, a countable collection
{Bi } of balls in Rn with r(Bi ) ≤ ρ for each i such that F ⊂ ⋃i Bi is called a
ρ-cover for F . Define

H f
ρ (F) := inf

∑
i

f (r(Bi )),

where the infimum is taken over all ρ-covers of F . Observe that as ρ decreases
the class of allowed ρ-covers of F is reduced and so H

f
ρ (F) increases.

Therefore, the following (finite or infinite) limit exists

H f (F) := lim
ρ→0+ H f

ρ (F) = sup
ρ>0

H f
ρ (F) ,

and is referred to as the Hausdorff f-measure of F . In the case that

f (r) = r s (s ≥ 0),
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the measure H f is the more common s-dimensional Hausdorff measure Hs ,
the measure H0 being the cardinality of F . Note that when s is a positive
integer, Hs is a constant multiple of Lebesgue measure in Rs . (The constant
is explicitly known!) Thus if the s-dimensional Hausdorff measure of a set is
known for each s > 0, then so is its n-dimensional Lebesgue measure for each
n ≥ 1. The following easy property

Hs(F) < ∞ =⇒ Hs′(F) = 0 if s ′ > s

implies that there is a unique real point s at which the Hausdorff s-measure
drops from infinity to zero (unless the set F is finite so that Hs(F) is never
infinite). This point is called the Hausdorff dimension of F and is formally
defined as

dim F := inf
{
s > 0 : Hs(F) = 0

}
.

● By the definition of dim F we have that

Hs(F) =

⎧⎪⎨⎪⎩
0 if s > dim F

∞ if s < dim F.

● If s = dim F , then Hs(F) may be zero or infinite or may satisfy

0 < Hs(F) < ∞;
in this case F is said to be an s-set.

● Let I = [0, 1]. Then dim I = 1 and

2Hs(I) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if s > 1

1 if s = 1

∞ if s < 1.

Thus, 2H1(I) = m(I) and I is an example of an s-set with s = 1. Note
that the presence of the factor ‘2’ here is because, in the definition of
the Hausdorff measure, we have used the radii of balls rather than their
diameters.

The Hausdorff dimension has been established for many number theoretic
sets, e.g. W (τ ) (this is the Jarník–Besicovitch theorem discussed below), and
is easier than determining the Hausdorff measure. Further details regarding
Hausdorff measure and dimension can be found in [50, 72].

To calculate dim F (say dim F = α), it is usually the case that we establish
the upper bound dim F ≤ α and lower bound dim F ≥ α separately. If we can
exploit a ‘natural’ cover of F , then upper bounds are usually easier.
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Example 1.3.1 Consider the middle third Cantor set K defined as follows:
starting with I0 = [0, 1] remove the open middle thirds part of the interval.
This gives the union of two intervals [0, 1

3 ] and [ 2
3 , 1]. Then repeat the pro-

cedure of removing the middle third part from each of the intervals in your
given collection. Thus, at ‘level’ n of the construction we will have the union
En of 2n closed intervals, each of length 3−n . The middle third Cantor set is
defined by

K =
∞⋂

n=0

En .

This set consists exactly of all real numbers such that their expansion to the
base 3 does not contain the ‘digit’ 1.

Let {In, j } be the collection of intervals in En . This is a collection of 2n

intervals, each of length 3−n . Naturally, {In, j } is a cover of K . Furthermore,
for any ρ > 0 there is a sufficiently large n such that {In, j } is a ρ-cover of K .
It follows that

Hs
ρ(K ) ≤

∑
j

r(In, j )
s � 2n2−s3−ns �

(
2

3s

)n

→ 0

as n → ∞ (i.e. ρ → 0) if

2

3s
< 1 ⇒ s >

log 2

log 3
.

In other words,

Hs(K ) = 0 if s >
log 2

log 3
.

It follows from the definition of the Hausdorff dimension

dim K = inf{s : Hs(K ) = 0}
that dim K � log 2

log 3 .

In fact, dim K = log 2
log 3 . To prove that

dim K � log 2

log 3

we need to work with arbitrary covers of K and this is much harder. Let {Bi }
be an arbitrary ρ-cover with ρ < 1. K is bounded and closed (intersection
of closed intervals), i.e. K is compact. Hence, without loss of generality, we
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can assume that {Bi } is finite. For each Bi , let ri and di denote its radius and
diameter, respectively, and let k be the unique integer such that

3−(k+1) � di < 3−k . (1.20)

Then Bi intersects at most one interval of Ek as the intervals in Ek are
separated by at least 3−k .

If j � k, then Bi intersects at most

2 j−k = 2 j 3−sk � 2 j 3sds
i (1.21)

intervals of E j , where s := log 2
log 3 and the final inequality makes use of (1.20).

These are the intervals that are contained in the unique interval of Ek that
intersects Bi .

Now choose j large enough so that

3−( j+1) � di ∀Bi ∈ {Bi }.
This is possible because the collection {Bi } is finite. Then j � k for each Bi

and (1.21) is valid. Furthermore, since {Bi } is a cover of K , it must intersect
every interval of E j . There are 2 j intervals in E j . Thus

2 j = #{I ∈ E j : ∪Bi ∩ I �= ∅}
≤
∑

i

#{I ∈ E j : Bi ∩ I �= ∅}

≤
∑

i

2 j 3sds
i .

The upshot is that for any arbitrary cover {Bi }, we have that

2s
∑

r s
i �
∑

ds
i ≥ 3−s = 1

2
.

By definition, this implies that Hs(K ) ≥ 2−(1+s) and so dim K ≥ log 2
log 3 .

Even for this simple Cantor set example, the lower bound for dim K is much
more involved than the upper bound. This is usually the case and the number
theoretic sets W (ψ) and W (τ ) are no exception.

1.3.2 The Jarník–Besicovitch Theorem

Recall, the lim sup nature of W (ψ); namely that

W (ψ) = lim sup
q→∞

Aq(ψ) :=
∞⋂

t=1

∞⋃
q=t

Aq(ψ)
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where

Aq(ψ) =
q⋃

p=0

B
( p

q
,
ψ(q)

q

)
∩ I.

By definition, for each t , the collection of balls B(p/q, ψ(q)/q) associated
with the sets Aq(ψ) : q = t, t + 1, . . . form a cover for W (ψ). Suppose for
the moment that ψ is monotonic and ψ(q) < 1 for q large. Now, for any ρ > 0,
choose t large enough so that ρ > ψ(t)/t . Then the balls in {Aq(ψ)}q�t form
a ρ cover of W (ψ). Thus,

Hs
ρ

(
W (ψ)
) ≤ ∞∑

q=t

q
(
ψ(q)/q

)s → 0

as t → ∞ (i.e. ρ → 0) if
∞∑

q=1

q1−sψ s(q) < ∞;

i.e. Hs
(
W (ψ)
) = 0 if the above s-volume sum converges. Actually, mono-

tonicity on ψ can be removed (exercise) and we have proved the following
Hausdorff measure analogue of Theorem 1.2.1. Recall, that H1 and one-
dimensional Lebesgue measure m are comparable.

Theorem 1.3.1 Let ψ : N → R+ be a function and s ≥ 0 such that
∞∑

q=1

q1−sψ s(q) < ∞.

Then

Hs(W (ψ)
) = 0 .

Now put ψ(q) = q−τ (τ ≥ 1) and notice that for s > 2
τ+1 ,

∞∑
q=1

q1−sψ s(q) =
∞∑

q=1

q−(τ s+s−1) < ∞ .

Then the following statement is a simple consequence of the above theorem
and the definition of Hausdorff dimension.

Corollary 1.3.2 For τ ≥ 2, we have that dim W (τ ) ≤ 2
τ+1 .

Note that the above convergence result and thus the upper bound dimension
result simply exploit the natural cover associated with the lim sup set under
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consideration. The corollary constitutes the easy part of the famous Jarník–
Besicovitch theorem.

Theorem 1.3.3 (The Jarník–Besicovitch Theorem) Let τ > 1. Then

dim
(
W (τ )
) = 2/(τ + 1).

Jarník proved the result in 1928. Besicovitch proved the same result in 1932
by completely different methods. The Jarník–Besicovitch theorem implies that

dim W (2) = 2/3 and dim W (2015) = 2/2016

and so W (2015) is ‘smaller’ than W (2) as expected. In view of Corol-
lary 1.3.2, we need to establish the lower bound result dim

(
W (τ )
) ≥

2/(τ + 1) in order to complete the proof of Theorem 1.3.3. We will see
that this is a consequence of Jarník’s measure result discussed in the next
section.

The dimension theorem is clearly an excellent result, but it gives no
information regarding Hs at the critical exponent d := 2/(τ+1). By definition,

Hs(W (τ )) =
⎧⎨⎩0 if s > d

∞ if s < d,

but

Hs(W (τ )) = ? if s = d .

In short, it would be highly desirable to have a Hausdorff measure analogue of
Khintchine’s theorem.

1.3.3 Jarník’s Theorem

Theorem 1.3.1 is the easy case of the following fundamental statement in met-
ric Diophantine approximation. It provides an elegant criterion for the ‘size’ of
the set W (ψ) expressed in terms of Hausdorff measure.

Theorem 1.3.4 (Jarník’s Theorem, 1931) Let ψ : N → R+ be a monotonic
function and s ∈ (0, 1). Then

Hs(W (ψ)
) =
⎧⎪⎨⎪⎩

0 if
∑∞

q=1 q1−sψ s(q) < ∞

∞ if
∑∞

q=1 q1−sψ s(q) = ∞
.
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Remark 1.3.5 With ψ(q) = q−τ (τ > 1), not only does the above theorem
imply that dim W (τ ) = 2/(1 + τ) but it tells us that the Hausdorff measure at
the critical exponent is infinite; i.e.

Hs(W (τ )
) = ∞ at s = 2/(1 + τ).

Remark 1.3.6 As in Khintchine’s theorem, the assumption that ψ is mono-
tonic is only required in the divergent case. In Jarník’s original statement, apart
from assuming stronger monotonicity conditions, various technical conditions
on ψ and indirectly s were imposed, which prevented s = 1. Note that, even
as stated, it is natural to exclude the case s = 1 since

H1(W (ψ)
) � m
(
W (ψ)
) = 1.

The clear-cut statement without the technical conditions was established in
[14] and it allows us to combine the theorems of Khintchine and Jarník into a
unifying statement.

Theorem 1.3.7 (Khintchine–Jarník 2006) Let ψ : N → R+ be a monotonic
function and s ∈ (0, 1]. Then

Hs(W (ψ)
) =
⎧⎪⎨⎪⎩

0 if
∑∞

q=1 q1−sψ s(q) < ∞ ,

Hs(I) if
∑∞

q=1 q1−sψ s(q) = ∞ .

Obviously, the Khintchine–Jarník theorem implies Khintchine’s theorem.
In view of the Mass Transference Principle established in [21], one actually

has that

Khintchine’s theorem =⇒ Jarník’s theorem.

Thus, the Lebesgue theory of W (ψ) underpins the general Hausdorff the-
ory. At first glance this is rather surprising because the Hausdorff theory had
previously been thought to be a subtle refinement of the Lebesgue theory.
Nevertheless, the Mass Transference Principle allows us to transfer Lebesgue
measure theoretic statements for lim sup sets to Hausdorff statements and
naturally obtain a complete metric theory.

1.3.4 The Mass Transference Principle

Let (�, d) be a locally compact metric space and suppose there exist constants
δ > 0, 0 < c1 < 1 < c2 < ∞ and r0 > 0 such that

c1 r δ ≤ Hδ(B) ≤ c2 r δ , (1.22)
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for any ball B = B(x, r) with x ∈ � and radius r ≤ r0. For the sake of
simplicity, the definition of Hausdorff measure and dimension given in §1.3.1
is restricted to Rn . Clearly, it can easily be adapted to the setting of arbitrary
metric spaces – see [50, 72]. A consequence of (1.22) is that

0 < Hδ(�) ≤ ∞ and dim� = δ.

Next, given a dimension function f and a ball B = B(x, r) we define the
scaled ball

B f := B
(
x, f (r)

1
δ
)
.

When f (r) = r s for some s > 0, we adopt the notation Bs , i.e.

Bs := B
(
x, r

s
δ
)

and so by definition Bδ = B.
The Mass Transference Principle [21] allows us to transfer Hδ-measure the-

oretic statements for lim sup subsets of � to general H f-measure theoretic
statements. Note that in the case where δ = k ∈ N, the measure Hδ coincides
with k-dimensional Lebesgue measure and the Mass Transference Principle
allows us to transfer Lebesgue measure theoretic statements for lim sup subsets
of Rk to Hausdorff measure theoretic statements.

Theorem 1.3.8 Let {Bi }i∈N be a sequence of balls in � with r(Bi ) → 0 as
i → ∞. Let f be a dimension function such that x−δ f (x) is monotonic. For
any ball B ∈ � with Hδ(B) > 0, if

Hδ
(
B ∩ lim sup

i→∞
B f

i

) = Hδ(B)

then

H f (B ∩ lim sup
i→∞

Bδ
i

) = H f (B).

Remark 1.3.9 There is one point that is well worth making. The Mass Trans-
ference Principle is purely a statement concerning lim sup sets arising from
a sequence of balls. There is absolutely no monotonicity assumption on the
radii of the balls. Even the imposed condition that r(Bi ) → 0 as i → ∞ is
redundant, but is included to avoid unnecessary tedious discussion.

1.3.4.1 Khintchine’s Theorem Implies Jarník’s Theorem
First of all, let us dispose of the case that ψ(r)/r � 0 as r → ∞. Then triv-
ially, W (ψ) = I and the result is obvious. Without loss of generality, assume
that ψ(r)/r → 0 as r → ∞. With respect to the Mass Transference Principle,
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let � = I, d be the supremum norm, δ = 1 and f (r) = rs with s ∈ (0, 1).
We are given that

∑
q1−sψ(q)s = ∞. Let θ(q) := q1−sψ(q)s . Then θ is an

approximating function and
∑

θ(q) = ∞. Thus, assuming θ is monotonic,
Khintchine’s theorem implies that H1(B ∩ W (θ)) = H1(B ∩ I) for any ball
B in R. The condition that θ is monotonic can be relaxed by using the Duffin–
Schaeffer Theorem instead of Khintchine’s theorem. It now follows via the
Mass Transference Principle that Hs(W (ψ)) = Hs(I) = ∞ and this com-
pletes the proof of the divergence part of Jarník’s theorem. As we have already
seen, the convergence part is straightforward.

1.3.4.2 Dirichlet’s Theorem Implies the Jarník–Besicovitch Theorem
Dirichlet’s theorem (Theorem 1.1.2) states that for any irrational x ∈ R, there
exist infinitely many reduced rationals p/q (q > 0) such that |x− p/q| ≤ q−2;
i.e. W (1) = I. Thus, with f (r) := rd (d := 2/(1 + τ)) the Mass Trans-
ference Principle implies that Hd(W (τ )) = ∞. Hence dim W (τ ) ≥ d. The
upper bound is trivial. Note that we have actually proved a lot more than the
Jarník–Besicovitch theorem. We have proved that the s-dimensional Hausdorff
measure Hs of W (τ ) at the critical exponent s = d is infinite.

1.3.5 The Generalised Duffin–Schaeffer Conjecture

As with Khintchine’s theorem, it is natural to seek an appropriate statement in
which one removes the monotonicity condition in Jarník’s theorem. In the case
of Khintchine’s theorem, the appropriate statement is the Duffin–Schaeffer
conjecture – see §1.2.2.1. With this in mind, we work with the set W ′(ψ)

in which the coprimeness condition (p, q) = 1 is imposed on the rational
approximates p/q. For any function ψ : N → R+ and s ∈ (0, 1] it is easily
verified that

Hs(W (ψ)
) = 0 if

∞∑
q=1

ϕ(q)
(ψ(q)

q

)s
< ∞.

In the case the above s-volume sum diverges it is reasonable to believe in
the truth of the following Hausdorff measure version of the Duffin–Schaeffer
conjecture [21].

Conjecture 1.3.10 (Generalised Duffin–Schaeffer Conjecture, 2006) For
any function ψ : N → R+ and s ∈ (0, 1],

Hs(W ′(ψ)
) = Hs(I) if

∞∑
q=1

ϕ(q)
(ψ(q)

q

)s = ∞.
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Remark 1.3.11 If s = 1, then H1(I) = m(I) and Conjecture 1.3.10 reduces
to the Lebesgue measure conjecture of Duffin and Schaeffer (Conjecture
1.2.12).

Remark 1.3.12 In view of the Mass Transference Principle, it follows that

Conjecture 1.2.12 =⇒ Conjecture 1.3.10

Exercise: Prove the above implication.

1.4 The Higher-Dimensional Theory

We start with a generalisation of Theorem 1.1.1 to simultaneous approximation
in Rn .

Theorem 1.4.1 (Dirichlet in Rn) Let (i1, . . . , in) be any n-tuple of numbers
satisfying

0 < i1, . . . , in < 1 and
n∑

t=1

it = 1. (1.23)

Then, for any x = (x1, . . . , xn) ∈ Rn and N ∈ N, there exists q ∈ Z such that

max{‖qx1‖1/ i1, . . . , ‖qxn‖1/ in } < N−1 and 1 ≤ q ≤ N . (1.24)

Remark 1.4.2 The symmetric case corresponding to i1 = . . . = in = 1/n
is the more familiar form of the theorem. In this symmetric case, when N
is an nth power, the one-dimensional proof using the Pigeonhole principle
can easily be adapted to prove the associated statement (exercise). The above
general form is a neat consequence of a fundamental theorem in the geome-
try of numbers; namely, Minkowski’s theorem for systems of linear forms –
see §1.4.1 below. At this point, simply observe that for a fixed q the first
inequality in (1.24) corresponds to considering rectangles centred at rational
points( p1

q
, . . . ,

pn

q

)
of sidelength

2

q Ni1
, . . . ,

2

q Nin
respectively.

Now the shape of the rectangles are clearly governed by (i1, . . . , in). How-
ever the volume is not. Indeed, for any (i1, . . . , in) satisfying (1.23), the
n-dimensional Lebesgue measure mn of any rectangle centred at a rational
point with denominator q is 2nq−n N−1.
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1.4.1 Minkowski’s Linear Forms Theorem

We begin by introducing various terminology and establishing Minkowski’s
theorem for convex bodies.

Definition 1.4.3 A subset B of Rn is said to be convex if, for any two points
x, y ∈ B {

λx + (1 − λ)y : 0 ≤ λ ≤ 1
} ⊂ B ,

that is, the line segment joining x and y is contained in B. A convex body in
Rn is a bounded convex set.

Definition 1.4.4 A subset B in Rn is said to be symmetric about the origin
if, for every x ∈ B, we have that −x ∈ B.

The following is a simple but nevertheless powerful observation concerning
symmetric convex bodies.

Theorem 1.4.5 (Minkowski’s Convex Body Theorem) Let B be a convex
body in Rn symmetric about the origin. If vol(B) > 2n, then B contains a
non-zero integer point.

Proof The following proof is attributed to Mordell. For m ∈ N let A(m, B)
= {a ∈ Zm : a/m ∈ B} . Then we have that

lim
m→∞ m−n#A(m, B) = vol(B).

Since vol(B) > 2n , there is a sufficiently large m such that m−n#A(m, B)
> 2n , that is #A(m, B) > (2m)n . Since there are 2m different residue classes
modulo 2m and each point in A(Q,m) has n co-ordinates, there are two dis-
tinct points in A(Q,m), say a = (a1, . . . , an) and b = (b1, . . . , bn) such
that

ai ≡ bi (mod 2m) for each i = 1, . . . , n .

Hence

z = 1

2

a
m

+ 1

2

(
− b

m

)
= a − b

2m
∈ Zn�{0} .

Since B is symmetric about the origin, −b/m ∈ B and since B is convex
z ∈ B. The proof is complete.

The above convex body result enables us to prove the following extremely
useful statement.
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Theorem 1.4.6 (Minkowski’s Theorem for Systems of Linear Forms) Let
βi, j ∈ R, where 1 ≤ i, j ≤ k, and let C1, . . . ,Ck > 0. If

| det(βi, j )1≤i, j≤k | ≤
k∏

i=1

Ci , (1.25)

then there exists a non-zero integer point x = (x1, . . . , xk) such that{ |x1βi,1 + · · · + xkβi,k | < Ci (1 ≤ i ≤ k − 1)

|x1βk,1 + · · · + xnβk,k | ≤ Ck .
(1.26)

Proof The set of (x1, . . . , xk) ∈ Rk satisfying (1.26) is a convex body sym-
metric about the origin. First consider the case when det(βi, j )1≤i, j≤k �= 0 and
(1.25) is strict. Then

vol(B) =
∏k

i=1(2Ci )

| det(βi, j )1≤i, j≤k | > 2n ,

and the body contains a non-zero integer point (x1, . . . , xk), by Theorem 1.4.5,
as required.

If det(βi, j )1≤i, j≤k = 0, then B is unbounded and has infinite volume. Then
there exists a sufficiently large m ∈ N such that Bm = B∩[−m,m] has volume
vol(Bm) > 2n . Next, Bm is convex and symmetric about the origin, since it is
the intersection of 2 sets with these properties. Again, by Theorem 1.4.5, Bm

contains a non-zero integer point (x1, . . . , xk). Since Bm ⊂ B we again get the
required statement.

Finally, consider the situation when (1.25) is an equation. In this case
det(βi, j )1≤i, j≤k �= 0. Define Cε

k = Ck + ε for some ε > 0. Then

| det(βi, j )1≤i, j≤k | <
k−1∏
i=1

Ci × Cε
k (1.27)

and, by what we have already shown, there exists a non-zero integer solution
xε = (x1, . . . , xk) to the system{ |x1βi,1 + · · · + xkβi,k | < Ci (1 ≤ i ≤ k − 1)

|x1βk,1 + · · · + xnβk,k | ≤ Cε
k .

(1.28)

For ε ≤ 1 all the points xε satisfy (1.28) with ε = 1. That is, they lie in a
bounded body. Hence, there are only finitely many of them. Therefore there
is a sequence εi tending to 0 such that xεi are all the same, say x0. On letting
i → ∞ within (1.28) we get that (1.26) holds with x = x0.
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It is easily verified that Theorem 1.4.1 (Dirichlet in Rn) is an immediate
consequence of Theorem 1.4.6 with k = n + 1 and

Ct = N−it (1 ≤ t ≤ k − 1) and Ck = N

and

(βi, j ) =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 . . . α1

0 −1 0 . . . α2

0 0 −1 . . .
...

. . . αn

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎠ .

Another elegant application of Theorem 1.4.6 is the following statement.

Corollary 1.4.7 For any (α1, . . . , αn) ∈ Rn and any real N > 1, there exist
q1, . . . , qn, p ∈ Z such that

|q1α1 + · · · + qnα − p| < N−n and 1 ≤ max
1≤i≤n

|qi | ≤ N .

In particular, there exist infinitely many ((q1, . . . , qn), p) ∈ Zn�{0} × Z such
that

|q1α1 + · · · + qnα − p| <
(

max
1≤i≤n

|qi |
)−n

.

Proof Exercise.

1.4.2 Bad in Rn

An important consequence of Dirichlet’s theorem (Theorem 1.4.1) is the
following higher-dimensional analogue of Theorem 1.1.2.

Theorem 1.4.8 Let (i1, . . . , in) be any n-tuple of real numbers satisfying
(1.23). Let x = (x1, . . . , xn) ∈ Rn. Then there exist infinitely many integers
q > 0 such that

max{‖qx1‖1/ i1 , . . . , ‖qxn‖1/ in } < q−1. (1.29)

Now, just as in the one-dimensional set-up, we can ask the following natural
question.

Question. Can we replace the right-hand side of (1.29) by εq−1 where ε > 0
is arbitrary?
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No. For any (i1, . . . , in) satisfying (1.23), there exists (i1, . . . , in) badly
approximable points.

Denote by Bad(i1, . . . , in) the set of all (i1, . . . , in) badly approximable
points; that is the set of (x1, . . . , xn) ∈ Rn such that there exists a positive
constant c(x1, . . . , xn) > 0 so that

max{‖qx1‖1/ i1 , . . . , ‖qxn‖1/ in } > c(x1, . . . , xn) q−1 ∀q ∈ N.

Remark 1.4.9 Let n = 2 and note that if (x, y) ∈ Bad(i, j) for some pair
(i, j), then it would imply that

lim inf
q→∞ q‖qx‖‖qy‖ = 0.

Hence ∩i+ j=1Bad(i, j) = ∅ would imply that Littlewood’s conjecture is true.
We will return to this famous conjecture in §1.4.4.

Remark 1.4.10 Geometrically speaking, Bad(i1, . . . , in) consists of points
x ∈ Rn that avoid all rectangles of size ci1q−(1+i1) × . . .× cin q−(1+in) centred
at rational points (p1/q, . . . , pn/q) with c = c(x) sufficiently small. Note that
in the symmetric case i1 = . . . = in = 1/n, the rectangles are squares (or
essentially balls), and this makes a profound difference when investigating the
‘size’ of Bad(i1, . . . , in) – it makes life significantly easier!

Perron [74] in 1921 observed that (x, y) ∈ Bad( 1
2 ,

1
2 ) whenever x and y are

linearly independent numbers in a cubic field; e.g. x = cos 2π
7 , y = cos 4π

7 .
Thus, certainly Bad( 1

2 ,
1
2 ) is not the empty set. It was shown by Davenport

in 1954 that Bad( 1
2 ,

1
2 ) is uncountable and later in [42] he gave a simple and

more illuminating proof of this fact. Furthermore, the ideas in his 1964 paper
show that Bad(i1, . . . , in) is uncountable. In 1966, Schmidt [85] showed that in
the symmetric case the corresponding set Bad( 1

n , . . . ,
1
n ) is of full Hausdorff

dimension. In fact, Schmidt proved the significantly stronger statement that
the symmetric set is winning in the sense of his now famous (α, β)-games (see
§1.7.2). Almost forty years later it was proved in [77] that

dim Bad(i1, . . . , in) = n.

Now let us return to the symmetric case of Theorem 1.4.8. It implies
that every point x = (x1, . . . , xn) ∈ Rn can be approximated by rational

points (p1/q, . . . , pn/q) with rate of approximation given by q−(1+ 1
n ). The

above discussion shows that this rate of approximation cannot in general be
improved by an arbitrary constant – Bad( 1

n , . . . ,
1
n ) is non-empty. However, if
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we exclude a set of real numbers of measure zero, then from a measure the-
oretic point of view the rate of approximation can be improved, just as in the
one-dimensional set-up.

1.4.3 Higher-Dimensional Khintchine

Let In := [0, 1)n denote the unit cube in Rn and for x = (x1, . . . , xn) ∈ Rn let

‖qx‖ := max
1≤i≤n

‖qxi‖.

Given ψ : N → R+, let

W (n, ψ) := {x ∈ In : ‖qx‖ < ψ(q) for infinitely many q ∈ N}
denote the set of simultaneously ψ-well approximable points x ∈ In . Thus,
a point x ∈ In is ψ-well approximable if there exist infinitely many rational
points ( p1

q
, . . . ,

pn

q

)
with q > 0, such that the inequalities∣∣∣xi − pi

q

∣∣∣ < ψ(q)

q

are simultaneously satisfied for 1 ≤ i ≤ n. For the same reason as in the n = 1
case there is no loss of generality in restricting our attention to the unit cube.
In the case ψ : q → q−τ with τ > 0, we write W (n, τ ) for W (n, ψ). The set
W (n, τ ) is the set of simultaneously τ -well approximable numbers. Note that
in view of Theorem 1.4.8 we have that

W (n, τ ) = In if τ ≤ 1

n
. (1.30)

The following is the higher-dimensional generalisation of Theorem 1.2.5
to simultaneous approximation. Throughout, mn will denote n-dimensional
Lebesgue measure.

Theorem 1.4.11 (Khintchine’s Theorem in Rn) Let ψ : N → R+ be a
monotonic function. Then

mn(W (n, ψ)) =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψn(q) < ∞ ,

1 if
∑∞

q=1 ψn(q) = ∞ .
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Remark 1.4.12 The convergent case is a straightforward consequence of the
Convergence Borel–Cantelli Lemma and does not require monotonicity.

Remark 1.4.13 The divergent case is the main substance of the theorem.
When n ≥ 2, a consequence of a theorem of Gallagher [54] is that the
monotonicity condition can be dropped. Recall, that in view of the Duffin–
Schaeffer counterexample (see §1.2.2.1) the monotonicity condition is crucial
when n = 1.

Remark 1.4.14 Theorem 1.4.11 implies that

mn(W (n, ψ)) = 1 if ψ(q) = 1/(q log q)
1
n .

Thus, from a measure theoretic point of view the ‘rate’ of approximation given

by Theorem 1.4.8 can be improved by (logarithm)
1
n .

Remark 1.4.15 Theorem 1.4.11 implies that mn(Bad( 1
n , . . . ,

1
n )) = 0.

Remark 1.4.16 For a generalisation of Theorem 1.4.11 to Hausdorff mea-
sures – that is, the higher-dimension analogue of Theorem 1.3.7 (Khintchine–
Jarník theorem) – see Theorem 1.4.37 with m = 1 in §1.4.6. Also, see
§1.5.3.1.

In view of Remark 1.4.13, one may think that there is nothing more to say
regarding the Lebesgue theory of ψ-well approximable points in Rn . After
all, for n ≥ 2 we do not even require monotonicity in Theorem 1.4.11. For
ease of discussion let us restrict our attention to the plane R2 and assume that
the n-volume sum in Theorem 1.4.11 diverges. So we know that almost all
points (x1, x2) are ψ-well approximable but it tells us nothing for a given fixed
x1. For example, are there any points (

√
2, x2) ∈ R2 that are ψ-well approx-

imable? This will be discussed in §1.4.5 and the more general question of
approximating points on a manifold will be the subject of §1.6.

1.4.4 Multiplicative Approximation: Littlewood’s Conjecture

For any pair of real numbers (α, β) ∈ I2, there exist infinitely many q ∈ N

such that

‖qα‖ ‖qβ‖ ≤ q−1.

This is a simple consequence of Theorem 1.4.8, or indeed the one-dimensional
Dirichlet theorem, and the trivial fact that ‖x‖ < 1 for any x . For any arbitrary
ε > 0, the problem of whether or not the statement remains true by replacing
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the right-hand side of the inequality by ε q−1 now arises. This is precisely the
content of Littlewood’s conjecture.

Littlewood’s Conjecture For any pair (α, β) ∈ I2,

lim inf
q→∞ q ||qα|| ||qβ|| = 0 .

Equivalently, for any pair (α, β) ∈ I2 there exist infinitely many rational points
(p1/q, p2/q) such that∣∣∣α − p1

q

∣∣∣ ∣∣∣β − p2

q

∣∣∣ < ε

q3
(ε > 0 arbitrary).

Thus, geometrically, the conjecture states that every point in the (x, y)-plane
lies in infinitely many hyperbolic regions given by |x | · |y| < ε/q3 centred at
rational points.

The analogous conjecture in the one-dimensional setting is false – Hurwitz’s
theorem tells us that the set Bad is non-empty. However, in the multiplicative
situation the problem is still open.

We make various simple observations:

(i) The conjecture is true for pairs (α, β) when either α or β are not in Bad.
Suppose β /∈ Bad and consider its convergents pn/qn . It follows from
the right-hand side of inequality (1.8) that qn ||qnα|| ||qnβ|| ≤ 1/an+1

for all n. Since β is not badly approximable the partial quotients ai

are unbounded and the conjecture follows. Alternatively, by definition
if β /∈ Bad, then lim infq→∞ q ||qβ|| = 0 and we are done. See also
Remark 1.4.9.

(ii) The conjecture is true for pairs (α, β) when either α or β lie in a set of
full Lebesgue measure. This follows at once from Khintchine’s theorem.
In fact, one has that for all α and almost all β ∈ I,

q log q ‖qα‖ ‖qβ‖ ≤ 1 for infinitely many q ∈ N (1.31)

or even

lim inf
q→∞ q log q ||qα|| ||qβ|| = 0.

We now turn our attention to ‘deeper’ results regarding Littlewood.

Theorem (Cassels and Swinnerton-Dyer, 1955). If α, β are both cubic
irrationals in the same cubic field, then Littlewood’s conjecture is true.

This was subsequently strengthened by Peck [73].
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Theorem (Peck, 1961). If α, β are both cubic irrationals in the same cubic
field, then (α, β) satisfy (1.31) with the constant 1 on the right-hand side
replaced by a positive constant dependent on α and β.

In view of (ii) above, when dealing with Littlewood we can assume without
loss of generality that both α and β are in Bad. As mentioned in Chapter 1.1,
it is conjectured (the Folklore Conjecture) that the only algebraic irrationals
which are badly approximable are the quadratic irrationals. Of course, if this
conjecture is true then the Cassels and Swinnerton-Dyer result follows imme-
diately. On restricting our attention to just badly approximable pairs we have
the following statement [76].

Theorem PV (2000). Given α ∈ Bad we have that

dim
( {β ∈ Bad : (α, β) satisfy (1.31)} ) = 1.

Regarding potential counterexamples to Littlewood, we have the following
elegant statement [49].

Theorem EKL (2006).

dim
({(α, β) ∈ I2 : lim inf

q→∞ q ||qα|| ||qβ|| > 0}) = 0.

Now let us turn our attention to non-trivial, purely metrical statements
regarding Littlewood. The following result due to Gallagher [53] is the ana-
logue of Khintchine’s simultaneous approximation theorem (Theorem 1.4.11)
within the multiplicative set-up. Given ψ : N → R+ let

W×(n, ψ) := {x ∈ In : ‖qx1‖ . . . ‖qxn‖<ψ(q) for infinitely many q ∈ N}
(1.32)

denote the set of multiplicative ψ-well approximable points x ∈ In .

Theorem 1.4.17 (Gallagher, 1962) Let ψ : N → R+ be a monotonic
function. Then

mn(W
×(n, ψ)) =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψ(q) logn−1 q < ∞ ,

1 if
∑∞

q=1 ψ(q) logn−1 q = ∞ .

Remark 1.4.18 In the case of convergence, we can remove the condi-
tion that ψ is monotonic if we replace the above convergence condition by∑

ψ(q) | logψ(q)|n−1 < ∞ ; see [16] for more details.
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An immediate consequence of Gallagher’s theorem is that almost all (α, β)
beat Littlewood’s conjecture by ‘log squared’; equivalently, almost surely
Littlewood’s conjecture is true with a ‘log squared’ factor to spare.

Corollary 1.4.19 For almost all (α, β) ∈ R2

lim inf
q→∞ q log2 q ||qα|| ||qβ|| = 0 . (1.33)

Recall, that this is beyond the scope of what Khintchine’s theorem can tell
us; namely that

lim inf
q→∞ q log q ||qα|| ||qβ|| = 0 ∀ α ∈ R and for almost all β ∈ R.

(1.34)

However, the extra log factor in the corollary comes at a cost of having to
sacrifice a set of measure zero on the α side. As a consequence, unlike with
(1.34) which is valid for any α, we are unable to claim that the stronger ‘log
squared’ statement (1.33) is true for say when α = √

2. Obviously, the role of
α and β in (1.34) can be reversed. This raises the natural question of whether
(1.33) holds for every α. If true, it would mean that for any α we still beat
Littlewood’s conjecture by ‘log squared’ for almost all β.

1.4.4.1 Gallagher on Fibers
The following result is established in [17].

Theorem 1.4.20 Let α ∈ I and ψ : N → R+ be a monotonic function such
that

∞∑
q=1

ψ(q) log q = ∞ (1.35)

and such that

∃ δ > 0 lim inf
n→∞ q3−δ

n ψ(qn) ≥ 1 , (1.36)

where qn denotes the denominators of the convergents of α. Then for almost
every β ∈ I, there exists infinitely many q ∈ N such that

‖qα‖ ‖qβ‖ < ψ(q). (1.37)

Remark 1.4.21 Condition (1.36) is not particularly restrictive. It holds for all
α with Diophantine exponent τ(α) < 3. By definition,

τ(x) = sup{τ > 0 : ‖qα‖ < q−τ for infinitely many q ∈ N} .
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Recall that by the Jarník–Besicovitch theorem (Theorem 1.3.3), the comple-
ment is of relatively small dimension; namely dim{α ∈ R : τ(α) ≥ 3} = 1

2 .

The theorem can be equivalently formulated as follows. Working within the
(x, y)-plane, let Lx denote the line parallel to the y-axis passing through the
point (x, 0). Then, given α ∈ I, Theorem 1.4.20 simply states that

m1(W
×(2, ψ) ∩ Lα) = 1 if ψ satisfies (1.35) and (1.36).

An immediate consequence of the theorem is that (1.33) holds for every α

as desired.

Corollary 1.4.22 For every α ∈ R one has that

lim inf
q→∞ q log2 q ||qα|| ||qβ|| = 0 for almost all β ∈ R.

PSEUDO SKETCH PROOF OF THEOREM 1.4.20 Given α and ψ , rewrite
(1.37) as follows:

‖qβ‖ < �α(q) where �α(q) := ψ(q)

‖qα‖ . (1.38)

We are given (1.35) rather than the above divergent sum condition. So we need
to show that

∞∑
q=1

ψ(q) log q = ∞ =⇒
∞∑

q=1

�α(q) = ∞ . (1.39)

This follows (exercise) on using partial summation together with the following
fact established in [17]. For any irrational α and Q ≥ 2

Q∑
q=1

1

‖qα‖ ≥ 2 Q log Q . (1.40)

This lower bound estimate strengthens a result of Schmidt [84] – his result is
for almost all α rather than all irrationals. Now, if �α(q) were a monotonic
function of q we could have used Khintchine’s theorem, which would then
imply that

m1(W (�α)) = 1 if
∞∑

q=1

�α(q) = ∞ . (1.41)

Unfortunately, �α is not monotonic. Nevertheless, the argument given in [17]
overcomes this difficulty. �
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It is worth mentioning that Corollary 1.4.22 together with Peck’s theorem
and Theorem PV adds weight to the argument made in [8] for the following
strengthening of Littlewood’s conjecture.

Conjecture 1.4.23 For any pair (α, β) ∈ I2,

lim inf
q→∞ q log q ||qα|| ||qβ|| < +∞ .

Furthermore, it is argued in [8] that the natural analogue of Bad within the
multiplicative set-up is the set:

Mad := {(α, β) ∈ R2 : lim inf
q→∞ q · log q · ||qα|| · ||qβ|| > 0}.

Note that Badziahin [4] has proven that there is a set of (α, β) of full Hausdorff
dimension such that

lim inf
q→∞ q · log q · log log q · ||qα|| · ||qβ|| > 0 .

Regarding the convergence counterpart to Theorem 1.4.20, the following
statement is established in [17].

Theorem 1.4.24 Let α ∈ R be any irrational real number and let ψ : N →
R+ be such that

∞∑
q=1

ψ(q) log q < ∞ .

Furthermore, assume either of the following two conditions:

(i) n �→ nψ(n) is decreasing and

N∑
n=1

1

n‖nα‖ � (log N )2 for all N ≥ 2 ; (1.42)

(ii) n �→ ψ(n) is decreasing and

N∑
n=1

1

‖nα‖ � N log N for all N ≥ 2 . (1.43)

Then for almost all β ∈ R, there exist only finitely many n ∈ N such that

‖nα‖ ‖nβ‖ < ψ(n). (1.44)

The behaviour of the sums (1.42) and (1.43) is explicitly studied in terms
of the continued fraction expansion of α. In particular, it is shown in [17] that
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(1.42) holds for almost all real numbers α while (1.43) fails for almost all real
numbers α. An intriguing question formulated in [17] concerns the behaviour
of the above sums for algebraic α of degree ≥ 3. In particular, it is conjectured
that (1.42) is true for any real algebraic number α of degree ≥ 3. As is shown
in [17], this is equivalent to the following statement.

Conjecture 1.4.25 For any algebraic α = [a0; a1, a2, . . . ] ∈ R�Q, we have
that

n∑
k=1

ak � n2 .

Remark 1.4.26 Computational evidence for specific algebraic numbers does
support this conjecture [34].

1.4.5 Khintchine on Fibers

In this section we look for a strengthening of Khintchine simultaneous theo-
rem (Theorem 1.4.11) akin to the strengthening of Gallagher’s multiplicative
theorem described in §1.4.4.1. For ease of discussion, we begin with the case
that n = 2 and whether or not Theorem 1.4.11 remains true if we fix α ∈ I.
In other words, if Lα is the line parallel to the y-axis passing through the point
(α, 0) and ψ is monotonic, then is it true that

m1(W (2, ψ) ∩ Lα) =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψ2(q) < ∞

1 if
∑∞

q=1 ψ2(q) = ∞
????

The question marks are deliberate. They emphasise that the above statement is
a question and not a fact or a claim. Indeed, it is easy to see that the convergent
statement is false. Simply take α to be rational, say, α = a

b . Then, by Dirichlet’s
theorem, for any β there exist infinitely many q ∈ N such that ‖qβ‖ < q−1

and so it follows that

‖bqβ‖ <
b

q
= b2

bq
and ‖bqα‖ = 0 <

b2

bq
.

This shows that every point on the rational vertical line Lα is ψ(q) = b2q−1-
approximable and so

m1(W (2, ψ) ∩ Lα) = 1 but
∞∑

q=1

ψ2(q) =
∞∑

q=1

b4q−2 < ∞.
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Now, concerning the divergent statement, we claim it is true.

Conjecture 1.4.27 Let ψ : N → R+ be a monotonic function and α ∈ I.
Then

m1(W (2, ψ) ∩ Lα) = 1 if
∞∑

q=1

ψ2(q) = ∞. (1.45)

In order to state the current results, we need the notion of the Diophantine
exponent of a real number. For x ∈ Rn , we let

τ(x) := sup{τ : x ∈ W (n, τ )} (1.46)

denote the Diophantine exponent of x. A word of warning: this notion of Dio-
phantine exponent should not be confused with the Diophantine exponents
introduced later in §1.4.6.1. Note that in view of (1.30), we always have that
τ(x) ≥ 1/n. In particular, for α ∈ R we have that τ(α) ≥ 1. The following
result is established in [79].

Theorem 1.4.28 (F. Ramírez, D. Simmons, F. Süess) Let ψ : N → R+ be a
monotonic function and α ∈ I.

A. If τ(α) < 2, then (1.45) is true.

B. If τ(α) > 2 and for some ε > 0, ψ(q) > q− 1
2−ε for q large enough, then

W (2, ψ) ∩ Lα = I2 ∩ Lα . In particular, m1(W (2, ψ) ∩ Lα) = 1.

Remark 1.4.29 Though we have only stated it for lines in the plane, The-
orem 1.4.28 is actually true for lines in Rn . There, we fix an (n − 1)-tuple
of coordinates α = (α1, . . . , αn−1), and consider the line Lα ⊂ Rn . We
obtain the same result, with a ‘cut-off’ at n in the dual Diophantine expo-
nent of α ∈ Rn−1. The dual Diophantine exponent τ ∗(x) of a vector
x ∈ Rn is defined similarly to the (simultaneous) Diophantine exponent,
defined above by (1.46), and in the case of numbers (i.e. one-dimensional
vectors), the two notions coincide – see §1.4.6.1 for the formal definition
of τ ∗(x).

Remark 1.4.30 This cut-off in Diophantine exponent, which in Theo-
rem 1.4.28 happens at τ(α) = 2, seems quite unnatural: why should real
numbers with Diophantine exponent 2 be special? Still, such points are
inaccessible to our methods. We will see the obstacle in the counting esti-
mate (1.48) which is used for the proof of Part A and is unavailable for
τ(α) = 2, and in our application of Khintchine’s Transference Principle for
the proof of Part B.
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Remark 1.4.31 Note that in Part B, the ‘in particular’ full measure conclusion
is immediate and does not even require the divergent sum condition associated
with (1.45).

Regarding the natural analogous conjecture for higher-dimensional sub-
spaces, we have the following statement from [79] which provides a complete
solution in the case of affine co-ordinate subspaces of dimension at least two.

Theorem 1.4.32 Let ψ : N → R+ be a monotonic function and given α ∈
In−d where 2 ≤ d ≤ n − 1, let Lα := {α} × Rd . Then

md(W (n, ψ) ∩ Lα) = 1 if
∞∑

q=1

ψn(q) = ∞. (1.47)

Remark 1.4.33 Notice that Theorem 1.4.32 requires d ≥ 2, thereby exclud-
ing lines in Rn . In this case, the obstacle is easy to describe: the proof
of Theorem 1.4.32 relies on Gallagher’s extension of Khintchine’s theorem,
telling us that the monotonicity assumption can be dropped in higher dimen-
sions (see Remark 1.4.13). In the proof of Theorem 1.4.32 we find a natural
way to apply this directly to the fibers, therefore, we must require d ≥ 2.

But this is again only a consequence of the chosen method of proof, and not
necessarily a reflection of reality. Indeed, Theorem 1.4.28 (and its more general
version for lines in Rn) suggests that we should be able to relax Theorem 1.4.32
to include the case where d = 1.

Remark 1.4.34 The case when d = n − 1 was first treated in [78]. There,
a number of results are proved in the direction of Theorem 1.4.32, but
with various restrictions on Diophantine exponent, or on the approximating
function.

Regarding the proof of Theorem 1.4.28, Part B makes use of Khintchine’s
Transference Principle (see §1.4.6.1) while the key to establishing Part A is
the following measure theoretic statement (cf. Theorem 1.1.4) and ubiquity
(see §1.5).

Proposition 1.1 Let ψ : N → R+ be a monotonic function such that for all

ε > 0 we have ψ(q) > q− 1
2−ε for all q large enough. Let α ∈ R be a number

with Diophantine exponent τ(α) < 2. Then for any 0 < ε < 1 and integer
k ≥ k0(ε), we have that

m1

⎛⎜⎜⎝ ⋃
kn−1<q≤kn :
‖qα‖≤ψ(kn )

q⋃
p=0

B
(

p
q ,

k
k2nψ(kn)

)⎞⎟⎟⎠ ≥ 1 − ε.
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Remark 1.4.35 Note that within the context of Theorem 1.4.28, since α is
fixed it is natural to consider only those q ∈ N for which ‖qα‖ ≤ ψ(q) when
considering solutions to the inequality ‖qβ‖ ≤ ψ(q). In other words, if we let

Aα(ψ) := {q ∈ N : ‖qα‖ ≤ ψ(q)}
then by definition

W (2, ψ) ∩ Lα

= {(α, β) ∈ Lα ∩ I2 : ‖qβ‖ ≤ ψ(q) for infinitely many q ∈ Aα(ψ)}.
It is clear that the one-dimensional Lebesgue measure m1 of this set is the same
as that of

{β ∈ I : ‖qβ‖ ≤ ψ(q) for infinitely many q ∈ Aα(ψ)}.
SKETCH PROOF OF PROPOSITION 1.1 In view of Minkowski’s theorem for
systems of linear forms, for any (α, β) ∈ R2 and integer N ≥ 1, there exists
an integer q ≥ 1 such that

‖qα‖ ≤ ψ(N )

‖qβ‖ ≤ 1

N ψ(N )

q ≤ N .

The desired statement follows on exploiting this with N = kn together with
the following result which is a consequence of a general counting result
established in [17]: given ψ and α satisfying the conditions imposed in
Proposition 1.1, then for n sufficiently large

#{q ≤ kn−1 : ‖qα‖ ≤ ψ(kn)} ≤ 31ψ(kn) kn−1. (1.48)

(An analogous count is established in [79] for vectors α ∈ Rn−1.)
Exercise: Fill in the details of the above sketch. �

1.4.6 Dual Approximation and Khintchine’s Transference

Instead of simultaneous approximation by rational points as considered in
the previous section, one can consider the closeness of the point x =
(x1, . . . , xm) ∈ Rm to rational hyperplanes given by the equations q · x = p
with p ∈ Z and q ∈ Zm . The point x ∈ Rn will be called dually ψ-well
approximable if the inequality

|q · x − p| < ψ(|q|)



Metric Diophantine Approximation: Aspects of Recent Work 43

holds for infinitely many (p, q) ∈ Z × Zm with

|q| := |q|∞ = max{|q1|, . . . , |qm |} > 0.

The set of dually ψ-approximable points in Im is denoted by W ∗(m, ψ). In the
case ψ : q → q−τ with τ > 0, we write W ∗(m, τ ) for W ∗(m, ψ). The set
W ∗(n, τ ) is the set of dually τ -well approximable numbers. Note that in view
of Corollary 1.4.7 we have that

W ∗(m, τ ) = Im if τ ≤ m. (1.49)

The simultaneous and dual forms of approximation are special cases of a
system of linear forms, covered by a general extension due to A. V. Gro-
shev (see [90]). This treats real m × n matrices X , regarded as points in Rmn ,
which are ψ-approximable. More precisely, X = (xi j ) ∈ Rmn is said to be
ψ-approximable if the inequality

‖qX‖ < ψ(|q|)
is satisfied for infinitely many q ∈ Zm . Here qX is the system

q1x1 j + · · · + qm xm, j (1 ≤ j ≤ n)

of n real linear forms in m variables and ‖qX‖ := max1≤ j≤n ‖q · X ( j)‖, where
X ( j) is the j th column vector of X . As the set of ψ-approximable points is
translation invariant under integer vectors, we can restrict attention to the mn-
dimensional unit cube Imn . The set of ψ-approximable points in Imn will be
denoted by

W (m, n, ψ) := {X ∈ Imn : ‖qX‖ < ψ(|q|) for infinitely many q ∈ Zm}.
Thus, W (n, ψ) = W (1, n, ψ) and W ∗(m, ψ) = W (m, 1, ψ). The follow-
ing result naturally extends Khintchine’s simultaneous theorem to the linear
forms set-up. For obvious reasons, we write |X |mn rather than mmn(X) for
mn-dimensional Lebesgue measure of a set X ⊂ Rmn .

Theorem 1.4.36 (Khintchine–Groshev, 1938) Let ψ : N → R+. Then

|W (m, n, ψ)|mn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if

∞∑
r=1

rm−1ψ(r)n < ∞,

1 if
∞∑

r=1

rm−1ψ(r)n = ∞ and ψ is monotonic.
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The counterexample due to Duffin and Schaeffer mentioned in §1.2.2.1
means that the monotonicity condition cannot be dropped from Groshev’s the-
orem when m = n = 1. To avoid this situation, let mn > 1. Then for m = 1,
we have already mentioned (Remark 1.4.13) that the monotonicity condition
can be removed. Furthermore, the monotonicity condition can also be removed
for m > 2 – see [13, Theorem 8] and [90, Theorem 14]. The m = 2 situation
was resolved only recently in [27], where it was shown that the monotonicity
condition can be safely removed. The upshot of this discussion is that we only
require the monotonicity condition in the Khintchine–Groshev theorem in the
case when mn = 1.

Naturally, one can ask for a Hausdorff measure generalisation of the
Khintchine–Groshev theorem. The following is such a statement and as one
should expect it coincides with Theorem 1.3.7 when m = n = 1. In the simul-
taneous case (m = 1), the result was alluded to within Remark 1.4.16 following
the simultaneous statement of Khintchine’s theorem.

Theorem 1.4.37 Let ψ : N → R+. Then

Hs(W (m, n, ψ))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

r=1

rm(n+1)−1−sψ(r)s−n(m−1)< ∞,

Hs(Imn) if
∞∑

r=1

rm(n+1)−1−sψ(r)s−n(m−1)= ∞
and ψ is monotonic .

This Hausdorff theorem follows from the corresponding Lebesgue statement
in the same way that Khintchine’s theorem implies Jarník’s theorem via the
Mass Transference Principle – see §1.3.4.1. The Mass Transference Principle
introduced in §1.3.4 deals with lim sup sets which are defined by a sequence
of balls. However, the ‘slicing’ technique introduced in [22] extends the Mass
Transference Principle to deal with lim sup sets defined by a sequence of neigh-
bourhoods of ‘approximating’ planes. This naturally enables us to generalise
the Lebesgue measure statements for systems of linear forms to Hausdorff
measure statements. The last sentence should come with a warning. It gives
the impression that in view of the discussion preceding Theorem 1.4.36, one
should be able to establish Theorem 1.4.37 directly, without the monotonic-
ity assumption except when m = n = 1. However, as things currently
stand we also need to assume monotonicity when m = 2. For further details
see [13, §8].
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Returning to Diophantine approximation in Rn , we consider the following
natural question.

Question. Is there a connection between the simultaneous (m = 1) and dual
(n = 1) forms of approximating points in Rn?

1.4.6.1 Khintchine’s Transference
The simultaneous and dual forms of Diophantine approximation are related by
a ‘transference’ principle in which a solution of one form is related to a solution
of the other. In order to state the relationship we introduce the quantities ω∗
and ω. For x = (x1, . . . , xn) ∈ Rn , let

ω∗(x) := sup
{
ω ∈ R : x ∈ W ∗(n, n + ω)

}
and

ω(x) := sup
{
ω ∈ R : x ∈ W (n, 1+ω

n )
}
.

Note that

τ(x) = 1 + ω(x)
n

where τ(x) is the Diophantine exponent of x as defined by (1.46). For the sake
of completeness we mention that the quantity

τ ∗(x) = n + ω∗(x)

is called the dual Diophantine exponent. The following statement provides a
relationship between the dual and simultaneous Diophantine exponents.

Theorem 1.4.38 (Khintchine’s Transference Principle) For x ∈ Rn, we have
that

ω∗(x)
n2 + (n − 1)ω∗(x)

≤ ω(x) ≤ ω∗(x)

with the left-hand side being interpreted as 1/(n − 1) if ω∗(x) is infinite.

Remark 1.4.39 The transference principle implies that given any ε > 0, if
x ∈ W (n, 1+ε

n ) then x ∈ W ∗(n, n + ε∗) for some ε∗ comparable to ε, and vice
versa.

Proof of Part B of Theorem 1.4.28
Part B of Theorem 1.4.28 follows by plugging n = 2 and d = 1 into the

following proposition, which is in turn a simple consequence of Khintchine’s
Transference Principle.
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Proposition 1.2 Let ψ : N → R+ be a monotonic function and given α ∈
In−d where 1 ≤ d ≤ n − 1, let Lα := {α} × Rd . Assume that τ(α) > 1+d

n−d and

for ε > 0, ψ(q) > q− 1
n −ε for q large enough. Then

W (n, ψ) ∩ Lα = In ∩ Lα.

In particular, md(W (n, ψ) ∩ Lα) = 1.

Proof We are given that τ(α) > 1+d
n−d and so by definition ω(α) > d. Thus, by

Khintchine’s Transference Principle, it follows that ω∗(α) > d and so ω∗(x) >
0 for any point x = (α,β) ∈ Rn; i.e. β ∈ Rd and x is a point on the d-
dimensional plane Lα . On applying Khintchine’s Transference Principle again,
we deduce that ω(x) > 0 which together with the growth condition imposed
on ψ implies the desired conclusion.

1.5 Ubiquitous Systems of Points

In [14], a general framework is developed for establishing divergent results
analogous to those of Khintchine and Jarník for a natural class of lim sup sets.
The framework is based on the notion of ‘ubiquity’, which goes back to [10]
and [46] and captures the key measure theoretic structure necessary to prove
such measure theoretic laws. The ‘ubiquity’ introduced below is a much sim-
plified version of that in [14]. In particular, we make no attempt to incorporate
the linear forms theory of metric Diophantine approximation. However, this
does have the advantage of making the exposition more transparent and also
leads to cleaner statements which are more than adequate for the application
we have in mind; namely to systems of points.

1.5.1 The General Framework and Fundamental Problem

The general framework of ubiquity considered within is as follows:

● (�, d) is a compact metric space.
● μ is a Borel probability measure supported on �.
● There exist positive constants δ and ro such that for any x ∈ � and r ≤ r0,

a r δ ≤ μ(B(x, r)) ≤ b r δ. (1.50)

The constants a and b are independent of the ball B(x, r) := {y ∈ � :
d(x, y) < r}.
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● R = (Rα)α∈J a sequence of points Rα in � indexed by an infinite countable
set J . The points Rα are commonly referred to as resonant points.

● β : J → R+ : α �→ βα is a positive function on J . It attaches a ‘weight’ βα
to the resonant point Rα .

● To avoid pathological situations:

#{α ∈ J : βα ≤ x} < ∞ for any x ∈ R. (1.51)

Remark 1.5.1 The measure condition (1.50) on the ambient measure μ

implies that μ is non-atomic; that is, μ({x}) = 0 for any x ∈ �, and that

μ(�) := 1 � Hδ(�) and dim� = δ.

Indeed, μ is comparable to δ-dimensional Hausdorff measure Hδ .

Given a decreasing function � : R+ → R+ let

�(�) = {x ∈ � : x ∈ B(Rα,�(βα)) for infinitely many α ∈ J }.
The set �(�) is a ‘lim sup’ set; it consists of points in � which lie in infinitely
many of the balls B(Rα,�(βα)) centred at resonant points. As in the classi-
cal setting introduced in §1.2, it is natural to refer to the function � as the
approximating function. It governs the ‘rate’ at which points in � must be
approximated by resonant points in order to lie in �(�). In view of the finite-
ness condition (1.51), it follows that for any fixed k > 1, the number of α in
J with kt−1 < βα ≤ kt is finite regardless of the value of t ∈ N. Therefore
�(�) can be rewritten as the lim sup set of

ϒ(�, k, t) :=
⋃

α∈J :kt−1<βα≤kt

B(Rα,�(βα)) ;

that is,

�(�) = lim sup
t→∞

ϒ(�, k, t) :=
∞⋂

m=1

∞⋃
t=m

ϒ(�, k, t).

It is reasonably straightforward to determine conditions under which
μ(�(�)) = 0. In fact, this is implied by the convergence part of the
Borel–Cantelli lemma from probability theory whenever∑∞

t=1 μ(ϒ(�, k, t)) < ∞. (1.52)

In view of this it is natural to consider the following fundamental problem:

Under what conditions is μ(�(ψ)) > 0 and more generally
Hs(�(�)) > 0 ?
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Ideally, we would like to be able to conclude the full measure statement
Hs(�(�)) = Hs(�). Recall that when s = δ, the ambient measure μ

coincides with Hδ . Also, if s < δ then Hs(�) = ∞.

1.5.1.1 The Basic Example
In order to illustrate and clarify the above general set-up, we show that the set
W (n, ψ) of simultaneously ψ-well approximable points x ∈ In := [0, 1]n can
be expressed in the form of �(�). With this in mind, let:

● � := In and d(x, y) := max
1≤i≤n

|xi − yi |,
● μ be Lebesgue measure restricted to In and δ := n,
● J := {(p, q) ∈ Zn × N : p/q ∈ In} and α := (p, q) ∈ J ,
● R := (p/q)(p,q)∈J and β(p,q) := q .

Thus, the resonant points Rα are simply rational points p/q := (p1/q, . . . ,
pn/q) in the unit cube In . It is readily verified that the measure condition
(1.50) and the finiteness condition (1.51) are satisfied and moreover that for
any decreasing function ψ : N → R+,

�(�) = W (n, ψ) with �(q) := ψ(q)/q .

For this basic example, the solution to the fundamental problem is given by
the simultaneous Khintchine–Jarník theorem (see Theorem 1.4.37 with m = 1
in §1.4.6).

1.5.2 The Notion of Ubiquity

The following ‘system’ contains the key measure theoretic structure necessary
for our attack on the fundamental problem.

Let ρ : R+ → R+ be a function with ρ(r) → 0 as r → ∞ and let

�(ρ, k, t) :=
⋃

α∈J : βα≤kt

B(Rα, ρ(k
t )) ,

where k > 1 is a fixed real number. Note that when ρ = � the composition of
�(ρ, k, t) is very similar to that of ϒ(�, k, t).

Definition (Ubiquitous System) Let B = B(x, r) denote an arbitrary ball
with centre x in � and radius r ≤ r0. Suppose there exists a function ρ and
absolute constants κ > 0 and k > 1 such that for any ball B as above

μ (B ∩�(ρ, k, t)) ≥ κ μ(B) for t ≥ t0(B). (1.53)
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Then the pair (R, β) is said to be a local μ-ubiquitous system relative to (ρ, k).
If (1.53) does not hold for arbitrary balls with centre x in � and radius r ≤ r0,
but does hold with B = �, the pair (R, β) is said to be a global μ-ubiquitous
system relative to (ρ, k).

Loosely speaking, the definition of local ubiquity says that the underlying
space � is locally ‘approximated’ by the set �(ρ, k, t) in terms of the measure
μ. By ‘locally’ we mean balls centred at points in �. The function ρ is referred
to as the ubiquitous function. The actual values of the constants κ and k in the
above definition are irrelevant – it is their existence that is important. In prac-
tice, the μ-ubiquity of a system can be established using standard arguments
concerning the distribution of the resonant points in �, from which the function
ρ arises naturally. To illustrate this, we return to the basic example of §1.5.1.1.

Proposition 1.3 There is a constant k > 1 such that the pair (R, β) defined
in §1.5.1.1 is a local μ-ubiquitous system relative to (ρ, k) where ρ : r �→
const × r−(n+1)/n.

The one-dimensional case of this proposition follows from Theorem 1.1.4.

Exercise: Prove the above proposition for arbitrary n. Hint: you will need
to use the multidimensional version of Dirichlet’s theorem, or Minkowski’s
theorem.

1.5.3 The Ubiquity Statements

Before stating the main results regarding ubiquity we introduce one last notion.
Given a real number k > 1, a function h : R+ → R+ will be said to be
k-regular if there exists a strictly positive constant λ < 1 such that for t
sufficiently large

h(kt+1) ≤ λ h(kt ). (1.54)

The constant λ is independent of t but may depend on k. A consequence of
local ubiquity is the following result.

Theorem 1.5.2 (Ubiquity: The Hausdorff Measure Case) Let (�, d) be a
compact metric space equipped with a probability measure μ satisfying con-
dition (1.50) and such that any open subset of � is μ-measurable. Suppose
that (R, β) is a locally μ-ubiquitous system relative to (ρ, k) and that � is
an approximating function. Furthermore, suppose that s ∈ (0, δ], that ρ is
k-regular and that
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∞∑
t=1

�(kt )s

ρ(kt)δ
= ∞ . (1.55)

Then

Hs (�(�)) = Hs (�) .

As already mentioned, if s < δ then Hs(�) = ∞. On the other hand, if
s = δ, the Hausdorff measure Hδ is comparable to the ambient measure μ and
the theorem implies that

μ (�(�)) = μ(�) := 1.

Actually, the notion of global ubiquity has implications in the ambient measure
case.

Theorem 1.5.3 (Ubiquity: The Ambient Measure Case) Let (�, d) be a com-
pact metric space equipped with a measure μ satisfying condition (1.50) and
such that any open subset of � is μ-measurable. Suppose that (R, β) is a
globally μ-ubiquitous system relative to (ρ, k) and that � is an approximating
function. Furthermore, suppose that either ρ or � is k-regular and that

∞∑
t=1

(
�(kt )

ρ(kt)

)δ
= ∞ . (1.56)

Then

μ(�(�)) > 0.

If in addition (R, β) is a locally μ-ubiquitous system relative to (ρ, k), then

μ(�(�)) = 1.

Remark 1.5.4 Note that in Theorem 1.5.3 we can get away with either ρ or
� being k-regular. In the ambient measure case, it is also possible to weaken
the measure condition (1.50) (see Theorem 1 in [14, §3]).

Remark 1.5.5 If we know via some other means that �(�) satisfies a zero-
full law (as indeed is the case for the classical set of W (n, ψ) of ψ-well
approximable points), then it is enough to show that μ (�(�)) > 0 in order to
conclude full measure.

The above results constitute the main theorems appearing in [14] tailored to
the set-up considered here. In fact, Theorem 1.5.2 as stated appears in [25] for
the first time. Previously, the Hausdorff and ambient measure cases had been
thought of and stated separately.
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The concept of ubiquity was originally formulated by Dodson, Rynne and
Vickers [46] to obtain lower bounds for the Hausdorff dimension of lim sup
sets. Furthermore, the ubiquitous systems of [46] essentially coincide with the
regular systems of Baker and Schmidt [10] and both have proved very useful in
obtaining lower bounds for the Hausdorff dimension of lim sup sets. However,
unlike the framework developed in [14], both [10] and [46] fail to shed any
light on establishing the more desirable divergent Khintchine and Jarník type
results. The latter clearly implies lower bounds for the Hausdorff dimension.
For further details regarding regular systems and the original formulation of
ubiquitous systems see [14, 31].

1.5.3.1 The Basic Example and the Simultaneous Khintchine–Jarník
Theorem

Regarding the basic example of §1.5.1.1, recall that

�(�) = W (n, ψ) with �(q) := ψ(q)/q

and that Proposition 1.3 states that for k large enough, the pair (R, β) is a local
μ-ubiquitous system relative to (ρ, k) where

ρ : r �→ const × r−(n+1)/n.

Now, clearly the function ρ is k-regular. Also note that the divergence sum
condition (1.55) associated with Theorem 1.5.2 becomes

∞∑
t=1

kt (n+1−s)ψ(kt )s = ∞.

If ψ is monotonic, this is equivalent to

∞∑
q=1

qn−sψ(q)s = ∞ ,

and Theorem 1.5.2 implies that

Hs(W (n, ψ)) = Hs(In).

The upshot is that Theorem 1.5.2 implies the divergent case of the simulta-
neous Khintchine–Jarník theorem; namely, Theorem 1.4.37 with m = 1 in
§1.4.6.

Remark 1.5.6 It is worth standing back a little and thinking about what we
have actually used in establishing the classical results – namely, local ubiquity.
Within the classical set-up, local ubiquity is a simple measure theoretic state-
ment concerning the distribution of rational points with respect to Lebesgue
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measure – the natural measure on the unit interval. From this we are able
to obtain the divergent parts of both Khintchine’s theorem (a Lebesgue mea-
sure statement) and Jarník’s theorem (a Hausdorff measure statement). In other
words, the Lebesgue measure statement of local ubiquity underpins the general
Hausdorff measure theory of the lim sup set W (n, ψ). This of course is very
much in line with the subsequent discovery of the Mass Transference Principle
discussed in §1.3.4.

The applications of ubiquity are widespread, as demonstrated in [14,
§12]. We now consider a more recent application of ubiquity to the ‘fibers’
strengthening of Khintchine’s simultaneous theorem described in §1.4.5.

1.5.3.2 Proof of Theorem 1.4.28: Part A
Let ψ : N → R+ be a monotonic function and α ∈ I such that it has Dio-
phantine exponent τ(α) < 2. In view of Remark 1.4.35 in §1.4.5, establishing
Theorem 1.4.28 is equivalent to showing that

m(�(ψ, α)) = 1 if
∞∑

q=1

ψ2(q) = ∞

where

�(ψ, α) := {β ∈ I : ‖qβ‖ ≤ ψ(q) for infinitely many q ∈ Aα(ψ)}.
Recall,

Aα(ψ) := {q ∈ N : ‖qα‖ ≤ ψ(q)}.
Remark 1.5.7 Without loss of generality, we can assume that

q− 1
2 (log q)−1 ≤ ψ(q) ≤ q− 1

2 ∀ q ∈ N. (1.57)

Exercise: Verify that this is indeed the case. For the right-hand side of (1.57),
consider the auxiliary function

ψ̃ : q → ψ̃ := min{q− 1
2 , ψ(q)}

and show that
∑∞

q=1 ψ̃2(q) = ∞. For the left-hand side of (1.57), consider
the auxiliary function

ψ̃ : q → ψ̃(q) := max{ψ̂(q) := q− 1
2 (log q)−1, ψ(q)}

and show that m(�(ψ̂, α)) = 0 by making use of the counting estimate (1.48)
and the convergence Borel–Cantelli lemma.

We now show that the set �(ψ, α) can be expressed in the form of �(�).
With this in mind, let:
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● � := [0, 1] and d(x, y) := |x − y|;
● μ be Lebesgue measure restricted to I and δ := 1;
● J := {(p, q) ∈ Z × Aα(ψ) : p/q ∈ I} and α := (p, q) ∈ J ;
● R := (p/q)(p,q)∈J and β(p,q) := q.

Thus, the resonant points Rα are simply rational points p/q in the unit interval
I with denominators q restricted to the set Aα(ψ). It is readily verified that the
measure condition (1.50) and the finiteness condition (1.51) are satisfied and
moreover that for any decreasing function ψ : N → R+,

�(�) = �(ψ, α) with �(q) := ψ(q)/q .

Note that since ψ is decreasing, the function � is k-regular. Now, in view of
Remark 1.5.7, the conditions of Proposition 1.1 are satisfied and we conclude
that for k large enough, the pair (R, β) is a global m-ubiquitous system relative
to (ρ, k) where

ρ : r �→ k

r2ψ(r)
.

Now, since ψ is monotonic
∞∑

t=1

�(kt )

ρ(kt )
=

∞∑
t=1

kt−1ψ2(kt ) = ∞ ⇐⇒
∞∑

q=1

ψ2(q) = ∞

and Theorem 1.5.3 implies that

μ
(
�(ψ, α)

)
> 0 .

Now observe that �(ψ, α) is simply the set W (ψ̄) of ψ̄-well approximable
numbers with ψ̄(q) := ψ(q) if q ∈ Aα(ψ) and zero otherwise. Thus, Cassels’
zero-full law [38] implies the desired statement; namely that

μ
(
�(ψ, α)

)
= 1.

1.6 Diophantine Approximation on Manifolds

Diophantine approximation on manifolds (as coined by Bernik and Dodson
in their Cambridge Tract [31] ) or Diophantine approximation of dependent
quantities (as coined by Sprindžuk in his monograph [90]) refers to the study
of Diophantine properties of points in Rn whose coordinates are confined by
functional relations or equivalently are restricted to a sub-manifold M of Rn .
Thus, in the case of simultaneous Diophantine approximation one studies sets
such as
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M ∩ W (n, ψ).

To some extent, we have already touched upon the theory of Diophantine
approximation on manifolds when we considered Gallagher multiplicative the-
orem on fibers in §1.4.4.1 and Khintchine simultaneous theorem on fibers
in §1.4.5. In these sections, the points of interest are confined to an affine
co-ordinate subspace of Rn; namely the manifold

Lα := {α} × Rd , where 1 ≤ d ≤ n − 1 and α ∈ In−d .

In general, a manifold M can locally be given by a system of equations, for
instance, the unit sphere in R3 is given by the equation

x2 + y2 + z2 = 1;
or it can be immersed into Rn by a map f : Rd → Rn (the actual domain of f
can be smaller than Rd ); for example, the Veronese curve is given by the map

x �→ (x, x2, . . . , xn) .

Such a map f is often referred to as a parameterisation and without loss of
generality we will assume that the domain of f is Id and that the manifold M ⊆
In . Locally, a manifold given by a system of equations can be parameterised
by some map f and, conversely, if a manifold is immersed by a map f, it can
be written using a system of n − d equations, where d is the dimension of the
manifold.

Exercise: Parameterise the upper hemisphere x2 + y2 + z2 = 1, z > 0, and
also write the Veronese curve (see above) by a system of equations.

In these notes we will mainly concentrate on the simultaneous (rather than
dual) theory of Diophantine approximation on manifolds. In particular, we
consider the following two natural problems:

Problem 1. To develop a Lebesgue theory for M ∩ W (n, ψ);
Problem 2. To develop a Hausdorff theory for M ∩ W (n, ψ).

In short, the aim is to establish analogues of the two fundamental theorems
of Khintchine and Jarník, and thereby provide a complete measure theoretic
description of the sets M∩W (n, ψ). The fact that the points x ∈ Rn of interest
are of dependent variables, which reflects the fact that x ∈ M, introduces major
difficulties in attempting to describe the measure theoretic structure of M ∩
W (n, ψ). This is true even in the specific case that M is a planar curve. More
to the point, even for seemingly simple curves such as the unit circle or the
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parabola, the above problems are fraught with difficulties. In these notes we
will concentrate mainly on describing the Lebesgue theory.

Unless stated otherwise, the approximating functionψ : N→R+ throughout
this section is assumed to be monotonic.

1.6.1 The Lebesgue Theory for Manifolds

The goal is to obtain a Khintchine-type theorem that describes the Lebesgue
measure of the set M ∩ W (n, ψ) of simultaneously ψ-approximable points
lying on M. First of all, notice that if the dimension d of the manifold M is
strictly less than n then mn(M ∩ W (n, ψ)) = 0 irrespective of the approx-
imating function ψ . Thus, in attempting to develop a Lebesgue theory for
M ∩ W (n, ψ) it is natural to use the induced d-dimensional Lebesgue mea-
sure on M. Alternatively, if M is immersed by a map f : Id → Rn we
use the d-dimensional Lebesgue measure md on the set of parameters of f;
namely Id . In either case, the measure under consideration will be denoted
by |. |M.

Remark 1.6.1 Notice that for τ ≤ 1/n, we have that |M ∩ W (n, τ )|M =
|M|M := FULL as it should be since, by Dirichlet’s theorem, we have that
W (n, τ ) = In .

The two-dimension fiber problem considered in §1.4.5, in which the man-
ifold M is a vertical line Lα , shows that it is not possible to obtain a
Khintchine-type theorem (both the convergence and divergence aspects) for all
manifolds. Indeed, the convergence statement fails for vertical lines. Thus, in a
quest for developing a general Khintchine-type theory for manifolds (cf. Prob-
lem 1 above), it is natural to avoid lines and more generally hyperplanes. In
short, we insist that the manifold under consideration is ‘sufficiently’ curved.

1.6.1.1 Non-Degenerate Manifolds
In order to make any reasonable progress with Problems 1 and 2 above,
we assume that the manifolds M under consideration are non-degenerate
[67]. Essentially, these are smooth sub-manifolds of Rn which are sufficiently
curved so as to deviate from any hyperplane. Formally, a manifold M of
dimension d embedded in Rn is said to be non-degenerate if it arises from
a non-degenerate map f : U → Rn where U is an open subset of Rd and
M := f(U). The map f : U → Rn : x �→ f(x) = ( f1(x), . . . , fn(x)) is said
to be non-degenerate at x ∈ U if there exists some l ∈ N such that f is l
times continuously differentiable on some sufficiently small ball centred at x
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and the partial derivatives of f at x of orders up to l span Rn . The map f is non-
degenerate if it is non-degenerate at almost every (in terms of d-dimensional
Lebesgue measure) point in U ; in turn the manifold M = f(U) is also said to
be non-degenerate. Any real, connected analytic manifold not contained in any
hyperplane of Rn is non-degenerate. Indeed, if M is immersed by an analytic
map f = ( f1, . . . , fn) : U → Rn defined on a ball U ⊂ Rd , then M is non-
degenerate if and only if the functions 1, f1, . . . , fn are linearly independent
over R.

Without loss of generality, we will assume that U is Id and that the manifold
M ⊆ In

Note that in the case the manifold M is a planar curve C, a point on C is
non-degenerate if the curvature at that point is non-zero. Thus, C is a non-
degenerate planar curve if the set of points on C at which the curvature vanishes
is a set of one-dimensional Lebesgue measure zero. Moreover, it is not difficult
to show that the set of points on a planar curve at which the curvature vanishes
but the curve is non-degenerate is at most countable. In view of this, the cur-
vature completely describes the non-degeneracy of planar curves. Clearly, a
straight line is degenerate everywhere.

The claim is that the notion of non-degeneracy is the right description
for a manifold M to be ‘sufficiently’ curved in order to develop a gen-
eral Khintchine-type theory (both convergent and divergent cases) for M ∩
W (n, ψ). With this in mind, the key then lies in understanding the distribution
of rational points ‘close’ to such manifolds.

1.6.1.2 Rational Points Near Manifolds: The Heuristics
Given a point x = (x1, . . . , xn) ∈ Rn and a set A ⊆ Rn , let

dist(x, A) := inf{d(x, a) : a ∈ A}
where, as usual, d(x, a) := max

1≤i≤n
|xi − ai |. Now let x ∈ M ∩ W (n, ψ). Then,

by definition, there exist infinitely many q ∈ N and p ∈ Zn such that

dist
(
M,

p
q

)
≤ d
(

x,
p
q

)
<

ψ(q)

q
.

This means that the rational points

p
q

:=
( p1

q
, . . . ,

pn

q

)
of interest must lie within the ψ(q)

q -neighbourhood of M. In particular, assum-

ing that ψ is decreasing, we have that the points p/q of interest with kt−1 <

q ≤ kt are contained in the ψ(kt−1)

kt−1 -neighbourhood of M. Let us denote this
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neighbourhood by �+
k (t, ψ) and by N+

k (t, ψ) the set of rational points with
kt−1 < q ≤ kt contained in �+

k (t, ψ). In other words,

N+
k (t, ψ) :=

{
p/q ∈ In : kt−1 < q ≤ kt and dist

(
M,p/q

) ≤ ψ(kt−1)

kt−1

}
.

(1.58)

Recall, that M ⊆ In . Hence, regarding the n-dimensional volume of the
neighbourhood �+

k (t, ψ), it follows that

mn

(
�+

k (t, ψ)
)

�
(
ψ(kt−1)

kt−1

)n−d

.

Now let Qk(t) denote the set of rational points with kt−1 < q ≤ kt lying in
the unit cube In . Then,

#Qk(t) � (kt )n+1

and if we assume that the points in Qk(t) are ‘fairly’ distributed within In , we
would expect that

the number of these points that fall into �+
k (t, ψ)

is proportional to the measure of �+
k (t, ψ).

In other words, and more formally, under the above distribution assumption,
we would expect that

#{Qk(t) ∩�+
k (t, ψ)} � #Qk(t)× mn

(
�+

k (t, ψ)
)

(1.59)

and since the left-hand side is #N+
k (t, ψ), we would be able to conclude that

#N+
k (t, ψ) � (kt )n+1

(
ψ(kt−1)

kt−1

)n−d

� (kt−1)d+1ψ(kt−1)n−d . (1.60)

For the moment, let us assume that (1.59) and hence (1.60) are fact. Now

M ∩ W (n, ψ) =
∞⋂

m=1

∞⋃
t=m

⋃
kt−1<q≤kt

⋃
p∈Zn :p/q∈In

B
(

p
q ,

ψ(q)
q

)
∩ M

⊂
∞⋂

m=1

∞⋃
t=m

A+
k (t, ψ,M),

where

A+
k (t, ψ,M) :=

⋃
kt−1<q≤kt

⋃
p∈Zn :p/q∈In

B
(

p
q ,

ψ(kt−1)

kt−1

)
∩ M.
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It is easily verified that

|A+
k (t, ψ,M)|M ≤

∑
kt−1<q≤kt

∑
p∈Zn :p/q∈In

∣∣∣B( p
q ,

ψ(kt−1)

kt−1

)
∩ M
∣∣∣
M︸ ︷︷ ︸

�(ψ(kt−1)/kt−1)d

� #N+
k (t, ψ) (ψ(kt−1)/kt−1)d

(1.60)� (kt−1)d+1ψ(kt−1)n−d(ψ(kt−1)/kt−1)d

� kt−1ψ(kt−1)n .

Hence
∞∑

t=1

|A+
k (t, ψ,M)|M �

∞∑
t=1

ktψ(kt )n �
∞∑

q=1

ψ(q)n . (1.61)

All the steps in the above argument apart from (1.59) and hence (1.60),
can be turned into a rigorous proof. Indeed, the estimate (1.60) is not always
true.

Exercise. Consider the circle C√3 in R2 given by the equation x2 + y2 = 3.

Prove that C does not contain any rational points. Next let ψ(q) = q−1−ε for
some ε > 0. Prove that

C√3 ∩ W (2, ψ) = ∅ .

The upshot is that even for non-degenerate manifolds, we cannot expect the
heuristic estimate (1.60) to hold for any decreasing ψ – some restriction on the
rate at which ψ decreases to zero is required. On the other hand, affine sub-
spaces of Rn may contain too many rational points; for instance, if M is a linear
subspace of Rn with a basis of rational vectors. Of course, such manifolds are
not non-degenerate.

However, whenever the upper bound associated with the heuristic estimate
(1.60) is true, inequality (1.61) together with the convergence Borel–Cantelli
lemma implies that

|M ∩ W (n, ψ)|M = 0 if
∞∑

q=1

ψ(q)n < ∞.

This statement represents the convergent case of the ‘Dream Theorem’ for
manifolds – see §1.6.1.3 immediately below. Note that the associated sum
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∑
ψ(q)n coincides with the sum appearing in Theorem 1.4.11 (Khintchine

in Rn) but the associated measure |. |M is d-dimensional Lebesgue measure
(induced on M) rather than n-dimensional Lebesgue measure.

1.6.1.3 The Dream Theorem and Its Current Status
The Dream Theorem. Let M be a non-degenerate sub-manifold of Rn . Let
ψ : N → R+ be a monotonic function. Then

|M ∩ W (n, ψ)|M =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψ(q)n < ∞ ,

1 if
∑∞

q=1 ψ(q)n = ∞ .

(1.62)

We emphasise that the Dream Theorem is a desired statement rather than an
established fact.

As we have already demonstrated, the convergence case of the Dream
Theorem would follow on establishing the upper bound estimate

#N+
k (t, ψ) � (kt−1)d+1ψ(kt−1)n−d (1.63)

for non-degenerate manifolds. Recall that the rational points of interest are
given by the set

Nk(t, ψ) :=
{

p/q ∈ In : kt−1 < q ≤ kt and dist
(
M, p/q

) ≤ ψ(q)
q

}
,

and that #N+
k (t, ψ) is an upper bound for #Nk(t, ψ). Obviously, a lower bound

for #Nk(t, ψ) is given by #N−
k (t, ψ) where

N−
k (t, ψ) :=

{
p/q ∈ In : kt−1 < q ≤ kt and dist

(
M,p/q

) ≤ ψ(kt )
kt

}
,

and if ψ is k-regular (see (1.54)) then N+
k (t, ψ) � N−

k (t, ψ). In particular,
whenever we are able to establish the heuristic estimate (1.60) or equivalently
the upper bound estimate (1.63) together with the lower bound estimate

#N−
k (t, ψ) � (kt−1)d+1ψ(kt−1)n−d , (1.64)

we would have that

#Nk(t, ψ) � (kt−1)d+1ψ(kt−1)n−d . (1.65)

It is worth stressing that the lower bound estimate (1.64) is by itself not
enough to prove the divergence case of the Dream Theorem. Loosely speak-
ing, we also need to know that rational points associated with N−

k (t, ψ) are

‘ubiquitous’ within the ψ(kt )
kt –neighbourhood of M. Indeed, when establish-

ing the divergence case of Khintchine’s theorem (Theorem 1.2.5), we trivially
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have the right count of k2t for the number of rational points p/q ∈ I with
kt−1 < q ≤ kt . The crux is to establish the associated distribution type result
given by Theorem 1.1.4. This in turn implies that the rational points under
consideration give rise to a ubiquitous system – see §1.5.3.1.

We now turn our attention to reality and describe various ‘general’ contri-
butions towards the Dream Theorem.

● Extremal manifolds. A sub-manifold M of Rn is called extremal if∣∣∣M ∩ W (n, 1+ε
n )

∣∣∣
M

= 0 ∀ ε > 0 .

Note that M ∩ W (n, 1
n ) = M – see Remark 1.6.1. In their pioneering

work [67] published in 1998, Kleinbock and Margulis proved that any non-
degenerate sub-manifold M of Rn is extremal. It is easy to see that this
implies the convergence case of the Dream Theorem for functions of the
shape

ψε(q) := q− 1+ε
n .

Indeed, ∑∞
q=1 ψε(q)n =∑∞

q=1 q−(1+ε) < ∞
and so whenever the convergent case of (1.62) is fulfilled, the corresponding
manifold is extremal.

● Planar curves. The Dream Theorem is true when n = 2; that is, when M

is a non-degenerate planar curve. The convergence case of (1.62) for planar
curves was established in [91] and subsequently strengthened in [30]. The
divergence case of (1.62) for planar curves was established in [15].

● Beyond planar curves. The divergence case of the Dream Theorem is true
for analytic non-degenerate sub-manifolds of Rn [11]. Recently, the diver-
gence case of (1.62) has been shown to be true for non-degenerate curves
and manifolds that can be ‘fibred’ into such curves [20]. The latter includes
C∞ non-degenerate sub-manifolds of Rn which are not necessarily ana-
lytic. The convergence case of the Dream Theorem is true for a large
subclass of 2-non-degenerate sub-manifolds of Rn with dimension d strictly
greater than (n + 1)/2 [19]. Earlier, manifolds satisfying a geometric (cur-
vature) condition were shown to satisfy the convergence case of the Dream
Theorem [47].

The upshot of the above is that the Dream Theorem is in essence fact for a
fairly generic class of non-degenerate sub-manifolds M of Rn apart from the
case of convergence when n ≥ 3 and d ≤ (n + 1)/2.
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Remark 1.6.2 The theory of Diophantine approximation stems from Mahler’s
problem (1932) regarding the extremality of the Veronese curve

V := {(x, x2, . . . , xn) : x ∈ R}.
Following a substantial number of partial results (initially for n = 2, then
n = 3 and some for higher n), a complete solution to the problem was given by
Sprindžuk in 1965. For a historical account of the manifold theory we refer the
reader to the monographs [31, 90] and the introduction given in the paper [15].

Remark 1.6.3 Note that, in view of Khintchine’s Transference Principle,
we could have easily defined extremality via the dual form of Diophantine
approximation (see Remark 1.4.39); namely, M is extremal if∣∣M ∩ W ∗(n, n + ε)

∣∣
M

= 0 ∀ ε > 0 .

The point is that both definitions are equivalent. This is not the case in the
inhomogeneous set-up considered in §1.6.3.1.

Remark 1.6.4 It is worth mentioning that in [67], Kleinbock and Margulis
established a stronger (multiplicative) form of extremality (see §1.6.4.1) that
settled the Baker–Sprindžuk conjecture from the eighties. Not only did their
work solve a long-standing fundamental problem, but it also developed new
techniques utilising the link between Diophantine approximation and homo-
geneous dynamics. Without doubt the work of Kleinbock and Margulis has
been the catalyst for the subsequent contributions towards the Dream Theorem
described above.

1.6.2 The Hausdorff Theory for Manifolds

The goal is to obtain a Jarník-type theorem that describes the Hausdorff mea-
sure Hs of the set M ∩ W (n, ψ) of simultaneously ψ-approximable points
lying on M. In other words, we wish to obtain a Hausdorff measure version
of the Dream Theorem. In view of this, by default, we consider approximat-
ing functions ψ which decrease sufficiently rapidly so that the d-dimensional
Lebesgue measure of M ∩ W (n, ψ) is zero. Now, as the example in §1.6.1.2
demonstrates, in order to obtain a coherent Hausdorff measure theory we must
impose some restriction on the rate at which ψ decreases. Indeed, with refer-
ence to that example, the point is that Hs(C√3 ∩ W (2, 1+ ε)) = 0 irrespective

of ε > 0 and the measure Hs . On the other hand, for the unit circle C1 in R2

given by the equation x2 + y2 = 1, it can be shown [14, Theorem 19] that for
any ε > 0,

Hs(C1 ∩ W (2, 1 + ε)) = ∞ with s = 1
2+ε

.
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Nevertheless, it is believed that if the rate of decrease of ψ is ‘close’ to the
approximating function q−1/n associated with Dirichlet’s theorem, then the
behaviour of Hs(M ∩ W (n, ψ)) can be captured by a single, general crite-
rion. In the following statement, the condition on ψ is captured in terms of the
deviation of Hs from d-dimensional Lebesgue measure.

The Hausdorff Dream Theorem. Let M be a non-degenerate sub-manifold
of Rn , d := dim M and m := codim M. Thus, d + m = n. Let ψ : N → R+
be a monotonic function. Then, for any s ∈ ( m

m+1 d, d
)

Hs(M ∩ W (n, ψ)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 if

∞∑
q=1

ψ s+m(q)q−s+d < ∞ ,

∞ if
∞∑

q=1

ψ s+m(q)q−s+d = ∞.

(1.66)

We emphasize that the above is a desired statement rather than an established
fact.

We now turn our attention to reality and describe various ‘general’ contri-
butions towards the Hausdorff Dream Theorem.

● Planar curves. As with the Dream Theorem, the convergence case of (1.66)
for planar curves (n = 2, d = m = 1) was established in [91] and subse-
quently strengthened in [30]. The divergence case of (1.66) for planar curves
was established in [15].

● Beyond planar curves. The divergence case of the Hausdorff Dream
Theorem is true for analytic non-degenerate sub-manifolds of Rn [11]. The
convergence case is rather fragmented. To the best of our knowledge, the
partial results obtained in [19, Corollaries 3 & 5] for 2-non-degenerate
sub-manifolds of Rn with dimension d strictly greater than (n + 1)/2,
represent the first significant coherent contribution towards the convergence
case.

Exercise. Prove the convergent case of (1.66) assuming the heuristic estimate
(1.60) for the number of rational points near M – see §1.6.1.2.

Remark 1.6.5 Regarding the divergence case of (1.66), it is tempting to claim
that it follows from the divergence case of the (Lebesgue) Dream Theorem via
the Mass Transference Principle introduced in §1.3.4. After all, this is true
when M = In; namely that Khintchine’s theorem implies Jarník’s theorem as
demonstrated in §1.3.4.1. However, this is far from the truth within the context
of manifolds. The reason for this is simple. With respect to the set-up of the



Metric Diophantine Approximation: Aspects of Recent Work 63

Mass Transference Principle, the set � that supports the Hδ-measure (with
δ = dim M) is the manifold M itself and is embedded in Rn . The set M ∩
W (n, ψ) ⊂ � of interest can be naturally expressed as the intersection with M

of the lim sup set arising from balls B( p
q ,

ψ(q)
q ) centred at rational points p/q ∈

Rn . However, the centre of these balls do not necessarily lie in the support of
the measure � = M and this is where the problem lies. A prerequisite for the
framework of the Mass Transference Principle is that {Bi }i∈N is a sequence of
balls in �.

1.6.3 Inhomogeneous Diophantine Approximation

When considering the well approximable sets W (n, ψ) or indeed the badly
approximable sets Bad(i1, . . . , in), we are in essence investigating the
behaviour of the fractional part of qx about the origin as q runs through N.
Clearly, we could consider the set-up in which we investigate the behaviour of
the orbit of {qx} about some other point. With this in mind, given ψ : N → R+
and a fixed point γ = (γ1, . . . , γn) ∈ Rn , let

Wγ (n, ψ) := {x ∈ In : ‖qx − γ ‖ < ψ(q) for infinitely many q ∈ N}
denote the inhomogeneous set of all simultaneously ψ-well approximable
points x ∈ In . Thus, a point x ∈ Wγ (n, ψ) if there exist infinitely many
‘shifted’ rational points ( p1 − γ1

q
, . . . ,

pn − γn

q

)
with q > 0, such that the inequalities

|xi − (pi − γi )/q| < ψ(q)/q

are simultaneously satisfied for 1 ≤ i ≤ n. The following is the natural
generalisation of the simultaneous Khintchine–Jarník theorem to the inhomo-
geneous set-up. For further details, see [13, 14] and references within.

Theorem 1.6.6 (Inhomogeneous Khintchine–Jarník) Let ψ : N → R+ be a
monotonic function, γ ∈ Rn and s ∈ (0, n]. Then

Hs(Wγ (n, ψ)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if
∞∑

r=1

rn−sψ(r)s < ∞ ,

Hs(In) if
∞∑

r=1

rn−sψ(r)s = ∞ .
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Remark 1.6.7 For the sake of completeness we state the inhomogeneous ana-
logue of Hurwitz’s Theorem due to Khintchine [62, §10.10]: for any irrational
x ∈ R, γ ∈ R and ε > 0, there exist infinitely many integers q > 0 such that

q ‖qx − γ ‖ ≤ (1 + ε)/
√

5.

Note that the presence of the ε term means that the inhomogeneous statement
is not quite as sharp as the homogeneous one (i.e. when γ = 0). Also, for
obvious reasons, in the inhomogeneous situation it is necessary to exclude the
case that x is rational.

We now swiftly move on to the inhomogeneous theory for manifolds. In
short, the heuristics of §1.6.1.2, adapted to the inhomogeneous set-up, gives
evidence towards the following natural generalisation of the Dream Theorem.

The Inhomogeneous Dream Theorem. Let M be a non-degenerate sub-
manifold of Rn . Let ψ : N → R+ be a monotonic function and γ ∈ Rn .
Then

|M ∩ Wγ (n, ψ)|M =

⎧⎪⎨⎪⎩
0 if

∑∞
q=1 ψ(q)n < ∞ ,

1 if
∑∞

q=1 ψ(q)n = ∞ .

Regarding what is known, the current state of knowledge is absolutely in
line with the homogeneous situation. The inhomogeneous analogue of the
extremality result of Kleinbock and Margulis [67] is established in [24, 26].
We will return to this in §1.6.3.1 below. For planar curves, the Inhomogeneous
Dream Theorem is established in [18]. Beyond planar curves, the results in
[19, 20] are obtained within the inhomogeneous framework. So in summary,
the Inhomogeneous Dream Theorem is in essence fact for non-degenerate sub-
manifolds M of Rn apart from the case of convergence when n ≥ 3 and
d ≤ (n + 1)/2.

1.6.3.1 Inhomogeneous Extremality and a Transference Principle
First we need to decide on what precisely we mean by inhomogeneous
extremality. With this in mind, a manifold M is said to be simultaneously
inhomogeneously extremal (SIE for short) if, for every γ ∈ Rn ,∣∣∣M ∩ Wγ (n,

1+ε
n )

∣∣∣
M

= 0 ∀ ε > 0 . (1.67)

On the other hand, a manifold M is said to be dually inhomogeneously extremal
(DIE for short) if, for every γ ∈ R,∣∣∣M ∩ W ∗

γ (n, n + ε)

∣∣∣
M

= 0 ∀ ε > 0 .
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Here, given τ > 0 and a fixed point γ ∈ R, W ∗
γ (n, τ ) is the inhomogeneous

set of dually τ -well approximable points consisting of points x ∈ In for which
the inequality

‖q · x − γ ‖ < |q|−τ

holds for infinitely many q ∈ Zn . Moreover, a manifold M is simply said to be
inhomogeneously extremal if it is both SIE and DIE.

As mentioned in Remark 1.6.3, in the homogeneous case (γ =0) the simulta-
neous and dual forms of extremality are equivalent. Recall that this is a simply
consequence of Khintchine’s Transference Principle (Theorem 1.4.38). How-
ever, in the inhomogeneous case, there is no classical transference principle
that allows us to deduce SIE from DIE and vice versa. The upshot is that the
two forms of inhomogeneous extremality have to be treated separately. It turns
out that establishing the dual form of inhomogeneous extremality is technically
far more complicated than establishing the simultaneous form [26]. The frame-
work developed in [24] naturally incorporates both forms of inhomogeneous
extremality and indeed other stronger (multiplicative) notions associated with
the inhomogeneous analogue of the Baker–Sprindžuk conjecture.

Conjecture. Let M be a non-degenerate sub-manifold of Rn. Then M is
inhomogeneously extremal.

The proof given in [24] of this inhomogeneous conjecture relies very much
on the fact that we know that the homogeneous statement is true. In particular,
the general inhomogeneous transference principle of [24, §5] enables us to
establish the following transference for non-degenerate manifolds:

M is extremal ⇐⇒ M is inhomogeneously extremal. (1.68)

Clearly, this enables us to conclude that:

M is SIE ⇐⇒ M is DIE.

In other words, a transference principle between the two forms of inho-
mogeneous extremality does exist at least for the class of non-degenerate
manifolds.

Trivially, inhomogeneous extremality implies (homogeneous) extremality.
Thus, the main substance of (1.68) is the reverse implication. This rather
surprising fact relies on the fact that the inhomogeneous lim sup sets M ∩
Wγ (n,

1+ε
n ) and the induced measure |. |M on non-degenerate manifolds sat-

isfy the intersection property and the contracting property described in [24,
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§5]. These properties are at the heart of the Inhomogeneous Transference Prin-
ciple [24, Theorem 5] that enables us to transfer zero measure statements for
homogeneous lim sup sets to inhomogeneous lim sup sets. The general set-up,
although quite natural, is rather involved and will not be reproduced in these
notes. Instead, we refer the reader to the papers [24, 26]. We advise the reader
to first look at [26] in which the easier statement

M is extremal =⇒ M is SIE (1.69)

is established. This has the great advantage of bringing to the forefront the
main ideas of [24] while omitting the abstract and technical notions that come
with describing the inhomogeneous transference principle in all its glory. In
order to illustrate the basic line of thinking involved in establishing (1.69) and
indeed (1.68) we shall prove the following statement concerning extremality
on I = [0, 1]:

m(W (1 + ε)) = 0∀ε > 0 =⇒ m(Wγ (1 + ε)) = 0 ∀ ε > 0. (1.70)

Of course, it is easy to show that the inhomogeneous set Wγ (1 + ε) is of
zero Lebesgue measure m by using the convergence Borel–Cantelli lemma.
However, the point here is to develop an argument that exploits the fact that
we know the homogeneous set W0(1 + ε) := W (1 + ε) is of zero Lebesgue
measure.

To prove (1.70), we make use of the fact that Wγ (1 + ε) is a lim sup set
given by

Wγ (1 + ε) =
∞⋂

s=1

∞⋃
q=s

⋃
p∈Z

Bγ
p,q(ε) ∩ I , (1.71)

where, given q ∈ N, p ∈ Z, γ ∈ R and ε > 0

Bγ
p,q(ε) := { y ∈ R : |qy + p + γ | < |q|−1−ε } .

As usual, if B = B(x, r) denotes the ball (interval) centred at x and of radius
r > 0, then it is easily seen that

Bγ
p,q(ε) = B

(
− p + γ

q
, |q|−2−ε

)
.

Now we consider ‘blown up’ balls Bγ
p,q(ε/2) and observe that Lebesgue

measure m satisfies the following contracting property: for any choice q ∈ N,
p ∈ Z, γ ∈ R and ε > 0 we have that

m
(

Bγ
p,q(ε)
)

= 2

q2+ε
= q− ε

2
2

q2+(ε/2)
= q− ε

2 m
(

Bγ
p,q(ε/2)

)
. (1.72)



Metric Diophantine Approximation: Aspects of Recent Work 67

Next we separate the balls Bγ
p,q(ε) into classes of disjoint and non-disjoint

balls. Fix q ∈ N and p ∈ Z. Clearly, there exists a unique integer t = t (q)
such that 2t ≤ q < 2t+1. The ball Bγ

p,q(ε) is said to be disjoint if for every
q ′ ∈ N with 2t ≤ q ′ < 2t+1 and every p′ ∈ Z

Bγ
p,q(ε/2) ∩ Bγ

p′,q ′(ε/2) ∩ I = ∅ .

Otherwise, the ball Bγ
p,q(ε/2) is said to be non-disjoint. This notion of disjoint

and non-disjoint balls enables us to decompose the Wγ (1+ ε) into the two lim
sup subsets:

Dγ (ε) :=
∞⋂

s=0

∞⋃
t=s

⋃
2t≤|q|<2t+1

⋃
p∈Z

Bγ
p,q (ε) is disjoint

Bγ
p,q(ε) ∩ I ,

and

Nγ (ε) :=
∞⋂

s=0

∞⋃
t=s

⋃
2t≤|q|<2t+1

⋃
p∈Z

Bγ
p,q (ε) is non-disjoint

Bγ
p,q(ε) ∩ I .

Formally,

Wγ (1 + ε) =
∞⋂

s=1

∞⋃
q=s

⋃
p∈Z

Bγ
p,q(ε) ∩ I = Dγ (ε) ∪ N γ (ε).

We now show that m(Dγ (ε)) = 0 = m(N γ (ε)). This would clearly imply
(1.70). Naturally, we deal with the disjoint and non-disjoint sets separately.

The disjoint case: By the definition of disjoint balls, for every fixed t we have
that ∑

2t≤q<2t+1

∑
p∈Z

Bγ
p,q (ε) is disjoint

m(Bγ p, q(ε/2) ∩ I)

= m
( ⋃

2t≤q<2t+1

⋃
p∈Z

Bγ
p,q (ε) is disjoint

Bγ
p,q(ε/2) ∩ I

)
≤ m(I) = 1.

This, together with the contracting property (1.72) of the measure m, implies
that

m
( ⋃

2t≤q<2t+1

⋃
p∈Z

Bγ
p,q (ε) is disjoint

Bγ
p,q(ε) ∩ I

)
=
∑

2t≤q<2t+1

∑
p∈Z

Bγ
p,q (ε) is disjoint

m(Bγ
p,q(ε) ∩ I)
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≤
∑

2t≤q<2t+1

∑
p∈Z

Bγ
p,q (ε) is disjoint

q− ε
2 m(Bγ

p,q(ε/2) ∩ I)

≤ 2−t ε2
∑

2t≤q<2t+1

∑
p∈Z

Bγ
p,q (ε) is disjoint

m(Bγ
p,q(ε/2) ∩ I)

≤ 2−t ε2 .

Since
∑∞

t=1 2−t ε2 < ∞, the convergence Borel–Cantelli lemma implies that

m(Dγ (ε)) = 0.

The non-disjoint case: Let Bγ
p,q(ε) be a non-disjoint ball and let t = t (q) be

as above. Clearly

Bγ
p,q(ε) ⊂ Bγ

p,q(ε/2) .

By the definition of non-disjoint balls, there is another ball Bγ

p′,q ′(ε/2) with

2t ≤ q < 2t+1 such that

Bγ
p,q(ε/2) ∩ Bγ

p′,q ′(ε/2) ∩ I �= ∅ . (1.73)

It is easily seen that q ′ �= q, as otherwise we would have that Bγ
p,q(ε/2) ∩

Bγ

p′,q(ε/2) = ∅. The point here is that rationals with the same denominator
q are separated by 1/q . Take any point y in the non-empty set appearing in
(1.73). By the definition of Bγ

p,q(ε/2) and Bγ

p′,q ′(ε/2), it follows that

|qy + p + γ | < q−1− ε
2 ≤ 2t (−1− ε

2 )

and

|q ′y + p′ + γ | < (q ′)−1− ε
2 ≤ 2t (−1− ε

2 ) .

On combining these inequalities in the obvious manner and assuming without
loss of generality that q > q ′, we deduce that

| (q − q ′)︸ ︷︷ ︸
q ′′

y + (p − p′)︸ ︷︷ ︸
p′′

| < 2 · 2t (−1− ε
2 ) < 2(t+2)(−1− ε

3 ) (1.74)

for all t sufficiently large. Furthermore, 0 < q ′′ ≤ 2t+2, which together with
(1.74) yields that

|q ′′y + p′′| < (q ′′)−1− ε
3 .

If the latter inequality holds for infinitely many different q ′′ ∈ N, then y ∈
W (1+ ε/3). Otherwise, there is a fixed pair (p′′, q ′′) ∈ Z×N such that (1.74)
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is satisfied for infinitely many t . Thus, we must have that q ′′y + p′′ = 0 and
so y is a rational point. The upshot of the non-disjoint case is that

N γ (ε) ⊂ W (1 + ε/3) ∪ Q.

However, we are given that the homogeneous set W (1 + ε/3) is of measure
zero and since Q is countable, it follows that

m(N γ (ε)) = 0.

This completes the proof of (1.70).

1.6.4 The Inhomogeneous Multiplicative Theory

For completeness, we include a short section surveying recent striking devel-
opments in the theory of inhomogeneous multiplicative Diophantine approxi-
mation. Nevertheless, we start by highlighting the fact that there remain gaping
holes in the theory.

Given ψ : N → R+ and a fixed point γ = (γ1, . . . , γn) ∈ Rn , let

W×
γ (n, ψ) := {x ∈ In : ‖qx1 − γ1‖ . . . ‖qxn − γn‖ < ψ(q)

for infinitely many q ∈ N} (1.75)

denote the inhomogeneous set of all multiplicatively ψ-well approximable
points x ∈ In . When γ = {0}, the corresponding set W×

γ (n, ψ) naturally
coincides with the homogeneous set W×(n, ψ) given by (1.32) in §1.4.4. It
is natural to ask for an inhomogeneous generalisation of Gallagher’s theorem
(§1.4.4, Theorem 1.4.17). A straightforward ‘volume’ argument making use of
the lim sup nature of W×

γ (n, ψ), together with the convergence Borel–Cantelli
lemma implies the following statement.

Lemma 1.6.8 (Inhomogeneous Gallagher: convergence) Let ψ : N → R+
be a monotonic function and γ ∈ Rn. Then

mn(W
×
γ (n, ψ)) = 0 i f

∞∑
q=1

ψ(q) logn−1 q < ∞.

The context of Remark 1.4.18 remains valid in the inhomogeneous set-up;
namely, we can remove the condition that ψ is monotonic if we replace the
above convergence sum condition by

∑
ψ(q)| logψ(q)|n−1 < ∞.

Surprisingly, the divergence counterpart of Lemma 1.6.8 is not known.
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Conjecture 1.6.9 (Inhomogeneous Gallagher: divergence) Let ψ : N → R+
be a monotonic function and γ ∈ Rn. Then

mn(W
×
γ (n, ψ)) = 1 i f

∞∑
q=1

ψ(q) logn−1 q = ∞.

Restricting our attention to n = 2, it is shown in [17, Theorem 13] that the
conjecture is true if given γ = (γ1, γ2) ∈ R2, either γ1 = 0 or γ2 = 0. In
other words, we are able to deal with the situation in which one of the two
‘approximating quantities’ is inhomogeneous but not both. For further details
see [17, §2.2].

We now turn our attention to the Hausdorff theory. Given that the Lebesgue
theory is so incomplete, it would be reasonable to have low expectations for a
coherent Hausdorff theory. However, when n = 2, we are bizarrely in pretty
good shape. To begin with, note that

if s ≤ 1 then Hs(W×
γ (2, ψ)) = ∞ irrespective of the

approximating function ψ . (1.76)

To see this, given γ = (γ1, γ2) ∈ R2, we observe that for any α ∈ Wγ1(1, ψ)

the whole line x1 = α within the unit interval is contained in W×
γ (2, ψ).

Hence,

Wγ1(1, ψ)× I ⊂ W×
γ (2, ψ) . (1.77)

It is easy to verify that Wγ1(1, ψ) is an infinite set for any approximating func-
tion ψ and so (1.77) implies (1.76). Thus, when considering the s-dimensional
Hausdorff measure of W×

γ (2, ψ), there is no loss of generality in assuming that
s ∈ (1, 2]. The following inhomogeneous multiplicative analogue of Jarník’s
theorem is established in [28, Theorem 1].

Theorem 1.6.10 Let ψ : N → R+ be a monotonic function, γ ∈ R2 and
s ∈ (1, 2). Then

Hs(W×
γ (2, ψ)

) =
⎧⎪⎨⎪⎩

0 if
∑∞

q=1 q2−sψ s−1(q) < ∞ ,

∞ if
∑∞

q=1 q2−sψ s−1(q) = ∞ .

(1.78)

Remark 1.6.11 Recall that Gallagher’s multiplicative statement and its con-
jectured inhomogeneous generalisation (Conjecture 1.6.9) have the extra ‘log
factor’ in the Lebesgue ‘volume’ sum compared to Khintchine’s simultaneous
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statement (Theorem 1.6.6 with s = n = 2). A priori, it is natural to expect the
log factor to appear in one form or another when determining the Hausdorff
measure Hs of W×

γ (2, ψ) for s ∈ (1, 2). This, as we see from Theorem 1.6.10,
is very far from the truth. The ‘log factor’ completely disappears. Thus, gen-
uine ‘fractal’ Hausdorff measures are insensitive to the multiplicative nature of
W×

γ (2, ψ).

Remark 1.6.12 Note that, in view of the previous remark, even if we had
written Hs(I2) instead of ∞ in the divergence case of Theorem 1.6.10, it is
still necessary to exclude the case s = 2.

For n > 2, the proof given in [28] of Theorem 1.6.10 can be adapted to show
that for any s ∈ (n − 1, n)

Hs(W×
γ (n, ψ)

) = 0 if
∞∑

q=1

qn−sψ s+1−n(q) logn−2 q < ∞ .

Thus, for convergence in higher dimensions we lose a log factor from the
Lebesgue volume sum appearing in Gallagher’s homogeneous result and
indeed Lemma 1.6.8. This of course is absolutely consistent with the n = 2
situation given by Theorem 1.6.10. Regarding a divergent statement, the argu-
ments used in proving Theorem 1.6.10 can be adapted to show that, for any
s ∈ (n − 1, n),

Hs(W×
γ (n, ψ)

) = ∞ if
∞∑

q=1

qn−sψ s+1−n(q) = ∞ .

Thus, there is a discrepancy in the above ‘s-volume’ sum conditions for
convergence and divergence when n > 2. In view of this, it remains an inter-
esting open problem to determine the necessary and sufficient condition for
Hs
(
W×

γ (n, ψ)
)

to be zero or infinite in higher dimensions.

1.6.4.1 The Multiplicative Theory for Manifolds
Let M be a non-degenerate sub-manifold of Rn . In a nutshell, as in the simul-
taneous case, the overarching problem is to develop a Lebesgue and Hausdorff
theory for M ∩ W×

γ (n, ψ). Given that our current knowledge for the indepen-
dent theory (i.e. when M = Rn) is pretty poor, we should not expect too
much in terms of the dependent (manifold) theory. We start by describing
coherent aspects of the Lebesgue theory. The following is the multiplicative
analogue of the statement that M is inhomogeneously extremal. Given τ > 0
and a fixed point γ ∈ Rn , we write W×

γ (n, τ ) for the set W×
γ (n, ψ) with

ψ(q) = q−τ .
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Theorem 1.6.13 Let M be a non-degenerate sub-manifold of Rn. Then∣∣∣M ∩ W×
γ (n, 1 + ε)

∣∣∣
M

= 0 ∀ ε > 0 .

In the homogeneous case, the above theorem is due to Kleinbock and Mar-
gulis [67] and implies that non-degenerate manifolds are strongly extremal
(by definition). It is easily seen that strongly extremal implies extremal.
The inhomogeneous statement is established via the general Inhomogeneous
Transference Principle developed in [24].

Beyond strong extremality, we have the following convergent statement
for the Lebesgue measure of M ∩ W×

γ (n, ψ) in the case M is a planar
curve C.

Theorem 1.6.14 Let ψ : N → R+ be a monotonic function and γ ∈ R2. Let
C be a non-degenerate planar curve. Then∣∣∣C ∩ W×

γ (2, ψ)

∣∣∣
C

= 0 if
∞∑

q=1

ψ(q) log q < ∞ . (1.79)

The homogeneous case is established in [5, Theorem 1]. However, on mak-
ing use of the upper bound counting estimate appearing within Theorem 2
of [18], it is easy to adapt the homogeneous proof to the inhomogeneous
set-up. The details are left as an exercise. Just as in the homogeneous the-
ory, obtaining the counterpart divergent statement for the Lebesgue measure
of C ∩ W×

γ (2, ψ) remains a stubborn problem. However, for genuine frac-
tal Hausdorff measures Hs we have a complete convergence/divergence result
[28, Theorem 2].

Theorem 1.6.15 Let ψ : N → R+ be a monotonic function, γ ∈ R2 and
s ∈ (0, 1). Let C be a C (3)-planar curve with non-zero curvature everywhere
apart from a set of s-dimensional Hausdorff measure zero. Then

Hs(C ∩ W×
γ (2, ψ)

) =
⎧⎨⎩ 0 if

∑∞
q=1 q1−sψ s(q) < ∞,

∞ if
∑∞

q=1 q1−sψ s(q) = ∞.

It is evident from the proof of the divergence case of the above theorem [28,
§2.1.3], that imposing the condition that C is a C (1)-planar curve suffices.

Beyond planar curves, the following lower bound dimension result repre-
sents the current state of knowledge.
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Theorem 1.6.16 Let M be an arbitrary Lipschitz manifold in Rn and γ ∈
Rn. Then, for any τ ≥ 1

dim
(
M ∩ W×

γ (n, τ )
) ≥ dim M − 1 + 2

1 + τ
. (1.80)

The homogeneous case is established in [23, Theorem 5]. The homogeneous
proof [23, §6.2] rapidly reduces to the inequality

dim
(
M ∩ W×

0 (n, τ )
) ≥ dim M − 1 + dim W×

0 (1, τ ).

But W×
0 (1, τ ) := W (1, τ ) and the desired statement follows on applying the

Jarník–Besicovitch theorem (Theorem 1.3.3). Now, Theorem 1.6.6 implies that
the inhomogeneous generalisation of the Jarník–Besicovitch theorem is valid;
namely that, for any γ ∈ R and τ ≥ 1,

dim Wγ (1, τ ) = 2

1 + τ
.

Thus, the short argument given in [23, §6.2] can be adapted in the obvious
manner to establish Theorem 1.6.16.

1.6.4.2 Cassels’ Problem
A straightforward consequence of Theorem 1.6.6 with s = 2 (inhomogeneous
Khintchine) is that for any γ = (γ1, γ2) ∈ R2, the set

W×
γ := {x ∈ I2 : lim inf

q→∞ q ‖qx1 − γ1‖ ‖qx2 − γ2‖ = 0} (1.81)

is of full Lebesgue measure; i.e. for any γ ∈ R2, we have that

m2(W
×
γ ) = 1.

Of course, one can actually deduce the stronger ‘fibre’ statement that for any
x ∈ I and γ = (γ1, γ2) ∈ R2, the set

{y ∈ I : lim inf
q→∞ q ‖qx − γ1‖ ‖qy − γ2‖ = 0}

is of full Lebesgue measure. In a beautiful paper [89], Shapira establishes
the following statement which solves a problem of Cassels dating back to the
fifties.

Theorem 1.6.17 (U. Shapira)

m2

( ⋂
γ∈R2

W×
γ

)
= 1.



74 V. Beresnevich, F. Ramírez and S. Velani

Thus, almost any pair of real numbers (x1, x2) ∈ R2 satisfies

∀ (γ1, γ2) ∈ R2 lim inf
q→∞ q ‖qx1 − γ1‖ ‖qx2 − γ2‖ = 0. (1.82)

In fact, Cassels asked for the existence of just one pair (x1, x2) satisfying
(1.82). Furthermore, Shapira showed that if 1, x1, x2 form a basis for a totally
real cubic number field, then (x1, x2) satisfies (1.82). On the other hand, if
1, x1, x2 are linearly dependent over Q, then (x1, x2) cannot satisfy (1.82).

Most recently, Gorodnik and Vishe [55] have strengthened Shapira’s result
in the following manner: almost any pair of real numbers (x1, x2) ∈ R2

satisfies

∀ (γ1, γ2) ∈ R2 lim inf
q→∞ q log5q‖qx1 − γ1‖ ‖qx2 − γ2‖ = 0 ,

where log5 is the fifth iterate of log. This ‘rate’ result makes a contribution
towards the following open problem.

Conjecture 1.6.18 Almost any pair of real numbers (x1, x2) ∈ R2 satisfies

∀ (γ1, γ2) ∈ R2 lim inf
q→∞ q log q ‖qx1 − γ1‖ ‖qx2 − γ2‖ < ∞. (1.83)

Remark 1.6.19 It is relatively straightforward to show (exercise) that for any
τ > 2{

x ∈ I2 : ∀ (γ1, γ2) ∈ R2 lim inf
q→∞ q logτq ‖qx1 − γ1‖ ‖qx2 − γ2‖ = 0

}
= ∅.

We end this section by mentioning Cassels’ problem within the context of
Diophantine approximation on manifolds. By exploiting the work of Shah [88],
it is shown in [56] that for any non-degenerate planar curve C∣∣∣ C ∩ ⋂γ∈R2 W×

γ

∣∣∣
C

= 1.

1.7 The Badly Approximable Theory

We have had various discussions regarding badly approximable points in
earlier sections, in particular within §1.1.3 and §1.4.2. We mentioned that
the badly approximable set Bad and its higher-dimensional generalisation
Bad(i1, . . . , in) are small in the sense that they are of zero Lebesgue measure
but are nevertheless large in the sense that they have full Hausdorff dimen-
sion. In this section we outline the basic techniques used in establishing the



Metric Diophantine Approximation: Aspects of Recent Work 75

dimension results. For transparency and simplicity, we shall concentrate on the
one-dimensional case. We begin with the classical nearly-100-year-old result
due to Jarník.

1.7.1 Bad Is of Full Dimension

The key purpose of this section is to introduce a basic Cantor set construction
and show how it can be utilised to show that Bad is of maximal dimension – a
result first established by Jarník in [59]. Towards the end we shall mention the
additional ideas required in higher dimensions.

Theorem 1.7.1 (Jarník, 1928) The Hausdorff dimension of Bad is one; that is

dim Bad = 1.

The proof utilises the following simple Cantor set construction. Let
R, M ∈ N and M ≤ R − 1. Let E0 = [0, 1]. Partition the interval E0 into
R equal close subintervals and remove any M of them. This gives E1 – the
union of (R − M) closed intervals {I1, j }1≤ j≤R−M of length |I1, j | = R−1.
Then repeat the procedure: partition each interval I1, j within E1 into R equal
close subinterval and remove any M intervals of the partitioning of each I1, j .
This procedure gives rise to E2 – the union of (R − M)2 closed intervals
{I2, j }1≤ j≤(R−M)2 of length |I2, j | = R−2. The process goes on recurrently/in-
ductively as follows: for n ≥ 1, given that En−1 is constructed and represents
the union of (R − M)n−1 closed intervals {In−1, j }1≤ j≤(R−M)n−1 of length
|In−1, j | = R−(n−1), to construct En we

(i) partition each interval In−1, j within En−1 into R equal closed subintervals,
and

(ii) remove any M of the R intervals of the above partitioning of each In−1, j .

Observe that En will be the union of exactly (R − M)n closed intervals
{In, j }1≤ j≤(R−M)n of length |In, j | = R−n . The corresponding Cantor set is
defined to be

K :=
∞⋂

n=0

En .

Remark 1.7.2 Of course, the Cantor set constructed above is not unique and
depends on the specific choices of M intervals being removed in each case.
Indeed, there are continuum many possibilities for the resulting set K. For
example, if R = 3, M = 1 and we always remove the middle interval of the
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partitioning, the set K is the famous middle third Cantor set as described in
Example 1.3.1 of §1.3.1.

Trivially, the Cantor set K is non-empty since it is the intersection of a
nested sequence of closed intervals within [0, 1]. Indeed, if 0 ≤ M ≤ R − 2
then we have that K is uncountable. The following result relates the Hausdorff
dimension of K to the parameters R and M associated with K.

Lemma 1.7.3 Let K be the Cantor set constructed above. Then

dim K = log(R − M)

log R
. (1.84)

Proof Let {In, j }1≤ j≤(R−M)n be the collection of intervals within En associ-
ated with the construction of K. Recall that this is a collection of (R − M)n

closed intervals, each of length R−n . Naturally, {In, j }1≤ j≤(R−M)n is a cover
of K. Furthermore, for every ρ > 0 there is a sufficiently large n such that
{In, j }1≤ j≤(R−M)n is a ρ-cover of K – simply make sure that R−n < ρ. Observe
that∑

j

diam(In, j )
s = (R − M)n R−ns = 1 where s := log(R − M)

log R
.

Hence, by definition, Hs
ρ(K) ≤ 1 for all sufficiently small ρ > 0. Conse-

quently, Hs(K) ≤ 1 and it follows that

dim K ≤ s.

For the lower bound, let 0 < ρ < 1 and {Bi } be an arbitrary ρ-cover of K. We
show that ∑

i

diam(Bi )
s ≥ κ,

where s is as above and the constant κ > 0 is independent of the cover. Without
loss of generality, we will assume that each Bi is an open interval. Since K

is the intersection of closed subsets of [0, 1], it is bounded and closed and
hence compact. Therefore, {Bi } contains a finite subcover. Thus, without loss
of generality, we can assume that {Bi } is a finite ρ-cover of K. For each Bi , let
k ∈ Z be the unique integer such that

R−(k+1) ≤ diam(Bi ) < R−k .

Then Bi intersects at most two intervals of Ek as the intervals in Ek are R−k

in length. If j ≥ k, then Bi intersects at most

2(R − M) j−k = 2(R − M) j R−sk ≤ 2(R − M) j Rs diam(Bi )
s (1.85)
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intervals within E j . These are the intervals that are contained in the (at most)
two intervals of Ek that intersect Bi . Now choose j large enough so that

R−( j+1) ≤ diam(Bi ) ∀ Bi .

This is possible since the cover {Bi } is finite. Since {Bi } is a cover of K, it must
intersect every interval of E j . There are (R − M) j intervals within E j . Hence,
by (1.85) it follows that

(R − M) j ≤
∑

i

2(R − M) j Rs diam(Bi )
s .

The upshot of this is that for any ρ-cover {Bi } of K, we have that∑
i

diam(Bi )
s ≥ 1

2 R−s = 1

2(R − M)
.

Hence, by definition, we have that Hs
ρ(K) ≥ 1

2(R−M)
for all sufficiently small

ρ > 0. Therefore, Hs(K) ≥ 1
2(R−M)

> 0 and it follows that

dim K ≥ s = log(R − M)

log R

as required.

Armed with Lemma 1.7.3, it is relatively straightforward to prove Jarník’s
full dimension result.

Proof of Theorem 1.7.1 Let R ≥ 4 be an integer. For n ∈ Z, n ≥ 0 let

Qn = {p/q ∈ Q : R
n−3

2 ≤ q < R
n−2

2 } ⊂ Q , (1.86)

where p/q is a reduced fraction of integers. Observe that Q0 = Q1 = Q2 =
∅, that the sets Qn are disjoint and that

Q =
∞⋃

n=3

Qn . (1.87)

Furthermore, note that∣∣∣∣ pq − p′

q ′

∣∣∣∣ ≥ 1

q ′q > R−n+2 for different p/q and p′/q ′ in Qn. (1.88)

Fix 0 < δ ≤ 1
2 . Then for p/q ∈ Qn , define the dangerous interval �(p/q) as

follows:

�(p/q) :=
{

x ∈ [0, 1] :
∣∣∣∣x − p

q

∣∣∣∣ < δR−n
}
. (1.89)



78 V. Beresnevich, F. Ramírez and S. Velani

The goal is to construct a Cantor set K = ⋂∞
n=0 En such that for every n ∈ N

En ∩�(p/q) = ∅ for all p/q ∈ Qn . (1.90)

To this end, let E0 = [0, 1] and suppose that En−1 has already been con-
structed. Let I be any of the intervals In−1, j within En−1. Then |I | = R−n+1

and, by (1.88) and (1.89), there is at most one dangerous interval �(pI /qI )

with pI /qI ∈ Qn that intersects I . Partition I into R closed subintervals
of length R−n = R−1|I |. Note that since δ ≤ 1

2 , the dangerous interval
�(pI /qI ), if it exists, can intersect at most two intervals of the partitioning
of I . Hence, by removing M = 2 intervals of the partitioning of each I within
En−1 we construct En while ensuring that (1.90) is satisfied. By Lemma 1.7.3,
it follows that for any R ≥ 4

dim K ≥ log(R − 2)

log R
.

Now take any x ∈ K and any p/q ∈ Q. Then p/q ∈ Qn for some n ∈ N and
since K ⊂ En we have that x ∈ En . Then, by (1.90), we have that x �∈ �(p/q),
which implies that ∣∣∣∣x − p

q

∣∣∣∣ ≥ δR−n ≥ δR−3q−2 . (1.91)

Since p/q ∈ Q is arbitrary and R and δ are fixed, we have that x ∈ Bad. That
is, K ⊂ Bad and thus it follows that

dim Bad ≥ dim K ≥ log(R − 2)

log R
.

This is true for any R ≥ 4 and so on letting R → ∞, it follows that dim Bad ≥
1. The complementary upper bound statement dim Bad ≤ 1 is trivial since
Bad ⊂ R.

Remark 1.7.4 The crucial property underpinning the proof of Theorem 1.7.1
is the separation property (1.88) of rationals. Indeed, without appealing to
Lemma 1.7.3, the above proof based on (1.88) alone shows that Bad is
uncountable. The construction of the Cantor set K as well as the proof of
Theorem 1.7.1 can be generalised to higher dimensions in order to show that

dim Bad(i1, . . . , in) = n.

Regarding the higher-dimensional generalisation of the proof of Theorem
1.7.1, the appropriate analogue of (1.88) is the following elegant Simplex
Lemma – see for example [69, Lemma 4].
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Lemma 1.7.5 (Simplex Lemma) Let m ≥ 1 be an integer and Q > 1 be a
real number. Let E ⊆ Rm be a convex set of m-dimensional Lebesgue measure

|E | ≤ (m! )−1 Q−(m+1).

Suppose that E contains m + 1 rational points (p(1)i /qi , . . . , p(m)
i /qi ) with

1 ≤ qi < Q, where 0 ≤ i ≤ m. Then these rational points lie in some
hyperplane of Rm.

1.7.2 Schmidt’s Games

In his pioneering work [85], Wolfgang M. Schmidt introduced the notion of
(α, β)-games which now bear his name. These games are an extremely pow-
erful tool for investigating badly approximable sets. The simplified account
which we are about to present is sufficient to bring out the main features of the
games.

Suppose that 0 < α < 1 and 0 < β < 1. Consider the following game
involving the two arch rivals Ayesha and Bhupen – often simply referred to as
players A and B. First, B chooses a closed ball B0 ⊂ Rm . Next, A chooses a
closed ball A0 contained in B0 of diameter α ρ(B0) where ρ( . ) denotes the
diameter of the ball under consideration. Then, B chooses at will a closed ball
B1 contained in A0 of diameter β ρ(A0). Alternating in this manner between
the two players, generates a nested sequence of closed balls in Rm :

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ . . . ⊃ Bn ⊃ An ⊃ . . . (1.92)

with diameters

ρ(Bn) = (α β)n ρ(B0) and ρ(An) = α ρ(Bn).

A subset X of Rm is said to be (α, β)-winning if A can play in such a way that
the unique point of the intersection

∞⋂
n=0

Bn =
∞⋂

n=0

An

lies in X , regardless of how B plays. The set X is called α-winning if it is
(α, β)-winning for all β ∈ (0, 1). Finally, X is simply called winning if it is
α-winning for some α. Informally, player B tries to stay away from the ‘target’
set X whilst player A tries to land on X . As shown by Schmidt in [85], the
following are the key consequences of winning.

● If X ⊂ Rm is a winning set, then dim X = m.
● The intersection of countably many α-winning sets is α-winning.
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Schmidt [85] proved the following fundamental result for the symmetric case
of the higher-dimensional analogue of Bad which, given the above properties,
has implications well beyond simply full dimension.

Theorem 1.7.6 (Schmidt, 1966) For any m ∈ N, the set Bad( 1
m , . . . , 1

m ) is
winning.

Proof To illustrate the main ideas involved in proving the theorem we shall
restrict our attention to when m = 1. In this case, we are able to establish the
desired winning statement by naturally modifying the proof of Theorem 1.7.1.
Without loss of generality, we can restrict Bad := Bad(1) to the unit inter-
val [0, 1]. Let 0 < α < 1

2 and 0 < β < 1. Let R = (αβ)−1 and define
Qn by (1.86). Again Q0 = Q1 = Q2 = ∅; the sets Qn are disjoint;
(1.87) and (1.88) are both true. Furthermore, for p/q ∈ Qn the correspond-
ing dangerous interval �(p/q) is defined by (1.89), where 0 < δ < 1 is to
be specified below and will be dependent on α and the first move made by
Bhupen .
Our goal is to show that Ayesha has a strategy to ensure that sequence (1.92)
satisfies

An ∩�(p/q) = ∅ for all p/q ∈ Qn . (1.93)

Then the single point x corresponding to the intersection over all the closed
and nested intervals An would satisfy (1.91) for all p/q ∈ Q meaning that x is
badly approximable. By definition, this would imply that Bad is α-winning as
desired.

Let B0 ⊂ [0, 1] be any closed interval. Now we set

δ := ρ(B0)(
1
2 − α).

Suppose that

B0 ⊃ A0 ⊃ B1 ⊃ A1 ⊃ . . . ⊃ Bn−1 ⊃ An−1

are already chosen and satisfy the required properties; namely (1.93). Suppose
that Bn ⊂ An−1 is any closed interval of length

ρ(Bn) = βρ(An−1) = (α β)n ρ(B0) = R−nρ(B0).

Next, A has to choose a closed interval An contained in Bn of diameter

ρ(An) = α ρ(Bn) = αR−nρ(B0)

and satisfying (1.93). If (1.93) is satisfied with An replaced by Bn , then choos-
ing An obviously represents no problem. Otherwise, using (1.88) one readily
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verifies that there is exactly one point pn/qn ∈ Qn such that the interval
�(pn/qn) intersects Bn . In this case Bn��(pn/qn) is either the union of two
closed intervals, the larger one being of length

≥ 1
2

(
ρ(Bn)− ρ(�(pn/qn))

)
= 1

2 R−n
(
ρ(B0)− 2δ

)
= αR−nρ(B0) = αρ(Bn)

or a single closed interval of even greater length. Hence, it is possible to choose
a closed interval An ⊂ Bn��(pn/qn) of length ρ(An) = αρ(Bn). By con-
struction, (1.93) is satisfied, thus proving the existence of a winning strategy
for A.

Remark 1.7.7 For various reasons, over the last decade or so there has been
an explosion of interest in Schmidt’s games. This has given rise to several
ingenious generalisations of the original game leading to stronger notions of
winning, such as modified winning, absolute winning, hyperplane winning and
potential winning. For details see [51, 68] and references within.

The framework of Schmidt games and thus the notion of winning is defined
in terms of balls. Thus, it is naturally applicable when considering the symmet-
ric case (i1 = . . . = in = 1/n) of the badly approximable sets Bad(i1 . . . , in).
Recall, that in the symmetric case, points in Bad( 1

n , . . . ,
1
n ) avoid squares

(which are essentially balls) centred around rational points were as in the gen-
eral case the points avoiding rectangles (far from being balls). We now turn
our attention to the general case. Naturally, it would be desirable to be able to
show that the general set Bad(i1 . . . , in) is winning.

1.7.3 Properties of General Bad(i1 . . . , in) Sets Beyond Full
Dimension

Despite the fact that the sets Bad(i1, . . . , in) have long been known to be
uncountable and indeed of full dimension, see [42, 68, 69, 77], the follow-
ing conjecture of Schmidt dating back to 1982 remained unresolved until
reasonably recently.

Schmidt’s Conjecture

Bad( 1
3 ,

2
3) ∩ Bad( 2

3 ,
1
3) �= ∅.

As is already highlighted in Remark 1.4.9, if false then it would imply that
Littlewood’s conjecture is true.
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Schmidt’s conjecture was proved in [7] by establishing the following
stronger statement regarding the intersection of Bad(i, j) sets with vertical
lines Lα := {(α, y) : y ∈ R} ⊂ R2. To some extent it represents the badly
approximable analogue of the ‘fiber’ results that appeared in §1.4.5.

Theorem 1.7.8 Let (ik, jk) be a countable sequence of non-negative reals
such that ik + jk = 1 and let i := sup{ik : k ∈ N}. Suppose that

lim inf
k→∞ min{ik, jk} > 0. (1.94)

Then, for any α ∈ R such that lim inf
q→∞ q1/ i‖qα‖ > 0, we have that

dim
⋂

k Bad(ik , jk) ∩ Lα = 1. (1.95)

Remark 1.7.9 The Diophantine condition imposed on α associated with the
vertical line Lα is easily seen to be necessary – see [7, §1.3]. Note that the
condition is automatically satisfied if α ∈ Bad. On the other hand, condition
(1.94) is present for technical reason and can be removed – see Theorem 1.7.15
and discussion below. At this point, simply observe that it is automatically sat-
isfied for any finite collection of pairs (ik, jk) and thus Theorem 1.7.8 implies
Schmidt’s conjecture. Indeed, together with a standard ‘slicing’ result from
fractal geometry one obtains the following full dimension statement – see [7,
§1.2] for details.

Corollary 1.7.10 Let (ik, jk) be a countable sequence of non-negative reals
such that ik + jk = 1 and satisfying condition (1.94). Then,

dim
⋂

k Bad(ik, jk) = 2. (1.96)

At the heart of establishing Theorem 1.7.8 is the ‘raw’ construction of the
generalised Cantor sets framework formulated in [8]. For the purposes of these
notes, we opt to follow the framework of Cantor rich sets introduced in [12],
which is a variation of the aforementioned generalised Cantor sets.

Let R ≥ 3 be an integer. Given a collection I of compact intervals in R,
let 1

R I denote the collection of intervals obtained by splitting each interval
in I into R equal closed subintervals with disjoint interiors. Given a compact
interval I0 ⊂ R, a sequence (Iq)q≥0 such that

I0 = {I0} and Iq ⊂ 1
R Iq−1 for q ≥ 1
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is called an R-sequence in I0. It defines the corresponding generalised
Cantor set:

K((Iq)q≥0) :=
⋂
q≥0

⋃
Iq∈Iq

Iq . (1.97)

Given q ∈ N and any interval J , let

Îq := ( 1
R Iq−1
)
�Iq and Îq � J := {Iq ∈ Îq : Iq ⊂ J } .

Furthermore, define

dq(Iq) := min
{Îq,p}

q−1∑
p=0

(
4

R

)q−p

max
Ip∈Ip

#
(̂
Iq,p � Ip

)
, (1.98)

where the minimum is taken over all partitions {̂Iq,p}q−1
p=0 of Îq ; that is Îq =⋃q−1

p=0 Îq,p.
The following dimension statement was established in [8, Theorem 4], see

also [12, Theorem 5].

Lemma 1.7.11 Let K((Iq)q≥0) be the Cantor set given by (1.97). Suppose
that

dq(Iq) ≤ 1 (1.99)

for all q ∈ N. Then

dim K((Iq)q≥0) ≥ 1 − log 2

log R
.

Although the lemma can be viewed as a generalisation of Lemma 1.7.3, we
stress that its proof is substantially more involved and requires new ideas. At
the heart of the proof is the ‘extraction’ of a ‘local’ Cantor type subset K of
K((Iq)q≥0). By a local Cantor set we mean a set arising from a construction
as described in §1.7.1. The parameter M associated with the extracted local
Cantor set K is essentially 1

2 R.
It is self-evident from Lemma 1.7.11 that if a given set X ⊂ R contains a

generalised Cantor set given by (1.97) with arbitrarily large R, then dim X = 1.
The following definition of Cantor-rich [12] imposes a stricter requirement
than (1.99) in order to ensure that the countable intersection of generalised
Cantor sets is of full dimension. To some extent, building upon the raw con-
struction of [7, §7.1], the full dimension aspect for countable intersections had
previously been investigated in [8, §7].
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Definition 1.7.12 Let M > 1, X ⊂ R and I0 be a compact interval. The set
X is said to be M-Cantor-rich in I0 if for any ε > 0 and any integer R ≥ M
there exists an R-sequence (Iq)q≥0 in I0 such that K((Iq)q≥0) ⊂ X and

sup
q∈N

dq(Iq) ≤ ε.

The set X is said to be Cantor-rich in I0 if it is M-Cantor-rich in I0 for some
M , and it is said to be Cantor-rich if it is Cantor-rich in I0 for some compact
interval I0.

The following summarises the key properties of Cantor-rich sets:

(i) Any Cantor-rich set X in R satisfies dim X = 1;
(ii) For any given compact interval I0 and any given fixed M ∈ N, any

countable intersection of M-Cantor-rich sets in I0 is M-Cantor-rich in I0.

The framework of Cantor-rich sets was utilised in the same paper [12]
to establish the following result concerning badly approximable points on
manifolds.

Theorem 1.7.13 For any non-degenerate analytic sub-manifold M ⊂ Rn

and any sequence (i1,k, . . . , in,k) of non-negative reals such that i1,k + · · · +
in,k = 1 and

inf{i j,k > 0 : 1 ≤ j ≤ n, k ∈ N} > 0 , (1.100)

one has that

dim
⋂

kBad(i1,k , . . . , in,k) ∩ M = dim M . (1.101)

The condition of analyticity from Theorem 1.7.13 can be omitted in the
case the sub-manifold M ⊂ Rn is a curve. Indeed, establishing the theo-
rem for curves is very much the crux since any manifold can be ‘fibred’
into an appropriate collection of curves – see [12, §2.1] for details. In the
case n = 2, so that M is a non-degenerate planar curve, the theorem was
previously established in [9] and provides a solution to an explicit problem
of Davenport dating back to the swinging sixties concerning the existence
of badly approximable pairs on the parabola. Furthermore, in [9] partial
results for lines (degenerate curves) with slopes satisfying certain Diophan-
tine constraints are also obtained. Although not optimal, they naturally extend
Theorem 1.7.8 beyond vertical lines. As already mentioned, Theorem 1.7.13
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as stated for general n was established in [12] and it settles the natural
generalisations of Schmidt’s conjecture and Davenport’s problem in arbitrary
dimensions.

Remark 1.7.14 Building upon the one-dimensional, generalised Cantor sets
framework formulated in [8], an abstract ‘metric space’ framework of higher-
dimensional generalised Cantor sets, branded as ‘Cantor-winning sets’, has
recently been introduced in [6]. Projecting this framework onto the specific
one-dimensional construction of Cantor-rich sets given above, the definition of
Cantor-winning sets reads as follows. Let ε0 > 0, X ⊂ R and I0 be a compact
interval. Then the set X is ε0-Cantor-winning in I0 if for any positive ε < ε0

there exists a positive integer Rε such that for any integer R ≥ Rε there exists
an R-sequence (Iq)q≥0 in I0 such that K((Iq)q≥0) ⊂ X and

max
Ip∈Ip

#
(̂
Iq,p � Ip

) ≤ R(q−p)(1−ε) .

The latter key condition implies that dq(Iq) is no more than 8R−ε provided
that 8R−ε < 1. Most recently, David Simmons has shown that the notion
of Cantor-winning as defined in [6] is equivalent to the notion of potential
winning as defined in [51].

The use of Cantor-rich sets in establishing statements such as Theorems
1.7.8 and 1.7.13 comes at a cost of having to impose, seemingly for technical
reasons, conditions such as (1.94) and (1.100). Although delivering some addi-
tional benefits, unfortunately the framework of Cantor-winning sets described
above does not seem to resolve this issue. However, if, for example, we could
show that Bad(i1, . . . , in) is (Schmidt) winning, then we would be able to
intersect countably many such sets without imposing any technical conditions.
When n = 2, this has been successfully accomplished by Jinpeng An in his
elegant paper [2].

Theorem 1.7.15 (J. An) For any pair of non-negative reals (i, j) such that
i + j = 1, the two-dimensional set Bad(i, j) is winning.

A simple consequence of this is that we can remove condition (1.94) from the
statement of Corollary 1.7.10. Prior to [2], it is important to note that An in
[1] had shown that Bad(i, j) ∩ Lα is winning, where Lα is a vertical line as
in Theorem 1.7.8. Of course, this implies that Theorem 1.7.8 is true without
imposing condition (1.94). On combining the ideas and techniques introduced
in the papers [1, 9, 12], it is shown in [3] that Bad(i, j) ∩ C is winning, where
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C is a non-degenerate planar curve. This implies that we can remove condition
(1.100) from the n = 2 statement of Theorem 1.7.13. In higher dimensions
(n > 2), removing condition (1.100) remains very much a key open problem.
The recent work of Guan and Yu [44] makes a contribution towards this prob-
lem. Building upon the work of An [2], they show that the set Bad(i1, . . . , in)

is winning whenever i1 = · · · = in−1 ≥ in .
So far we have discussed the homogeneous theory of badly approximable

sets. We now turn our attention to the inhomogeneous theory.

1.7.4 Inhomogeneous Badly Approximable Points

Given θ ∈ R the natural inhomogeneous generalisation of the one-dimensional
set Bad is the set

Bad(θ) := {x ∈ R : ∃ c(x) > 0 so that ‖qx − θ‖ > c(x) q−1 ∀ q ∈ N} .
Within these notes we shall prove the following inhomogeneous strengthening
of Theorem 1.7.1.

Theorem 1.7.16 For any θ ∈ R, we have that

dim Bad(θ) = 1 .

The basic philosophy behind the proof is simple and exploits the already
discussed homogeneous ‘intervals construction’; namely

(homogeneous construction) + (θ − θ = 0)

=⇒ (inhomogeneous statement).

Remark 1.7.17 Recall that we have already made use of this type of phi-
losophy in establishing the inhomogeneous extremality conjecture stated in
§1.6.3.1, where the proof very much relies on the fact that we already know
that any non-degenerate manifold is (homogeneously) extremal.

Proof of Theorem 1.7.16 Let R ≥ 4 be an integer and δ = 1
2 . For n ∈ Z,

n ≥ 0, define the sets Qn by (1.86) and additionally define the following sets
of ‘shifted’ rational points

Qn(θ) = {(p + θ)/q ∈ R : p, q ∈ Z, R
n−5

2 ≤ q < R
n−4

2 } . (1.102)

Clearly, Q0(θ) = · · · = Q4(θ) = ∅ and the union Q(θ) := ⋃∞
n=5 Qn(θ)

contains all the possible points (p + θ)/q with p, q ∈ Z, q > 0.
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Next, for p/q ∈ Qn define the dangerous interval �(p/q) by (1.89)
and additionally define the inhomogeneous family of dangerous intervals
given by

�((p + θ)/q) :=
{

x ∈ [0, 1] :
∣∣∣∣x − p + θ

q

∣∣∣∣ < δR−n
}
, (1.103)

where (p + θ)/q ∈ Q(θ). With reference to the Cantor construction of §1.7.1,
our goal is to construct a Cantor set K =⋂∞

n=0 En such that for every n ∈ N

En ∩�(p/q) = ∅ for all p/q ∈ Qn (1.104)

and simultaneously

En ∩�((p + θ)/q) = ∅ for all (p + θ)/q ∈ Qn(θ) . (1.105)

To this end, let E0 = [0, 1] and suppose that En−1 has been constructed
as required. Let I be any interval within En−1. Then |I | = R−n+1. When
constructing En , I is partitioned into R subintervals. We need to decide how
many of these subintervals have to be removed in order to satisfy (1.104) and
(1.105). As was argued in the proof of Theorem 1.7.1, removing two inter-
vals of the partitioning of I ensures that (1.104) is satisfied. We claim that
the same applies to (1.105), that is removing two intervals of the partitioning
of I ensures (1.105). Indeed, since the length of �((p + θ)/q) is no more
that R−n , to verify this claim it suffices to show that there is only one point
(p + θ)/q ∈ Qn(θ) such that

�((p + θ)/q) ∩ I �= ∅.

This condition implies that

|qx − p − θ | < R
n−4

2 (δR−n + R−n+1) for any x ∈ I . (1.106)

For a contradiction, suppose there are two distinct points (p1 + θ)/q1 and
(p2 + θ)/q2 in Qn(θ) satisfying (1.106). Then, by (1.106) and the triangle
inequality, we get that

|(q1−q2)x−(p1−p2)| < 2R
n−4

2 (δR−n+R−n+1) for any x ∈ I . (1.107)

Clearly q1 �= q2 as otherwise we would have that

|p1 − p2| < 2R
n−4

2 (δR−n + R−n+1) < 1,

implying that p1 = p2 and contradicting to the fact that (p1 +θ)/q1 and (p2 +
θ)/q2 are distinct. In the above we have used that n ≥ 5. Also without loss of
generality we assume that q1 > q2. Then define d = gcd(q1 − q2, p1 − p2),



88 V. Beresnevich, F. Ramírez and S. Velani

q = (q1 − q2)/d , p = (p1 − p2)/d and let m be the unique integer such
that

p/q ∈ Qm .

Thus, R
m−3

2 ≤ q < R
m−2

2 . Since q < q1 < R
n−4

2 we have that m ≤ n − 2.
Then, by (1.107),∣∣∣∣x − p

q

∣∣∣∣ < R−m−3
2 2R

n−4
2 (δR−n + R−n+1) ≤ δR−m (1.108)

for any x ∈ I provided that R ≥ 36 (recall that δ = 1
2 ). It means that �(p/q)∩

I �= ∅. But this is impossible since (1.104) is valid with n replaced by m and
I ⊂ En−1 ⊂ Em . This proves our above claim. The upshot is that by removing
M = 4 intervals of the partitioning of each I within En−1 we construct En

while ensuring that the desired conditions (1.104) and (1.105) are satisfied.
The finale of the proof makes use of Lemma 1.7.3 and is almost identical to
that of the proof of Theorem 1.7.1. We leave the details to the reader.

Remark 1.7.18 Note that in the above proof of Theorem 1.7.16, we actually
show that

dim Bad ∩ Bad(θ) = 1 .

It seems that proving this stronger statement is simpler than any potential
‘direct’ proof of the implied fact that dim Bad(θ) = 1.

Remark 1.7.19 In the same way that the proof of Theorem 1.7.1 can be mod-
ified to show that Bad is winning (see the proof of Theorem 1.7.6 for the
details), the proof of Theorem 1.7.16 can be adapted to show that Bad(θ) is
winning.

In higher dimensions, the natural generalisation of the one-dimensional set
Bad(θ) is the set Bad(i1, . . . , in; θ) defined in the following manner. For any
θ = (θ1, . . . , θn) ∈ Rn and n-tuple of real numbers i1, . . . , in ≥ 0 such that
i1+· · ·+in = 1, we let Bad(i1, . . . , in; θ) to be the set of points (x1, . . . , xn) ∈
Rn for which there exists a positive constant c(x1, . . . , xn) such that

max{ ||qx1 − θ1||1/ i1 , . . . , ||qxn − θn||1/ in } > c(x1, . . . , xn) q−1∀q ∈ N.

The ideas used in the proof of Theorem 1.7.16 can be naturally generalised to
show that

dim Bad(i1, . . . , in; θ) = n.

In the case that n = 2, the details of the proof are explicitly given in [28,
§3]. Indeed, as mentioned in [28, Remark 3.4], in the symmetric case i1 =
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. . . = in = 1/n, we actually have that Bad( 1
n , . . . ,

1
n ; θ) is winning; i.e. the

inhomogeneous strengthening of Theorem 1.7.6.

Remark 1.7.20 The basic philosophy exploited in proving Theorem 1.7.16
has been successfully incorporated within the context of Schmidt games
to establish the inhomogeneous generalisation of the homogeneous winning
statements discussed at the end of §1.7.3. In particular, let θ ∈ R2 and (i, j) be
a pair of non-negative real numbers such that i + j = 1. Then, it is shown in [3]
that (i) the set Bad(i, j; θ) is winning and (ii) for any non-degenerate planar
curve C, the set Bad(i, j; θ) ∩ C is winning. Also, in [3] the following almost
optimal winning result for the intersection of Bad(i, j) sets with arbitrary lines
(degenerate curves) is obtained. It substantially extends and generalises the
previous ‘line’ result obtained in [9].

Theorem 1.7.21 Let (i, j) be a pair of non-negative real numbers such that
i + j = 1 and given a, b ∈ R with a �= 0, let La,b denote the line defined by
the equation y = ax + b. Suppose there exists ε > 0 such that

lim inf
q→∞ q

1
σ
−ε max{‖qa‖, ‖qb‖} > 0 where σ := min{i, j}. (1.109)

Then, for any θ ∈ R2 we have that Badθ (i, j) ∩ La,b is winning. Moreover, if
a ∈ Q the statement is true with ε = 0 in (1.109).

The condition (1.109) is optimal up to the ε – see [3, Remark 4]. It is indeed
both necessary and sufficient in the case a ∈ Q. Note that the argument pre-
sented in [3, Remark 4] showing the necessity of (1.109) with ε = 0 only
makes use of the assumption that Bad(i, j) ∩ La,b �= ∅. It is plausible to sug-
gest that this latter assumption is a necessary and sufficient condition for the
conclusion of Theorem 1.7.21 to hold.

Conjecture 1.7.22 Let (i, j) be a pair of non-negative real numbers such
that i + j = 1 and given a, b ∈ R with a �= 0, let La,b denote the line defined
by the equation y = ax + b. Then

Bad(i, j) ∩ La,b �= ∅

if and only if

∀ θ ∈ R2 Badθ (i, j) ∩ La,b is winning.

Observe that the conjecture is true in the case a ∈ Q and when the line La,b is
horizontal or vertical in the homogeneous case.
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2

Exponents of Diophantine Approximation

Yann Bugeaud

Abstract

We survey classical and recent results on exponents of Diophantine approxi-
mation. We give only a few proofs and highlight several open problems.

2.1 Introduction and Generalities

Although the present survey is essentially self-contained, the reader is assumed
to have some basic knowledge of Diophantine approximation and of the theory
of continued fractions. Classical references include Cassels’ book [29] and
Schmidt’s monograph [73].

Let ξ be an irrational real number. It follows from the theory of continued
fractions that there are infinitely many rational numbers p/q with q ≥ 1 and
such that

|qξ − p| ≤ q−1.

Expressed differently, for arbitrarily large integers Q, there exist integers p
and q with 1 ≤ q ≤ Q and |qξ − p| ≤ Q−1. The classical Dirichlet theorem
asserts much more, namely that, for every integer Q ≥ 1, there exist integers
p and q with 1 ≤ q ≤ Q and |qξ − p| ≤ Q−1.

A question arises then naturally: is there some specific irrational real number
ξ for which it is possible to improve the above statements, that is, to get the
above inequalities with Q−1 replaced by Q−w for some real number w > 1?
Obviously, the quality of approximation strongly depends upon whether we are
interested in a uniform statement (that is, a statement valid for every Q, or for
every sufficiently large Q) or in a statement valid only for some arbitrarily large
values of Q. This leads to the introduction of the exponents of approximation
w1 and ŵ1.

96
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Definition 2.1.1 Let ξ be a real number. We denote by w1(ξ) the supremum
of the real numbers w for which there exist arbitrarily large integers Q and
integers p and q with 1 ≤ q ≤ Q and

|qξ − p| ≤ Q−w.

We denote by ŵ1(ξ) the supremum of the real numbers ŵ such that, for every
sufficiently large integer Q, there are integers p and q with 1 ≤ q ≤ Q and

|qξ − p| ≤ Q−ŵ.

As observed by Khintchine [44], every irrational real number ξ satisfies
ŵ1(ξ) = 1, since there are arbitrarily large integers Q such that the inequality
|qξ − p| ≤ 1/(2Q) has no solutions in integers p, q with 1 ≤ q ≤ Q; see the
proof of Proposition 2.4. However, for any w > 1, there exist irrational real
numbers ξ such that, for arbitrarily large integers Q, the equation

|qξ − p| ≤ Q−w

has a solution in integers p and q with 1 ≤ q ≤ Q. It suffices, for example, to
take ξ =∑ j≥1 2− (w+1) j ", where  ·" denotes the integer part.

The general framework is the following. For any (column) vector θ in Rn ,
we denote by |θ | the maximum of the absolute values of its coordinates and by

‖θ‖ = min
y∈Zn

|θ − y|

the maximum of the distances of its coordinates to the rational integers.

Definition 2.1.2 Let n and m be positive integers and A a real matrix with
n rows and m columns. Let θ be an n-tuple of real numbers. We denote by
w(A, θ) the supremum of the real numbers w for which, for arbitrarily large
real numbers X, the inequalities

‖Ax − θ‖ ≤ X−w and |x | ≤ X (2.1)

have a solution x in Zm. We denote by ŵ(A, θ) the supremum of the real
numbers w for which, for all sufficiently large positive real numbers X, the
inequalities (2.1) have an integer solution x in Zm. The exponent ŵ is called a
uniform exponent.

In the sequel, we consistently use the symbol ˆ to indicate that we require a
uniform existence of solutions.

The lower bounds

w(A, θ) ≥ ŵ(A, θ) ≥ 0



98 Y. Bugeaud

are then obvious. We define furthermore two homogeneous exponents w(A)
and ŵ(A) as in (2.1) with θ = t (0, . . . , 0), requiring moreover that the integer
solution x should be non-zero. In the case where A is the 1 × 1 matrix (ξ), we
then have w(A) = w1(ξ) and ŵ(A) = ŵ1(ξ). The uniform exponent ŵ was
first introduced and studied by Jarník in the 1930s but with different notation.

The transposed matrix of a matrix A is denoted by t A. Furthermore, 1/+∞
is understood to be 0. The following result, established in [29, 23], shows that
the usual (respectively uniform) inhomogeneous exponents are strongly related
to the uniform (respectively usual) homogeneous exponents.

Theorem 2.1.3 Let n and m be positive integers and A a real matrix with n
rows and m columns. For any n-tuple θ of real numbers, we have the lower
bounds

w(A, θ) ≥ 1

ŵ(t A)
and ŵ(A, θ) ≥ 1

w(t A)
, (2.2)

with equality in (2.2) for almost all θ with respect to the Lebesgue measure on
Rn.

If the subgroup G = t AZn+Zm of Rm generated by the n rows of the matrix
A together with Zm has maximal rank m+n, then Kronecker’s theorem asserts
that the dual subgroup � = AZm + Zn of Rn generated by the m columns of
A and by Zn is dense in Rn . In this respect, Theorem 2.1.3 may be viewed as
a measure of the density of �. In the case where the rank of G is smaller than
m + n, we clearly have

ŵ(t A) = w(t A) = +∞ and ŵ(A, θ) = w(A, θ) = 0,

for every n-tuple θ located outside a discrete family of parallel hyperplanes
in Rn . The assertion of Theorem 2.1.3 is then obvious when the rank of G is
smaller than m + n.

Cassels’ book [29] remains an invaluable reference for these and related
questions.

In the sequel of the text, we restrict our attention to the cases where A is
either a row or a column matrix:

A = (ξ1, . . . , ξn) or A = t(ξ1, . . . , ξn).

This amounts to considering small values of the linear form

|x0 + x1ξ1 + . . .+ xnξn |, where x0, x1, . . . , xn ∈ Z,



Exponents of Diophantine Approximation 99

or simultaneous approximation to ξ1, . . . , ξn by rational numbers with the
same denominator, that is, small values of the quantity

max
1≤ j≤n

|x0ξ j − x j |, where x0, x1, . . . , xn ∈ Z.

Furthermore, among the elements ξ = (ξ1, . . . , ξn) in Rn , we mainly focus on
the points

(ξ, ξ2, . . . , ξ n)

whose coordinates are the n first successive powers of a real number ξ . How-
ever, some of the results stated below hold for a general n-tuple ξ , as will be
indicated in due course. This is in particular the case in Sections 2.6 and 2.7.

The present paper is organised as follows. In Section 2.2, we define six expo-
nents of Diophantine approximation attached to real numbers and give their
first properties. We discuss in Section 2.3 how these exponents are interrelated
and study the sets of values taken by these exponents in Sections 2.4 and 2.5.
Intermediate exponents are introduced in Section 2.6. Parametric geometry of
numbers, a deep and powerful new theory introduced by Schmidt and Sum-
merer [75, 76] and developed by Roy [65], is briefly described in Section 2.7.
Recent results on the existence of real numbers which are badly approximable
by algebraic numbers of bounded degree are discussed in Section 2.8. The final
section gathers several open problems and suggestion for further research.

The notation a �d b means that a exceeds b times a constant depending
only on d . When � is written without any subscript, it means that the constant
is absolute. We write a � b if both a � b and a � b hold.

2.2 Further Definitions and First Results

Here and below, the height H(P) of a complex polynomial P(X) is the max-
imum of the moduli of its coefficients and the height H(α) of an algebraic
number α is the height of its minimal polynomial over Z. We recall a very
useful result of Gel’fond [37] (see also Lemma A.3 of [15]) which asserts that,
if P1(X) and P2(X) are non-zero complex polynomials of degree n1 and n2,
respectively, then we have

2−n1−n2 H(P1) H(P2) ≤ H(P1 P2) ≤ 2n1+n2 H(P1) H(P2). (2.3)

Mahler [52] and Koksma [46] introduced in the 1930s two classifications
of real numbers in terms of their properties of approximation by algebraic
numbers.
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Definition 2.2.1 Let n be a positive integer and ξ be a real number. We denote
by wn(ξ) the supremum of the real numbers w for which the inequality

0 < |P(ξ)| ≤ H(P)−w (2.4)

is satisfied for infinitely many polynomials P(X) with integer coefficients and
degree at most n. We denote by w∗

n(ξ) the supremum of the real numbers w∗
for which the inequality

0 < |ξ − α| ≤ H(α)−w∗−1 (2.5)

is satisfied for infinitely many algebraic numbers α of degree at most n.

Because of the −1 in the exponent of the right-hand side of (2.5), we get
immediately that the exponents w1 and w∗

1 coincide. Let us briefly discuss the
relation between wn and w∗

n .
Let n ≥ 2 be an integer, ξ be a real number, and α be an algebraic number of

degree at most n satisfying (2.5) for some real numberw∗. Let P(X) denote the
minimal defining polynomial of α over Z. We may assume that ξ is not a root of
P(X). It follows from (2.3) that the height of the polynomial P(X)/(X −α) is
bounded from above by the height of P(X) times a positive constant depending
only on n. This implies that

0 < |P(ξ)| �|ξ |,n |ξ − α| · H(P) = |ξ − α| · H(α), (2.6)

which, combined with (2.5), gives

0 < |P(ξ)| �|ξ |,n H(α)−w∗ = H(P)−w∗
.

We deduce that

wn(ξ) ≥ w∗
n(ξ).

Let us now discuss the reverse inequality. Let P(X) be an irreducible, inte-
ger polynomial of degree n ≥ 2 and ξ be a real number which is not algebraic
of degree at most n. Observe that P(ξ)P ′(ξ) �= 0 and

P ′(ξ)
P(ξ)

=
∑

α:P(α)=0

1

ξ − α
.

Consequently, if α is the root of P(X) which is closest to ξ , then we have

|ξ − α| ≤ n
∣∣∣ P(ξ)

P ′(ξ)

∣∣∣.
Since |P ′(ξ)| is often roughly equal to H(P) (this is the case unless P(X) has
two roots close to ξ ), we expect that the estimation

|ξ − α| �|ξ |,n |P(ξ)| · H(P)−1 = |P(ξ)| · H(α)−1 (2.7)
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holds. If |P(ξ)| ≤ H(P)−w = H(α)−w, it would then give

|ξ − α| �|ξ |,n H(α)−w−1.

This shows that w∗
n(ξ) ≥ wn(ξ) holds when there are integer polynomials of

arbitrarily large height which satisfy (2.4) and have only one root close to ξ .
The upper bound (2.7) does not hold when |P ′(ξ)| is small, that is, when P(X)

has two or more roots close to ξ .
The behaviour of the sequences (wn(ξ))n≥1 and (w∗

n(ξ))n≥1 determines the
localisation of ξ in Mahler’s and Koksma’s classifications, respectively (see
Chapter 3 of [15]); however, the exact determination of wn(ξ) and w∗

n(ξ) for a
specific real number ξ is usually an extremely difficult problem.

We introduced in [22] four further exponents of Diophantine approxima-
tion. They implicitly appeared previously in articles of Jarník, Davenport and
Schmidt, among others.

Definition 2.2.2 Let n be a positive integer and ξ be a real number. We denote
by λn(ξ) the supremum of the real numbers λ such that the inequality

max
1≤ j≤n

|x0ξ
j − x j | ≤ |x0|−λ

has infinitely many solutions in integers x0, . . . , xn with x0 �= 0.

The three exponents w1, w
∗
1 and λ1 coincide. The three exponents wn , w∗

n
and λn have the common feature to be defined by the existence of infinitely
many solutions for some set of Diophantine inequalities. We attach to them
three exponents defined by a condition of uniform existence of solutions.

Definition 2.2.3 Let n be a positive integer and ξ be a real number. We denote
by ŵn(ξ) the supremum of the real numbers ŵ such that, for any sufficiently
large real number X, the inequalities

0 < |xnξ
n + . . .+ x1ξ + x0| ≤ X−ŵ, max

0≤ j≤n
|x j | ≤ X,

have a solution in integers x0, . . . , xn. We denote by ŵ∗
n(ξ) the supremum of

the real numbers ŵ∗ such that, for any sufficiently large real number X, there
exists an algebraic real number α with degree at most n satisfying

0 < |ξ − α| ≤ H(α)−1 X−ŵ∗
and H(α) ≤ X.

We denote by λ̂n(ξ) the supremum of the real numbers λ̂ such that, for any
sufficiently large real number X, the inequalities

0 < |x0| ≤ X, max
1≤ j≤n

|x0ξ
j − x j | ≤ X−λ̂,

have a solution in integers x0, . . . , xn.
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The three exponents ŵ1, ŵ
∗
1 and λ̂1 coincide.

This survey is mainly devoted to an overview of general results on the
six exponents of approximation wn, w

∗
n , λn, ŵn, ŵ

∗
n and λ̂n , whose values are

connected through various inequalities. The exact determination of the upper
bounds is an important problem towards the Wirsing Conjecture (see Section 4)
or related questions, such as the approximation of transcendental real numbers
by algebraic integers. We begin with some easy properties.

All the exponents wn, w
∗
n, λn, ŵn, ŵ

∗
n , λ̂n can a priori take infinite values.

However, we will see that the exponents ‘hat’ are bounded in terms of n. A
first result in this direction is the following statement, which goes back to
Khintchine [44].

Proposition 2.2.4 For any irrational real number ξ , we have

ŵ1(ξ) = ŵ∗
1(ξ) = λ̂1(ξ) = 1.

It immediately follows from Proposition 2.2.4 that λ̂n(ξ) ≤ 1 for every real
number ξ and every integer n ≥ 1.

Proof Let ξ be an irrational real number and (p�/q�)�≥1 denote the sequence
of its convergents. Let � ≥ 4 and q be integers with 1 ≤ q ≤ q� − 1. Observe
that q�−q�−1 ≥ q�−2 ≥ q2 ≥ 2. Then, it follows from the theory of continued
fractions that

‖qξ‖ ≥ ‖q�−1ξ‖ >
1

q� + q�−1
≥ 1

2(q� − 1)
.

This shows that, setting Q = q� − 1, the inequality |qξ − p| ≤ 1/(2Q) has no
solutions in integers p, q with 1 ≤ q ≤ q�−1. Consequently, ŵ1(ξ) is at most
equal to 1. The fact that ŵ1(ξ) is at least equal to 1 follows from the classical
Dirichlet theorem.

We gather in the next theorem several easy results on our six classical
exponents of approximation.

Theorem 2.2.5 For any positive integer n and any real number ξ which is
not algebraic of degree ≤ n, we have

n ≤ ŵn(ξ) ≤ wn(ξ),
1

n
≤ λ̂n(ξ) ≤ min{1, λn(ξ)},

and

1 ≤ ŵ∗
n(ξ) ≤ min{w∗

n(ξ), ŵn(ξ)} ≤ max{w∗
n(ξ), ŵn(ξ)} ≤ wn(ξ). (2.8)
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As will be seen in the sequel, all the inequalities in (2.8) are sharp.

Proof Let n and ξ be as in the statement of the theorem. We have shown
immediately after Definition 2.2.1 that w∗

n(ξ) ≤ wn(ξ). The same argumen-
tation gives also that ŵ∗

n(ξ) ≤ ŵn(ξ). The upper bounds ŵn(ξ) ≤ wn(ξ),
ŵ∗

n(ξ) ≤ w∗
n(ξ) and λ̂n(ξ) ≤ λn(ξ) are consequences of the definitions,

while the lower bounds ŵn(ξ) ≥ n and λ̂n(ξ) ≥ 1/n follow from Dirich-
let’s box principle (or from Minkowski’s theorem). Moreover, we obviously
have ŵ∗

n(ξ) ≥ ŵ∗
1(ξ) = 1 and λ̂n(ξ) ≤ λ̂1(ξ) = 1.

The next theorem was pointed out in [22].

Theorem 2.2.6 For any positive integer n and any real number ξ not
algebraic of degree at most n, we have

ŵ∗
n(ξ) ≥

wn(ξ)

wn(ξ)− n + 1
(2.9)

and

w∗
n(ξ) ≥

ŵn(ξ)

ŵn(ξ)− n + 1
. (2.10)

Wirsing [82] proved a weaker version of (2.9) in which the left-hand side
is replaced by the quantity w∗

n(ξ). His result is also weaker than (2.10), since
ŵn(ξ) ≤ wn(ξ).

Proof We follow an argumentation of Wirsing [82]. Let n ≥ 2 and ξ be as in
the statement of the theorem. We first establish (2.9). If wn(ξ) is infinite, then
(2.9) reduces to ŵ∗

n(ξ) ≥ 1, a statement established in Theorem 2.2.5. Assume
that wn(ξ) is finite. Let ε > 0 and set w = wn(ξ)(1 + ε)2. Minkowski’s
theorem implies that there exist a constant c and, for any positive real number
H , a non-zero integer polynomial P(X) of degree at most n such that

|P(ξ)| ≤ H−w, max
1≤ j≤n−1

|P( j)| ≤ H and |P(n)| ≤ cHw−n+1. (2.11)

The definition of wn(ξ) and the first inequality of (2.11) show that H(P) >
H1+ε if H is large enough. Consequently, P(X) has some (necessarily real)
root in the neighbourhood of each of the points ξ , 1, . . . , n − 1. Denoting by
α its closest root to ξ and recalling that H(α) �n H(P) (see for example
Lemma A.3 of [15]), we get

|ξ − α| �n
|P(ξ)|
H(P)

�n H(α)−1 (Hw−n+1)−w/(w−n+1)
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and, by (2.11),

H(α) �n H(P) �n Hw−n+1.

Since all of this is true for every sufficiently large H , we get ŵ∗
n(ξ) ≥ w/(w−

n + 1). Selecting now ε arbitrarily close to 0, we obtain (2.9).
In order to establish (2.10), we may assume that ŵn(ξ) is finite and set w =

ŵn(ξ)(1 + ε)2. We follow the same argument as in the proof of (2.9). The
definition of ŵn(ξ) and the first inequality of (2.11) then show that there exist
arbitrarily large values of H for which the polynomial P(X) satisfies H(P) >
H1+ε. We conclude that there exist algebraic numbers α of arbitrarily large
height with

|ξ − α| �n H(α)−1−w/(w−n+1).

Thus, we get w∗
n(ξ) ≥ w/(w − n + 1) and, selecting ε arbitrarily close to 0,

we obtain (2.10).

The next result shows that if wn(ξ) = n holds, then the values of the five
other exponents at the point ξ are known.

Corollary 2.2.7 Let n be a positive integer and ξ a real number such that
wn(ξ) = n. Then we have

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = ŵ∗

n(ξ) = n (2.12)

and

λn(ξ) = λ̂n(ξ) = 1

n
. (2.13)

Proof Equalities (2.12) follow from Theorems 2.2.5 and 2.2.6. Khintchine’s
transference theorem (Theorem 2.3.2) shows that wn(ξ) = n is equivalent to
λn(ξ) = 1/n. Combined with Theorem 2.2.5, this gives (2.13).

Since wn(ξ) is equal to n for almost all real numbers ξ , with respect to the
Lebesgue measure (this was proved by Sprindžuk [78]), the next result is an
immediate consequence of Corollary 2.2.7.

Theorem 2.2.8 For almost all (with respect to Lebesgue measure) real
numbers ξ and every positive integer n, we have

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = ŵ∗

n(ξ) = n

and

λn(ξ) = λ̂n(ξ) = 1

n
.
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Before discussing the values taken by our exponents at algebraic points, we
recall Liouville’s inequality (see Theorem A.1 and Corollary A.2 in [15]).

Theorem 2.2.9 (Liouville’s Inequality) Let α and β be distinct real algebraic
numbers of degree n and m, respectively. Then,

|α − β| ≥ (n + 1)−m(m + 1)−n H(α)−m H(β)−n.

Furthermore, if P(X) is an integer polynomial of degree n which does not
vanish at β, then

|P(β)| ≥ (n + 1)−m(m + 1)−n H(P)−m+1 H(β)−n.

Let ξ be a real algebraic number of degree d ≥ 1. It follows from Theorem
2.2.9 that w∗

n(ξ) ≤ wn(ξ) ≤ d − 1 holds for n ≥ 1. Roth’s theorem, which
asserts that w1(ξ) = 1 if ξ is irrational, has been considerably extended by
Schmidt [73], who showed that wn(ξ) = w∗

n(ξ) = n holds for n ≤ d − 1. Fur-
thermore, we deduce from Definitions 2.2.2 and 2.2.3 that λn(ξ) = λd−1(ξ)

and λ̂n(ξ) = λ̂d−1(ξ) for n ≥ d . All this and Corollary 2.2.7 enable us to get
the values of our six exponents at real algebraic numbers.

Theorem 2.2.10 Let ξ be a real algebraic number of degree d ≥ 1 and let n
be a positive integer. We have

wn(ξ) = w∗
n(ξ) = ŵn(ξ) = ŵ∗

n(ξ) = min{n, d − 1}
and

λn(ξ) = λ̂n(ξ) = 1

min{n, d − 1} .

Theorem 2.2.10 shows that real algebraic numbers of degree greater than n
do behave like almost all real numbers, as far as approximation by algebraic
numbers of degree less than n is concerned. We may as well consider approx-
imation to complex (non-real) numbers. Quite surprisingly, complex non-real
numbers of degree greater than n do not always behave like almost all complex
numbers; see [21].

Theorem 2.2.10 shows that we can focus on the values taken by our expo-
nents at transcendental, real numbers. This motivates the following definition.

Definition 2.2.11 The spectrum of an exponent of approximation is the set of
values taken by this exponent at transcendental real numbers.
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We point out an important problem, which will be discussed in the next
sections.

Problem 2.2.12 To determine the spectra of the exponents wn, w∗
n , λn, ŵn,

ŵ∗
n , λ̂n.

Results towards Problem 2.2.12 are gathered in Section 2.5.

2.3 Overview of Known Relations Between Exponents

We begin this section with an easy result on the difference between the
exponents wn and w∗

n .

Theorem 2.3.1 For any positive integer n and any transcendental real
number ξ , we have

wn(ξ)− n + 1 ≤ w∗
n(ξ) ≤ wn(ξ) (2.14)

and

ŵn(ξ)− n + 1 ≤ ŵ∗
n(ξ) ≤ ŵn(ξ). (2.15)

Proof The right-hand side inequalities of (2.14) and (2.15) have been already
stated in Theorem (2.2.5). The left-hand side of inequality (2.14) is inequality
(3.11) in [15], whose proof also gives the left-hand side of inequality (2.15).

It is interesting to note that the left-hand side inequality of (2.15) is sharp
since there exist real numbers ξ with ŵn(ξ) = n and ŵ∗

n(ξ) = 1; see Corollary
2.5.4. We do not know if the left-hand side inequality of (2.14) is sharp for
n ≥ 4; see Theorem 2.5.7.

We indicate now some transference results linking together the rational
simultaneous approximation to ξ, . . . , ξn and small values of the linear form
with coefficients ξ, . . . , ξ n .

Theorem 2.3.2 For every integer n ≥ 2 and every real number ξ which is
not algebraic of degree at most n, we have

1

n
≤ wn(ξ)

(n − 1)wn(ξ)+ n
≤ λn(ξ) ≤ wn(ξ)− n + 1

n
(2.16)
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and
1

n
≤ ŵn(ξ)− 1

(n − 1)ŵn(ξ)
≤ λ̂n(ξ) ≤ ŵn(ξ)− n + 1

ŵn(ξ)
. (2.17)

Proof The inequalities (2.16) follow directly from Khintchine’s transference
principle (cf. Theorem B.5 from [15]), whose proof shows that the same
inequalities hold for the uniform exponents; see [40]. The latter result is weaker
than inequalities (2.17), which have been recently proved by German [38].

Observe that (2.17) with n = 2 reduces to the following result established
by Jarník [40] in 1938; see also [45] for an alternative proof.

Theorem 2.3.3 For every transcendental real number ξ we have

λ̂2(ξ) = 1 − 1

ŵ2(ξ)
.

Inequalities (2.16) have been recently refined in [49, 25] by means of the
introduction of uniform exponents.

Theorem 2.3.4 For every integer n ≥ 2 and every real number ξ which is
not algebraic of degree at most n, we have

λn(ξ) ≥ (ŵn(ξ)− 1)wn(ξ)

((n − 2)ŵn(ξ)+ 1)wn(ξ)+ (n − 1)ŵn(ξ)

and

λn(ξ) ≤ (1 − λ̂n(ξ))wn(ξ)− n + 2 − λ̂n(ξ)

n − 1
.

Since λ̂n(ξ) ≥ 1/n and ŵn(ξ) ≥ n, one easily checks that Theorem 2.3.4
implies (2.16).

The first inequality in the next theorem was established by Davenport and
Schmidt [33], while investigating the approximation to a real number by
algebraic integers. The second one is a recent result of Schleischitz [69].

Theorem 2.3.5 For any positive integer n and any transcendental real
number ξ , we have

w∗
n(ξ) ≥

1

λ̂n(ξ)
and ŵ∗

n(ξ) ≥
1

λn(ξ)
.

It is interesting to note that the combination of (2.17) with the first inequality
of Theorem 2.3.5 gives (2.10).
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Theorem 2.3.5 relates approximation to ξ by algebraic numbers of degree
at most n with uniform simultaneous rational approximation to ξ, . . . , ξn .
Additional explanations can be found in [28] and in Section 3.6 of [15].

Note that Theorem 2.3.5 can be compared with the next result, extracted
from [23, 29], which is a particular case of Theorem 2.1.3. If A is the matrix
(ξ, ξ2, . . . , ξn) and θ is a real n-tuple, we simply write wn(ξ, θ) for w(A, θ)
and ŵn(ξ, θ) for ŵ(A, θ).

Theorem 2.3.6 For any integer n ≥ 1, any transcendental real number ξ

and any real n-tuple θ , we have

wn(ξ, θ) ≥ 1

λ̂n(ξ)
and ŵn(ξ, θ) ≥ 1

λn(ξ)
.

The next results were proved by Schmidt and Summerer [76, 77]; see also
Moshchevitin [54, 55].

Theorem 2.3.7 For any transcendental real number ξ we have

wn(ξ) ≥ ŵn(ξ)
(n − 1)(ŵn(ξ)− 1)

1 + (n − 2)ŵn(ξ)
,

for n ≥ 2, and

w3(ξ) ≥ ŵ3(ξ)

√
4ŵ3(ξ)− 3 − 1

2
.

The case n = 2 of Theorem 2.3.7 was proved by Jarník [42].

Theorem 2.3.8 For any transcendental real number ξ we have

λn(ξ) ≥ λ̂n(ξ)
λ̂n(ξ)+ n − 2

(n − 1)(1 − λ̂n(ξ))
,

for n ≥ 2, and

λ3(ξ) ≥ λ̂3(ξ)
λ̂3(ξ)+

√
λ̂3(ξ)(4 − 3λ̂3(ξ))

2(1 − λ̂3(ξ))
.

Actually, Theorems 2.3.2 to 2.3.4 and 2.3.6 to 2.3.8 are valid not only
for tuples of the shape (ξ, ξ2, . . . , ξ n), but also for general tuples ξ , whose
coordinates are, together with 1, linearly independent over Z.
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2.4 Bounds for the Exponents of Approximation

Let n be a positive integer. As we have seen in Section 2.2, the Dirichlet
Schubfachprinzip (or, if one prefers, Minkowski’s theorem) readily implies that
wn(ξ) is at least equal to n for any positive integer n and any real number ξ not
algebraic of degree ≤ n. It is a longstanding problem, which was first formu-
lated by Wirsing [82], to decide whether the same result remains true for the
quantity w∗

n(ξ).

Conjecture 2.4.1 (Wirsing) For any positive integer n and any transcenden-
tal real number ξ we have w∗

n(ξ) ≥ n.

The seminal paper of Wirsing [82] and the study of his conjecture, which
has been up to now confirmed only for n = 1 (this follows from the theory
of continued fractions) and n = 2 (by Davenport and Schmidt [31]), have
motivated many works.

Theorem 2.4.2 Let ξ be a real number which is neither rational, nor
quadratic. Then, for any real number c greater than 160/9, there exist infinitely
many rational or quadratic real numbers α satisfying

|ξ − α| ≤ c max{1, |ξ |2} H(α)−3.

In particular, we have w∗
2(ξ) ≥ 2.

Theorem 2.4.2 was proved in [31]; see also [73]. It has been extended by
Davenport and Schmidt [32] (up to the value of the numerical constant) as
follows.

Theorem 2.4.3 Let n ≥ 2 be an integer and ξ be a real number which is
not algebraic of degree at most n. Then there exist an effectively computable
constant c, depending only on ξ and on n, an integer d with 1 ≤ d ≤ n−1, and
infinitely many integer polynomials P(X) of degree n whose roots α1, . . . , αn

can be numbered in such a way that

|(ξ − α1) . . . (ξ − αd)| ≤ c H(P)−n−1.

Theorem 2.4.2 has recently been improved by Moshchevitin [56] as follows.

Theorem 2.4.4 For any real number ξ which is neither rational, nor a
quadratic irrationality, we have

w∗
2(ξ) ≥ ŵ2(ξ)(ŵ2(ξ)− 1) ≥ 2.
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The proof of Theorem 2.4.4 combines ideas from [31] with an argument
used by Jarník [41, 42] in his proof of the case n = 2 of Theorem 2.3.7.

The first statement of Theorem 2.4.5 was proved by Wirsing [82] and the
second one by Bernik and Tishchenko [12].

Theorem 2.4.5 Let n be a positive integer and ξ be a transcendental real
number. Then we have

w∗
n(ξ) ≥

wn(ξ)+ 1

2
≥ n + 1

2

and

w∗
n(ξ) ≥

n

4
+

√
n2 + 16n − 8

4
. (2.18)

For proofs of Theorem 2.4.5 and related results, the reader may consult
Chapter 3 of [15]. Slight improvements on (2.18) have been subsequently
obtained by Tishchenko [79, 80], with very technical proofs. See also [19]
for an intermediate result between Wirsing’s lower bound w∗

n(ξ) ≥ (n + 1)/2
and Theorem 2.4.3.

The next result, extracted from [27], provides, under a suitable assumption,
an upper bound for ŵ∗

n in terms of wm , when m is at most equal to n.

Theorem 2.4.6 Let m, n be positive integers with 1 ≤ m ≤ n and ξ a real
number. If wm(ξ) ≥ m + n − 1, then we have

ŵ∗
n(ξ) ≤

mwm(ξ)

wm(ξ)− n + 1
.

Proof It is inspired by the proof of Proposition 2.1 of [22]. Let m, n and ξ be
as in the statement of the theorem. Assume for convenience that |ξ | ≤ 1. Let ε
be a real number with 0 < ε ≤ 1/2. Set w := wm(ξ). Let P(X) be an integer
polynomial of degree at most m and height H := H(P) large such that

H−w−ε < |P(ξ)| < H−w+ε. (2.19)

By using (2.3), we may assume without any loss of generality that P(X)

is irreducible and primitive. Let v be a positive real number and set M =
Hw/(v(1+ε)). Let α be the root of P(X) which is the closest to ξ . If |ξ − α| ≤
H(α)−1 H−w(1+2ε)/(1+ε), then, by (2.6), we have

|P(ξ)| �n |ξ − α| · H(P) �n H−w(1+2ε/3) �n H−w−4ε/3,
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using that ε ≤ 1/2 and w ≥ 2. This gives a contradiction to (2.19) if H is large
enough. Consequently, we have

|ξ − α| > H(α)−1 M−v(1+2ε), (2.20)

provided that H is large enough.
Assume that there exists an algebraic number β of height at most M and

degree at most n which satisfies

|ξ − β| ≤ H(β)−1 M−v(1+2ε). (2.21)

It follows from (2.20) that β �= α. Liouville’s inequality (Theorem 2.2.9) then
gives

|P(β)| �n H−n+1 H(β)−m . (2.22)

By Rolle’s theorem and the fact that |ξ | ≤ 1, we have

|P(β)| ≤ |ξ − β| · max
t :|t |≤2

|P ′(t)| + |P(ξ)| ≤ m2m |ξ − β|H + H−w+ε. (2.23)

If H−w+ε ≥ |ξ − β| · H , then (2.22) and (2.23) imply

H(β)−m �n H n−1−w+ε

and, since H(β) ≤ Hw/(v(1+ε)), we get

v ≤ mw

(w + 1 − n − 2ε)(1 + ε)
, (2.24)

provided that H is large enough.
If H−w+ε ≤ |ξ − β| · H , then, by (2.21), (2.22) and (2.23), we get

H(β)−m+1 H−n �n H−w(1+2ε)/(1+ε),

hence,

H (m−1)w/(v(1+ε)) �n H−n+w(1+2ε)/(1+ε).

This implies

v ≤ (m − 1)w

w(1 + 2ε)− n(1 + ε)− ε
, (2.25)

provided that H is large enough. Consequently, no such algebraic number β
can exist unless v satisfies (2.24) and (2.25). We deduce that ŵ∗

n(ξ) < v(1+2ε)
as soon as v exceeds the left-hand sides of (2.24) and (2.25). Since ε can be
taken arbitrarily close to 0, this gives

ŵ∗
n(ξ) ≤ max

{ mw

w + 1 − n
,
(m − 1)w

w − n

}
= mw

w + 1 − n
,

using that w ≥ m + n − 1. This ends the proof of the theorem.
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Davenport and Schmidt [33] have given uniform upper bounds for the expo-
nents λ̂n and ŵn . Some of their results have been subsequently improved by
Laurent [47] and Bugeaud and Schleischitz [27]. For a positive real number
x , we denote by #x$ the smallest integer greater than or equal to x . The next
theorem gathers results obtained in [33, 47, 27].

Theorem 2.4.7 For any positive integer n and any transcendental real
number ξ , we have

λ̂n(ξ) ≤ 1

#n/2$ and ŵ∗
n(ξ) ≤ ŵn(ξ) ≤ n − 1

2
+
√

n2 − 2n + 5

4
.

The right-hand side of the last inequality can be written 2n − 3
2 + εn , where

εn is positive for n ≥ 3 and limn→+∞ εn = 0.
We refer to the original articles for a proof of Theorem 2.4.7 and content

ourselves to establish a weaker result.

Proof Davenport and Schmidt [33] established that ŵn(ξ) ≤ 2n−1, which is
weaker than the result given here and established in [27]. We only explain how
to get the easy estimate ŵ∗

n(ξ) ≤ 2n − 1. Let w < ŵ∗
n(ξ) be a real number. By

definition of ŵ∗
n , there exist arbitrarily large integers H and distinct algebraic

numbers α1, α2 of degree at most n such that H(α1) ≤ H(α2) ≤ H and

|ξ − α1| < H(α1)
−1 H−w, |ξ − α2| < H(α2)

−1 H−w.

This implies that |α1 − α2| < 2H(α1)
−1 · H−w, while Theorem 2.2.9

(Liouville’s inequality) gives that

|α1 − α2| �n H(α1)
−n · H(α2)

−n �n H(α1)
−1 · H−2n+1.

By combining these two inequalities, we deduce that w ≤ 2n − 1. This proves
the upper bound ŵ∗

n(ξ) ≤ 2n − 1. Arguing now with polynomials instead of
algebraic numbers, this can be strengthened to ŵn(ξ) ≤ 2n − 1, as was shown
in [33].

Theorem 2.4.7 has been improved for small values of n.

Theorem 2.4.8 For any transcendental real number ξ , we have

λ̂2(ξ) ≤
√

5 − 1

2
and ŵ2(ξ) ≤ 3 + √

5

2
, (2.26)
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and both inequalities are best possible. For any transcendental real number ξ ,
we have

λ̂3(ξ) ≤ 2 + √
5 −
√

7 + 2
√

5

2
= 0.4245 . . .

The bound for λ̂2(ξ) given in (2.26) was proved in [33] and the one for ŵ2 in
[2], whose authors were at that time unaware of Jarník’s result (Theorem 2.3.3).

The last assertion of Theorem 2.4.8 was proved by Roy [63], who improved
the estimate λ̂3(ξ) ≤ 1/2 given in Theorem 2.4.7. He further indicated that his
upper bound for the exponent is not best possible.

Roy [57, 59] showed that the inequalities (2.26) are sharp. The set of values
taken by the exponents ŵ2 and ŵ∗

2 has been studied in [22, 34, 35, 36, 60,
61, 62]. Among other results, we know that the spectrum of ŵ2 is dense in
[2, (3 + √

5)/2] and that there exists a real number c < (3 + √
5)/2 such that

the intersection of this spectrum with [c, (3 +√
5)/2] is countable.

We end this section with a recent result of Schleischitz [70].

Theorem 2.4.9 For any positive integer n and any transcendental real
number ξ , we have

λ̂n(ξ) ≤ max
{1

n
,

1

λ1(ξ)

}
.

Proof The theorem is clearly true if n = 1 or if λ1(ξ) = 1. Assume that
n ≥ 2 and that ξ is in (0, 1) with λ1(ξ) > 1. Let q be a large positive integer
and v be a real number greater than 1 such that q−v < min{ξ, 1 − ξ, 1/(2nq)}
and

‖qξ‖ ≤ q−v. (2.27)

Let p be the integer such that |qξ − p| = ‖qξ‖. Without any loss of generality,
we may assume that p and q are coprime. Observe that 0 < p/q < 1 and that,
for j = 1, . . . , n, we have∣∣∣ξ j − p j

q j

∣∣∣ = ∣∣∣ξ − p

q

∣∣∣ · ∣∣∣ξ j−1 + . . .+
( p

q

) j−1∣∣∣ ≤ n

q1+v
≤ 1

2q2 . (2.28)

Let v′ be a real number with 1 < v′ < min{v, n} and set X = qv′ . Let x be
a positive integer with x < X and express x in base q. There exist integers
b0, b1, . . . , bn−1 in {0, 1, . . . , q − 1} such that

x = b0 + b1q + b2q2 + . . .+ bn−1qn−1.
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Let u in {1, 2, . . . , n} be the smallest index such that bu−1 is non-zero. Then,

‖xpu/qu‖ = ‖bu−1 pu/q‖ ≥ 1/q. (2.29)

Furthermore, it follows from (2.28) and the fact that v′ < v that∣∣∣x(ξ u − pu

qu

)∣∣∣ ≤ nqv′

q1+v
<

1

2q
,

if q is sufficiently large. Denoting by y the nearest integer to xξ u , the triangle
inequality and (2.29) then give

max
1≤ j≤n

‖xξ j‖ ≥ ‖xξ u‖ =
∣∣∣( xpu

qu
− y
)
+ x
(
ξ u − pu

qu

)∣∣∣
≥ 1

q
− 1

2q
≥ 1

2q
= 1

2X1/v′ .

If (2.27) is satisfied for arbitrarily large integers q, this shows that

λ̂n(ξ) ≤ 1

v′
.

As v′ can be chosen arbitrarily close to min{λ1(ξ), n}, we have proved that

λ̂n(ξ) ≤ 1

min{λ1(ξ), n} = max
{1

n
,

1

λ1(ξ)

}
.

This completes the proof of the theorem.

We point out an immediate corollary of Theorem 2.4.9.

Corollary 2.4.10 For any positive integer n, any transcendental real number
ξ with w1(ξ) ≥ n satisfies ŵk(ξ) = k and λ̂k(ξ) = 1/k for k = 1, . . . , n.

Proof This follows from Theorem 2.4.9 combined with Theorem 2.3.2.

2.5 Spectra

This section is mainly devoted to the study of the spectra of the six exponents
of approximation defined in Section 2.2.

We begin with an auxiliary result, extracted from [16], which confirms the
existence of real numbers ξ for which w1(ξ) = wn(ξ), for any given integer
n ≥ 2.
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Theorem 2.5.1 Let n ≥ 1 be an integer. For any real number w ≥ 2n − 1,
there exist uncountably many real numbers ξ such that

w1(ξ) = w∗
1(ξ) = . . . = wn(ξ) = w∗

n(ξ) = w.

The spectra of wn and w∗
n include the interval [2n − 1,+∞].

Proof This is clear for w = n = 1. Let w > 1 be a real number. Let M be a
large positive integer and consider the real number ξw given by its continued
fraction

ξw = [0; 2, M qw−1
1 ", M qw−1

2 ", M qw−1
3 ", . . .],

where q1 = 2 and q j is the denominator of the rational number p j/q j =
[0; 2, M qw−1

1 ", . . . , M qw−1
j−1 "], for j ≥ 2. By construction, we have

q j+1 � Mqw
j and

∣∣∣∣ξw − p j

q j

∣∣∣∣ � 1

Mqw+1
j

,

for j ≥ 1. Consequently, we get

w = w1(ξw) ≤ . . . ≤ wn(ξw). (2.30)

Using triangle inequalities, it is shown in [16] that, if M is sufficiently large
and w ≥ 2n − 1, then

|P(ξw)| �n,M H(P)−w

holds for every polynomial P(X) of degree at most n and sufficiently large
height, hence wn(ξw) ≤ w and the inequalities in (2.30) are indeed equalities.
An additional argument is needed to show that w∗

1(ξ) = . . . = w∗
n(ξ) = w;

see [16] for the complete proof.

It would be desirable to replace the assumption w ≥ 2n − 1 (which is at
the moment the best known) in Theorem 2.5.1 by a weaker one. Actually, the
value 2n − 1 comes from Theorem 2.2.9 (Liouville’s inequality), which is
widely used in the proof of Theorem 2.5.1.

Theorem 2.5.1 is a key tool to get results on the spectra of various exponents
of approximation.

The next result, also established in [16], gives a relationship between the
exponents λn and λm when m divides n.
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Lemma 2.5.2 For any positive integers k and n, and any transcendental real
number ξ we have

λkn(ξ) ≥ λk(ξ)− n + 1

n
.

A similar inequality holds between the uniform exponents, but it gives noth-
ing interesting since λ̂k(ξ) ≤ 1 for every integer k ≥ 1 and every irrational
real number ξ .

Proof Let v be a positive real number and q be a positive integer such that

max
1≤ j≤k

|qξ j − p j | ≤ q−v,

for suitable integers p1, . . . , pk . Let h be an integer with 1 ≤ h ≤ kn. Write
h = j1 + . . .+ jm with m ≤ n and 1 ≤ j1, . . . , jm ≤ k. Then,

|qmξ h − p j1 . . . p jm | �m qm−1q−v

and

‖qnξ h‖ � qn−m‖qmξ h‖ �m qn−1−v �m (qn)−(v−n+1)/n,

independently of h. This proves the lemma.

We display an immediate consequence of Lemma 2.5.2.

Corollary 2.5.3 Let ξ be a real irrational number. Then, λn(ξ) = +∞ holds
for every positive integer n if, and only if, λ1(ξ) = +∞.

Combined with Theorems 2.2.5 and 2.4.6 and Corollary 2.4.10, Corollary
2.5.3 allows us to determine the values taken at Liouville numbers (recall that
a Liouville number is, by definition, a real number ξ satisfying w1(ξ) = +∞)
by our six exponents of approximation.

Corollary 2.5.4 For any positive integer n and any Liouville number ξ , we
have

wn(ξ) = w∗
n(ξ) = λn(ξ) = +∞,

ŵn(ξ) = n, ŵ∗
n(ξ) = 1, and λ̂n(ξ) = 1

n
.

The proof of Theorem 2.5.1 shows how the theory of continued fractions
allows us to construct explicitly real numbers ξ having any arbitrarily pre-
scribed value for λ1(ξ) (recall that λ1(ξ) = w1(ξ)). The same question for an
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exponent λn with n ≥ 2 is not yet solved. At present, the best known result
was proved in [16] and is reproduced below.

Theorem 2.5.5 Let n ≥ 2 be an integer and w ≥ n be a real number. If the
real number ξw satisfies w1(ξw) = . . . = wn(ξw) = w, then

λn(ξw) = w − n + 1

n
, ŵ∗

n(ξw) =
w

w − n + 1
,

and

λ j (ξw) = w − j + 1

j
, ŵ j (ξw) = j, j = 1, . . . , n.

Proof Let m ≥ 2 be an integer and ξ be a transcendental real number.
Lemma 2.5.2 with k = 1 implies the lower bound

λm(ξ) ≥ w1(ξ)− m + 1

m
.

On the other hand, Theorem 2.3.2 gives the upper bound

λm(ξ) ≤ wm(ξ)− m + 1

m
.

Let ξw be such that

w1(ξw) = . . . = wn(ξw) = w.

Then, the equalities

λm(ξw) = w − m + 1

m
, m = 1, . . . , n,

hold; in particular,

λn(ξw) = w − n + 1

n
,

and this establishes the first statement of the theorem.
Combining Theorem 2.2.6 with the case m = 1 of Theorem 2.4.6 gives

wn(ξw)

wn(ξw)− n + 1
≤ ŵ∗

n(ξw) ≤
w1(ξw)

w1(ξw)− n + 1
,

thereby proving the second statement of the theorem.
Without any loss of generality, assume that 0 < ξw < 1 and w > n ≥ 2. Let

ε be a real number satisfying 0 < ε < w − n. Let p/q be a rational number
such that q ≥ 1, gcd(p, q) = 1 and |ξw − p/q| < q−1−w+ε . Let P(X) be an
integer polynomial of degree j at most n and height at most q − 1. Observe
that P(p/q) is a non-zero rational number satisfying |P(p/q)| ≥ 1/q j .
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By Rolle’s theorem, there exists t lying between ξ and p/q such that

P(ξw) = P(p/q)+ (ξw − p/q)P ′(t).

Observe that |P ′(t)| ≤ 2nn2q and |ξw − p/q| · |P ′(t)| ≤ 1/(2qn), if q is large
enough. We then deduce that |P(ξw)| ≥ 1/(2q j ) if q is large enough. This
shows that ŵ j (ξw) = j , as asserted.

Theorem 2.5.5 allows us to get some information on the spectra of the
exponents λn and ŵ∗

n .

Theorem 2.5.6 For any positive integer n, the spectrum of λn includes the
interval [1,+∞], the spectrum of ŵ∗

n includes the interval [1, 2 − 1/n] and
the spectrum of ŵn − ŵ∗

n includes the interval [n − 2 + 1/n, n − 1].

Proof This has been already proved for n = 1. For n ≥ 2, the statement
follows from the combination of Theorem 2.5.1 with Theorem 2.5.5.

Recall that, by Theorem 2.3.1, the spectra of wn − w∗
n and of ŵn − ŵ∗

n are
included in [0, n − 1], for n ≥ 1. The first assertion of the next result was
proved by Bugeaud and Dujella [20] by means of an explicit construction of
families of polynomials with close roots.

Theorem 2.5.7 For any positive integer n, the spectrum of wn −w∗
n includes

the interval [
0,

n

2
+ n − 2

4(n − 1)

)
.

Moreover, the spectrum of w2 − w∗
2 is equal to [0, 1] and that of w3 − w∗

3 is
equal to [0, 2].

Explicit examples of real numbers ξ for which w2(ξ) exceeds w∗
2(ξ) can be

found in [18].
Very recently, Schleischitz [70] established that, under some extra assump-

tion, the inequality proved in Lemma 2.5.2 is indeed an equality.

Theorem 2.5.8 Let n be a positive integer and ξ be a real number. If
λn(ξ) > 1, then we have

λ1(ξ) = nλn(ξ)+ n − 1 (2.31)

and

λ j (ξ) = nλn(ξ)− j + n

j
, λ̂ j (ξ) = 1

j
, ( j = 1, . . . , n).
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Conversely, if λ1(ξ) > 2n − 1, then we have

λn(ξ) = λ1(ξ)− n + 1

n
(2.32)

and

λ̂ j (ξ) = 1

j
, ( j = 1, . . . , n). (2.33)

Proof Assume that ξ is in (0, 1) and satisfies λn(ξ) > 1. Let q be a large
positive integer and v be a real number greater than 1 such that q−v <

min{ξ, 1 − ξ, 1/(2nq)} and

max
1≤ j≤n

‖qξ j‖ ≤ q−v. (2.34)

Let p be the integer such that |qξ − p| = ‖qξ‖. Then, p and q may not be
coprime, but p/q is a convergent to ξ . Let d be the greatest prime factor of p
and q and set p0 = p/d and q0 = q/d. Observe that 0 < p/q < 1 and, for
j = 1, . . . , n, we have∣∣∣ξ j − p j

q j

∣∣∣ = ∣∣∣ξ − p

q

∣∣∣ · ∣∣∣ξ j−1 + . . .+
( p

q

) j−1∣∣∣ ≤ n

q1+v
≤ 1

2q2
. (2.35)

Assume that q < qn
0 and express q in base q0. Recalling that q0 divides q ,

there exist integers b1, . . . , bn−1 in {0, 1, . . . , q0 − 1} such that

q = b1q0 + b2q2
0 + . . .+ bn−1qn−1

0 .

Let u in {2, . . . , n} be the smallest index such that bu−1 is non-zero. Then,

‖qpu
0/qu

0 ‖ = ‖bu−1 pu
0/q0‖ ≥ 1/q0. (2.36)

Furthermore, it follows from (2.35) that∣∣∣q(ξu − pu

qu

)∣∣∣ = ∣∣∣q(ξ u − pu
0

qu
0

)∣∣∣ ≤ 1

2q
. (2.37)

Let y be the integer such that |qξ u − y| = ‖qξ u‖ and observe that

‖qξu‖ ≥
∣∣∣y − q

pu
0

qu
0

∣∣∣− ∣∣∣q(ξ u − pu
0

qu
0

)∣∣∣,
using the triangle inequality. Combined with (2.36) and (2.37), this gives

max
1≤ j≤n

‖qξ j‖ ≥ ‖qξ u‖ ≥ 1

q0
− 1

2q
≥ 1

2q
,

a contradiction to (2.34).



120 Y. Bugeaud

Consequently, b1 = . . . = bn−1 = 0 and we have established that q ≥
qn

0 (actually, our proof shows that q must be an integer multiple of qn
0 ). In

particular, we have

d ≥ qn−1
0 . (2.38)

Since

‖q0ξ‖ = |q0ξ − p0| = d−1‖qξ‖,
it follows from (2.34) and (2.38) that

‖q0ξ‖ ≤ q−n+1
0 q−nv

0 = q−nv−n+1
0 .

Since v can be taken arbitrarily close to λn(ξ), we deduce that

λ1(ξ) ≥ nλn(ξ)+ n − 1.

Combined with Lemma 2.5.2, this proves the first statement of the theorem.
In particular, we get λ1(ξ) > 2n −1, and it follows from Theorem 2.4.9 that

λ̂ j (ξ) = 1/j for j = 1, . . . , n.
Let j be an integer with 2 ≤ j ≤ n−1. Since λn(ξ) > 1, we have λ j (ξ) > 1

and λ1(ξ) = jλ j (ξ) + j − 1. Combined with (2.31), this gives jλ j (ξ) =
nλn(ξ)− j + n, as claimed.

If the real number ξ satisfies λ1(ξ) > 2n − 1, then we get by Lemma 2.5.2
that λn(ξ) > 1 and (2.32) and (2.33) follow from the first assertions of the
theorem.

The condition λn(ξ) > 1 in the statement of Theorem 2.5.8 cannot be
removed in view of Theorem 4.3 of [16], which confirms the existence of
uncountably many real numbers ξ satisfying λn(ξ) = 1 for every n ≥ 1.
Furthermore, Theorem 4.4 of [16] asserts that, for an arbitrary real number λ
in [1, 3], there exist uncountably many real numbers ξ satisfying λ1(ξ) = λ

and λ2(ξ) = 1.
We display an immediate consequence of Theorem 2.5.8.

Corollary 2.5.9 Let n be a positive integer and ξ be a transcendental real
number. Then, λn(ξ) > 1 holds if and only if λ1(ξ) > 2n − 1 holds.

The restriction w ≥ 2n − 1 in the statement of Theorem 2.5.1 prevents us
to get the whole spectra of the exponents wn and λn by the method described
above. Actually, we need the help of metric number theory to determine the
whole spectra of the exponents wn and λ2.
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Theorem 2.5.10 For any positive integer n, the spectrum of wn is equal to
the whole interval [n,+∞] and the spectrum of w∗

n includes the whole interval
[n,+∞].

The first statement of Theorem 2.5.10 was proved by Bernik [11] and the
second one is a result of Baker and Schmidt [5].

We display an immediate consequence of results by Beresnevich, Dickinson,
Vaughan and Velani [10, 81].

Theorem 2.5.11 The spectrum of λ2 is equal to [1/2,+∞].

More is known than the mere statement of Theorems 2.5.10 and 2.5.11.
Indeed, for an integer n ≥ 1 and a real number w ≥ n, the Hausdorff dimen-
sion of the set of real numbers ξ for which wn(ξ) = w (resp., w∗

n(ξ) = w)
is equal to (n + 1)/(w + 1). Furthermore, the Hausdorff dimension of the set
of real numbers ξ for which λ2(ξ) = λ is equal to 1/(1 + λ) if λ ≥ 1 and to
(2 − λ)/(1 + λ) if 1/2 ≤ λ ≤ 1.

The spectra of the exponents ŵn and λ̂n remain very mysterious for n ≥ 3,
since we cannot even exclude that they are, respectively, reduced to {n}
and {1/n} (recall that, by spectrum, we mean the set of values taken at
transcendental points).

For n = 2, the situation is slightly better. By Jarník’s Theorem 2.3.3, the
value of ŵ2 determines that of λ̂2, thus it is sufficient to determine the range of
ŵ2; see also Theorem 2.4.8.

As for the exponent ŵ∗
n , it is likely that its spectrum includes the interval

[1, n], but this is not yet proved.

2.6 Intermediate Exponents

Let n ≥ 2 be an integer and θ be a point in Rn . In [49], Laurent introduced new
exponents ωn,d(θ) (simply denoted by ωd(θ) in [49], since n is fixed through-
out that paper) measuring the sharpness of the approximation to θ by linear
rational varieties of dimension d. Actually, Schmidt [72] was the first to inves-
tigate the properties of these exponents ωn,d , but he did not introduce them
explicitly. We briefly recall their definition and we consider new exponents
wn,d defined over R by restricting ωn,d to the Veronese curve (x, x2, . . . , xn).
It is convenient to view Rn as a subset of Pn(R) via the usual embedding
(x1, . . . , xn) �→ (1, x1, . . . , xn). We shall identify θ = (θ1, . . . , θn) with its
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image in Pn(R). Denote by d the projective distance on Pn(R) and, for any
real linear subvariety L of Pn(R), set

d(θ, L) = min
P∈L

d(θ, P)

the minimal distance between θ and the real points P of L . When L is rational
over Q, we indicate by H(L) its height, that is the Weil height of any system
of Plücker coordinates of L . We refer to [49, 25] for precise definitions of the
projective distance, heights, etc.

Definition 2.6.1 Let n ≥ 2 and d be integers with 0 ≤ d ≤ n − 1. Let θ be in
Rn. We denote by ωn,d(θ) the supremum of the real numbers ω for which there
exist infinitely many rational linear subvarieties L ⊂ Pn(R) of dimension d
such that

H(L)d(θ, L) ≤ H(L)−ω.

We denote by ω̂n,d(θ) the supremum of the real numbers ω̂ such that, for every
sufficiently large value of H, there exists a rational linear subvariety L ⊂
Pn(R) of dimension d with

H(L)d(θ, L) ≤ H−ω̂.

If there exists ξ such that θ = (ξ, ξ2, . . . , ξ n), then we set wn,d(ξ) = ωn,d(θ)

and ŵn,d(ξ) = ω̂n,d(θ).

We observe that the functions λn and wn,0 (resp. wn and wn,n−1) coincide.
The exponents ω̂n,d were introduced in [24, 66].

The following transference theorem was proved in [72, 49]. It shows how the
Khintchine transference principle Theorem 2.3.2 splits into n − 1 intermediate
estimates which relate the exponents ωn,d(θ) for d = 0, 1, . . . , n − 1 (see
also [25]).

Theorem 2.6.2 Let n be a positive integer. For any non-zero vector θ in Rn,
we have ωn,0(θ) ≥ 1/n and

jωn, j (θ)

ωn, j (θ)+ j + 1
≤ ωn, j−1(θ) ≤ (n − j)ωn, j (θ)− 1

n − j + 1
, j = 1, . . . , n − 1,

with the convention that the left-hand side is equal to j if ωn, j (θ) is infinite.

Let the spectrum of the function ωn,d denote the set of values taken by the
exponents ωn,d(θ) when θ = (θ1, . . . , θn) ranges over Rn , with 1, θ1, . . . , θn

linearly independent over the rationals. Using a result of Jarník [39], Laurent
[49] established the following statement.
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Theorem 2.6.3 Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1.
For every ω in [(d + 1)/(n − d),+∞], there exists θ such that ωn,d(θ) = ω.
Furthermore, ωn,d(θ) = (d + 1)/(n − d) for almost all θ in Rn.

By means of the numbers ξw defined in the proof of Theorem 2.5.1, we get
some information on the spectra of the exponents wn,d .

Theorem 2.6.4 For n ≥ 2 and 0 ≤ d ≤ n −1, the spectrum of wn,d contains
the whole interval [(n + d)/(n − d),+∞] and wn,d(ξ) = (d + 1)/(n − d) for
almost all real numbers ξ .

Theorem 2.6.4 plainly includes the last assertion of Theorem 2.5.1 and the
first assertion of Theorem 2.5.6.

Proof We follow the proof of the Corollary from [49], where it is established
that, for any λ with 1/n ≤ λ ≤ +∞ and for any point θ in Rn such that
ωn,0(θ) = λ and ωn,n−1(θ) = nλ+ n − 1, we have

ωn,d(θ) = nλ+ d

n − d
, (d = 0, 1, . . . , n − 1). (2.39)

For w ≥ 2n − 1, the numbers ξw defined in the proof of Theorem 2.5.1 satisfy

nλn(ξw) = wn(ξw)− n + 1 = w − n + 1,

that is,

ωn,n−1(ξw, . . . , ξ
n
w) = nωn,0(ξw, . . . , ξ

n
w)+ n − 1.

We then get from (2.39) that

wn,d(ξw) = nλn(ξw)+ d

n − d
, (d = 0, 1, . . . , n − 1).

The first assertion of the theorem follows since λn(ξw) takes every value
between 1 and +∞ as w varies from 2n−1 to +∞. The second assertion is an
immediate consequence of (2.39) and the fact that nλn(ξ) = wn(ξ)−n+1 = 1
holds for almost every real number ξ .

We conclude this section by mentioning that Laurent [48] determined the
set of values taken by the quadruple of functions (ω2,0, ω2,1, ω̂2,0, ω̂2,1) at real
points.
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2.7 Parametric Geometry of Numbers

In 2009, Schmidt and Summerer [75, 76] introduced a new theory, called
the parametric geometry of numbers. They studied the joint behaviour of
the n + 1 successive minima of certain one parameter families of convex
bodies in Rn+1, as a function of the parameter. They further showed how
their results allow them to recover classical inequalities relating various expo-
nents of Diophantine approximation attached to points in Rn and to find
new relations. Some aspects of their theory have been simplified and com-
pleted by Roy [65], who was then able to derive several spectacular results
[66, 67].

Let n be a positive integer and θ be a non-zero vector in Rn+1. For each real
number Q ≥ 1, we form the convex body

Cθ (Q) = {x ∈ Rn+1 ; ‖x‖2 ≤ 1, |x · θ | ≤ Q−1},
where | · | denotes the scalar product and ‖ · ‖2 the Euclidean norm. For
j = 1, . . . , n + 1, we denote by λ j

(
Cθ (Q)

)
the j th successive minimum of

Cθ (Q), namely the smallest positive real number λ such that λCθ (Q) contains
at least j linearly independent points of Zn+1. Schmidt and Summerer [76]
defined

Lθ, j (q) = log λ j (Cθ (e
q)), q ≥ 0, 1 ≤ j ≤ n + 1,

and considered the map Lθ : [0,∞) → Rn+1 given by

Lθ (q) = (Lθ,1(q), . . . , Lθ,n+1(q)), q ≥ 0.

They established many properties of this map. For instance, each of its com-
ponents Lθ, j : [0,+∞) → R is continuous and piecewise linear with slopes 0
and 1. Schmidt and Summerer showed that every function Lθ can be approx-
imated up to bounded difference by functions from a certain class, and Roy
[65] showed that the same property holds within a simpler class.

For j = 1, . . . , n + 1, Roy [66] also introduced

ψ
j
(θ) = lim inf

q→+∞
Lθ,1(q)+ · · · + Lθ, j (q)

q

and

ψ j (θ) = lim sup
q→+∞

Lθ,1(q)+ · · · + Lθ, j (q)

q
.

The following result, established in [66], relates these quantities to those
introduced in the previous section.
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Proposition 2.7.1 Let n be a positive integer and θ = (1, θ1, . . . , θn) be a
vector in Rn+1. For j = 0, . . . , n − 1, we have

ωn, j ((θ1, . . . , θn)) = 1

ψ
n− j

(θ)
− 1 and ω̂n, j ((θ1, . . . , θn)) = 1

ψn− j (θ)
− 1.

We quote below the main result of [66] and observe that it implies the first
statement of Theorem 2.6.3.

Theorem 2.7.2 Let n be a positive integer. For any ω0, . . . , ωn−1 ∈ [0,+∞]
satisfying ω0 ≥ 1/n and

jωn, j

ωn, j + j + 1
≤ ωn, j−1 ≤ (n − j)ωn, j − 1

n − j + 1
, 1 ≤ j ≤ n − 1,

there exists a point θ ∈ Rn, whose coordinates are, together with 1, linearly
independent over Q, such that

ωn, j (θ) = ω j and ω̂n, j (θ) = j + 1

n − j
, 0 ≤ j ≤ n − 1.

Furthermore, the point of view of parametric geometry of numbers
has led Schmidt and Summerer to introduce the following exponents of
approximations.

Definition 2.7.3 Let θ = (θ1, . . . , θn) be in Rn. For i = 1, . . . , n + 1, we
denote by λi,n(θ) (resp. λ̂i,n(θ)) the supremum of the real numbers λ such that
the system of inequalities

0 < |x0| ≤ X, max
1≤ j≤n

|x0θ j − x j | ≤ X−λ

has i linearly independent solutions (x0, x1, . . . , xn) in Zn for arbitrarily large
X (resp. for every sufficiently large X).

Schmidt and Summerer [76] observed that λ1,n(θ) = λn(θ), λ̂1,n(θ) =
λ̂n(θ), λn+1,n(θ) = 1/ŵn(θ) and λ̂n+1,n(θ) = 1/wn(θ), by Mahler’s theorem
on polar reciprocal bodies [53].

These exponents have been studied by Schleischitz [68, 71].
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2.8 Real Numbers Which Are Badly Approximable by
Algebraic Numbers

This short section is devoted to Problems 24 and 25 of [15], which were solved
by Badziahin and Velani [4] for n = 2 and by Beresnevich [8] for n ≥ 3.

Recall that an irrational real number ξ is called a badly approximable
number if there exists a positive real number c such that

|qx − p| > c

|q| , for every p, q in Z with q �= 0.

This notion can be extended as follows.

Definition 2.8.1 Let n be a positive integer. A real number ξ is called n-badly
approximable if there exists a positive constant c(ξ, n) such that

|P(ξ)| ≥ c(ξ, n)H(P)−n for any integer polynomial P(X) of degree ≤ n.

Observe that it follows from Liouville’s inequality (Theorem 2.2.9) that, for
any positive integer n, any real algebraic number of degree n + 1 is n-badly
approximable.

Davenport [30] asked whether there exist 2-badly approximable transcen-
dental real numbers. His question remained open for nearly fifty years, until
it was finally solved by Badziahin and Velani [4], using an intricate con-
struction inspired by their proof [3] of a conjecture of Schmidt. Their result
was subsequently extended a few years later by Beresnevich [8], who con-
firmed the existence of n-badly approximable transcendental real numbers, for
every given positive integer n. For n = 2, his proof differs greatly from that
of [4].

A closely related problem deals with transcendental numbers badly approx-
imable by algebraic numbers of degree at most equal to some integer n. As
well, it has been solved by Badziahin and Velani [4], for n = 2, and by
Beresnevich [8], for n ≥ 3.

Theorem 2.8.2 Let n be a positive integer. There exist transcendental real
numbers ξ which are n-badly approximable and for which there exist positive
real numbers c1(ξ, n) and c2(ξ, n) such that

|ξ − α| ≥ c1(ξ, n) H(α)−n−1,

for any real algebraic number α of degree ≤ n,

and
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|ξ − α| ≤ c2(ξ, n) H(α)−n−1,

for infinitely many real algebraic numbers α of degree ≤ n.

Moreover, the set of real numbers with this property has full Hausdorff
dimension.

Actually, Beresnevich [8] established that any intersection of finitely many
of the sets arising in Theorem 2.8.2 has full Hausdorff dimension.

2.9 Open Problems

In Chapter 10 of [15] we listed several open questions. As we have already
seen above, some of them have now been solved. We gather below some of the
still open problems mentioned in [15], and add a few supplementary ones.

We begin with the conjecture of Wirsing [82] dealing with the approxima-
tion of real transcendental numbers by real algebraic numbers of bounded
degree. This celebrated open problem has motivated many works in this
area.

Problem 2.9.1 (Wirsing’s Conjecture) For any integer n ≥ 1 and for any
real transcendental number ξ , we have w∗

n(ξ) ≥ n.

We may even ask for a stronger version of Wirsing’s conjecture, namely
whether, for any positive integer n and any real transcendental number ξ , there
exist a constant c(ξ, n) and infinitely many real algebraic numbers α of degree
less than or equal to n such that

|ξ − α| ≤ c(ξ, n) H(α)−n−1.

Davenport and Schmidt [31] gave a positive answer to this question in the
case n = 2; see Theorem 2.4.2. Theorem 2.8.2 implies that their result is best
possible up to the value of the numerical constant. However, we do not know if
we can fix the exact degree of the approximants instead of just an upper bound
for it.

Problem 2.9.2 For any integer n ≥ 2 and any real transcendental number ξ ,
there exist a constant c(ξ, n) and infinitely many real algebraic numbers α of
degree exactly n such that

|ξ − α| ≤ c(ξ, n) H(α)−n−1.
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Results of Roy [58, 59] could speak in favour of the existence of transcen-
dental numbers which do not satisfy the conclusion of Problem 2.9.2, even for
n = 2.

The next problem was called the ‘Main Problem’ in [15].

Problem 2.9.3 Let (wn)n≥1 and (w∗
n)n≥1 be two non-decreasing sequences

in [1,+∞] such that

n ≤ w∗
n ≤ wn ≤ w∗

n + n − 1, for any n ≥ 1.

Then there exists a real transcendental number ξ such that

wn(ξ) = wn and w∗
n(ξ) = w∗

n for any n ≥ 1.

Since Problem 2.9.3 does not take the exponents λn into account, we propose
a more general formulation.

Problem 2.9.4 For n ≥ 2, determine the joint spectrum of the triple of expo-
nents (wn, w

∗
n , λn), that is, the set of triples (wn(ξ), w

∗
n(ξ), λn(ξ)), when ξ

runs through the set of transcendental real numbers.

Theorem 2.3.2 shows how the exponents λn are related to the exponents wn

by means of a transference theorem.

Problem 2.9.5 Let n ≥ 2 be an integer, λn ≥ 1/n and wn ≥ n be real
numbers satisfying

wn

(n − 1)wn + n
≤ λn ≤ wn − n + 1

n
.

There exist real numbers ξ such that wn(ξ) = wn and λn(ξ) = λn.

Corollary 2.2.7 asserts that w∗
n(ξ) = n holds if wn(ξ) = n, but the converse

is an open question.

Problem 2.9.6 For any positive integer n, we have wn(ξ) = n if w∗
n(ξ) = n.

We now consider uniform exponents.

Problem 2.9.7 Does there exist ξ such that ŵ2(ξ) > 2 and ŵ2(ξ) > ŵ∗
2(ξ)?

Problem 2.9.8 The spectrum of ŵ∗
2 includes the interval [1, 2].
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Problem 2.9.9 For any integer n ≥ 3 and any real transcendental number
ξ , we have ŵn(ξ) = n. At least, obtain a better upper bound than ŵn(ξ) ≤
n − 1

2 +
√

n2 − 2n + 5
4 .

Approximation by algebraic integers (i.e. by algebraic numbers, whose min-
imal defining polynomial over Z is monic) has been first studied by Davenport
and Schmidt [33]. The next problem is the analogue of Wirsing’s conjecture
for approximation by algebraic integers.

Problem 2.9.10 For any integer n ≥ 4, any positive real number ε, and any
real transcendental number ξ , there exist a constant c(ξ, n, ε) and infinitely
many real algebraic integers α of degree less than or equal to n such that

|ξ − α| ≤ c(ξ, n, ε) H(α)−n+ε.

Roy [58] proved the existence of real numbers ξ which are very badly
approximable by quadratic integers, in the sense that they satisfy

|ξ − α| > cH(α)−(1+√
5)/2,

for some positive real number c and every real quadratic number α. His result
shows that the conclusion of 2.9.10 does not hold for n = 3.

In view of auxiliary results from [33], the answer to Problem 2.9.10 is pos-
itive for some integer n ≥ 4 if one can prove that any real transcendental
number ξ satisfies ŵn−1(ξ) = n − 1.

Despite the recent, spectacular progress made in [4, 8], the following
problem remains open.

Problem 2.9.11 There exist a real transcendental number ξ and a sequence
(c(ξ, n))n≥1 of positive real numbers such that

|P(ξ)| ≥ c(ξ, n) H(P)−n

for any integer n and any polynomial P(X) of degree ≤ n.

It is likely that the answer to Problem 2.9.11 is positive and that, moreover,
the set of real numbers ξ with this property has full Hausdorff dimension.

We continue with a problem proposed by Schleischitz [70], which corrects
and refines a problem posed in [16].

Problem 2.9.12 Let m, n be integers with 1 ≤ n ≤ m. Does the inequality

λm(ξ) ≥ nλn(ξ)− m + n

m
hold for every transcendental real number ξ?
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The next problem extends a question posed by Beresnevich, Dickinson, and
Velani [9] in the case of (simultaneous) rational approximation.

Problem 2.9.13 Let n be a positive integer and let τ > 1 be real. Is the set
of real numbers ξ for which there exists a positive constant c(ξ) such that

|ξ − α| ≤ H(α)−τ(n+1),

for infinitely many algebraic numbers α of degree ≤ n,

and

|ξ − α| ≥ c(ξ) H(α)−τ(n+1),

for every algebraic number α of degree ≤ n,

non-empty? If yes, determine its Hausdorff dimension.

Problem 2.9.13 has been solved [14] when n = 1. One may also replace
the approximation functions x �→ x−τ(n+1) by more general non-increasing
functions.

Problems 2.9.14 and 2.9.15 deal with metrical results.

Problem 2.9.14 Let n ≥ 2 be an integer. Let λn be a real number with λn ≥
1/n. Determine the Hausdorff dimension of the set of real numbers ξ such that
λn(ξ) = λn.

Problem 2.9.15 Determine the Hausdorff dimension of the set of real
numbers ξ such that ŵ2(ξ) > 2 (resp. ŵ∗

2(ξ) > 2).

Let m ≥ 2 be an integer. According to LeVeque [50], a real number ξ is a
Um-number if wm(ξ) is infinite and wm−1(ξ) is finite. Furthermore, the U1-
numbers are precisely the Liouville numbers.

It is proved in [1] (see also Section 7.6 of [15]) that, for any integer m ≥ 2,
there exist uncountably many real Um -numbers ξ with

w∗
n(ξ) ≤ m + n − 1, for n = 1, . . . ,m − 1. (2.40)

Schmidt [74] showed that w∗
n(ξ) can be replaced by wn(ξ) in (2.40).

Problem 2.9.16 Let m ≥ 2 be an integer. There exist real Um-numbers ξ

satisfying wn(ξ) = n, for n = 1, . . . ,m − 1.

Corollary 2.5.4 shows that the values taken by our exponents of approxima-
tion at U1-numbers are known.
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Problem 2.9.17 Let m and n be integers with n ≥ m ≥ 2. Study the values
taken by the exponents of approximation λn, ŵ∗

n , . . . at Um-numbers.

Among many questions concerning the exponents wn,d and ŵn,d defined in
Section 2.6, let us point out the following three ones.

Problem 2.9.18 Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1.
Find a real number Cn,d as small as possible such that every transcendental
real number ξ satisfies ŵn,d(ξ) ≤ Cn,d .

Problem 2.9.19 Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Is
the spectrum of the function wn,d equal to [(d + 1)/(n − d),+∞] ?

A positive answer of Problem 2.9.19 would (probably) follow from the
resolution of the next problem.

Problem 2.9.20 Let d and n be integers with n ≥ 2 and 0 ≤ d ≤ n − 1. Let
w be a real number satisfying w > (d + 1)/(n − d). Determine the Hausdorff
dimension of the sets

{ξ ∈ Rn : ωn,d(ξ) ≥ w}
and

{ξ ∈ R : wn,d(ξ) ≥ w}.

Throughout this survey, we focused our attention on approximation to real
numbers. However, we may as well consider approximation to complex num-
bers or to p-adic numbers; see the references given in Chapter 9 of [15] and
the works [21, 83, 17, 13, 7, 43, 26].

There are as well several recent papers on uniform Diophantine approxima-
tion on curves in R2; see [51, 64, 6].
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3

Effective Equidistribution of Nilflows and
Bounds on Weyl Sums

Giovanni Forni

Abstract

In these lectures we will present an approach developed in collaboration with
L. Flaminio in [FF2], [FF3], [FF4], to effective equidistribution for nilflows,
based on representation theory and renormalization or scaling. Bounds on
Weyl sums can be derived from equidistribution bounds on nilflows.

Our bounds on Weyl sums are comparable with the best available bounds to
date, obtained by T. D. Wooley [Wo2], [Wo3], [Wo4], [Wo5], at least as far as
behavior of the exponent of the power function for large degree is concerned,
but are significantly weaker than Wooley’s as they only hold almost everywhere
(that is, for almost all coefficients of lower degree for polynomials with a given
Diophantine leading coefficient). However, our effective distribution results on
nilflows are more general and our approach can in principle be generalized
to other homogeneous flows and higher-rank actions (see, for instance, [BF],
[CF], [FF1], [FFT]). Moreover, uniform bounds with respect to coefficients
of lower degree of the polynomial are reduced to uniform estimates on the
average rate of close returns for nilflows.

We were so far unable to prove the conjectural uniform bounds on close
returns (except for step-2 and step-3 nilflows) which would immediately imply
corresponding uniform bounds on Weyl sums (under Diophantine conditions
on the leading coefficient). Our proof therefore relies in general on a Borel–
Cantelli argument based on the maximal ergodic theorem, which can only
prove almost everywhere bounds or bounds on L p mean for all p ∈ [1, 2).
In the special case of 2-step and 3-step filiform nilflows we are able to prove
uniform bounds, although in this case the classical Weyl bounds (respectively
for polynomials of degree 2 and 3) are still the best available.
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3.1 Introduction

We summarize known results on the effective equidistribution of nilflows and
on bounds on Weyl sums and state our main results.

Bounds on Weyl Sums

The problem of bounds on Weyl sums has a long history going back at least
a century to the seminal work of Hardy and Littlewood [HL] on the circle
method followed by the work of H. Weyl [We] on the exponential sums which
now bear his name.

Weyl sums are exponential sums for polynomials sequences. Let

Pk(a, X) := ak Xk + · · · + a1 X + a0

be a polynomial of degree k ≥ 2 with real coefficients a := (ak, . . . , a0) ∈
Rk+1. The Weyl sums for the polynomial sequence {Pk(a, n)|n ∈ N} are
defined, for all N ∈ N, as the exponential sums

WN (ak, . . . , a0) :=
N−1∑
n=0

e2π i Pk(a,n).

Weyl sums for quadratic polynomials, often called Gaussian sums or theta
sums, are very well understood. In particular it has been proved that they
display square root cancellations for Roth-type irrational coefficients [HL],
[FJK], [FK]. More recently several results have been proved about limit their
distributions [Ma], [GM], [CM]. These results are based on the self-similarity
properties of exponential sums of quadratic polynomials [HL], [FK], which are
related to the existence of a renormalization for 2-step (Heisenberg) nilflows
introduced in [FF2] and presented in these lectures.

Weyl sums for higher-degree polynomials are much harder to estimate
and, despite recent advances, no definitive results are known. In this case,
no self-similarity of the exponential sums is known. The absence of self-
similarity of exponential sums for higher-degree polynomials is related to
the absence of renormalization for higher-step nilflows. The main goal of
these lectures is to outline a generalization of the renormalization method
from the renormalizable case of 2-step nilflows to the non-renormalizable
case of higher-step nilflows. This effort is motivated by questions of effec-
tive equidistribution for general unipotent flows for which no renormalization
is known (with the exception of linear toral flows, horocycle flows, Heisenberg
nilflows).
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Results in the analytic number theory literature are often formulated as
follows. Let

W (k)
N (ak) := max

ak−1,...,a0
|WN (ak, . . . , a0)|.

The Weyl exponent wk is the supremum of all w > 0 such that if there exists
p/q with (p, q) = 1, |ak − p/q| < 1/q2 and N ≤ q ≤ N k−1, then

W (k)
N (ak) = O(N 1−w).

It is interesting to derive corresponding bounds on Weyl sums under classi-
cal Diophantine conditions. We recall that ak ∈ DCν for ν ≥ 1 if there exists
a constant C := C(ak) > 0 such that

|qak − p| ≥ C

qν
.

An elementary argument based on the theory of continued fractions gives that
for all ε > 0 and for all ak ∈ DCν with ν ≤ k − 1 + ε we have

W (k)
N (ak) = Oε(N

1−wk+ε).

We recall some landmark results on the Weyl exponent:

● 1/wk ≤ 2k−1 for all k ≥ 2 (Weyl [We], see also [Va]);
● 1/wk ≤ (4 + o(1))k2 log k for large k >> 2 (Hua [Hu]);
● 1/wk ≤ ( 3

2 + o(1))k2 log k for large k >> 2 (Wooley [Wo1]);
● 1/wk ≤ 2(k − 1)(k − 2) for k ≥ 3 (Wooley [Wo5]).

All improvements on Weyl’s bound for large k >> 2 were derived from
Vinogradov mean value theorem [Vi] and its refinements. To the author’s best
knowledge, for small k ≥ 2 (say k ≤ 5) the Weyl’s bound is still unsurpassed
in general. The best available bounds to date follow from the efficient congru-
encing approach to the Vinogradov mean value theorem recently introduce by
Wooley [Wo2], [Wo3]. Wooley’s best result to date in fact states in particular
that for any p/q with (p, q) = 1, such that |ak− p/q| < 1/q2, one has ([Wo5],
Theorem 7.3)

W (k)
N (ak) = Oε

(
N 1+ε(q−1 + N−1 + q N−k)1/2(k−1)(k−2)

)
.

The most optimistic conjecture on Weyl sums, inspired by the optimal bounds
available for quadratic polynomials (k = 2), can be stated as follows (see for
instance [Bo], [Va]). If there exists p/q with (p, q) = 1, |ak − p/q| < 1/q2

and N ≤ q ≤ N k−1, then for every ε > 0 we have the conjectural bound

W (k)
N (ak) = Oε

(
N 1+ε(q−1 + q N−k)1/k

)
.
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The conjecture easily implies 1/wk ≤ k, a result much stronger than the best
bounds available mentioned above. It is also remarkable that square root can-
cellations would follow whenever ak is a Roth-type irrational, that is, whenever
ak ∈ DCν for all ν > 1. In fact, in that case it easy to derive that we would
have

W (k)
N (ak) = Oε(N

1
2+ε).

It is unclear whether the most optimist conjecture holds. However, square
root cancellations indeed occur for a full measure set of polynomials. In fact,
a general result in theory of uniform distribution (modulo 1) of sequences
(Erdös–Gál–Koksma) implies such that the following bound holds. For any
sequence x := {xn} of real numbers and for all N ∈ N the N th discrepancy
(modulo 1) of x is the number (see [DT], Def. 1.5)

DN (x) = DN (x0, . . . , xN−1) := sup
I⊂T

| 1

N

N−1∑
n=0

χI ({xn})− Leb(I )|.

(In the above formula χI denotes the characteristic function of the interval
I ⊂ T and {x} ∈ [0, 1) denotes the fractional part of x ∈ R).

For every fixed vector (ak−1, . . . , a0) there exists a full measure set of ak

such that for the vector of coefficients a = (ak, . . . , a0) the sequence DN (a)
of discrepancies of the polynomial sequence {P(a, n)|n ∈ N} satisfies the
following bound (see [DT], Theorem 1.158): for all ε > 0,

DN (a) = Oε(N
−1/2(log N )5/2+ε) , for all N ∈ N.

It is unclear whether the full measure set in the above result can be fixed inde-
pendently of the vector (ak−1, . . . , a0) and whether it can be described in terms
of classical Diophantine conditions.

Effective Equidistribution of Nilflows

The problem of effective equidistribution of nilflows has a much more recent
history. The relation between Weyl sums and skew-shifts over rotations (which
are return maps of nilflows) already appears in the work of H. Furstenberg [Fu],
who derived basic qualitative results on Weyl sums from a proof of unique
ergodicity of skew-shifts. This relation is described in detail in these lectures
(see Section 3.2). A general theory on the effective equidistribution of poly-
nomial sequences on nilmanifolds has been developed by B. Green and T. Tao
[GT1] in their work on the Möbius and Nilsequences conjecture [GT2]. For nil-
flows it implies the following result. Let {φX

t } denote a nilflow on a nilmanifold
M := �\N , that is, a flow generated by a smooth vector field X on M induced
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by a left-invariant vector field on the nilpotent group N . If the projected linear
toral flow has a Diophantine frequency, then there exist a constant C > 0 and
an exponent δ ∈ (0, 1) such that, for all Lipschitz function f on M and for all
(x, T ) ∈ M × R+ we have

| 1

T

∫ T

0
f ◦ φX

t (x)dt −
∫

M
f dvol| ≤ C‖ f ‖LipT−δ.

The approach of the Green and Tao is a far-reaching extension of Weyl’s
method to estimate Weyl sums, based on the van der Corput inequality (see
[GT1], Lemma 4.1). It is therefore based on the special structure of nilflows as
successive Abelian extensions of linear flows on tori. It is unclear what is the
best exponent accessible by this method in the general case as it is not explic-
itly derived in the paper. It is reasonable to assume that it would be similar to
Weyl’s bound on Weyl sum stated above, hence it would decay exponentially
with respect to k ≥ 2 for k-step nilmanifolds.

In these lectures we shall be concerned with similar effective ergodicity
results with emphasis on optimal exponents and on methods which can be in
principle be generalized to other classes of homogeneous flows.

Statement of Results

We state below our results for Heisenberg nilflows. This is the main 2-step
case and it is related to Weyl sums for quadratic polynomials. Our results hold
for general functions on a nilmanifold M which are sufficiently smooth in the
Sobolev sense. For every σ ∈ R, let Wσ (M) denote the usual Sobolev space
[Ad], [He] of functions on the compact manifold M .

Theorem 3.1.1 There exists a set B of full Hausdorff dimension (and zero
measure) of vector fields on an Heisenberg nilmanifold M (the set B consists of
all flows which project onto a linear toral vector field with slope an irrational
number of bounded type) such that the following holds. For every σ > 5/2 and
for every X ∈ B, there exists a constant Cσ (X) > 0 such that, for all function
f ∈ W σ (M) and all (x, T ) ∈ M × R+, we have

| 1

T

∫ T

0
f (φX

t (x))dt −
∫

M
f dvol| ≤ Cσ (X)‖ f ‖σ T−1/2.



Effective Equidistribution of Nilflows and Bounds on Weyl Sums 141

Theorem 3.1.2 Let β : [1,+∞) → R+ be any non-decreasing function
satisfying the integral condition∫ +∞

1

1

Tβ4(T )
dT < +∞.

There exists a full measure set Fβ of vector fields on an Heisenberg nilmanifold
M such that the following holds. For every σ > 5/2 and for every X ∈ Fβ ,
there exists a constant Cσ (X) > 0 such that, for all function f ∈ W σ (M) and
for all (x, T ) ∈ M × R+, we have

| 1

T

∫ T

0
f (φX

t (x))dt −
∫

M
f dvol| ≤ Cσ (X)‖ f ‖σ T −1/2β(T ).

For quadratic Weyl sums (theta-series) the above result was first established
by H. Fiedler, W. Jurkat, and O. Körner [FJK] who also proved that it is opti-
mal, in the sense that if the function β does not satisfy the above integral
condition, then the set of flows for which the conclusion of the theorem holds
has measure zero. We remark that in the logarithmic scale we can have

β(T ) = (log T )
1
4+δ , for any δ > 0 ,

while the original result of Hardy and Littlewood [HL] established a weaker
bound for

β(T ) = (log T )
1
2+δ , for any δ > 0.

For any higher-step filiform nilflow we have the following weaker result.

Theorem 3.1.3 Let {φX
t } be a nilflow on a k-step filiform nilmanifold M

which projects to a linear toral flow on T2 with Diophantine frequency of expo-
nent ν ∈ [1, k/2]. Let σ > k2. For every ε > 0 there exists a full measure set
Gε ⊂ M of good points and a measurable function Kσ,ε : Gε → R+, with
Kσ,ε ∈ L p(M) for every p ∈ [1, 2[, such that for every function f ∈ W σ (M)

and for all (x, T ) ∈ Gε × R+ we have∣∣∣∣ 1T
∫ T

0
f ◦ φX

s (x) ds −
∫

M
f vol

∣∣∣∣ ≤ Kσ,ε(x)T
− 2

3(k−1)k +ε‖ f ‖σ .

A slight refinement of the above theorem, derived from the remark that the
set of good points is invariant under the action on M of the center Z := Z(G)

of the nilpotent group G and under the action on M/Z of the center Z(G/Z)
of the quotient group G/Z , implies the following bound on Weyl sums:
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Corollary 3.1.4 Let ak ∈ R�Q be a Diophantine number of exponent
ν ≤ k/2. For every ε > 0, there exists a measurable positive function
Kε ∈ L p(Tk−2), for all p ∈ [1, 2), such that the following bound holds. For
all a0, a1 ∈ R2, for almost all (a2, . . . , ak−1) ∈ Rk−2 and for every N ≥ 1,

|WN (ak, . . . , a0)| ≤ Kε(a2, . . . , ak−1)N
1− 2

3k(k−1)+ε
.

It is quite remarkable that the best exponent accessible by our approach,
which is determined by the optimal scaling of invariant distributions, essen-
tially coincides with the exponent derived in the work of Wooley [Wo2] by
entirely different methods. Our argument in fact proves bounds on ergodic
averages under a quantitative condition on close returns of orbits of filiform nil-
flows. It is reasonable to conjecture that such a condition holds for all points,
hence the bound is uniform (as in Wooley’s theorem). However, so far we
have only been able to prove by a Borel–Cantelli argument that the set of
good points has full measure (with the exception of the case of 3-step fili-
form nilflows, for which we prove a uniform bound in these lectures). In a
recent paper, Wooley [Wo6] has been able to derive, from his mean value theo-
rem by a Borel–Cantelli argument, a much stronger bound on Weyl sums, with
nearly square root cancellation for large degree, for a full measure set of coef-
ficients. It would be interesting to derive corresponding results for (filiform)
nilflows.

In the case of 3-step filiform nilflows we are able to prove by our approach
the following uniform bounds:

Theorem 3.1.5 Let {φX
t } be a nilflow on a 3-step filiform nilmanifold M

which projects to a toral linear flow on T2 with Diophantine frequency of Roth
type. For every σ > 6 and for every ε > 0 there exists a constant Cσ,ε(X) > 0
such that the following holds: for all function f ∈ Wσ (M) and all (x, T ) ∈
M × R+, we have

| 1

T

∫ T

0
f (φX

t (x))dt −
∫

M
f dvol| ≤ Cσ,ε(X)‖ f ‖σ T − 1

6+ε.

3.2 Nilflows and Weyl Sums

We recall the classical theory of nilflows, which states in particular that all nil-
flows with minimal toral projection are minimal and uniquely ergodic. In these
lectures we will focus mainly on the special case of filiform nilflows, although
our results in [FF4] are proved for a wider class of nilflows on nilmanifolds
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which we call quasi-Abelian. We then recall the well-known relation of nil-
flows to skew-shifts on tori and to Weyl sums. Filiform nilflows are enough for
applications to classical Weyl sums.

Nilflows
Let N be a connected, simply connected nilpotent Lie group and � ⊂ N be
a co-compact lattice. The quotient space M = �\N is called a nilmanifold.
A nilflow on M is the flow generated by a left-invariant vector field corre-
sponding to an element X of Lie algebra n of N , that is, it is the flow {φX

t }t∈R

defined as

φX
t (�x) = �x exp(t X) , for all (x, t) ∈ N × R.

Any nilflow on M is volume-preserving, namely, it preserves the (normalized)
volume measure vol on M induced by the Haar measure on the nilpotent group
N . Let N̄ := N/[N , N ] denote the Abelianized group and �̄ := �/[�,�]
denote the Abelianized lattice. The quotient manifold M̄ is therefore a torus.
There exists a canonical projection π : M → M̄ which maps the nilflow
{φX

t }t∈R onto a linear toral flow {ψ X̄
t }t∈R, generated by the projection X̄ :=

π∗(X) of the vector field X onto the Abelian Lie algebra n̄ of the Abelian Lie
group N̄ .

The topological dynamics and ergodic theory of nilmanifolds are reduced to
the corresponding theories for linear toral flows (hence circle rotations) by the
following now classical theorem.

Theorem 3.2.1 ([Gr], [AGH]) The following conditions are equivalent:

1. The nilflow ({φX
t }t∈R, vol) is ergodic.

2. The nilflow {φX
t }t∈R is uniquely ergodic.

3. The nilflow {φX
t }t∈R is minimal.

4. The projected flow {ψ X̄
t }t∈R is an irrational linear flow on a torus and hence

(uniquely) ergodic and minimal.

In fact, more is true: the projected flow {ψ X̄
t }t∈R is the isometric fac-

tor of {φX
t }t∈R and the latter flow is relatively weak mixing. In fact, the

flow ({φX
t }t∈R, vol) has countable Lebesgue spectrum on the orthogonal

complement of π∗(L2(M̄)).
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Examples
1. Heisenberg nilmanifolds and nilflows. The three-dimensional Heisenberg
group is the 2-step nilpotent Lie group H3(R) consisting of the matrices

[p, q, r ] :=
⎛⎝1 p r

0 1 q
0 0 1

⎞⎠ , p, q, r ∈ R. (3.1)

The matrices {[0, 0, r ] | r ∈ R} form the center Z(H3(R)) and the
commutator subgroup of H3(R); the maps

t �→ [0, 0, t] and [p, q, r ] �→ (p, q). (3.2)

define a (non-split!) exact sequence

0 → R → H3(R) → R2 → 0 , (3.3)

which exhibits H3(R) as a line bundle over R2.
The maps

(p, t) ∈ R2 �→ [p, 0, t] ∈ H3(R) and [p, q, r ] �→ q ∈ R (3.4)

yield a split exact sequence

0 → R2 → H3(R) → R → 0. (3.5)

We take as a basis of the Lie algebra h3 of H3(R) the three vectors X0, Y0,
Z0 corresponding to the matrices

X0 =
⎛⎝0 1 0

0 0 0
0 0 0

⎞⎠ , Y0 =
⎛⎝0 0 0

0 0 1
0 0 0

⎞⎠ , Z0 =
⎛⎝0 0 1

0 0 0
0 0 0

⎞⎠ . (3.6)

The triple (X0, Y0, Z0) satisfies the well-known Heisenberg commutation
relations, which for a triple (X,Y, Z) are

[X, Y ] = Z and [X, Z ] = [Y, Z ] = 0. (3.7)

Let � be a lattice subgroup of H3(R). It is well-known that �\H3(R) is com-
pact and that there exists a positive integer E such that, up to an automorphism
of H3(R), we have

� :=
⎧⎨⎩
⎛⎝1 p r/E

0 1 q
0 0 1

⎞⎠ | p, q, r ∈ Z

⎫⎬⎭ .
The compact manifold M := �\H3(R) is called a Heisenberg nilmanifold.
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The homomorphism H3(R) → R2 defined in (3.2) induces a Seifert fibra-
tion π : M → T2 ≈ Z2\R2, i.e. M is a circle bundle over the 2-torus T2

with fibers given by the orbits of flow by right translation by the central one-
parameter subgroup Z(H3(R)) = (exp t Z)t∈R. The left invariant fields X0,
Y0 define a connection whose total curvature (the Euler characteristic of the
fibration) is exactly E .

Considering instead the split sequence (3.5) we can also see that M is a T2-
torus bundle over S1; the holonomy, obtained via the splitting map, is given by

the unipotent matrix

(
1 E
0 1

)
.

A presentation of � it is given by

〈x, y, z | [x, z] = [y, z] = 1, [x, y] = zE 〉.

Homogeneous flows on Heisenberg nilmanifolds, that is, flows generated by a
projection to M of a left-invariant vector field on H3(R), are called Heisenberg
nilflows. In other terms, for any element X ∈ h of the Heisenberg Lie algebra,
the Heisenberg nilflow {φX

t }t∈R is the flow defined as follows:

φX
t (x) = x exp(t X) , for x = �y with y ∈ H3(R) and t ∈ R.

2. Filiform nilmanifolds and nilflows. A filiform Lie algebra is a nilpotent
Lie algebra fk whose descending central sequence has length k = dim fk − 1.
In these lectures we shall consider those special k-step nilpotent filiform Lie
algebras that have a basis {ξ, η1, . . . , ηk} satisfying the commutation relations

[ξ, ηi ] = ηi+1, for all i = 1, . . . , k − 1, and [ξ, ηk] = 0

[ηi , η j ] = 0 , for all i, j = 1, . . . , k.
(3.8)

A basis (ξ, η) := (ξ, η1, . . . , ηk) satisfying the above commutation relations
will be called a filiform basis.

The filiform Lie algebras defined above are the simplest higher-step gener-
alization of the Heisenberg Lie algebra (on two generators). In these lectures
a (k-step) filiform Lie group is a simply connected, connected group Fk whose
Lie algebra is fk and a filiform nilflow is a homogeneous flow on a compact
filiform nilmanifold.

As we shall explain below the classical Weyl sums (that is, exponential
sums) for polynomials of degree k ≥ 2 can be interpreted as ergodic inte-
grals for filiform nilflows on k-step filiform nilmanifolds for special smooth
functions.
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The groups Fk have also another description. Let h : R → Aut(Rk) be the
unique continuous homomorphism such that

h(1)(s) = (s1, s2 + s1, . . . , si + si−1, . . . , sk + sk−1), (3.9)

where s := (s1, s2, . . . , sk). Let Gk be the twisted product R�hRk . We can
view Gk as an algebraic subgroup of the real algebraic group GLk(R)�Rk .
Since h(Z) ⊂ Aut(Zk), the twisted product �k = Z�h|ZZk is well-defined and
it is a Zariski dense discrete subgroup of Gk , hence a lattice of Gk , generated
by elements x, y1, . . . , yk satisfying the commutation relations

xyi x−1 =
{

yi yi+1 , for 1 ≤ i < k

yk , for i = k
yi y j = y j yi , 1 ≤ i, j ≤ k.

(3.10)
(We have taken for x the element (1, (0, . . . , 0)) ∈ �k which acts by
conjugation on Zk by the automorphism h(1) defined in (3.9), and for ele-
ments y1, . . . , yk the elements of the standard basis (0, (1, 0, . . . , 0)), . . . ,
(0, (0, 0, . . . , 1)) of {0} × Zk .)

Let g be the Lie algebra of G and let log : G → g the inverse of the
exponential map. The elements

ξ = log x η̃i = log yi , i = 1, . . . , k (3.11)

form a basis of g and satisfy the commutation relations

[ξ, η̃ j ] =
k∑

i= j+1

(−1)i− j−1

i− j η̃i = η̃ j+1 − 1
2 η̃ j+2 + 1

3 η̃ j+3 + . . . , 1 ≤ j < k ,

(3.12)

all other commutators being equal to zero. We obtain a filiform basis defined
by induction

η1 = η̃1, η j+1 = [ξ, η j ] , j = 1, . . . , k − 1.

Thus g is isomorphic to fk and G to Fk . Clearly there exists strictly upper
triangular rational matrices R, S ∈ Mk(Q) such that

η j = η̃ j +
k∑

i= j+1

Ri j η̃ j (3.13)

η̃ j = η j +
k∑

i= j+1

Si jη j (3.14)

for all j = 1, . . . , k − 1. Thus, by the formulas (3.14) and by taking expo-
nentials, we can associate to each filiform basis (ξ, η1, . . . , ηk) of fk a lattice
of Fk .
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Since �k is discrete and Zariski dense in Fk the quotient �k\Fk is a compact
nilmanifold Mk .

Definition 3.2.2 The quotient Mk = �k\Fk will be called a k-step filiform
nilmanifold.

Observe that for any filiform basis (ξ, η1, . . . , ηk) the center z(fk) of fk is
spanned by the vector ηk and therefore the vectors (ξ, η1, . . . , ηk−1) project
onto a filiform basis of fk/z(fk) ≈ fk−1. At the group level, the center Z(Fk)

of Fk , that is the group (exp tηk)t∈R = (yt
k)t∈R, meets �k into the subgroup

generated by yk , which is the center Z(�k) of �k . Hence Fk/Z(Fk) ≈ Fk−1

and the elements x , . . . ,yk−1) project onto the generators of �k−1 in Fk−1.
This shows that a k-step filiform Riemannian nilmanifold Mk has a structure
of circle bundle over a (k −1)-step filiform nilmanifold Mk−1 the fibers of this
fibration being the orbits of the right action of the center Z(Fk) on Mk :

0 → S1 → Mk → Mk−1 → 0. (3.15)

We shall call this fibration the central fibration of Mk .
Composing the central fibrations Mk → Mk−1 → Mk−2 → · · · → M1 we

have also another fibration of

pr : Mk → M1 ≈ T2. (3.16)

This fibration can be obtained directly considering that the Abelian group Fk =
Fk/[Fk, Fk] is isomorphic to R2 and the subgroup �k = �k/[�k , �k] is a
co-compact lattice of Fk .

Finally there also a fibration

0 → Tk → Mk → M0 = T1 → 0 (3.17)

which is induced by the homomorphism fk → fk/〈η1, . . . , ηk〉.
All the fibrations (3.15), (3.16), and (3.17) can be seen in a unified way in

the following way. Let E j be the Abelian normal subgroup of Fk generated by
the Abelian ideal 〈η j , η j+1, . . . , ηk〉 of fk . The subgroup E j meets the lattice

�k into a lattice � j
k . Hence the orbits of the right action of E j on Mk = �k\Fk

are closed and they are the fibers of the fibration Mk → M j−1.
For any element X ∈ fk we denote {φX

t }t∈R the filiform nilflow on Mk gen-
erated by X , that is the flow given by right multiplication by the one-parameter
subgroup (exp(t X))t∈R of Fk :

φX
t (x) = x exp(t X), for x = �k y with y ∈ Fk and t ∈ R. (3.18)
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We denote by Tk
0 the k-dimensional torus

�k exp(s1η̃1) · · · exp(sk η̃k), si ∈ R,

which is the orbit of the identity coset under the action of the group E1.
Observe that the map

(s1, . . . , sk) ∈ Rk/Zk �→ �k exp(s1η̃1) · · · exp(sk η̃k) (3.19)

is a diffeomorphism of Rk/Zk onto Tk
0.

Henceforth we shall use the coordinate s = (s1, . . . , sk) to denote the point
�k exp(s1η̃1) · · · exp(sk η̃k) of Tk

0.
It follows from this description on the manifold Mk that a fundamental

domain for �k acting on Fk is the set

{exp(tξ) exp(s1η̃1) · · · exp(sk η̃k) | t ∈ [0, 1], si ∈ [0, 1]};
this implies that the left (and right) invariant volume form on Fk defined by
ω(ξ, η̃1, . . . , η̃k) = 1 pushes down to a right-invariant volume form on Mk

whose density yields a right-invariant probability measure on Mk . Observing
that the formulas (3.13) and (3.14) imply that ξ ∧ η̃1 ∧ · · · ∧ η̃k = ξ ∧ η1 ∧
· · · ∧ ηk , we conclude that, on Mk , there exist a right-invariant volume form
ωMk and a right-invariant probability measure volk such that, for the fixed basis
(ξ, η1, . . . , ηk), we have

ωMk (ξ, η1, . . . , ηk) = 1, and volk = |ωMk |. (3.20)

Weyl Sums

Let Pk := Pk(X) ∈ R[X ] be a polynomial of degree k ≥ 2:

Pk(X) :=
k∑

j=0

a j X j .

Let f ∈ C∞(T1) be a smooth periodic function. A Weyl sum of degree k ≥ 2
is the sum

WN (Pk, f ) =
N−1∑
n=0

f
(
Pk(n)
)
, for any N ∈ N. (3.21)

Classical (complete) Weyl sums are obtained as a particular case when f (s) =
e(s) = exp(2π is), for any s ∈ T1.
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Return Maps
Let α := (α1, . . . , αk) ∈ Rk and let

Xα := log[ x−1 exp(
k∑

j=1

α j η̃ j ) ]. (3.22)

The torus Tk
0 is a global section of the nilflow {φαt }t∈R := {φXα

t }t∈R on Mk ,
generated by Xα ∈ fk . The lemma below, which is classical (see [Fu]), makes
explicit its return maps, which are skew-shifts on tori.

Lemma 3.2.3 The flow {φαt }t∈R on Mk is isomorphic to the suspension of
its first return map !α : Tk

0 → Tk
0 which, in the coordinates s ∈ Rk/Zk of

formula (3.19), is written as

!α(s) = (s1 + α1, . . . , s j + s j−1 + α j , . . . , sk + sk−1 + αk). (3.23)

In particular, all return times are constant integer-valued functions on Tk
0. For

any N ∈ Z, the Nth return map !N
α : Tk

0 → Tk
0 has the form

!N
α (s) =

(
s1 + N α1, s2 + N (s1 + α2)+

(N
2

)
α1, . . . ,

sk +
N−1∑
i=1

(N
i

)
(sk−i + αk−i+1)+

(N
k

)
α1
)
.

(3.24)

Proof Let �k exp(
∑k

j=1 s j η̃ j ) ∈ Tk
0. We have

exp(
k∑

j=1

s j η̃ j ) exp(Xα) = exp(
k∑

j=1

s j η̃ j )x
−1 exp(

k∑
j=1

α j η̃ j )

= x−1 exp
[
(s1 + α1)η̃1 +

k−1∑
j=1

(s j + s j+1 + α j+1)η̃ j+1
]
.

(3.25)

In fact, the following identity holds:

x exp(
k∑

j=1

s j η̃ j )x
−1 = exp

[
e adξ (

k∑
j=1

s j η̃ j )
]

= exp
[
s1η̃1 +

k−1∑
j=1

(s j + s j+1)η̃ j+1
]
.

(3.26)
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Since x ∈ �k , it follows that

�k exp(
k∑

j=1

s j η̃ j ) exp(Xα)

=�k exp
[
(s1 + α1)η̃1 +

k−1∑
j=1

(s j + s j+1 + α j+1)η̃ j+1
]
.

(3.27)

The above formula implies that t = 1 is a return time of the flow {φαt }t∈R to Tk
0

and the map (3.23) is the corresponding return map. In addition, t = 1 is the
first return time, since it is the first return time of the projection onto Tk

0 of the
flow {φα

t }t∈R to the projection of the transverse section Tk
0.

Finally, the formula (3.24) for the N th return map follows from formula
(3.23) by induction on N ∈ N.

Reduction
For any (α, s) ∈ Rk ×Rk/Zk , let Pα,s(X) ∈ R[X ] be the polynomial of degree
k ≥ 2 defined (modulo Z) as follows:

Pα,s(X) := (Xk )α1 +
k−1∑
j=1

(X
j

)
(sk− j + αk− j+1)+ sk . (3.28)

We identify a point x ∈ Tk
0 with its coordinates s ∈ Rk/Zk (see (3.19)). The

following result holds:

Lemma 3.2.4 The map (α, x) → Pα,x (X) sends Rk × Tk
0 onto the space

Rk[X ] of real polynomials (modulo Z) of degree at most k ≥ 2. The leading
coefficient ak ∈ R of the polynomial Pα,x (X) is given by the formula:

ak = α1

k! .

Let Xα ∈ fk be the vector field on Mk given by formula (3.22) and let
Aα

T := A
Xα

T be the ergodic averaging operator defined, for all f ∈ C∞(M)

and all (x, T ) ∈ Mk × R, by the formula

Aα
x,T ( f ) = Aα

T ( f )(x) = 1

T

∫ T

0
f ◦ φα

t (x) dt. (3.29)

It is possible to derive bounds for the Weyl sums {WN (Pα,s, f )}N∈N for any
smooth function f ∈ C∞(T1) from Sobolev bounds on the ergodic averaging
operators Aα

s,T introduced above.
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Lemma 3.2.5 For any α ∈ Rk , there exists a bounded injective linear
operator

F = Fα : L2(T1) → L2(Mk)

such that the following holds. For any r ≥ 0, the operator F maps continuously
W r (T1) into W r (Mk); furthermore, for any r > 1/2, there exists a constant
Cr > 0 such that, for any function f ∈ W r (T1), for all x ∈ Tk

0 and all N ∈ N,
we have

|
N∑

n=0

f
(
Pα,x (n)

)− NAα
x,N (F( f ))| ≤ Cr ‖ f ‖W r (T1). (3.30)

Proof For any ε ∈ ]0, 1/2[ the map

(x, t) ∈ Tk
0 × ] − ε, ε[ �→ φαt (x) = x exp(t Xα) (3.31)

is an embedding of Tk
0 ×]− ε, ε[ onto a tubular neighborhood Uε of Tk

0 in Mk .
Let prZ : Tk

0 → T1 ≈ Z(Fk)/Z(�k) the projection on the central
coordinate, that is, the map defined as

prZ
(

exp(
k∑

i=1

si η̃i )
) = exp(sk η̃k) , for all (s1, . . . , sk) ∈ Rk . (3.32)

For any f ∈ L2(T1) and χ ∈ C∞
0 (] − ε, ε[), let F( f, χ) ∈ L2(M) be the

function defined on the open set Uε as

F( f, χ)(y) = χ(t) ( f (prZ (x)) , (3.33)

where (x, t) ∈ Tk
0 × ] − ε, ε[ and y = φαt (x). We extend F( f, χ) as zero on

M�Uε.
The function F( f, χ) is well-defined and square-integrable on M , since

χ ∈ C∞
0 (] − ε, ε[) and the map (3.31) is an embedding. In addition, we have

F( f, χ) ∈ C0(M) if f ∈ C0(S1) and, for any r ≥ 0, F( f, χ) ∈ W r (M) if
f ∈ W r (T1).

Let f ∈ C0(T1). We claim that, by the definition (3.33) of the function
F( f, χ), for all (x, N ) ∈ Tk

0 × N, we have∫ N+ε

−ε

F( f, χ) ◦ φα
t (x)dt =

(∫ ε

−ε

χ(s) ds

) N∑
n=0

f
(
Pα,x (n)

)
. (3.34)

In fact, let !n
α : Tk

0 → Tk
0 be the nth map of the flow {φα

t }t∈R. By Lemma
3.2.3 and by definition (3.28), for all (x, n) ∈ Tk

0 × N,

prZ ◦!n
α(x) = Pα,x (n). (3.35)
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For all (x, n) ∈ Tk
0 × N and for all f ∈ C0(T1),∫ n+1−ε

n−ε

F( f, χ) ◦ φαt (x)dt =
∫ n+ε

n−ε

F( f, χ) ◦ φα
t (x)dt

=
∫ ε

−ε

F( f, χ) ◦ φα
τ

(
!n

α(x)
)

dt =
(∫ ε

−ε

χ(s) ds

)
f
(
Pα,x (n)

)
.

(3.36)

The claim is therefore proved.
Let χ ∈ C∞

0 (] − ε, ε[) be a given function such that
∫

R
χ(τ) dτ = 1 and let

C1 = ‖χ‖∞. Define the operator F : L2(T1) → L2(M) as

F( f ) := F( f, χ) , for all f ∈ L2(T1). (3.37)

It follows by formula (3.34) that

|
∫ N

0
F( f ) ◦ φαt (x)dt −

N∑
n=0

f
(
Pα,x (n)

) | ≤ 2ε‖F( f )‖∞. (3.38)

For any r > 1/2, by the Sobolev embedding theorem [Ad], [He] W r (T1) ⊂
C0(T1) and there exists a constant cr > 0 such that ‖ f ‖∞ ≤ cr‖ f ‖Wr (T1);
since ‖F( f )‖∞ ≤ ‖χ‖∞ ‖ f ‖∞, we obtain the inequality (3.30) and the
argument is concluded.

The problem of establishing bounds on Weyl sums is thus reduced to that of
bounds for the nilpotent averages (3.29).

3.3 The Cohomological Equation

In this section we derive results on the cohomological equation and invari-
ant distributions for fililiform nilflows, following [FF3]. The filiform case is
special and simpler, but it is enough for the main applications to Weyl sums.
Our analysis of the cohomological equation is based on the Kirillov’s theory
of irreducible unitary representations of nilpotent groups, in the special case
of filiform groups. This analysis shows that nilflows always have an infinite-
dimensional space of invariant distributions. For Diophantine nilflows, every
sufficiently smooth function which belongs to the kernel of all invariant distri-
butions is a smooth coboundary (with finite loss of derivatives for the transfer
function), hence almost all nilflows are stable in the sense of A. Katok (in
addition, the lack of stability can only come from the toral factor). The funda-
mental theorem of calculus implies that ergodic integrals of coboundaries are
uniformly bounded.

We recall that this analysis is motivated, on the one hand, by the well-known
elementary fact that ergodic integrals of coboundaries with bounded transfer
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function (that is, of all derivatives of bounded functions along the flow) are uni-
formly bounded, on the other hand, by the heuristic principle that the growth of
ergodic integrals (and the corresponding decay of ergodic averages) of smooth
zero-average functions is related to the scaling of the invariant distributions
under an appropriate renormalization group action.

Irreducible Unitary Representations

Representation Models
Kirillov’s theory yields the following complete classification of irreducible
unitary representations of filiform Lie groups (up to unitary equivalence).

Let a∗k be the space of R-linear forms on the maximal Abelian ideal ak of
the filiform Lie algebra fk . For any filiform basis F = (ξ, η1, . . . , ηk), the
ideal ak is generated by the system {η1, . . . , ηk}. For any � ∈ a∗k denote by
exp ı� the character χ� of the subgroup Ak := exp(ak) defined by χ�(g) :=
exp(ı�(Y )), for g = exp Y with Y ∈ ak .

The infinite-dimensional irreducible representations of the filiform nilpo-
tent Lie group Fk are unitarily equivalent to the representations IndFk

Ak
(�),

obtained by inducing from Ak to Fk a character χ = exp ı� not vanishing on
[fk, fk]. In addition, two linear forms � and �′ determine unitarily equivalent
representations if and only if they belong to the same co-adjoint orbit.

For any X ∈ fk�ak , restricting the function of IndFk
Ak

(�) to the subgroup
exp(t X), t ∈ R, yields the following models for the unitary representations
IndFk

Ak
(�). For Y ∈ ak and � ∈ a∗k , we denote by P�,Y the polynomial function

x → �(Ad(ex X )Y ). Let π X
� be the unitary representation of the filiform k-

step nilpotent Lie group Fk on the Hilbert space L2(R) uniquely determined
by the derived representation Dπ X

� of the filiform Lie algebra fk given by the
following formulas:

Dπ X
� :
{

X �→ d
dx

Y �→ ı P�,Y IdL2(R) , for all Y ∈ ak .
(3.39)

For each � ∈ a∗k , not vanishing on [fk, fk], the unitary representation π X
� is

irreducible and, by Kirillov’s theory, each irreducible unitary representation of
the filiform k-step nilpotent Lie group Fk , which does not factor through a uni-
tary representation of the Abelian quotient Fk/[Fk, Fk], is unitarily equivalent
to a representation of the form π X

� described above.

Definition 3.3.1 An adapted basis of the Lie algebra fk is an ordered basis
(X, Y ) := (X, Y1, . . . ,Yk) of fk such that X �∈ ak and Y := (Y1, . . . ,Yk) is
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a basis of the Abelian ideal ak ⊂ fk . An adapted basis is normalized if the
multivector X ∧ Y1 ∧ · · · ∧ Yk has volume 1, that is,

ω(X,Y1, . . . ,Yk) = 1.

Definition 3.3.2 For any Y ∈ ak we define its degree dY ∈ N with respect to
the representation π X

� to be the degree of the polynomial P�,Y . For any basis
F = (X, Y1, . . . ,Yk) of the Lie algebra fk let (d1, . . . , dk) ∈ Nk denote the
degrees of the elements (Y1, . . . ,Yk). The degree of the representation π� is
then defined as the maximum of the degrees of the elements (Y1, . . . ,Yk) as
F = (X, Y1, . . . ,Yk) varies over all adapted bases of fk .

Let

a∗k,� = {� ∈ a∗k |�([fk, fk]) �= 0}.
Observe that the condition � ∈ a∗k,� is equivalent to (d1, . . . , dk) �= 0.
Let ad(X) denote the adjoint operator on fk induced by an element X ∈ fk ,

that is:

ad(X)(V ) = [X, V ] , for all V ∈ fk .

For all i = 1, . . . , k and j = 1, . . . , di , we let

�
( j)
i (F) = (� ◦ ad j (X))(Yi ). (3.40)

Then the representation π X
� can be written as follows:

Dπ X
� :
⎧⎨⎩X �→ d

dx

Yi �→ ı

(∑di
j=0

�
( j)
i (F)

j ! x j
)

IdL2(R).
(3.41)

For any linear form � ∈ a∗k,�, let I� ⊂ ak be the subset defined as follows:

I� :=
k−1⋂
i=0

ker(� ◦ adi (X)). (3.42)

Since fk is filiform, the set I� ⊂ fk is an ideal of the Lie algebra fk . Let
F�

k ⊂ Fk the normal subgroup defined by exponentiation of the ideal I�. It
is clear from the above definition that the ideal I�, hence the subgroup F�

k ,
depends only on the co-adjoint orbit of the form � ∈ a∗k .

Sobolev Norms
We introduce below Sobolev norms transverse to orbits of ergodic nilflows on
filiform nilmanifolds.
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Let F := (X,Y ) = (X, Y1, . . . ,Yk) be a normalized adapted basis. Let us
introduce the associated transverse Laplacian

�Y = −
k∑

j=1

Y 2
j . (3.43)

For any σ ∈ R, we define the transverse Sobolev norms associated to the
adapted basis F := (X, Y1, . . . ,Yk) as

‖ f ‖Y,σ := ‖ f ‖�Y ,σ = ‖(I +�Y )
σ
2 f ‖L2(M), for all f ∈ C∞(M). (3.44)

The completion of C∞(M) with respect to the norm | · |F,σ is denoted by
W σ (M,F). Endowed with this norm, W σ (M,F) is a Hilbert space.

The transverse Sobolev norms introduced above in formula (3.44) can be
written in representation as follows. For the irreducible unitary representa-
tion (π X

� , H X
� ), described in formulas (3.39) and (3.41), the transverse Laplace

operator �Y , introduced in formula (3.43), is represented as the multiplication
operator by the non-negative polynomial function

��,F(x) :=
k∑

i=1

|P�,F,i (x)|2. (3.45)

Thus, the transverse Sobolev norms can be written as follows: for every σ ≥ 0
and for every f ∈ C∞(π X

�),

| f |F,σ :=
(∫

R

[1 +��,F(x)] σ2 | f (x)|2 dx

)1/2

. (3.46)

For all σ ∈ R, let W σ
F(π

X
� ) ⊂ C∞(π X

� ) denote the space of Sobolev functions
for the representation π X

� endowed with the norm defined above.

A Priori Estimates

The unique distributional obstruction to the existence of solutions of the
cohomological equation

Xu = f (3.47)

in a given irreducible unitary representation (π X
� , H X

� ) is the normalized X -
invariant distribution DX

� ∈ D′(π X
� ) which can be written as

DX
�( f ) :=

∫
R

f (x) dx , for all f ∈ C∞(π X
� ). (3.48)
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The formal Green operator G X
� for the cohomological equation (3.47) is given

by the formula

G X
�( f )(x) :=

∫ x

−∞
f (y) dy , for all f ∈ C∞(π X

� ). (3.49)

It is not difficult to prove that the Green operator is well-defined on the ker-
nel K∞(π X

� ) of the distribution DX
� on C∞(π X

� ): for all f ∈ K∞(π X
� ), the

function G X
�( f ) ∈ C∞(π�) and the following identities hold:

G X
�( f )(x) =

∫ x

−∞
f (y) dy = −

∫ +∞

x
f (y) dy. (3.50)

For all σ > 1/2 let Kσ (π X
�) denote the kernel of the invariant distribution

DX
� in the Sobolev space Wσ

F(π
X
�). The subspace Kσ (π X

� ) coincides with the
closure of K∞(π X

� ) in W σ
F(π

X
� ).

We prove below bounds on the transverse Sobolev norms ‖G X
�( f )‖F,τ for

all functions f ∈ Kσ (π X
� ) for σ >> τ .

For any σ , τ ∈ R+ let

Iσ (�,F) :=
(∫

R

dx

[1 +��,F(x)]σ
)1/2

;

J τ
σ (�,F) :=

(∫ ∫
|y|≥|x|

[1 +��,F(x)]τ
[1 +��,F(y)]σ dxdy

)1/2

.

(3.51)

Lemma 3.3.3 Let DX
� ∈ D′(π X

� ) be the distribution defined in formula
(3.48). For any σ ∈ R+, the following holds:

|DX
�|F,−σ := sup

f �=0

|DX
�( f )|

| f |F,σ

= Iσ (�,F). (3.52)

Proof It follows from the definitions by Hölder inequality. In fact,

DX
�( f ) = 〈(1 +��,F)

− σ
2 , (1 +��,F)

σ
2 f 〉L2(R). (3.53)

Since | f |F,σ = |(1 +��,F)
σ
2 f |F,0 = ‖(1 +��,F)

σ
2 f ‖0 , it follows that

sup
f �=0

|DX
�( f )|

| f |F,σ

= ‖(1 +��,F)
− σ

2 ‖L2(R) = Iσ (�,F).

The identity (3.52) is thus proved.

Lemma 3.3.4 For any σ ≥ τ and for all f ∈ Kσ (π X
� ),

|G X
�( f )|F,τ ≤ J τ

σ (�,F)] | f |F,σ . (3.54)
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Proof It follows by Hölder inequality from formula (3.50) for the Green
operator. In fact, for all x ∈ R, by Hölder inequality we have

|G X
�( f )(x)|2 ≤

(∫
|y|≥|x |

dy

(1 +��,F(y))σ

)
| f |2F,σ .

Another application of Hölder inequality yields the result.

We have thus reduced Sobolev bounds on the Green operator for the coho-
mological equation and on the ergodic averages operator (in each irreducible
representation) to bounds on the integrals defined in formula (3.51).

Let F = (X,Y1, . . . ,Yk) be any adapted basis. Let (d1, . . . , dk) ∈ Nk

be the degrees of the elements (Y1, . . . ,Yk), respectively; for all � ∈ a∗k,�,

let �( j)
i (F) = �(ad(X) j Yi ) be the coefficients appearing in formula (3.41)

and set

|�(F)| := sup
{(i, j) : 1≤i≤k, 0≤ j≤di }

∣∣∣∣ 1j !�( j)
i (F)

∣∣∣∣ . (3.55)

We introduce on a∗k,� the following weight. For all � ∈ a∗k,�, let

wF(�) := min{i : di �=0}

∣∣∣∣∣�
(di )
i (F)

di !

∣∣∣∣∣
− 1

di

. (3.56)

We will prove below estimates for the integrals Iσ (�,F) and J τ
σ (�,F) of

formula (3.51) in terms of the above weight.
For all i = 1, . . . , k and j = 1, . . . , di we define the rescaled coefficients

�̂
( j)
i (F) := �

( j)
i (F)

(
wF(�)

) j
, (3.57)

and set, in analogy with (3.55),

|�̂(F)| := sup
{(i, j) : 1≤i≤k, 0≤ j≤di }

∣∣∣∣ 1j ! �̂( j)
i (F)

∣∣∣∣ . (3.58)

Lemma 3.3.5 For all σ > 1/2, there exists a constant Ck,σ > 0 such that,
for all � ∈ a∗k,�, the following bounds hold:

C−1
k,σ

(1 + |�̂(F)|)σ ≤ Iσ (�,F)

w
1/2
F (�)

≤ Ck,σ (1 + |�̂(F)|). (3.59)

For all σ > τ(k − 1)+ 1, there exists a constant Ck,σ,τ > 0 such that, for all
� ∈ a∗k,�, the following bounds hold:

C−1
k,σ,τ

(1 + |�̂(F)|)σ ≤ J τ
σ (�,F)

wF(�)
≤ Ck,σ,τ (1 + |�̂(F)|)τk+1. (3.60)
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Proof By change of variables, for any w > 0,

Iσ (�,F) = w1/2
(∫

R

dx

[1 +��,F(wx)]σ
)1/2

;

J τ
σ (�,F) = w

(∫ ∫
|y|≥|x |

[1 +��,F(wx)]τ
[1 +��,F(wy)]σ dxdy

)1/2

.

(3.61)

Let w := wF(�) > 0. By definitions (3.56), (3.57) and (3.45), for all i =
1, . . . , k, the coefficients of the polynomial map P�,Yi (wx) are the numbers

�̂
( j)
i (F)/j !. Thus all these coefficients are bounded by |�̂(F)| and there exists

i0 ∈ {1, . . . , k} such that the polynomial P�,Yi0
(wx) is monic. The following

inequalities therefore hold: for all x ∈ R,

1 + P2
�,Yi0

(wx) ≤ 1 +��,F(wx) ≤ (1 + |�̂(F)|)2(1 + x2(k−1)). (3.62)

Let P(x) be any non-constant monic polynomial of degree d ≥ 1 and let
‖P‖ denote the maximum modulus of its coefficients. We claim that, if dσ >

1/2, there exists a constant Cd,σ > 0 such that∫
R

dx

(1 + P2(x))σ
≤ Cd,σ (1 + ‖P‖) , (3.63)

and, if dσ > (k − 1)τ + 1/2, there exists a constant Ck,d,σ,τ > 0 such that∫ ∫
|y|≥|x |

(1 + x2(k−1))τ

(1 + P2(y))σ
dxdy ≤ Ck,d,σ,τ (1 + ‖P‖)2+2τ(k−1). (3.64)

In fact, since P is monic, there exists s ∈ [1, (1 + ‖P‖)] such that the poly-
nomial Ps(x) := s−d P(sx) is monic and has all coefficients in the unit ball. It
follows that, if dσ > 1/2, there exists a constant Cd,σ > 0 such that∫

R

dx

(1 + P2(x))σ
=
∫

R

s dx

(1 + P2(sx))σ
≤
∫

R

s dx

(1 + P2
s (x))

σ
≤ Cd,σ s ,

hence the bound in formula (3.63) is proved. Similarly, if σ > τ(k − 1) + 1,
there exists a constant Ck,d,σ,τ > 0 such that∫ ∫

|y|≥|x|
(1 + x2(k−1))τ

(1 + P2(y))σ
dxdy =

∫ ∫
|y|≥|x|

s2 (1 + (sx)2(k−1))τ

(1 + P2(sy))σ
dxdy

≤
∫ ∫

|y|≥|x|
s2 (1 + (sx)2(k−1))τ

(1 + P2
s (sy))σ

dxdy ≤ Ck,d,σ,τ s2+2τ(k−1) ,

hence the bound in formula (3.64) is proved as well.
Finally, applying bounds in (3.63) and (3.64) to the polynomial P�,Yi (wx)

and taking into account the formulas (3.61) and the estimates (3.62) we obtain
the upper bounds (3.59) and (3.60).
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The lower bounds are an immediate consequence of the upper bound in
formula (3.62), hence the argument is complete.

3.4 The Heisenberg Case

In this section we discuss the main 2-step case, that is, the case of Heisen-
berg nilflows, following [FF2]. Effective equidistribution results for this case
have been obtained by several authors (J. Marklof [Ma], A. Fedotov and
F. Klopp [FK] and others) and are related to bounds on Weyl sums for quadratic
polynomials which go back a century to the work of Hardy and Littlewood
[HL]. This case is special since Heisenberg nilflows are renormalizable, in
the sense that the almost all nilflows are approximately self-similar under the
action of a hyperbolic dynamical systems on a moduli space of Heisenberg
nilflows. We present our point of view on renormalization of Heisenberg nil-
flows and derive effective equidistribution results. The argument is based on
renormalization as well as on the analysis of the cohomological equation and
invariant distributions presented in the previous section.

The Renormalization Flow

We introduce below a renormalization flow on a moduli space of Heisenberg
structures on a Heisenberg nilmanifold.

Definition 3.4.1 A Heisenberg frame (X,Y, Z0) on M is a frame of the tan-
gent bundle of M induced by left invariant vector fields on the Heisenberg
group with the property that the following commutation relations hold:

[X, Y ] = Z0 and [X, Z0] = [Y, Z0] = 0.

The deformation space T of Heisenberg structures on a Heisenberg nilmanifold
M is the space of all Heisenberg frames on M.

A Heisenberg frame determines a basis of the Heisenberg Lie algebra which
will be called a Heisenberg basis. The deformation space can therefore be
viewed as the space of all Heisenberg bases of the Heisenberg Lie algebra.

Definition 3.4.2 The moduli space M of Heisenberg structures on the
Heisenberg manifold M is the quotient of the deformation space T under the
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action of the group diffeomorphism of M induced by automorphisms of the Lie
algebra.

The deformation space can be identified with the subgroup A < Aut(h)
of automorphism of the Heisenberg Lie algebra h acting as the identity on its
center Z(h) = RZ0. In fact, let {X0, Y0, Z0} be a fixed (rational) Heisenberg
basis of the Heisenberg Lie algebra. There exists a bijective correspondence
between the deformation space T and the group A given by the map defined as

a → (a∗(X0), a∗(Y0), Z0) , for all a ∈ A.

The subgroup of diffeomorphisms of M induced by automorphisms of the Lie
algebra is isomorphic to the subgroup A� < A of elements mapping the lattice
� onto itself. The subgroup A� is a lattice in A. It follows that the moduli
space M of Heisenberg structures on M is given by the isomorphism

M ≈ A�\A.

It can be proved that the group A is isomorphic to the semi-direct product of
SL(2,R) acting on R2 by the contragredient linear action of SL(2,R) on the
vector space of linear forms, that is,

A ≈ SL(2,R)�R2 ,

and A� is a semi-direct product of a finite index subgroup �� of SL(2,Z)
(either equal to SL(2,Z) or to the congruence lattice �(2) depending on the
Euler constant) with a lattice isomorphic to Z2. It follows that the moduli space
M is a non-compact finite-volume homogeneous manifold of dimension five
which fibers over the non-compact finite-volume quotient ��\SL(2,R) with
compact two-dimensional toral fiber.

There is a natural action by multiplication on the right of the group A on the
moduli space A�\A. Let {at} < A be the one-parameter subgroup defined by
the formula

at (X0, Y0, Z0) = (et X0, e−t Y0, Z0) , for all t ∈ R.

Definition 3.4.3 The renormalization flow {ρt } is the flow on M defined by
the one-parameter subgroup {ρt } < A by multiplication on the right, that is,

ρt (A�a) = A�aat for all (a, t) ∈ A × R.

It is not hard to prove that the renormalization flow is a homogeneous
Anosov flow which project onto a diagonal (geodesic) flow on the finite volume
quotient ��\SL(2,R).
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In terms of Heisenberg bases, for any a ∈ A the renormalization flow maps
the Heisenberg basis (Xa, Ya, Z0) = (a∗(X0), a∗(Y0), Z0) into the rescaled
basis (et Xa, e−t Ya, Z0), in fact

(ρt )∗(Xa,Ya, Z0) = ((aat )∗(X0), (aat )∗(Y0), Z0)

= (et a∗(X0), e−t a∗(Y0), Z0) = (et Xa, e−t Ya, Z0).

A crucial element of our equidistribution estimates will involve certain bounds
on the geometry of the rescaled Heisenberg structure along orbits the renor-
malization flow. For every Heisenberg frame F = (X,Y, Z0), let RF denote
the Riemann metric on the Heisenberg nilmanifold M uniquely defined by
the condition that the Heisenberg frame (X, Y, Z) is orthonormal. Effective
equidistribution results for a Heisenberg nilflow {φX

s } on M are based on
(exact) square root scaling of the norm of invariant distributions and on lower
bounds on the injectivity radius of the metric RF(t) along the forward orbit
{F(t)|t ≥ 0} of the frame F under the renormalization flow on the moduli
space M.

Scaling of Invariant Distributions and of the Green Operator

In this section we derive bounds on the scaling of invariant distributions and
on the Green operator for Heisenberg nilflows under the renormalization flow.
Irreducible unitary representations of the Heisenberg Lie group are determined
up to unitary equivalences by the corresponding derived representations of the
Heisenberg Lie algebra. By the Stone–Von Neumann theorem, such derived
representations can be written as irreducible skew-adjoint representations on
the Hilbert space L2(R, dx) of the following form:

Dπ X
� :

⎧⎪⎪⎨⎪⎪⎩
X �→ d

dx

Y �→ ı(�(Z0)x +�(Y ))IdL2(R,dx)

Z0 �→ ı(�(Z0))IdL2(R,dx).

(3.65)

Representations such that �(Z0) = 0 appear in the component of the space
L2(M) of square-integrable functions on the nilmanifold M given by all func-
tions which factor through the base torus. We therefore restrict our attention to
irreducible unitary representations such that �(Z0) �= 0. It is also not restric-
tive to assume that �(Y ) = 0. In fact, for every � ∈ h∗ such that �(Z0) �= 0,
its co-adjoint orbit contains �0 such that �0(Y ) = 0.

Let F = (X,Y, Z0) be any Heisenberg basis and, for any t ∈ R, let F(t)
denote the rescaled basis defined as follows:

F(t) := (X (t),Y (t), Z0) = (et X, e−t Y, Z0).
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In order to compare for all t ∈ R and h ∈ R the representations π X (t+h)
� and

π
X (t)
� we introduce the intertwining operator

Uh( f )(x) = eh/2 f (eh x) , for all f ∈ L2(R).

It follows by the definitions that, for all V ∈ h we have

π
X (t)
� (V ) ◦ Uh = Uh ◦ π X (t+h)

� (V ).

For all σ ∈ R and h ∈ R, the operator Uh is unitary from the Sobolev
spaces W σ

F(π
X (t+h)
� ) for the representation π

X (t+h)
� onto the Sobolev spaces

W σ
F(π

X (t)
� ) for the representation π

X (t)
� .

Lemma 3.4.4 For all t ∈ R, we have the following identity:

|DX (t+h)
� |F(t),−σ = e−h/2|DX (t)

� |F(t),−σ .

Proof For all f ∈ C∞(π
X (t+h)
� ) ⊂ L1(R), by intertwining and change of

variables, for all t and h ∈ R we have that

D
X (t+h)
� ( f ) = D

X (t)
� (Uh f ) = e−h/2D

X (t)
� ( f ) ,

which immediately implies the statement.

Let G X (t)
X,� denote the Green operator for the cohomological equation

X (t)u = f in the representation π X
� . We recall that, according to our def-

initions above, see formula (3.50), G X (t)
� denotes the Green operator for the

same cohomological equation X (t)u = f in the representation π
X (t)
� .

Lemma 3.4.5 For all t ∈ R, the Green operators G X (t)
X,� on Kσ (π X

� ) and

G X (t)
� on Kσ (π

X (t)
� ) are unitarily equivalent as

G X (t)
X,� = Ut ◦ G X (t)

� ◦ U−1
t .

Consequently, the norm ‖G X (t)
X,�‖σ,τ,� of the operator G X (t)

X,� from Kσ (π X
� )

⊂ W σ
F(π

X
�) into W τ

F(π
X
�) coincides with the norm ‖G X (t)

� ‖σ,τ,� of operator

G X (t)
� from Kσ (π

X (t)
� ) ⊂ Wσ

F(π
X (t)
� ) into W τ

F(π
X (t)
� ).

Finally, from the general scaling results of Section 3.3 we can easily derive
the following bounds:
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Lemma 3.4.6 For all σ > 1/2, there exists a constant Cσ > 0 such that, for
all � ∈ h∗ such that �(Z0) �= 0, for all t ∈ R, the following bounds hold:

C−1
σ

|�(Z0)|1/2(1 + |�(Z0)|)σ ≤ |DX (t)
� |F(t),−σ ≤ Cσ

(1 + |�(Z0)|)
|�(Z0)|1/2

. (3.66)

For all σ > τ + 1, there exists a constant Gσ,τ > 0 such that, for all � ∈ h∗
such that �(Z0) �= 0, the following bounds hold: for all f ∈ Kσ (π X

� ), we
have

|G X (t)
� ( f )|F(t),τ ≤ Gσ,τ

(1 + |�(Z0)|)2τ+1

|�(Z0)| | f |F(t),σ . (3.67)

Proof By Lemma 3.3.3 and Lemma 3.3.4, the bounds stated above are
reduced to estimates given in Lemma 3.3.5 on the integrals Iσ (�,F(t)) and
Jσ (�,F(t)) which were defined in formula (3.51). By Lemma 3.3.5 the
above integrals can be estimated in terms of the weights wF(t)(�) given in
formula (3.56), and �̂(F(t)), given in formula (3.58). Since by assumption
�(Z0) �= 0, the vectors (Y1, Y2) := (Y (t), Z0) have degrees (d1, d2) = (1, 0)
and we have

�
(0)
1 (F(t)) = e−t�(Y ) = 0 and �

(1)
1 (F(t)) = �

(0)
2 (F(t)) = �(Z0) ,

which immediately implies that

|�̂(F(t))| := max{1, |�(Z0)|} and wF(t)(�) = |�(Z0)|−1.

The result then follows from Lemma 3.3.3, Lemma 3.3.4 and Lemma 3.3.5.

The point of the above result is that the bounds on the norms of the
invariant distribution D

X (t)
� in W σ

F(π
X (t)
� ) and of the Green operator G X (t)

�

from Kσ (π
X (t)
� ) into W τ

F(π
X (t)
� ) for the rescaled Heisenberg frame F(t) =

(X (t), Y (t), Z0) are independent of the scaling.

Orthogonal Decomposition of Ergodic Averages

In this section we decompose ergodic averages, which are given by uniform
probability measures along orbit segments, according to the following orthog-
onal splitting of Sobolev spaces into the kernel of the invariant distribution and
its orthogonal complement:

W σ
F(π

X
� ) = Kσ (π X

� )⊕⊥ [Kσ (π X
�)]⊥. (3.68)

Such a decomposition is possible since by the Sobolev embedding theorem
[Ad], [He] all measures are distributions which belong to all Sobolev space of
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square integrable functions of exponent larger than half the dimension of the
space.

In fact, we prove a priori Sobolev bounds which can be derived from the
Sobolev trace theorem [Ad], [He] and from Sobolev bounds on solutions of
the cohomological equations explained in section 3.3. The Sobolev trace theo-
rem is a fundamental result that allows us in particular to estimate the L1 norm
of a function along a submanifold in terms of its Sobolev norms. In our case,
we estimate the L1 norm along orbit segments, which are one-dimensional
submanifolds, in terms of Sobolev norms of any exponent larger than half of
the dimension of the space minus one. It is in these estimates that the geom-
etry of the nilmanifold appears as the best Sobolev constant, that is, the best
constant for which the Sobolev trace theorem holds, depends on the injectivity
radius of the Riemannian metric associated to a Heisenberg frame.

Let F = (X,Y, Z0) be any Heisenberg frame and, for all T > 0, let
AX (x, T ) denote the measure defined as

AX (x, T )( f ) := 1

T

∫ T

0
f ◦ φX

s (x)ds , for all f ∈ C0(M).

By the Sobolev trace theorem AX (x, T ) ∈ W−σ
F (M) for all σ > 1. For a fixed

σ > 1, let AX
�,σ (x, T ) denote the orthogonal projection of AX (x, T ) onto

an irreducible component of the dual Sobolev space W−σ
F (M) isomorphic to

W−σ
F (π X

�). According to the orthogonal splitting in formula (3.68), for any
(x, T ) ∈ M × R there exist a constant cX

�,σ (x, T ) ∈ R and a distribution

RX
�,σ (x, T ) ∈ Ann[Kσ (π X

� )⊥] ⊂ W−σ
F (π X

� ) such that we have the following

orthogonal decomposition in W−σ
F (π X

� ):

AX
�,σ (x, T ) = cX

�,σ (x, T )DX
� + R X

�,σ (x, T ). (3.69)

For all σ > 1, let Bσ (F) > 0 denote the best Sobolev constant of the Rie-
mannian metric RF associated to the frame F. We recall that the metric RF is
defined as the unique Riemannian metric such that the frame F is orthonormal.
It is convenient to adopt the following definition

Bσ (F) = sup
f �=0

‖ f ‖C0(M)

| f |F,σ + |X f |F,0
. (3.70)

The following a priori bounds are immediate from the definitions:

Lemma 3.4.7 For any σ > 1, there exists a constant Cσ > 0 such that

|cX
�,σ (x, T )||DX

�|F,−σ ≤ |AX
�,σ (x, T )|F,−σ ≤ Cσ Bσ (F).
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Proof The first inequality (on the left) follows from orthogonality of the
splitting in W−σ

F (π X
� ). The second inequality follows from the argument

below.
For any t ∈ R and for all x ∈ M , let

ft (x) :=
∫ t

0
f ◦ φX

s (x)ds.

By the Heisenberg commutation relations we have

Y ( f ◦ φX
s ) = (Y − s Z)( f ) ◦ φX

s and Z( f ◦ φX
s ) = Z f ◦ φX

s ,

hence for σ ∈ N we have

Xσ ft (x) =
∫ t

0
Xσ f ◦ φX

s (x)ds ,

Y σ ft (x) =
∫ t

0
(Y − s Z)σ f ◦ φX

s (x)ds ,

Zσ ft (x) =
∫ t

0
Zσ f ◦ φX

s (x)ds.

It follows by Minkowski integral inequality (for the L2 norm of an integral)
that there exists a constant C ′

σ > 0 such that

| ft |F,σ ≤ C ′
σ (1 + |t |σ )| f |F,σ .

The above estimate can be extended to all σ ∈ R+ by interpolation, hence it
follows that for all σ ≥ 1 we have

| ft |F,σ + |X ft |F,0 ≤ C ′′
σ (1 + |t |σ )| f |F,σ .

From the definition of the best Sobolev constant Bσ (F), we can immediately
derive that, for all σ > 1, we have

‖ ft‖C0(M) ≤ Bσ (F){| ft |F,σ + |X ft |F,0} ≤ C ′′
σ Bσ (F)(1 + |t |σ )| f |F,σ .

We can split the integral over an orbit segment of length T ≥ 1 as sum of
integrals over at most [T ] + 1 orbits segments of at most unit length. In fact,
for all x ∈ M we have

fT (x) =
[T ]∑
h=0

f1 ◦ φX
h (x)+ f{T } ◦ φX[T ](x).

Since the uniform norm of a function is invariant under composition with a
diffeomorphism, we derive the estimate

‖ fT ‖C0(M) ≤ [T ]‖ f1‖C0(M) + ‖ f{T }‖C0(M) ≤ 2C ′′
σ Bσ (F)(1 + T )| f |F,σ .
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By definition AX
�,σ (x, T ) is the orthogonal projection of AX

σ (x, T ) onto an
irreducible component of the dual Sobolev space W−σ

F (M). For any function
f ∈ W σ

F(M) let f�,σ ∈ W σ
F(M) denote the orthogonal projection onto the

corresponding irreducible component such that

AX
�,σ (x, T )( f ) = AX

σ (x, T )( f�,σ ).

We can finally conclude that, for all σ > 1, also by the orthogonality of the
decomposition, we have

|AX
�,σ (x, T )( f )| = |AX

σ (x, T )( f�,σ )| ≤ 1

T
‖( f�,σ )T ‖C0(M)

≤ 4C ′′
σ Bσ (F)| f�,σ |F,σ ≤ 4C ′′

σ Bσ (F)| f |F,σ .

The argument is completed.

We are finally ready to estimate the dual Sobolev norm of the remainder
distribution R X

�,σ (x, T ) ∈ W−σ
F (π X

� ).

Lemma 3.4.8 For all σ > 2 and τ ∈ (1, σ − 1) we have

|RX
�,σ (x, T )|F,−σ ≤ 2

T
Bσ (F)(1 + |G X

�|F,σ,τ ).

Proof By the splitting in formula (3.68), every f ∈ Wσ
F(π

X
�) has an

orthogonal decomposition

f = f0 + f1 , with f0 ∈ Kσ (π X
� ) and f1 ∈ Kσ (π X

� )⊥.

Since RX
�,σ (x, T ) ∈ Ann[Kσ (π X

�)
⊥] we have

R X
�,σ (x, T )( f ) = RX

�,σ (x, T )( f0) = AX (x, T )( f0).

In addition, since f0 ∈ Kσ (π X
� ), by Lemma 3.3.4 and Lemma 3.3.5, for any

τ ∈ (1, σ − 1) there exists a solution u := G X
�( f0) of the cohomological

equation Xu = f0. It follows that

|AX (x, T )( f0)| = 1

T
|u ◦ φX

T (x)− u(x)| ≤ 2

T
‖u‖C0(M).

Finally, by the definition of the best Sobolev constant and by the bounds on the
norm of the Green operator, for any σ > 2 and any τ ∈ (1, σ − 1) we have

‖u‖C0(M) ≤ Bτ (F)(|u|F,τ + |Xu|F,0)

≤ Bτ (F)(|G X
�|F,σ,τ | f0|F,σ + | f |F,0).
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By orthogonality, it follows that

|R X
�,σ (x, T )( f )| ≤ 2

T
Bτ (F)(|G X

�|F,σ,τ | f |F,σ + | f |F,0)

which immediately implies the stated bound.

Spectral Estimates

In this section we derive Sobolev bounds for the distributions given by ergodic
averages. We have proved above that such distributions can be decomposed
into an invariant distribution term plus a remainder term. Under renormaliza-
tion the invariant distribution term scales appropriately as derived above and
yields the expected square root decay of ergodic averages with time.

The remainder term appears at first sight to be essentially negligible as it
decays as the inverse power of time. However, it contains a multiplicative
constant, the best Sobolev constant, which depends on the geometry of the nil-
manifold along the renormalization orbit. For almost all renormalization orbits,
this geometric term is responsible for the logarithmic or, more generally, sub-
polynomial terms which appear in equidistribution estimates and bounds on
Weyl sums.

From a technical point of view we have to take into account the fact that
although the space of invariant distributions is invariant (or, more precisely,
equivariant) under the renormalization dynamics, its orthogonal complement
is not.

Let F := (X, Y, Z0) be any Heisenberg frame. For any T ≥ e, let [T ] denote
its integer part and let h ∈ [1, 2] denote the ratio log T/[log T ]. We define a
sequence of Heisenberg frames F j := (X j , Y j , Z0) given by the forward orbit
of the renormalization flow:

(X j , Y j , Z0) := ρ jh(X, Y, Z0) = (e jh X, e− jhY, Z0) , for all j ∈ N.

For any σ > 0, let us define

Bσ (F, T ) :=
[log T ]∑

j=1

e jh/2 Bσ (F j ). (3.71)

Lemma 3.4.9 For all σ > 2 there exists a constant C�,σ > 0 such that, for
any Heisenberg frame F = (X, Y, Z0) and for all (x, T ) ∈ M × R+, we have

|AX
�,σ (x, T )|F,−σ ≤ C�,σ

Bσ (F, T )

T
.



168 G. Forni

Proof Let (Tj ) be the finite sequence given by the formula

Tj := e− jh T , for all j ∈ N.

By change of variable we have the immediate identities

AX
�,σ (x, T ) = A

X j
�,σ (x, Tj ) , for all j ∈ N.

We then write the orthogonal decomposition of the distribution A
X j
�,σ (x, Tj ) in

the Sobolev space W σ
F j
(π X

�): for all j ∈ N we have

AX
�,σ (x, T ) = A

X j
�,σ (x, Tj ) = c

X j
�,σ (x, Tj )D

X j
� + R

X j
�,σ (x, Tj )

which in particular implies the following

c
X j−1
�,σ (x, Tj−1)D

X j−1
� + R

X j−1
�,σ (x, Tj−1)= c

X j
�,σ (x, Tj )D

X j
� + R

X j
�,σ (x, Tj ).

Let now π j denote the orthogonal projection from W−σ
F j

(π X
�) onto the one-

dimensional subspace generated by the invariant distribution D
X j
� . Since the

normalized invariant distributions D
X j
� and D

X j−1
� are proportional, it follows

that

c
X j−1
�,σ (x, Tj−1)D

X j−1
� = c

X j
�,σ (x, Tj )D

X j
� + π j−1 R

X j
�,σ (x, Tj ) ,

from which we derive the bound

|cX j−1
�,σ (x, Tj−1)||DX j−1

� |F j−1,−σ

≤ |cX j
�,σ (x, Tj )||DX j

� |F j−1,−σ + |R X j
�,σ (x, Tj )|F j−1,−σ .

On the one hand, by the scaling of invariant distributions (see Lemma 3.4.4
and Lemma 3.4.6) there exists an explicit constant K�,σ > 0 (given in
Lemma 3.4.6) such that

|DX j
� |F j−1,−σ = e−h/2|DX j−1

� |F j−1,−σ ≥ K−1
�,σ e−h/2 ;

on the other hand, by the estimates on solutions of the cohomological equation
(see Lemma 3.4.6) there exist constants Kσ > 0 and K ′

�,σ > 0 such that

|RX j
�,σ (x, Tj )|F j−1,−σ ≤ Kσ |R X j

�,σ (x, Tj )|F j ,−σ ≤ K ′
�,σ

Bσ (F j )

Tj
.

From the above inequalities we then derive that there exists a constant K ′′
�,σ >

0 such that we have the following estimate:

|cX j−1
�,σ (x, Tj−1)| ≤ e−h/2|cX j

�,σ (x, Tj )| + K ′′
�,σ

Bσ (F j )

Tj
.
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By finite (backward) induction over the set {0, . . . , [log T ]} we find

|cX
�,σ (x, T )| ≤ T −1/2|cX[log T ]

�,σ (x, 1)| + K ′′
�,σ

T

[log T ]∑
j=1

Bσ (F j )e
( j+1)h/2.

By the a priori bound in Lemma 3.4.7 we derive that

|cX[log T ]
�,σ (x, 1)||DX[log T ]

� |F[log T ],−σ ≤ Cσ Bσ (F[log T ]) ≤ Cσ

Bσ (F, T )

T 1/2
,

hence by Lemma 3.4.6 there exists a constant K�,σ > 0 such that

|cX[log T ]
�,σ (x, 1)| ≤ Cσ K�,σ

Bσ (F, T )

T 1/2 .

By the above inequalities, we have thus proved the following estimate:

|cX
�,σ (x, T )| ≤ (Cσ K�,σ + K ′′

�,σ )
Bσ (F, T )

T
.

Finally, the stated estimate follows from the decomposition (3.69) of the distri-
bution AX

�,σ (x, T ), from the above bound and from the bound on the remainder

distribution RX
�,σ (x, T ) proved in Lemma 3.4.8.

We have thus proved that estimates on ergodic averages are reduced
to bounds on the best Sobolev constant Bσ (F(t)) along the forward orbit
{F(t)|t ≥ 0} of the renormalization flow. For instance, let us assume that there
exists a Heisenberg frame F of bounded type in the sense that

sup
t≥0

Bσ (F(t)) < +∞. (3.72)

It follows immediately from Lemma 3.4.9 that for any Heisenberg frame F of
bounded type and for all (x, T ) ∈ M × R+ we have

|AX
�,σ (x, T )|F,−σ ≤ C�,σ T −1/2.

For general Heisenberg frames the upper bound on ergodic averages is deter-
mined by an upper bound on the rate of growth of the best Sobolev constant,
which in turn depends on the degeneration of the geometry of the nilmanifold
under the renormalization flow.

Estimates on the Geometry

We have thus reduced the problem of finding bounds on ergodic averages of
Heisenberg nilflows to bounds on the best Sobolev constant along orbits of the
renormalization flow. Indeed, by its definition, for any σ > 0, the function
Bσ (F) is invariant under the action of automorphisms of the nilmanifold M
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(that is automorphisms of the Heisenberg group which preserve the center and
the lattice), hence it is well-defined (and continuous) on the moduli space M.
We recall that M is not compact, but it projects with compact fibers onto a finite
covering of the modular surface. Under this projection, the renormalization
flow projects onto the diagonal (geodesic) flow. By a well-known result the set
of bounded orbits of the diagonal flow on a finite volume quotient of the group
SL(2,R) has full Hausdorff dimension, but zero Lebesgue measure. Hence
the set of Heisenberg frames of bounded type is also a set of full Hausdorff
dimension and zero measure. A generalization and refinement of this basic
result requires the following bound of the best Sobolev constant in terms of the
distance of the Heisenberg triple from a compact part of the moduli space.

Let δM : M → R+ denote the distance function on the moduli space M,
induced by the hyperbolic distance from a fixed base point (or from the thick
part) on the finite volume surface A�\SL(2,R)/SO(2,R) endowed with the
hyperbolic metric of curvature −1.

Lemma 3.4.10 (see [FF2], Corollary 3.11) For every σ > 1, there exists a
constant Cσ > 0 such that

Bσ (F) ≤ Cσ eδM(F)/4.

Proof (Sketch) Let F = (X, Y, Z0) be a Heisenberg frame on M at distance
δ > 0 from the thick part of the moduli space M. We claim that the base
(Abelianized) torus of M , endowed with the projected metric RF̄ induced by
the Abelian projected frame F̄ := (X̄ , Ȳ ), has shortest loop of length pro-
portional to e−δ/2. In fact, the diagonal flow generated by the one-parameter
group

gt := {
(

et 0
0 e−t

)
|t ∈ R} ,

by right multiplication on SL(2,R), has speed equal to 2 with respect to
the metric on SL(2,R) induced by the hyperbolic metric of curvature −1
on the hyperbolic plane SL(2,R)/SO(2,R). For any rational frame F̄ :=
(X̄ , Ȳ ), the shortest loop of the torus with respect to the flat metric RF̄t

corre-

sponding to the Abelian frame F̄t := (X̄t , Ȳt ) := gt (X̄ , Ȳ ) is proportional to
e−t , for all t > 0. Since any frame F̄ := (X̄ , Ȳ ) is at bounded distance from
the orbit of any given rational frame, the claim is proved.

It follows that the shortest loop on M with respect to the Riemannian metric
RF associated to the frame F := (X,Y, Z0) (respect to which the frame is
orthonormal) has length at least proportional to e−δ/2. Finally, it is possible to
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derive by an elementary scaling argument from the standard Sobolev embed-
ding theorem (or Sobolev trace theorem) that there exists a constant Cσ > 0
such that the following holds. Let F = (X,Y, Z0) be a Heisenberg frame on
M such that its shortest loop has length d ∈ (0, 1) with respect to the flat
metric RF on M . The best Sobolev constant Bσ (F) for the frame F satisfies
the bound

Bσ (F) ≤ Cσd−1/2.

The statement then follows immediately.

Remark It is stated erroneously in the proof of Lemma 5.7 of [FF2] that the
renormalization flow on the moduli space has unit speed. As a consequence of
this error, the proof of Lemma 5.7 (as well as its statement) is wrong. However,
the main results of the paper are correct as we shall see below.

Proof of Theorem 3.1.1 It is a well-known theorem of S. G. Dani [Da] that
the set of bounded orbits for the diagonal flow on finite volume quotients of
SL(2,R) has full Hausdorff dimension. Since the renormalization flow on the
moduli space M projects onto the diagonal flow on a finite cover of the unit
tangent bundle of the modular surface and since the projection has compact
fibers in the moduli space, it follows immediately that the set of relatively
compact orbits for the renormalization flow has full Hausdorff dimension. By
Lemma 3.4.10 it follows that there exists a set of full Hausdorff dimension of
bounded-type Heisenberg frames defined as in formula (3.72). The statement
of Theorem 3.1.1 then follows immediately from Lemma 3.4.9.

We recall that from the Khintchine–Sullivan theorem (stated for the geodesic
flow of speed 2 on the unit tangent bundle of a hyperbolic surface) it follows
that for any positive, non-increasing function φ : [1,+∞) → R+ the set of
Heisenberg frames F such that there exists a constant CF(φ) > 0 such that

δM(F(t)) < φ(t)+ Cφ(F) , for all t ≥ 0 ,

has full Lebesgue measure if and only if∫ +∞

0
e−φ(t)dt < +∞.

In particular, in the logarithmic scale we derive that for every ε > 0 and for
almost all Heisenberg frames F there exists a constant Cε(F) > 0 such that

δM(F(t)) ≤ (1 + ε) log t + Cε(F).
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Proof of Theorem 3.1.2 Let β be any positive, non-decreasing function
defined on [1,+∞) such that∫ +∞

1

dT

Tβ4(T )
< +∞.

From the Khintchine–Sullivan [Su] theorem it follows that for almost all
Heisenberg frames F there exists a constant CF > 0 such that

δM(F(t)) ≤ 4 logβ(et )+ Cβ(F) ,

hence by Lemma 3.4.10 we derive the following bound on the best Sobolev
constant: for almost all Heisenberg frames F there exists a constant Cβ,σ (F)

such that

Bσ (F(t)) ≤ Cβ,σ (F)β(e
t ) , for all t ≥ 1.

From the above estimate, since the function β : [1,+∞) → R+ is
non-decreasing we derive that there exists a constant C ′

β,σ (F) > 0 such that

Bσ (F, T ) :=
[log T ]∑

j=1

e( j+1)h/2 Bσ (F j )

≤ Cβ,σ (F)β(T )
[log T ]∑

j=1

e( j+1)h/2 ≤ C ′
β,σ (F)β(T )T

1/2.

From Lemma 3.4.9, for every � ∈ h∗ such that �(Z0) �= 0, we then derive for
all σ > 2 the estimate

|AX
�,σ (x, T )|F,−σ ≤ C�,σC ′

β,σ (F)T
−1/2β(T ).

The estimate on ergodic averages of general smooth functions follows from
the orthogonal decomposition of Sobolev spaces into isotypical components,
that is, subspaces which are (finite) direct sums of unitarily equivalent irre-
ducible components. For any σ ∈ R, let {W σ

n (M)|n ∈ Z} denote the sequence
of isotypical components of the Sobolev space Wσ (M) which are orthogo-
nal to the subspace of functions defined on the base (Abelianized) torus (or,
equivalently, which have zero average along each fiber of the circle fibration
π : M → T2 of M over the base torus). By definition, for each n ∈ Z the
space W σ

n (M) is unitarily equivalent to a finite direct sum of model spaces
W σ (π X

�n
) with �n ∈ h∗ such that �n(Z0) �= 0, hence for any σ > 2 the esti-

mates proved in Lemma 3.4.9 hold for functions in W σ
n (M). For any σ ≥ 0,

we have decomposition of the form

W σ (M) = π∗W σ (T2)⊕
⊕
n∈Z

W σ
n (M).
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For any f ∈ Wσ (M), let f̄ ∈ Wσ (M) denote the projection onto the subspace
π∗W σ (T2) of toral functions, and, for every n ∈ N, let fn ∈ W σ

n (M) denote
the orthogonal projection on a non-toral isotypical component. By definition
we have the decomposition

f = f̄ +
∑
n∈Z

fn.

It can be proved that if f ∈ Wσ (M) for any σ > τ , the Sobolev norms of the
functions fn ∈ W τ (M) decay polynomially. In fact, for all a ∈ N we have(∑

n∈Z

n2a‖ fn‖2
τ

)1/2

= ‖Za
0 f ‖τ ≤ ‖ f ‖τ+a ,

which by interpolation implies that for all σ > τ we have

‖ fn‖τ ≤ (1 + n2(σ−τ))−1/2‖ f ‖σ .

Ergodic averages of the projection f̄ on the subspace of toral functions can
be written as ergodic averages with respect to the projected linear flows on the
torus. Under our Diophantine condition all functions f̄ ∈ W σ (T2) for σ > 5/2
are continuous coboundaries, hence a stronger estimate holds, as in this case
ergodic integrals are bounded. Finally, by Lemma 3.4.6 the constant C�,σ > 0
in Lemma 3.4.9 can be estimated in terms of � ∈ h∗ as follows: for every
τ > 2 there exists Cτ > 0 such that

C�n ,τ ≤ Cτ (1 + n)τ+2.

The statement of Theorem 3.1.2 for σ > 7 then follows. In fact, since

∑
n∈Z

C�n,τ | fn |F,τ ≤ Cτ

(∑
n∈Z

(1 + n)τ+2(1 + n2(σ−τ))−1/2

)
‖ f ‖σ ,

it follows from Lemma 3.4.9 that for all σ > 2τ+3 > 7, there exists a constant
Cσ,τ > 0 such that

|AX
�,σ (x, T )( f − f̄ )| ≤

∑
n∈Z

|AX
�,σ (x, T )( fn)| ≤ Cσ,τ‖ f ‖σ T −1/2β(T ).

By more careful estimates the result can be proved under the weaker regularity
condition σ > 5/2 (see [FF2]).
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3.5 Higher-Step Filiform Nilflows

In this final section we describe a generalization of our approach to higher-
step filiform nilflows. The main difficulty in the higher-step case comes
from the fact that no renormalization dynamics seems to be available.
However, our method can be generalized by introducing an appropriate
renormalization group of scaling operators suggested by the harmonic analysis
of the cohomological equation and invariant distributions. The renormalization
group generalizes the renormalization introduced in the Heisenberg case, but
(approximate) self-similarity, which is related to the recurrence of the renor-
malization dynamics, is lost. In fact, the dynamics of our renormalization
group on the moduli space of nilflows is completely dissipative (hence it is
actually pointless to introduce a moduli space). We discuss how to (partially)
overcome these difficulties and outline an approach which we believe can be
applied to other effective equidistribution problems in homogeneous unipotent
dynamics.

Scaling of Invariant Distributions and of the Green Operator

In this section we introduce a scaling of (normalized) adapted bases of filiform
Lie algebras which optimizes the scaling of the transverse Sobolev norms of
invariant distributions.

Let F := (X,Y1, . . . ,Yk) denote any filiform basis of a k-step filiform Lie
algebra on 2 generators, that is, a basis satisfying the filiform commutation
relations

[X,Yi ] = Yi+1 , for all i < k and [X,Yk ] = 0 ;
[Yi ,Y j ] = 0 , for all i, j = 1, . . . , k.

It can be proved that the optimal scaling for the renormalization group is given
by the following formulas:

ρt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X
Y1

. . .

Y j

. . .

Yk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

X (t)
Y1(t)
. . .

Y j (t)
. . .

Yk(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

et X

e− 2
k tY1

. . .

e−
2(k− j)
k(k−1) t Y j

. . .

Yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.73)

The above scaling is optimal in the sense that any other (admissible) choice
of the scaling gives a weaker result on the speed of equidistribution of ergodic
averages (although it may give better or easier estimates on the deformation of
the geometry of the nilmanifold).
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We also remark that, in contrast with the Heisenberg case, in the higher-step
case the scaling is not given by automorphisms of the Lie algebra. In fact, we
have the following commutation relations:

[X (t),Y j (t)] = et− 2
k(k−1) t Y j+1(t) , for all j ∈ {1, . . . , k − 1}.

From this formula for commutators it follows that the scaling group {ρt } cannot
be recurrent up to the action of diffeomorphisms (that is, on a moduli space) as
diffeomorphisms preserve commutators. In particular, rescaled bases are not
filiform bases.

Let F := (X, Y1, . . . ,Yk) denote a filiform basis and, for all t ≥ 0, let F(t)
denote the rescaled basis F(t) = ρt(F) defined above.

In analogy with the Heisenberg case we introduce an intertwining (unitary)
operator Uh : L2(R) → L2(R) by the formula

Uh( f )(x) = eh/2 f (eh x) , for all f ∈ L2(R).

It follows by the definitions that, for all V ∈ fk we have

π
X (t)
� (V ) ◦ Uh = Uh ◦ π X (t+h)

� (V ).

For all σ ∈ R and for all t and h ∈ R, the operator Uh is unitary from
Sobolev spaces W σ

F(π
X (t+h)
� ) for the representation π

X (t+h)
� onto Sobolev

spaces W σ
F(π

X (t)
� ) for the representation π

X (t)
� .

Lemma 3.5.1 For all t ∈ R, we have the following identity:

|DX (t+h)
� |F(t),−σ = e−h/2|DX (t)

� |F(t),−σ = e−h/2 Iσ (�,F(t)).

Proof For all f ∈ C∞(π
X (t+h)
� ) ⊂ L1(R), by intertwining and change of

variables, we have

D
X (t+h)
� ( f ) = D

X (t)
� (Uh f ) = e−h/2D

X (t)
� ( f ).

The statement then follows from Lemma 3.3.3 on the Sobolev norms of
invariant distributions.

Let G X (t)
X,� denote the Green operator for the cohomological equation

X (t)u = f in the representation π X
� . We recall that, according to our def-

initions above, see formula (3.50), G X (t)
� denotes the Green operator for the

same cohomological equation X (t)u = f in the representation π
X (t)
� .

In the case of a filiform basis F := (X, Y1, . . . ,Yk), the degree of the vectors
(Y1, . . . ,Yk) are

(d1, . . . , di , . . . , dk) = (k − 1, . . . , k − i, . . . , 0) ,
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hence in particular the weight introduced in formula (3.56) takes the form

wF(�) := min{i : di �=0}

∣∣∣∣∣�
(di )
i (F)

di !

∣∣∣∣∣
− 1

di

= min{i=1,...,k}

∣∣∣∣ �(Yk)

(k − i)!
∣∣∣∣− 1

k−i

For convenience of notation we introduce the following modified norm: for all
� ∈ a∗k,�, let

‖�‖F := |�(F)| (1 + 1

|�(Yk)| ). (3.74)

The following Lemma generalizes Lemma 3.4.6 to the higher-step filiform
case.

Lemma 3.5.2 For all k ≥ 2 and all σ > 1/2, there exists a constant Ck,σ >

0 such that, for all � ∈ a∗k such that �(Yk) �= 0, for all t ∈ R, the following
bounds hold:

C−1
k,σ

(1 + ‖�(F)‖)σ ≤ e(
1
2− 1

k(k−1) )t

w
1/2
F (�)

|DX (t)
� |F(t),−σ ≤ Ck,σ (1+‖�(F)‖). (3.75)

For σ > τ(k−1)+1 there exists a constant Gk,σ,τ > 0 such that, for all t ∈ R

and for all f ∈ K∞(π
X (t)
� ), the following holds:

|G X (t)
X,�( f )|F(t),τ ≤ Gk,σ,τ (1 + ‖�‖F)

τk+2e−(1− 2
k(k−1) )t | f |F(t),σ . (3.76)

Proof The argument proceeds as in the proof of Lemma 3.4.6. By Lemma
3.3.3 and Lemma 3.3.4, the bounds stated above are reduced to estimates given
in Lemma 3.3.5 on the integrals Iσ (�,F(t)) and Jσ (�,F(t)) which were
defined in formula (3.51). By Lemma 3.3.5 the above integrals can be esti-
mated in terms of the weights wF(t)(�) given in formula (3.56), and �̂(F(t)),
given in formula (3.58). By definition, for all t ∈ R we have

wF(t)(�) = e−(1− 2
k(k−1) )twF(�) ,

and, by an elementary estimate, for all t ≥ 0 we have

|�̂(F(t))| ≤ ‖�‖F. (3.77)

In fact, it follows from the definition in formula (3.57) that for any rescaled
basis F(t), for all i ∈ {1, . . . , k} and j ∈ {1, . . . , k − i}, we have

�̂
( j)
i (F(t)) = �

( j)
i (F(t))wF(t)(�) j = e

2( j−k+i)
k(k−1) t

�̂
( j)
i (F) ≤ �̂

( j)
i (F).

The bound in formula (3.77) follows from the definition of �̂(F) in for-
mula (3.58).
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The result then follows from Lemma 3.3.3, Lemma 3.3.4 and Lemma 3.3.5.

Heuristically, following the method explained in the case of Heisenberg nil-
flow, we should be able to derive from Lemma 3.5.2 corresponding polynomial
bounds for ergodic averages. However, for that we need to prove appropriate
bounds on the scaled geometry of nilmanifolds. It does not seem to be possible
to prove bounds on the injectivity radius of the rescaled metrics, as higher-step
nilflows may have very close returns which correspond to very short loops in
certain scaled metrics. However, such very short return should be quite rare.
In the next section we introduce a notion of average width of an orbit segment
and prove a corresponding generalization of the Sobolev trace theorem, which
shows that the best Sobolev constant can be bounded in terms of the average
width of orbits.

The Average Width and a Trace Theorem

The content of this section consists of the core technical novelties which make
it possible to extend the renormalization approach from the Heisenberg case to
the higher-step filiform case.

Let F := (X, Y1, . . . , Yk) be any normalized adapted basis of the filiform
Lie algebra fk . For any x ∈ M , let φx : R × Rk → M be the local embedding
defined for all (t, s) ∈ R × Rk by the formula

φx (t, s) = x exp (t X) exp (s · Y ). (3.78)

We have the following elementary results.

Lemma 3.5.3 For any x ∈ M and any f ∈ C∞(M) we have

∂φ∗
x ( f )

∂ t
(t, s) = φ∗

x (X f )(t, s)+
∑

j

s jφ
∗
x ([X, Y j ] f )(t, s) ;

∂φ∗
x ( f )

∂s j
= φ∗

x (Y j f ) , for all j = 1, . . . , k.

Lemma 3.5.4 For any x ∈ M, we have

φ∗
x (ω) = dt ∧ ds1 ∧ · · · ∧ dsk .

Let Lebk denote the k-dimensional Lebesgue measure on Rk .
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Definition 3.5.5 For any open neighborhood of the origin O ⊂ Rk , let
RO be the family of all k-dimensional symmetric (i.e. centered at the origin)
rectangles R ⊂ [−1/2, 1/2]k such that R ⊂ O. The inner width of the open
set O ⊂ Rk is the positive number

w(O) := sup{Lebk(R) | R ∈ RO }.
The width function of a set � ⊂ R × Rk containing the line R × {0} is the
function w� : R → [0, 1] defined as follows:

w�(τ) := w({s ∈ Rk | (τ, s) ∈ �}) , for all τ ∈ R.

Definition 3.5.6 Let F = (X, Y1, . . . ,Yk) be any normalized adapted basis.
For any x ∈ M and T > 1, we consider the family Ox,T of all open sets
� ⊂ R × Rk satisfying:

● [0, T ] × {0} ⊂ � ⊂ R × [−1/2, 1/2]k ;
● the map

φx : � → M

defined by formula (3.78) is injective.

The average width of the orbit segment

γ X (x, T ) := {x exp(t X) | 0 ≤ t ≤ T } = {φx (t, 0) | 0 ≤ t ≤ T },
relative to the normalized adapted basis F, is the positive real number

wF(x, T ) := sup
�∈Ox,T

(
1

T

∫ T

0

ds

w�(s)

)−1

. (3.79)

The average width of the nilmanifold M, relative to the normalized adapted
basis F, at a point y ∈ M is the positive real number

wF(y) := sup{wF(x, 1)|y ∈ γ X (x, 1)}. (3.80)

For any σ ≥ 0, let W σ (M,F) denote the transverse Sobolev space (defined
with respect to the transverse Laplacian) introduced in section 3.3.

The following generalization of the Sobolev embedding theorem and of the
Sobolev trace theorem hold and can be proven by elementary methods (see
Theorems 3.9 and 3.10 in [FF4]).

Theorem 3.5.7 Let F = (X,Y1, . . . ,Yk) be any normalized adapted basis.
For any σ > k/2, there exists a positive constant Ck,σ such that, for all
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functions u ∈ W σ+1(M,F) such that Xu ∈ W σ (M,F) and for all y ∈ M, we
have

|u(y)| ≤ Ck,σ

wF(y)1/2

{
|u|F,σ + |Xu|F,σ +

k∑
j=1

∣∣[X,Y j ]u
∣∣
F,σ

}
.

For a vector field X on M and x ∈ M the ergodic average AX (x, T ) is
defined as follows: for all f ∈ L2(M),

AX (x, T )( f ) := 1

T

∫ T

0
f ◦ φX

t (x) dt , for all T ∈ R+,

where {φX
t } is the flow generated by the vector field X on M . The following

generalized Sobolev trace theorem for the linear functional AX (x, T ) holds.

Theorem 3.5.8 Let F = (X, Y1, . . . ,Yk) be any normalized adapted basis.
For any σ > k/2, there exists a positive constant Ck,σ such that, for all
functions f ∈ W σ (M,F), for all T ∈ [1,+∞) and all x ∈ M we have

|AX (x, T )( f )| ≤ Ck,σ

T 1/2wF(x, T )1/2
| f |F,σ .

Spectral Estimates

Spectral estimates in the higher-step filiform case can be derived along the
same lines as spectral estimates in the Heisenberg case.

For any adapted basis F := (X,Y1, . . . ,Yk) and for any (x, T ) ∈ M × R+
we let

BF(x, T ) := 1

w
1/2
F (x)

+ 1

w
1/2
F (φX

T (x))
.

For any T ≥ e, let [T ] denote its integer part and let h ∈ [1, 2] denote
the ratio log T/[log T ]. We define a sequence of rescaled basis F j :=
(X ( j), Y ( j)

1 , . . . ,Y ( j)
k ) given by the forward orbit of the renormalization group:

for all j ∈ N,

(X j , Y ( j)
1 , . . . ,Y ( j)

i , . . . ,Y ( j)
k ) := ρ jh(X, Y1, . . . ,Yi , . . . ,Yk)

= (e jh X, e−
2 jh

k Y1, . . . , e−
2(k−i) jh
k(k−1) Yi , . . . ,Yk).

Let us define

B̂F(x, T ) :=
[log T ]∑

j=1

e(1−
1

k(k−1) ) jh BF j (x, Tj ). (3.81)
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Lemma 3.5.9 For all σ > (k/2 + 1)(k − 1)+ 1 there exists C�,σ > 0 such
that, for any filiform basis F = (X,Y1, . . . ,Yk) and for all (x, T ) ∈ M × R+,
we have

|AX
�,σ (x, T )|F,−σ ≤ C�,σ

B̂F(x, T )

T
.

Proof Let (Tj ) be the finite sequence given by the formula

Tj := e− jh T , for all j ∈ N.

By change of variable we have the identities

AX
�,σ (x, T ) = A

X j
�,σ (x, Tj ) , for all j ∈ N.

We then write the orthogonal decomposition of the distribution A
X j
�,σ (x, T ) in

the Sobolev space W σ
F j
(π X

�) : for all j ∈ N we have

AX
�,σ (x, T ) = A

X j
�,σ (x, Tj ) = c

X j
�,σ (x, Tj )D

X j
� + R

X j
�,σ (x, Tj ) ,

which in particular imply the following

c
X j−1
�,σ (x, Tj−1)D

X j−1
� + R

X j−1
�,σ (x, Tj−1) = c

X j
�,σ (x, Tj )D

X j
� + R

X j
�,σ (x, Tj ).

Let now π j denote the orthogonal projection from W−σ
F j

(π X
�) onto the one-

dimensional subspace generated by the invariant distribution D
X j
� . Since the

normalized invariant distributions D
X j
� and D

X j−1
� are proportional, it follows

that

c
X j−1
�,σ (x, Tj−1)D

X j−1
� = c

X j
�,σ (x, Tj )D

X j
� + π j−1 R

X j
�,σ (x, Tj ) ,

from which we derive the bound

|cX j−1
�,σ (x, Tj−1)||DX j−1

� |F j−1,−σ

≤ |cX j
�,σ (x, Tj )||DX j

� |F j−1,−σ + |R X j
�,σ (x, Tj )|F j−1,−σ .

On the one hand, by the scaling of invariant distributions (see Lemma 3.5.1
and Lemma 3.5.2) there exists an explicit constant K�,σ > 0 (given in
Lemma 3.5.2) such that

|DX j
� |F j−1,−σ = e−h/2|DX j−1

� |F j−1,−σ ≥ K−1
�,σ e−h/2e−( 1

2− 1
k(k−1) )( j−1)h ;

(3.82)
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on the other hand, from the estimates on solutions of the cohomological equa-
tion (see Lemma 3.5.2 ) there exist constants Kσ > 0 and K ′

�,σ > 0 such
that

|RX j
�,σ (x, Tj )|F j−1,−σ ≤ Kσ |RX j

�,σ (x, Tj )|F j ,−σ ≤ K ′
�,σ

BF j (x, Tj )

Tj
.

(3.83)
In fact, by Lemma 3.5.2, for any σ > τ(k − 1) + 1 and for any coboundary

f ∈ Kσ (π
X j
� ) we have

|G X j
X,�( f )|F j ,τ ≤ Gk,σ,τ (1 + ‖�‖F)

τk+2e−(1− 2
k(k−1) ) jh | f |F j ,σ ,

and, by Theorem 3.5.7, for τ > k/2 there exist constants Ck,τ , C ′
τ > 0 such

that

|G X j
X,�( f )(y)| ≤ Ck,τ

w
1/2
F j

(y)

(
| f |F j ,τ + Cτ e(1−

2
k(k−1) ) jh |G X j

X,�( f )|F j ,τ+1

)
.

The bound in formula (3.83) then follows from the above estimates for the
Green operator by an argument similar to the one given in the proof of
Lemma 3.4.8.

From the bounds in formulas (3.82) and (3.83) we then derive that there
exists a constant K ′′

�,σ > 0 such that we have the following estimate:

|cX j−1
�,σ (x, Tj−1)| ≤ e−h/2|cX j

�,σ (x, Tj )| + K ′′
�,σ

BF j (x, Tj )

Tj
e(

1
2− 1

k(k−1) ) jh
.

By finite (backward) induction over the set {0, . . . , [log T ]} we find

|cX
�,σ (x, T )| ≤ T−1/2|cX[log T ]

�,σ (x, 1)|

+ K ′′
�,σ

T

[log T ]∑
j=1

BF j (x, Tj )e
(1− 1

k(k−1) ) jh
.

By the a priori bound in Theorem 3.5.8 we derive that

|cX[log T ]
�,σ (x, 1)||DX[log T ]

� |F[log T ],σ ≤ |AX[log T ]
�,σ |F[log T ],σ ≤ Ck,σ

w
1/2
F[log T ](x)

.

From the above bound and from Lemma 3.5.2 on the scaling of invariant
distributions we derive that

|cX[log T ]
�,σ (x, 1)| ≤ K�,σ BF[log T ](x, 1)T

1
2− 1

k(k−1) ≤ K�,σ

B̂F(x, T )

T 1/2
.
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Finally, the stated estimate is a consequence of the decomposition (3.69)
of the distribution AX

�,σ (x, T ), of the bound on the remainder distribution

RX
�,σ (x, T ) proved in Lemma 3.4.8 and of the above bound.

Bounds on the Average Width

From Lemma 3.5.9 it is possible to derive effective equidistribution bounds
on higher-step filiform nilflows conditioned to bounds on the average width
of orbits. In this section we formulate a conjecture on the average width of
higher-step filiform nilflows, then describe results in support of the conjecture.

Conjecture 3.5.10 For any filiform basis F = (X, Y1, . . . ,Yk) such that the
frequency of the toral flow {ψ X̄

t } generated by the projected vector field X̄ on
T2 is a Diophantine irrational of exponent ν ≤ k/2 the following holds. For
every ε > 0 there exists a constant Cε > 0 such that

wF(t)(x) ≥ C−1
ε e−εt , for all (x, t) ∈ M × R+.

From the above conjecture and from Lemma 3.5.9 we would then be able to
derive the following result.

Theorem 3.5.11 (Conditional Theorem) Let us assume that Conjecture
3.5.10 holds. Let {φX

t } be a nilflow on a k-step filiform nilmanifold M which
projects to a toral linear flow on T2 with Diophantine frequency of exponent
ν ≤ k/2. For every σ > (k/2 + 1)(k − 1) + 1 and for every ε > 0 there
exists a constant Cσ,ε(X) > 0 such that the following holds: for all function
f ∈ W σ (M) and all (x, T ) ∈ M × R+, we have

| 1

T

∫ T

0
f (φX

t (x))dt −
∫

M
f dvol| ≤ Cσ,ε(X)‖ f ‖σ T− 1

k(k−1)+ε
.

By Lemma 3.2.5 the above conditional theorem implies (conditional) esti-
mates on Weyl sums for polynomials of degree k ≥ 3 under a Diophantine
condition on the leading coefficient.

We introduce a definition of good points, that is, points on the nilmanifold
for which we can prove bounds on the width of sufficiently many orbit seg-
ments to derive by our method bounds on ergodic averages. The set of good
points is of full measure, as stated below.

Definition 3.5.12 Let F = (X, Y1, . . . ,Yk) be a filiform basis. For any
increasing sequence (Ti ) of positive real numbers, let Ni := [log Ti/ log 2]
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and Tj,i := T j/Ni
i , for all j = 0, . . . , Ni . Let ε > 0 and w > 0. We say

that a point x ∈ M is a (w, (Ti ), ε)-good point for the basis F if having set
yi = φX

Ti
(x), for all i ∈ N and for all 0 ≤ j ≤ Ni , we have

wF(log Tj,i )(x, 1) ≥ w/T ε
i , wF(log Tj,i )(yi , 1) ≥ w/T ε

i .

By a rather technical Borel–Cantelli argument based on the maximal ergodic
theorem, we have proved that the set of good points has full measure (see
[FF4], Lemma 5.18).

Lemma 3.5.13 Let ε > 0 be fixed and let (Ti ) be an increasing sequence of
positive real numbers satisfying the condition

#
(
(Ti ), ε

) :=∑
i∈N

(log Ti )
2T−ε

i < +∞. (3.84)

For any filiform basis F = (X, Y1, . . . ,Yk) such that the frequency of the toral
flow {ψ X̄

t } generated by the projected vector field X̄ on T2 is a Diophantine
irrational of exponent ν ≤ k/2 the following holds. The Lebesgue measure of
the complement of the set G

(
w, (Ti ), ε

)
of
(
w, (Ti ), ε

)
-good points is bounded

above as follows: there exists a constant CF := CF(k, ν) > 0 such that

meas
(
M�G(w, (Ti ), ε)

) ≤ CF #
(
(Ti ), ε

)
w.

Our main effective equidistribution result for higher-step nilflows (see
Theorem 3.1.3 in the Introduction) can be derived from the above almost
everywhere bounds on average width functions along the lines of the proof
of Lemma 3.5.9. Bounds on Weyl sums then follow immediately by Lemma
3.2.5.

We conclude these lectures with the proof of a uniform bound for the average
width in the case of 3-step filiform nilflows. The lemma establishes a weak
form of our Conjecture 3.5.10 in the case of 3-step filiform nilflows and by
Lemma 3.5.9 it implies Theorem 3.1.5 stated in the Introduction.

The argument is essentially based only on the linear divergence of nearby
orbits that takes place in this case. It can be generalized to other similar cases
(see for instance [FFT]).

Lemma 3.5.14 Let M be a 3-step filiform nilmanifold. For every nilflow {φX
s }

such that the frequency of the projected linear flow {ψ X̄
s } on T2 is Diophantine

of Roth type and for any filiform basis F = (X, Y1, Y2, Y3) the following holds.
For every ε > 0 there exists a constant Cε(X) > 0 such that, for all t ≥ 0 and
for all (x, T ) ∈ M × R+ we have
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wF(t)(x, T ) ≥ Cε(X)−1e−εt .

Proof Let F = (X,Y1,Y2,Y3) be a filiform basis. It is not restrictive to
assume (up to a change of basis) that the system (Y1, Y2,Y3) is rational with
respect to the lattice � which defines the nilmanifold M . For all t ≥ 0, let

F(t) = (X (t), Y1(t), Y2(t),Y3) := (et X, e−2t/3Y1, e−t/3Y2,Y3)

denote the optimally rescaled basis introduced above, written in the special
case of a 3-step filiform nilmanifold. We prove below a uniform bound on the
average width for all such rescaled bases.

By definition of the average width (see Definition 3.5.6), for any t ≥ 0 and
for any (x, T ) ∈ M×[1,+∞) we have to construct an open set �t (x, T ) ⊂ R4

which contains the segment {(s, 0, 0, 0)|0 ≤ s ≤ T }, such that the map

φx (s, y1, y2, y3) = �x exp(set X) exp(e−2t/3 y1Y1 + e−t/3 y2Y2 + y3Y3)

is injective on �t (x, T ). Injectivity fails if and only if there exist vectors

(s, y1, . . . , y3) �= (s ′, y′
1, . . . , y′

3) ∈ �t (x, T )

such that

�x exp(s ′et X) exp(e−
2t
3 y′

1Y1 + e−
t
3 y′

2Y2 + y′
3Y3)

= �x exp(set X) exp(e−
2t
3 y1Y1 + e−

t
3 y2Y2 + y3Y3).

(3.85)

Let us denote for convenience r = s ′ − s and zi := y′
i − yi for all i ∈ {1, 2, 3}.

Since s, s′ ∈ [0, T ] it follows that r ∈ [−T, T ]. Let c� > 0 denote the distance
from the identity of the smallest non-zero element of the lattice �.

Let us assume that

(z1, z2, z3) ∈ [−c�/4, c�/4]3. (3.86)

For all t ≥ 0 and all s ∈ [0, T ], let us adopt the notation

z2(t, s) := z2 + z1se2t/3 and z3(t, s) := z3 + 1

2
z1s2e4t/3 + z2se2t/3.

From the identity in formula (3.85) we derive the identity

exp(ret X) exp
(

e−2t/3z1Y1 + e−t/3z2(t, s)Y2 + z3(t, s)Y3

)
∈ x−1�x .

(3.87)
By projecting the above identity on the base torus we have

exp(ret X̄) exp(e−2t/3z1Ȳ1) ∈ �̄ , (3.88)

which implies that ret is a return time for the projected toral linear flow {ψ X̄
s }

at distance at most e−2t/3c�/2. By the Diophantine condition (of exponent
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ν ≥ 1) on the projected toral flow {ψ X̄
s } it follows that there exists a constant

C(X̄) > 0 such that all solutions of formula (3.88) satisfy the following lower
bound:

|z1| ≥ C(X̄)

rν
e(

2
3−ν)t .

Let Rt (x, T ) denote the set of r ∈ [−T, T ] such that the equation in for-
mula (3.88) has a solution z1 ∈ [−c�/2, c�/2]. By construction for every
r ∈ Rt (x, T ), the solution z1 := z1(r) of the identities in formulas (3.87)
and (3.88) is unique. Let then S(r) denote the set of s ∈ [0, T ] such that
there exists a solution of identity (3.87) satisfying the condition in formula
(3.86). By its definition the set S(r) is a union of intervals I ∗ of length
at most c�|z1(r)|−1e−2t/3/2. As long as |z1(r)| ≥ e−2t/3, for each con-
nected component I ∗ of S(r) there exists s∗ ∈ I ∗ solution of the equation
z2(t, s) − z1(r)se2t/3 = 0. Let S∗(r) denote the set of all such solutions. Its
cardinality can be estimated from above by counting lattice points on central
fibers after projection on the quotient Heisenberg manifold:

#S∗(r) ≤ c−1
� et/3|z1(r)|T .

For every r ∈ Rt (x, T ) and every s ∈ [0, T ], we now define the function

δr (t, s) =
{

1
10 max{|z1(r)|, |z1(r)(s − s∗)e2t/3|} , for all s ∈ I ∗ ;
c�
10 , for all s ∈ [0, T ]�S(r).

We then define the set �t (r) ⊂ [0, T ] × R3 as follows

�t (r) := {(s, y1, y2, y3)|max{|y1|, |y2|} < δr (t, s) , |y3| < c�/10} ,
and finally we define the set �t (x, T ) as the intersection

�t (x, T ) := ∩r∈Rt (x,T )�t (r).

It can be verified that by the above construction the above map φx : R4 → M
is injective on �t (x, T ). In fact, the open sets �t (r) ∩ �t (−r) are narrowed
near both endpoints of the return orbits of return time r so that their images in
M have no self-intersections given by return times r and −r .

Let us compute the average width function associated with the sets �t (r)
for each r ∈ Rt (x, T ). By definition we have

δr (t, s) =

⎧⎪⎪⎨⎪⎪⎩
1

10 |z1(r)| , for s ∈ I ∗ with |s − s∗| ≤ e−2t/3;
1

10 |z1(r)(s − s∗)e2t/3| , for s ∈ I ∗ with |s − s∗| ≥ e−2t/3;
c�
10 , for all s ∈ [0, T ]�S(r).
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By the definition of inner width and by construction of the set �t(r) we have
that

w�t (r)(s) =
4

5
c� δr (t, s)2 , for all s ∈ [0, T ] ,

from which it follows that for every subinterval I ∗ ⊂ S(r) we have∫
I ∗

ds

w�t (r)(s)
≤ 500c−1

�

e2t/3|z1(r)|2 .

By the upper bound on the length of the intervals I ∗ and on the cardinality of
the set S∗(r) we finally derive

1

T

∫ T

0

ds

w�t (r)(s)
≤ 103

c3
�

1

et/3|z1(r)| .

Finally it can be verified that we have the straightforward estimate

1

T

∫ T

0

ds

w�t (x,T )(s)
≤ 1

T

∑
r∈Rt (x,T )

∫ T

0

ds

w�t (r)(s)
.

For every n ∈ N, let R
(n)
t (x, T ) denote the subset of Rt (x, T ) characterized by

the condition that

|z1(r)| ∈ (
c�

2n+1
,

c�
2n

].

By a Diophantine condition of exponent ν ≥ 1 on the frequency of the
projection of the nilflow to a linear flow on the base torus we have the follow-
ing estimates which can be proved by methods from the theory of continued
fractions (see [FF4], Lemma 5.13) :

#R
(n)
t (x, T ) ≤ Cν(X)max{(T et )1− 1

ν , T et c�
2n

e−2t/3}.

It follows from the above estimates that, if the frequency of the projected linear
flow is Diophantine of Roth type (that is, it is Diophantine of exponent ν =
1 + ε for all ε > 0), then for all ε > 0 there exists Cε(X̄) > 0 such that

#R
(n)
t (x, T ) ≤ Cε(X̄)T

c�
2n

et/3+εt/2 ,

hence we conclude that there exists a constant Cε(�, X) > 0 such that

1

T

∫ T

0

ds

w�t (x,T )(s)
≤ Cε(�, X)T eεt .
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4

Multiple Recurrence and Finding Patterns in
Dense Sets

Tim Austin

Abstract

Szemerédi’s theorem asserts that any positive-density subset of the integers
must contain arbitrarily long arithmetic progressions. It is one of the central
results of additive combinatorics. After Szemeredi’s original combinatorial
proof, Furstenberg noticed the equivalence of this result to a new phenomenon
in ergodic theory that he called ‘multiple recurrence’. Furstenberg then
developed some quite general structural results about probability-preserving
systems to prove the multiple recurrence theorem directly. Furstenberg’s ideas
have since given rise to a large body of work around multiple recurrence and
the associated ‘non-conventional’ ergodic averages, and to further connections
with additive combinatorics.

This course is an introduction to multiple recurrence and some of the ergodic
theoretic structure that lies behind it. We begin by explaining the correspon-
dence observed by Furstenberg, and then give an introduction to the necessary
background from ergodic theory. We emphasize the formulation of multiple
recurrence in terms of joinings of probability-preserving systems. The next
step is a proof of Roth’s theorem (the first nontrivial case of Szemeredi’s the-
orem), which illustrates the general approach. We finish with a proof of a
more recent convergence theorem for some non-conventional ergodic averages,
showing some of the newer ideas in use in this area.

The classic introduction to this area of combinatorics and ergodic theory is
Furstenberg’s book [Fur81], but the treatment below has a more modern point
of view.

4.1 Szemerédi’s Theorem and Its Relatives

In 1927, van der Waerden gave a clever combinatorial proof of the following
surprising fact:

189



190 T. Austin

Theorem 4.1 (Van der Waerden’s Theorem [vdW27]) For any fixed integers
c, k ≥ 1, if the elements of Z are coloured using c colours, then there is a non-
trivial k-term arithmetic progression which is monochromatic: that is, there
are some a ∈ Z and n ≥ 1 such that

a, a + n, . . . , a + (k − 1)n.

all have the same colour.

This result now fits into a whole area of combinatorics called Ramsey theory.
The classic account of this Theory is the book by [GRS90].

It is crucial to allow both the start point a and the common difference n ≥ 1
to be chosen freely. This theorem has some more difficult relatives which allow
certain restrictions on the choice of n, but if one tries to fix a single value of n
a priori then the conclusion is certainly false.

In 1936, Erdős and Turán realized that a deeper phenomenon might lie
beneath van der Waerden’s theorem. Observe that for any c-colouring of Z

and for any finite subinterval of Z, at least one of the colour-classes must
occupy at least a fraction 1/c of the points in that subinterval. In [ET36] they
asked whether any subset of Z which has ‘positive density’ in arbitrarily long
subintervals must contain arithmetic progressions of any finite length.

This turns out to be true. The formal statement requires the following def-
inition. We give it for subsets of Zd , d ≥ 1, for the sake of a coming
generalization. Let [N ] := {1, 2, . . . , N }.

Definition 4.2 (Upper Banach Density) For E ⊆ Zd , its upper Banach
density is the quantity

d̄(E) := lim sup
N−→∞

sup
v∈Zd

|E ∩ (v + [N ]d)|
N d

.

That is, d̄(E) is the supremum of those δ > 0 such that one can find cubical
boxes in Zd with arbitrarily long sides such that E contains at least a proportion
δ of the lattice points in those boxes.

Exercise Prove that Definition 4.2 is equivalent to

d̄(E) = lim sup
L−→∞

sup
{∣∣E ∩∏d

i=1[Mi , Ni ]
∣∣∏d

i=1(Ni − Mi )
:

Ni ≥ Mi + L ∀i = 1, 2, . . . , d
}
.

�
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Theorem 4.3 (Szemerédi’s Theorem) If E ⊆ Z has d̄(E) > 0, then for any
k ≥ 1 there are a ∈ Z and n ≥ 1 such that

{a, a + n, . . . , a + (k − 1)n} ⊆ E .

The special case k = 3 of this theorem was proved by Roth in [Rot53], so it
is called Roth’s theorem. The full theorem was finally proved by Szemerédi in
[Sze75].

As already remarked, Szemerédi’s theorem implies van der Waerden’s the-
orem, because if Z is coloured using c colours then at least one of the
colour-classes must have upper Banach density at least 1/c.

Szemerédi’s proof of Theorem 4.3 is one of the virtuoso feats of mod-
ern combinatorics. It is also the earliest major application of several tools
that have since become workhorses of that area, particularly the Szemerédi
regularity lemma in graph theory. However, shortly after Szemerédi’s proof
appeared, Furstenberg gave a new and very different proof using ergodic the-
ory. In [Fur77], he showed the equivalence of Szemerédi’s theorem to an
ergodic-theoretic phenomenon called ‘multiple recurrence’, and proved some
new structural results in ergodic theory which imply that multiple recurrence
always occurs.

Multiple recurrence is introduced in the next subsection. First we bring
the combinatorial side of the story closer to the present. Furstenberg and
Katznelson quickly realized that Furstenberg’s ergodic-theoretic proof could
be considerably generalized, and in [FK78] they obtained a multidimensional
version of Szemerédi’s theorem as a consequence:

Theorem 4.4 (Furstenberg–Katznelson Theorem) If E ⊆ Zd has d̄(E) > 0,
and if e1, . . . , ed , is the standard basis in Zd , then there are some a ∈ Zd and
n ≥ 1 such that

{a + ne1, . . . , a + ned } ⊆ E

(so ‘dense subsets contain the set of outer vertices of an upright right-angled
isosceles simplex’).

This easily implies Szemerédi’s theorem, because if k ≥ 1, E ⊆ Z has
d̄(E) > 0, and we define

� : Zk−1 −→ Z : (a1, a2, . . . , ak−1) �→ a1 + 2a2 + · · · + (k − 1)ak−1,

then the pre-image �−1(E) has d̄(�−1(E)) > 0, and an upright isosceles sim-
plex found in�−1(E) projects under� to a k-term progression in E . Similarly,
by projecting from higher dimensions to lower, one can prove that Theorem 4.4
actually implies the following:
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Corollary 4.5 If F ⊂ Zd is finite and E ⊆ Zd has d̄(E) > 0, then there are
some a ∈ Zd and n ≥ 1 such that {a + nb : b ∈ F} ⊆ E.

For about twenty years, the ergodic-theoretic proof of Furstenberg and
Katznelson was the only known proof of Theorem 4.4. That changed when
a new approach using hypergraph theory was developed roughly in parallel by
Gowers [Gow06], Nagle, Rödl, and Schacht [NRS06] and Tao [Tao06b]. These
works gave the first ‘finitary’ proofs of this theorem, implying somewhat effec-
tive bounds: unlike the ergodic-theoretic approach, the hypergraph approach
gives an explicit value N = N (δ) such that any subset of [N ]d containing
at least δN d points must contain a whole simplex. (In principle, one could
extract such a bound from the Furstenberg–Katznelson proof, but it would be
extremely poor: see Tao [Tao06a] for the one-dimensional case.)

The success of Furstenberg and Katznelson’s approach gave rise to a new
sub-field of ergodic theory sometimes called ‘ergodic Ramsey theory’. It now
contains several other results asserting that positive-density subsets of some
kind of combinatorial structure must contain a copy of some special pattern.
Some of these have been re-proven by purely combinatorial means only very
recently. We will not state these in detail here, but only mention by name the
IP Szemerédi theorem of [FK85], the density Hales–Jewett theorem of [FK91]
(finally given a purely combinatorial proof by the members of the ‘Polymath 1’
project in [Pol09]), the polynomial Szemerédi theorem Bergelson and Leibman
[BL96] and the nilpotent Szemerédi theorem of Leibman [Lei98].

4.2 Multiple Recurrence

4.2.1 The Setting of Ergodic Theory

Ergodic theory studies the ‘statistical’ properties of dynamical systems. The
following treatment is fairly self-contained, but does assume some stan-
dard facts from functional analysis and probability, at the level of advanced
textbooks such as Folland [Fol99] or Royden [Roy88] and Billingsley [Bil95].

Let G be a countable group; later we will focus on Z or Zd . A G-space is
a pair (X, T ) in which X is a compact metrizable topological space, and T =
(T g)g∈G is an action of G on X by Borel measurable transformations: thus,

T e = idX and T g ◦ T h = T gh ∀g, h ∈ G,

where e is the identity of G. A Z-action T is specified by the single transforma-
tion T 1 which generates it. Similarly, a Zd -action T may be identified with the
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commuting d-tuple of transformations T ei , where e1, . . . , ed are the standard
basis vectors of Zd .

The set of Borel probability measures on a compact metrizable space X is
denoted by Pr(X). This set is compact in the weak$ topology: for instance, this
can be seen by the Riesz Representation Theorem ([Fol99, Theorem 7.17]),
which identifies Pr(X) with a closed, bounded, convex subset of the Banach-
space dual C(X)$, followed by an application of Alaoglu’s Theorem ([Fol99,
Theorem 5.18]).

Next, let (X,S ) and (Y,T ) be any two measurable spaces, let μ be a prob-
ability measure on S , and let π : X −→ Y be measurable. Then the image
measure of μ under π is the measure π∗μ on T defined by setting

(π∗μ)(B) := μ(π−1(B)) ∀B ∈ T .

If X and Y are compact metrizable spaces, then π∗ defines a map Pr(X)−→
Pr(Y ). If, in addition, π is continuous, then π∗ is continuous for the weak$

topologies.
Finally, a G-system is a triple (X, μ, T ) in which (X, T ) is a G-space and

μ is a T -invariant member of Pr(X), meaning that T g∗ μ = μ for every g ∈ G.
When needed, the Borel σ -algebra of X will be denoted by BX . We often
denote a G-system (X, μ, T ) by a single boldface letter such as X. A Z-system
will sometimes be called just a system.

The definitions above ignore a host of other possibilities, such as dynam-
ics with an infinite invariant measure, or with a non-invertible transformation.
Ergodic theory has branches for these too, but they do not appear in this course.

Examples

1. Let X = T = R/Z with its usual topology, let μ be Lebesgue measure, and
let T be the rotation by a fixed element α ∈ X :

T x := x + α.

This is called a circle rotation.
2. Let p = (p1, . . . , pm) be a stochastic vector: that is, a probability distri-

bution on the set {1, 2, . . . ,m}. Let X := {1, 2, . . . ,m}Z with the product
topology, let μ := p⊗Z (the law of an i.i.d. random sequence of numbers
each chosen according to p), and let T be the leftward coordinate-shift:

T ((xn)n) := (xn+1)n.

This is called the Bernoulli shift over p. �
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An important subtlety concerns the topology on X . In most of ergodic the-
ory, no particular compact topology on X is very important, except through
the resulting Borel σ -algebra: it is this measurable structure that underlies
the theory. This is why we allow arbitrary Borel measurable transformations
T g , rather than just homeomorphisms. However, general measurable spaces
can exhibit certain pathologies which Borel σ -algebras of compact metrizable
spaces cannot. The real assumption we need here is that our measurable spaces
be ‘standard Borel’, but the assumption of a compact metric is a convenient
way to guarantee this.

Having explained this, beware that many authors restrict the convenient term
‘G-space’ to actions by homeomorphisms.

4.2.2 The Phenomenon of Multiple Recurrence

In order to introduce multiple recurrence, it is helpful to start with the
probability-preserving version of Poincaré’s classical Recurrence Theorem.

Theorem 4.6 (Poincaré Recurrence) If (X, μ, T ) is a system and A ∈ BX

has μ(A) > 0, then there is some n �= 0 such that μ(A ∩ T−n A) > 0.

Proof The pre-images T −n A are all subsets of the probability space X of
equal positive measure, so some two of them must overlap in positive measure.
Once we have μ(T −n A ∩ T−m A) > 0 for some n �= m, the invariance of μ
under T n implies that also μ(A ∩ T n−m A) > 0.

Furstenberg’s main result from [Fur77] strengthens this conclusion. He
shows that in fact one may find several of the sets T−n A, n ∈ Z, that simulta-
neously overlap in a positive-measure set, where the relevant times n form an
arithmetic progression.

Theorem 4.7 (Multiple Recurrence Theorem) If (X, μ, T ) is a system and
A ∈ BX has μ(A) > 0, then for any k ≥ 1 there is some n ≥ 1 such that

μ(T−n A ∩ · · · ∩ T −kn A) > 0.

The Multidimensional Multiple Recurrence Theorem from [FK78] provides
an analog of this for several commuting transformations.

Theorem 4.8 (Multidimensional Multiple Recurrence Theorem) If (X, μ,
T ) is a Zd -system and A ∈ BX has μ(A) > 0, then there is some n ≥ 1
such that
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μ(T−ne1 A ∩ · · · ∩ T−ned A) > 0.

Note that for d = 2, simply applying the Poincaré recurrence theorem for
the transformation T e1−e2 gives the conclusion of Theorem 4.8.

This course will include a proof of Theorem 4.7 in the first case beyond
Poincaré Recurrence: k = 3. Two different ergodic-theoretic proofs of the full
Theorem 4.8 can be found in [Fur81] and [Aus10c]. These are too long to be
included in this course, but we will formulate and prove a related convergence
result which gives an introduction to some of the ideas.

First, let us prove the equivalence of Theorem 4.8 and Theorem 4.4.
This equivalence is often called the ‘Furstenberg correspondence principle’.
Although easy to prove, it has turned out to be a hugely fruitful insight into the
relation between ergodic theory and combinatorics. The version we give here
essentially follows [Ber87].

Proposition 4.9 (Furstenberg Correspondence Principle) If E ⊆ Zd , then
there are a Zd-system (X, μ, T ) and a set A ∈ BX such that μ(A) = d̄(E),
and such that for any v1, v2, . . . , vk ∈ Zd one has

d̄((E − v1) ∩ (E − v2) ∩ · · · ∩ (E − vk)) ≥ μ(T−v1 A ∩ · · · ∩ T−vk A).

In order to visualize this, observe that

(E − v1) ∩ (E − v2) ∩ · · · ∩ (E − vk)

is the set of those a ∈ Zd such that a + vi ∈ E for each i ≤ k. Its density may
be seen as the ‘density of the set of translates of the pattern {v1, v2, . . . , vk}
that lie entirely inside E’. In these terms, the above propositions asserts that
one can synthesize a Zd -system which provides a lower bound on this density
for any given pattern in terms of the intersection of the corresponding shifts of
the subset A.

Proof Choose a sequence of boxes R j :=∏d
i=1[M j,i , N j,i ] such that

min
i∈{1,2,...,d}(N j,i − M j,i ) −→ ∞ as j −→ ∞

and
|E ∩ R j |

|R j | −→ d̄(E) as j −→ ∞.

We can regard the set E as a point in the space X := P(Zd) of subsets of
Zd , on which Zd naturally acts by translation: T n B := B − n. This X can be
identified with the Cartesian product {0, 1}Zd

by associating to each subset its



196 T. Austin

indicator function. It therefore carries a compact metrizable product topology
which makes (X, T ) a Zd -space.

Let

ν j := 1

|R j |
∑

n∈R j

δT n(E) for each j,

the uniform measure on the piece of the T -orbit of E indexed by the large
box R j . Because the side-lengths of these boxes all tend to ∞, these measures
are approximately invariant: that is, ‖T −m∗ ν j − ν j‖TV −→ 0 as j −→ ∞
for any fixed m ∈ Zd , where ‖ · ‖TV is the total variation norm (see [Fol99,
Section 7.3]).

Since Pr(X) is weak$ compact, we may let μ ∈ Pr(X) be a subsequen-
tial weak$ limit of the measures ν j . By passing to a subsequence, we may
assume that in fact ν j −→ μ (weak$). Since the measures ν j are approxi-
mately T -invariant, and each T−m∗ acts continuously for the weak$ topology
on Pr(X), μ itself is strictly T -invariant.

Finally, let A := {H ∈ X : H - 0}. This corresponds to the cylinder set
{(ωn)n : ω0 = 1} ⊆ {0, 1}Zd

. We will show that (X, μ, T ) and A have the
desired properties. By our initial choice of the sequence of boxes R j , we have

μ(A) = lim
j−→∞ ν j (A) = lim

j−→∞
1

|R j |
∑

n∈R j

1T n(E)(0)

= lim
j−→∞

|E ∩ R j |
|R j | = d̄(E).

The first convergence here holds because 1A is a continuous function for the
product topology on X , and so weak$ convergence applies to it.

On the other hand, for any v1, v2, . . . , vk ∈ Zd , the indicator function
1T −v1 A∩···∩T −vk A is also continuous on X , and so

μ(T −v1 A ∩ · · · ∩ T−vk A) = lim
j−→∞ ν j (T

−v1 A ∩ · · · ∩ T −vk A)

= lim
j−→∞

1

|R j |
∑

n∈R j

1T n+v1 E∩···∩T n+vk E (0)

= lim
j−→∞

1

|R j |
∑

n∈R j

1T v1 E∩···∩T vk E (n)

≤ d̄(T v1 E ∩ · · · ∩ T vk E),

since the upper Banach density is defined by a lim sup over all box-sequences
with increasing side-lengths.
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Corollary 4.10 Theorems 4.4 and 4.8 are equivalent.

Proof (=⇒) Let (X, μ, T ) be a Zd -system and A ∈ BX with μ(A) > 0.
For each x ∈ X let Ex := {n ∈ Zd : T nx ∈ A}, and for each N ∈ N let

YN := {x ∈ X : |Ex ∩ [N ]d | ≥ μ(A)N d/2}.
A simple calculation gives

μ(YN )N
d + μ(X�YN )μ(A)N d/2 ≥

∫
X
|Ex ∩ [N ]d |μ(dx)

=
∑

n∈[N ]d

∫
X
|Ex ∩ {n}|μ(dx) =

∑
n∈[N ]d

∫
X

1T−n(A) dμ = μ(A)N d ,

and therefore μ(YN ) ≥ μ(A)/2 for every N . Therefore, by the Borel–Cantelli
Lemma, the set

Y := {x ∈ X : lim sup
N−→∞

|Ex ∩ [N ]d |/N d ≥ μ(A)/2
}

has positive measure.
By Theorem 4.4, if x ∈ Y then Ex contains some pattern of the form {a +

ne1, . . . , a+ned }. Since there are only countably many such patterns, it follows
that for some choice of a and n, one has

μ
{

x ∈ X : {a + ne1, a + ne2, . . . , a + ned} ⊆ Ex
}
> 0.

By the definition of Ex , this measure is equal to

μ
(
T −a(T−ne1 A ∩ · · · ∩ T−ned A)

) = μ(T −ne1 A ∩ · · · ∩ T −ned A),

so this completes the proof.
(⇐=) Given E with d̄(E) > 0, Proposition 4.9 produces a Zd -system

(X, μ, T ) and positive-measure set A such that the positivity of μ(T−ne1 A
∩ · · · ∩ T −ned A) for some n ≥ 1 implies that

(E − ne1) ∩ (E − ne2) ∩ · · · ∩ (E − ned)

has positive upper density, and so is certainly nonempty.

4.3 Background from Ergodic Theory

This section covers most of the general theory that will be used later. Much of
it overlaps with [Fur81, Chapter 5], which is also very accessible.
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4.3.1 Factors

‘Factors’ are the ‘morphisms’ of ergodic theory: maps from one system to
another which preserve the basic structure. They can be introduced in two
distinct ways.

First, a factor of the G-system (X, μ, T ) is a σ -subalgebra S ≤ BX which
is globally T -invariant, meaning that, for each g ∈ G,

A ∈ S ⇐⇒ T g(A) ∈ S .

Secondly, given two G-systems X = (X, μ, T ) and Y = (Y, ν, S), a factor
map from X to Y is a Borel map π : X −→ Y such that:

● (map is measure-respecting) π∗μ = ν;
● (map is equivariant a.e.) π ◦ T g(x) = Sg ◦ π(x) for μ-a.e. x ∈ X , for all

g ∈ G.

This will be the meaning of the notation π : X −→ Y.
A factor map π is an isomorphism if there is another factor map

φ : Y −→ X such that

φ ◦ π = idX a.s. and π ◦ φ = idY a.s.

As for real-valued functions, we generally identify two factor maps that
agree a.e., and may be sloppy about distinguishing individual maps and a.e.-
equivalence classes of maps. Given two factors S and T , we write that
S ⊆ T modulo μ if for every A ∈ S there is some B ∈ T such that
μ(A.B) = 0. Equality modulo μ is defined from this in the obvious way.

In the definition above, it is important that the equivariance of π be allowed
to fail on a μ-negligible set. Otherwise the theory is too rigid for many appli-
cations. It can be helpful to throw away some negligible part of one system in
order to pass to another, and our intuition is that this does not alter the ‘statisti-
cal’ properties of the domain system. For instance, let (Y, ν, S) be any system
with no fixed points (such as a circle rotation), and define (X, μ, T ) so that
X = Y / {x0} for some T -fixed point x0 which carries zero measure, and
with T |Y = S. ‘Statistically’ we should like to consider these two systems
isomorphic, but no map X −→ Y can be equivariant at x0.

If a factor map exists as above, one sometimes also refers to Y as a factor
of X, or to X as an extension of Y.

Beware that factor maps are not assumed to be continuous. This is in keeping
with our remark that it is BX , rather than the topology on X , that really matters.
Insisting on homeomorphism-actions and continuous factor maps would lead
to the area of topological dynamics, a rich but very different theory.
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Given a factor map as above, the σ -subalgebra π−1(BY ) is a factor: this is
the relation between these notions. The map π is said to generate this factor.
Since we work among compact metric spaces, some routine measure theory
shows that for any G-system (X, μ, T ) and factor S ≤ BX , there are another
G-system (Y, ν, S) and a factor map π : (X, μ, T ) −→ (Y, ν, S) such that

S = π−1(BY ) modulo μ.

Example If (X, μ, T ) is a G-system and H � G, then the σ -algebra of
H -invariant sets,

BT H

X := {A ∈ BX : T h A = A ∀h ∈ H },
is a factor. It is called the H -partially invariant factor of (X, μ, T ). An
easy exercise characterizes it as follows: BT H

X is the largest factor of (X, μ,
T ), modulo μ, which can be generated modulo μ by a factor map π :
(X, μ, T ) −→ (Y, ν, S) to a system in which Sh = idY for all h ∈ H . We
usually abbreviate BT G

X to BT
X . �

4.3.2 Ergodicity and Disintegration

Suppose that X = (X, μ, T ) is a G-system, and that A ∈ BX is T -invariant
and has 0 < μ(A) < 1. Then its complement X�A has the same properties,
and now the partition

X = A / (X�A)

gives a decomposition of (X, μ, T ) into two disjoint subsystems, each with
its own dynamics under T , re-weighted so that their measures have total mass
μ(A) and 1 − μ(A).

Definition 4.11 (Ergodic System) A system X is ergodic if it is not decom-
posable in this way: that is, if any T -invariant A ∈ BX has μ(A) ∈ {0, 1}.

Equivalently, X is ergodic if and only if

BT
X = {∅, X} modulo μ.

In case X is not ergodic, BT
X may be generated modulo μ by a nontrivial factor

map

π : (X, μ, T ) −→ (Y, ν, idY ). (4.1)

For many purposes, this enables a reduction from arbitrary to ergodic systems,
by virtue of the following classical result from measure theory.
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Theorem 4.12 (Measure Disintegration) Let π : X −→ Y be a Borel map
between compact metric spaces, let μ ∈ Pr(X), and let ν := π∗μ ∈ Pr(Y ).
Then there is a map

Y −→ Pr(X) : y �→ μy

with the following properties:

● for every A ∈ BX , the real-valued map y �→ μy(A) is Borel measurable;
● μy(π

−1{y}) = 1 for ν-a.e. y;
● μ = ∫Y μy ν(dy), in the sense that μ(A) = ∫Y μy(A) ν(dy) for every

A ∈ BX .

Moreover, this map y �→ μy is essentially unique: if y �→ μ′
y is another such,

then μy = μ′
y for ν-a.e. y.

A map y �→ μy as above is referred to as a disintegration of μ over π .
Many textbooks stop short of measure disintegration in this generality, but it

can be found, for instance, in [Bre68, Section 4.3] or [Fur81, Theorem 5.8].
If (X, μ) is as above and S ≤ BX is a σ -subalgebra, then for any f ∈

L2(μ) there is an S -measurable function f ′ ∈ L2(μ) with the property that∫
X

f h dμ =
∫

X
f ′h dμ ∀ S -measurable h ∈ L2(μ).

This f ′ may be obtained as the orthogonal projection of f onto the subspace
of S -measurable functions in L2(μ). It follows that it is unique up to μ-a.e.
equality. It is called the conditional expectation of f on S , and denoted by
Eμ( f |S ). See, for instance, [Bil95, Section 34] for more on this important
construction in probability.

In the setting above, if S := π−1(BY ), then a disintegration gives a
‘formula’ for the conditional expectation:

Eμ( f |S )(x) =
∫

X
f dμπ(x) ∀ f ∈ L2(μ). (4.2)

Exercise Prove (4.2) from the properties in Theorem 4.12. �

Now consider a G-system X, and let us apply this machinery to the fac-
tor BT

X . Let π : X −→ Y generate BT
X modulo μ, where Y = (Y, ν, idY ).

Theorem 4.12 gives a disintegration

μ =
∫

Y
μy ν(dy).
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For any g ∈ G, applying the transformation T g and recalling that μ is T g-
invariant gives

μ = T g∗ μ =
∫

Y
T g∗ μy ν(dy).

Using this, one can now check that the map y �→ T g∗ μy is also a disintegration
of μ over π . By the essential uniqueness of disintegration, this implies that
μy = T g∗ μy for ν-a.e. y. Since G is countable, this holds simultaneously for
all g for ν-a.e. y, and so μ has been represented as an integral of T -invariant
measures.

The crucial property that one gains from this construction is the following.

Proposition 4.13 In the disintegration above, the system (X, μy, T ) is
ergodic for ν-a.e. y.

There are many approaches to this proposition. We base ours on the fol-
lowing lemma. It gives a quantitative relation between the failure of some
f ∈ L2(μ) to be G-invariant and the distance from f to E( f |BT

X ).

Lemma 4.14 If (X, μ, T ) is any G-system and f ∈ L2(μ), then

sup
g∈G

‖ f − f ◦ T g‖2 ≥ ‖ f − E( f |BT
X )‖2.

Proof On L2(μ), the function

ψ(h) := sup
g∈G

‖h − f ◦ T g‖2
2

is continuous, nonnegative, and T -invariant. It is also strictly convex, since
this is true of the squared norm ‖ · ‖2

2. Therefore ψ has a unique minimizer h,
which is also T -invariant owing to its uniqueness. On the other hand, for any
T -invariant function h′ one has

ψ(h′) = sup
g∈G

‖h′ ◦ T g−1 − f ‖2
2 = ‖h′ − f ‖2

2 ∀g ∈ G,

and on the subspace of T -invariant functions this is minimized by the
orthogonal projection h′ = E( f |BT

X ). Therefore h must equal E( f |BT
X ),

and so

ψ( f ) ≥ ψ(E( f |BT
X )) = ‖ f − E( f |BT

X )‖2
2.
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Proof of Proposition 4.13 We will show that if some positive-ν-measure sub-
set of the measures μy failed to be ergodic, then we could synthesize a single
function which contradicts Lemma 4.14 for the measure μ. The key facts to
use are that C(X) is both (i) separable for the uniform topology and (ii) dense
in L2(θ) for any θ ∈ Pr(X).

Let h1, h2, . . . be a uniformly dense sequence in C(X). Now consider some
θ ∈ Pr(X) which is T -invariant but not ergodic. Then L2(θ) contains an invari-
ant function which is not a.s. constant. Approximating this function sufficiently
well in ‖ · ‖L2(θ) by some hi , it follows that for any such θ there is some i ≥ 1
for which

sup
g∈G

‖hi − hi ◦ T g‖L2(θ) <

∥∥∥hi −
∫

X
hi dθ
∥∥∥

L2(θ)
.

In the setting of our disintegration, it therefore suffices to prove that each of
the sets

Ai :=
{

y ∈ Y : sup
g∈G

‖hi − hi ◦ T g‖L2(μy)
<

∥∥∥hi −
∫

X
hi dμy

∥∥∥
L2(μy)

}
has ν(Ai ) = 0, since it follows that μy is ergodic for every y outside the
negligible set

⋃
i≥1 Ai .

The proof is completed by contradiction: suppose that ν(Ai ) > 0 for some i .
On X , consider the function h(x) := 1Ai (π(x))hi (x). Using the properties of
disintegration and (4.2), this function satisfies

sup
g∈G

‖h − h ◦ T g‖L2(μ) = sup
g∈G

( ∫
Y
‖h − h ◦ T g‖2

L2(μy)
ν(dy)
)1/2

≤
( ∫

Ai

sup
g∈G

‖hi − hi ◦ T g‖2
L2(μy)

ν(dy)
)1/2

<
( ∫

Ai

∥∥∥hi −
∫

hi dμy

∥∥∥2
L2(μy)

ν(dy)
)1/2

=
( ∫

Y

∥∥∥h −
∫

h dμy

∥∥∥2
L2(μy)

ν(dy)
)1/2

= ‖h − E(h |BT
X )‖L2(μ).

This contradicts Lemma 4.14.

Definition 4.15 (Ergodic Decomposition) A disintegration of μ into ergodic
T -invariant measures as above is called an ergodic decomposition of μ.

For many purposes in ergodic theory, an ergodic decomposition quickly
permits one to restrict attention to ergodic systems, by arguing about the
disintegrands μy individually.
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4.3.3 Joinings

Factors give us a notion of the ‘parts’ of a probability-preserving system. It can
also be important to study the ways in which some ‘ingredient’ systems can be
combined into a new, ‘larger’ system.

First, let us recall some useful nomenclature from probability. Suppose that
(Xi ,Si ), i ∈ I , is a countable collection of measurable spaces and that
μ is a probability measure on the product space

∏
i∈I Xi with the product

σ -algebra
⊗

i∈I Si (see, for instance, [Fol99, Section 1.2]). If J ⊆ I and
π : ∏i∈I Xi −→ ∏ j∈J X j is the corresponding coordinate projection, then
the image measure π∗μ is the marginal of μ on the coordinates indexed by J .
In particular, if π is the projection onto the coordinate-copy of Xi , then π∗μ is
the marginal of μ on the i th coordinate.

Definition 4.16 Suppose that (Xi ,Si , μi ), i ∈ I , is a countable collection of
probability spaces. A coupling of them is a probability measure λ on

∏
i∈I Xi

with the product σ -algebra such that the marginal of λ on the i th coordinate is
μi for each i ∈ I : that is,

λ{(xi )i∈I : xi ∈ A} = μ j (A) ∀ j ∈ I, A ∈ S j .

The set of such couplings is denoted Cpl((μi )i∈I ).
Now suppose that Xi = (Xi , μi , Ti ), i ∈ I , is a countable collection of G-

systems. A joining of them is a coupling λ ∈ Cpl((μi )i∈I ) which is invariant
under the diagonal G-action defined by∏

i∈I

T g
i for g ∈ G.

The set of such joinings is denoted J((Xi )i∈I ).
A joining of d copies of the same system X is called a d-fold self-joining,

and the set of these is denoted J(d)(X).

Joinings were introduced into ergodic theory in Furstenberg’s classic paper
[Fur67], which still makes delightful reading.

A joining of some systems (Xi , μi , Ti ), i = 1, 2, . . ., arises when those
systems appear together as factors of some other system X̃ = (X̃ , μ̃, T̃ ): that
is, when one has a diagram

X
π1 π2 π3

X1 X2 X3 · · ·
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In this case, the corresponding joining is the pushforward measure

(π1, π2, . . .)∗μ̃.

This is called the joint distribution of π1, π2, . . . in X̃.

Examples

1. Any collection of systems (Xi , μi , Ti )i∈I always has at least one joining:
the product measure

⊗
i∈I μi .

2. For any system (X, μ, T ) and d ∈ N, another d-fold self-joining of
(X, μ, T ) is given by the diagonal measure

μ�(d) :=
∫

X
δ(x,x,...,x) μ(dx),

which may be viewed as a copy of μ living on the diagonal in Xd . �

The following is obvious given example (1) above.

Lemma 4.17 For any G and countable family (Xi )i∈I of G-systems, the
space J((Xi )i∈I ) is nonempty and convex.

We will henceforth focus on couplings and joinings of finitely many spaces
or systems, for simplicity.

Given any spaces Xi for i ≤ m and functions fi : Xi −→ R, we will often
write f1 ⊗ · · · ⊗ fm for the function

X1 × · · · × Xm −→ R : (x1, . . . , xm) �→ f1(x1) · · · fm(xm).

Using such functions, coupling-spaces and joining-spaces can be endowed
with a natural topology. This extra structure will play a crucial rôle later.

Definition 4.18 Given a tuple (Xi ,Si , μi ), i ≤ m, of probability spaces, the
coupling topology on Cpl(μ1, . . . , μm) is the weakest topology for which the
evaluation functionals

ev f1,..., fm : Cpl(μ1, . . . , μm) −→ R : λ �→
∫

f1 ⊗ · · · ⊗ fm dλ

are continuous for all tuples fi ∈ L∞(μi ).
Given G-systems Xi = (Xi , μi , Ti ) for i ≤ m, the restriction to J(X1,

. . . ,Xm) of the coupling topology on Cpl(μ1, . . . , μm) is called the joining
topology.

It is worth recording the following easy consequence immediately.
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Lemma 4.19 Let (Xi ,Si , μi ) and (Yi ,Ti , νi ) for i ≤ m be two tuples of
probability spaces, and let πi : Xi −→ Yi be measurable maps satisfying
πi∗μi = νi for each i . Then the map

Cpl(μ1, . . . , μm) −→ Cpl(ν1, . . . , νm) : λ �→ (π1 × · · · × πm)∗λ

is continuous for the coupling topologies on domain and target.

It is obvious from Definition 4.18 that the joining topology depends only on
the Borel σ -algebras of the spaces Xi , not on their specific topologies. Never-
theless, it turns out that the joining topology can also be characterized using
only continuous functions for those topologies.

Lemma 4.20 If each (Xi , μi ) for i ≤ m is a compact metric space with
a Borel probability measure, then the coupling topology agrees with the
restriction to Cpl(μ1, . . . , μm) of the weak$ topology on Pr(X1 × · · · × Xm).

Proof Step 1. The weak$ topology is the weakest for which the functionals

evF : θ �→
∫

F dθ

are continuous for all F ∈ C(X1 × · · · × Xm). If F = f1 ⊗ · · · ⊗ fm for
some tuple fi ∈ C(Xi ), then evF is clearly also continuous for the coupling
topology, since C(Xi ) ⊆ L∞(μi ). It follows that evF is continuous in case F
is a linear combination of such product-functions.

By the Stone–Weierstrass theorem, the algebra of these linear combinations
is dense in C(X1 × · · · × Xm). Therefore, for any continuous F and ε > 0,
there is some such linear combination G for which ‖F − G‖∞ < ε, and this
implies

|evF (θ)− evG(θ)| =
∣∣∣ ∫ (F − G) dθ

∣∣∣ < ε ∀θ ∈ Cpl(μ1, . . . , μm).

Therefore evF is a uniform limit of functionals that are continuous for the
coupling topology, so is itself continuous for the coupling topology.

Step 2. To prove the reverse, fix fi ∈ L∞(μi ) for i ≤ m. We will prove
that ev f1,..., fm is continuous on Cpl(μ1, . . . , μm) for the restriction of the
weak$ topology.

By rescaling, we may clearly assume ‖ fi‖∞ ≤ 1 for each i . Let ε > 0. For
each i ≤ m, choose gi ∈ C(Xi ) such that ‖gi‖∞ ≤ 1 and ‖ fi − gi‖L1(μi )

<

ε/m. Then for any θ ∈ Cpl(μ1, . . . , μm), one has
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|ev f1,..., fm (θ)− evg1,...,gm (θ)|
=
∣∣∣ ∫ ( f1 ⊗ · · · ⊗ fm − g1 ⊗ · · · ⊗ gm) dθ

∣∣∣
=
∣∣∣ m∑

i=1

∫
g1 ⊗ · · · ⊗ gi−1 ⊗ ( fi − gi )⊗ fi+1 ⊗ · · · ⊗ fm dθ

∣∣∣
≤

m∑
i=1

‖g1‖∞ · · · ‖gi−1‖∞ · ‖ fi − gi‖L1(μi )
· ‖ fi+1‖∞ · · · ‖ fm‖∞

< m(ε/m) = ε,

because the marginal of θ on Xi is assumed to equal μi .
Thus, the functionals ev f1,..., fm may be uniformly approximated by func-

tionals evg1,...,gm with gi ∈ C(Xi ) for each i . Since the latter are all continuous
for the weak$ topology by definition, and a uniform limit of continuous
functions is continuous, this completes the proof.

Corollary 4.21 Given G-systems Xi for i ≤ m, the joining topology on
J(X1, . . . ,Xm) is compact.

Proof By the preceding lemma, the coupling topology on Cpl(μ1, . . . , μm)

is the restriction of the weak$ topology to the further subset⋂
i≤m

⋂
fi∈C(Xi )

{
θ ∈ Pr(X1 × · · · × Xm) :∫

fi (xi ) θ(dx1, . . . , dxm) =
∫

fi dμi

}
,

because the i th marginal of any θ ∈ Pr(X1 ×· · ·× Xm) is uniquely determined
by the integrals of all continuous functions. This is therefore a weak$-closed
subset of the weak$-compact space Pr(X1 × · · · × Xm), hence also weak$-
compact.

Finally, the joining topology on J(X1, . . . ,Xm) is the further restriction of
the weak$ topology to the subset⋂

g∈G

⋂
f1∈L∞(μ1),..., fm∈L∞(μm )

{
θ ∈ Cpl(μ1, . . . , μm) :

ev f1,..., fm (θ) = ev f1◦T g
1 ,..., fm◦T g

m
(θ)
}
.

Since each of the functionals ev f1,..., fm and ev f1◦T g
1 ,..., fm◦T g

m
has been shown

to be continuous for the restriction of the weak$ topology to J(X1, . . . ,Xm),
this is a further weak$-closed subset, hence weak$-compact.
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Exercise Generalize Definition 4.18, Lemma 4.20 and Corollary 4.21 to cou-
plings or joinings of countable collections of spaces or systems. [Hint: Work
with functions of only finitely many coordinates.] �

4.3.4 Relative Products

With the use of factor maps and disintegrations, we can introduce a consid-
erable generalization of product joinings. Suppose that Xi are systems for
i ≤ m, that πi : Xi −→ Yi are factor maps, that Si := π−1

i (BYi ), and
that θ ∈ J(Y1, . . . ,Ym). For each i ≤ m, let y �→ μi,y be a disintegration of
μi over πi . Then the relative product of the systems Xi over the maps πi and
joining θ is the measure

λ :=
∫
∏

i Yi

μ1,y1 ⊗ · · · ⊗ μm,ym θ(dy1, . . . , dym).

One checks easily that λ ∈ J(X1, . . . ,Xm).
If λ ∈ J(X1, . . . ,Xm) is given, then it is relatively independent over

(π1, . . . , πm) or over (S1, . . . ,Sm) if it is of the above form for some θ .
In that case, of course, one must have

θ = (π1 × · · · × πm)∗λ.

Using (4.2), this conclusion is equivalent to∫ ⊗
i≤m

fi dλ =
∫ ⊗

i≤m

Eμi ( fi |Si ) dλ (4.3)

for all ‘test functions’ f1 ∈ L∞(μ1), . . . , fm ∈ L∞(μm).
As an important special case of the above, consider a single factor map

π : X −→ Y. Let θ be the diagonal self-joining of two copies of Y, and let
μ ⊗π μ denote the relative product of two copies of X over π and θ . For this
joining one obtains

(μ⊗π μ)(A) =
∫

Y
(μy ⊗ μy)(A) ν(dy) for A ∈ BX2 .

This is supported on the Borel subset {(x, x ′) ∈ X2 : π(x) = π(x ′)}. As a
result, the two coordinate projections π1, π2 : X2 −→ X satisfy

π ◦ π1 = π ◦ π2 (μ⊗π μ)-a.s.,
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and so there is a commutative diagram of factor maps

(X2, µ⊗π µ, T×T)

X

π

X

π

Y.

π2π1

An equivalent description of μ ⊗π μ is that for any bounded measurable
functions f, g : X −→ R, one has∫

X2
f ⊗ g d(μ⊗π μ) =

∫
X

E( f |π−1(BY ))E(g |π−1(BY )) dμ.

From this, it follows at once that μ⊗π μ = μ⊗π ′ μ whenever the factor maps
π and π ′ generate the same factor of X modulo μ.

4.3.5 Inverse Limits

The last general construction we need can be viewed as giving ‘limits’ of
‘increasing’ sequences of systems.

To be precise, suppose that we have a sequence of G-systems Xn :=
(Xn, μn, Tn) for n ≥ 0, together with connecting factor maps πn:

· · · π3−→ X3
π2−→ X2

π1−→ X1
π0−→ X0.

Proposition 4.22 In this situation, there is a G-system X = (X, μ, T )

together with a sequence of factor maps φn : X −→ Xn such that

● (the factor maps are consistent) πn ◦ φn+1 = φn μ-a.e. for all n ≥ 0;
● (the factor maps generate everything) BX is generated modulo μ by the

union of the factors φ−1
n (BXn ) over n ≥ 0; and

● (universality) given any other system Y = (Y, ν, S) and factor maps ψn :
Y −→ Xn such that πn ◦ψn+1 = ψn for all n, there is an essentially unique
factor map α : Y −→ X with ψn = φn ◦ α for all n.

Proof Let X :=∏n≥0 Xn with its product topology, and let T g :=∏n≥0 T g
n

for each g ∈ G.
For m > n ≥ 0, let

πm
n := πn ◦ πn+1 ◦ · · · ◦ πm−1 : Xm −→ Xn,

so πn+1
n = πn for each n. These are all still factor maps.
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Now, for each m ≥ 1, consider the measure μ′
m on
∏m

n=0 Xn given by

μ′
m =
∫

Xm

δ(πm
0 (x), πm

1 (x), ..., πm
m−1(x), x) μm(dx).

These measures are consistent, in the sense that μ′
m1

is the image of μ′
m2

under
coordinate projection whenever m2 ≥ m1. Therefore, by the Kolmogorov
extension theorem, they are the finite-dimensional marginals of a unique mea-
sure μ ∈ Pr(X) (see [Fol99, Theorem 10.18] or [Bil95, Section 36] – both of
those sources treat the case of measures on R × R × · · · , but the same proofs
work in general). This μ is supported on the Borel subset

X̃ := {(xn)n≥0 ∈ X : πn(xn+1) = xn ∀n ≥ 0}.

Since each μ′
m is invariant under the diagonal G-action, and they specify μ

uniquely, μ is also invariant under the diagonal G-action.
This defines the system X = (X, μ, T ). For each n, let φn : X −→ Xn be

the projection onto the nth coordinate. An easy check gives that φn defines a
factor map X −→ Xn , and the μ-a.s. relation φn = πn ◦φn+1 follows from the
fact that μ is supported on X̃ . Clearly the union of the σ -algebras φ−1

n (BXn )

contains all finite-dimensional Borel subsets of X , and so generates the whole
of BX .

Finally, suppose that Y and ψn : Y −→ Xn are as posited, and define
α : Y −→ X by

α(y) := (ψ0(y), ψ1(y), . . .).

The assumption that πn ◦ ψn+1 = ψn implies that α(y) ∈ X̃ for almost all y,
and moreover it is clear by definition that α intertwines S with T (since this
holds coordinate-wise in X ). Finally, α∗ν has the same marginal as μ on any
finite-dimensional projection of X , so in fact α∗ν = μ.

Definition 4.23 (Inverse Limit) A choice of system X together with the factor
maps (φn)n≥0 as constructed above is an inverse limit of the tower of systems
(Xn)n≥0, (πn)n≥0.

4.3.6 Idempotent Classes

This subsection represents a further level of abstraction, since it concerns
whole classes of systems. However, the following definition will be of great
value in organizing several later results.
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Definition 4.24 (Idempotent Class) Let G be a countable group, and let C

be a class of G-systems. Then C is idempotent if it has the following closure
properties:

1. (Isomorphism) If X ∈ C and Y is isomorphic to X, then Y ∈ C.
2. (Finite joinings) If X = (X, μ, T ) and Y = (Y, ν, S) are both in C, and

λ ∈ J(X,Y), then

(X × Y, λ, T × S) ∈ C.

3. (Inverse limits) If

· · · −→ X3 −→ X2 −→ X1

is an inverse sequence consisting of members of C, then some choice of
inverse limit is a member of C (and hence so are all such choices).

Example For a subset S ⊆ G, let CS be the class of those G-systems
(X, μ, T ) in which T s = idX μ-a.e. for all s ∈ S. This class is easily checked
to be idempotent. It is called the S-partially invariant class. A simple argu-
ment shows that CS = CH , where H is the normal subgroup of G generated
by S. �

Lemma 4.25 Let C and D be idempotent classes, and let C ∨ D denote the
class of G-systems that are joinings of a member of C and a member of D, up
to isomorphism. Then C ∨ D is idempotent.

Exercise Prove this lemma. [Hint: Prove that an inverse limit of joinings is a
joining of inverse limits, etc.] �

The class C ∨ D constructed above is called the join of C and D.

Example If G = Zd , then the idempotent class

Ce1−e2 ∨ · · · ∨ Ce1−ed

consists of all systems of the form

(X2 × . . .× Xd , λ, T2 × · · · × Td),

where

● for each i ∈ {2, 3, . . . , d}, Xi = (Xi , μi , Ti ) is a Zd -system with the
property that T e1

i = T ei
i a.e..

● λ ∈ J(X2, . . . ,Xd).

This example will play a key rôle later. �
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Definition 4.26 For any G-system (X, μ, T ), a factor S ≤ BX is a C-factor
if it is generated modulo μ by a factor map whose target system is a member
of C.

Lemma 4.27 Any G-system X has an essentially unique C-factor S which
contains every other C-factor modulo μ.

Proof Let C be the subset of L1(ν) containing all functions that are mea-
surable with respect to some C-factor of X. Since L1(ν) is separable, we may
choose a dense sequence ( fn)n≥1 in C . For each fn , there are a factor map

πn : (X, μ, T ) −→ (Yn, νn, Sn) = Yn ∈ C

and a function gn ∈ L1(νn) such that fn = gn ◦ πn a.s.
From these, assemble the maps

ψn : X −→
n∏

m=1

Ym : x �→ (π1(x), . . . , πn(x)).

Each ψn is a factor map from X to the system

Wn := (Y1 × · · · × Yn, ψn∗μ, S1 × · · · × Sn),

which is a joining of Y1, . . . , Yn and hence still a member of C.
Next, projecting out the last coordinate defines factor maps

αn : Wn+1 −→ Wn

for each n ≥ 1, so these systems Wn form an infinite tower of factors of
X. Letting W = (W, θ, R) be an inverse limit, one still has a factor map
ψ : X −→ W, owing to the universality of inverse limits. Also, W ∈ C,
since C is closed under inverse limits. Finally, each fn is measurable with
respect to this factor map ψ . By the density of { fn : n ≥ 1} among all
C-factor-measurable members of L1(ν), it follows that any function which is
measurable with respect to a C-factor can be lifted throughψ , up to a negligible
set. Now let S := ψ−1(BW ).

Essential uniqueness follows at once from maximality.

Definition 4.28 A choice modulo μ of the factor constructed in the previous
lemma is called a maximal C-factor of X, and denoted CX. In view of its
uniqueness modulo μ, we sometimes abusively refer to the maximal C-factor.
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4.4 Multiple Recurrence in Terms of Self-Joinings

4.4.1 Reformulation

A key aspect of Furstenberg and Katznelson’s approach to Theorems 4.7
and 4.8 is that it gives more than just the existence of one suitable time n ≥ 1.
In the multidimensional case, it actually proves the following.

Theorem 4.29 (Multidimensional Multiple Recurrence Theorem) If (X, μ,
T ) is a Zd-system, and A ∈ BX has μ(A) > 0, then

lim inf
N−→∞

1

N

N∑
n=1

μ(T −ne1 A ∩ · · · ∩ T−ned A) > 0.

An analogous assertion for a single transformation lies behind Theorem 4.7.
Similarly to many other applications of ergodic theory, one finds that these
averages behave more regularly than the summand that appears for any
particular value of n, and so are more amenable to analysis.

In these notes, we will prove only one simple special case of Theorem 4.29.
However, we will answer a related and slightly easier question in general:
whether the averages appearing in Theorem 4.29 actually converge, so that
‘lim inf’ may be replaced with ‘lim’.

Furstenberg and Katznelson’s original proof in [FK78] shows that these
non-negative sequences stay bounded away from zero, but does not show
their convergence. Naturally, ergodic theorists quickly went in pursuit of this
question in its own right. It was fully resolved only recently, by Host and
Kra [HK05b] for the averages associated to a single transformation and then by
Tao [Tao08] for those appearing in Theorem 4.29. Both are challenging proofs,
and they are quite different from one another.

Host and Kra’s argument builds on a long sequence of earlier works, includ-
ing [CL84, CL88a, CL88b, Rud95, Zha96, FW96, HK01] and several others
referenced there. An alternative approach to the main results of Host and Kra
has been given by Ziegler in [Zie07], also resting on much of that earlier work.
In addition to proving convergence, these efforts have led to a very detailed
description of the limiting behaviour of these averages, in terms of certain very
special factors of an arbitrary Z-system.

Tao’s proof of convergence for the multidimensional averages in Theo-
rem 4.29 departs significantly from those earlier works. He proceeds by first
formulating a finitary, quantitative analog of the desired convergence, and then
making contact with the hypergraph-regularity theory developed for the new
combinatorial proofs of Szemerédi’s theorem in [NRS06, Gow06, Tao06b] (as
well as using several new insights in that finitary world).
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In these notes, we will recount a more recent ergodic-theoretic proof of con-
vergence in the general case. It avoids the transfer to a finitary setting that
underlies Tao’s proof, but also avoids the need for a very detailed description
of the averages that is part of the earlier approaches. Although such a descrip-
tion would be of great interest in its own right, it is still mostly incomplete for
the multidimensional averages.

Our next step will be to reformulate these questions in terms of a certain
sequence of d-fold self-joinings of (X, μ, T ). First, recall the diagonal self-
joining:

μ�(d) :=
∫

X
δ(x,x,...,x) μ(dx).

Let 2T := T e1 ×· · ·× T ed be the off-diagonal transformation associated to the
Zd -action T . Since different group elements act on different coordinates under
2T , a self-joining of (X, μ, T ) need not be 2T -invariant.

Now, for each N ≥ 1, let

λN := 1

N

N∑
n=1

2T n∗ μ�(d), (4.4)

the averages of μ�(d) under the off-diagonal transformation. A simple re-
arrangement gives

1

N

N∑
n=1

∫
X
( f1 ◦ T ne1) · · · · · ( fd ◦ T ned ) dμ =

∫
Xd

f1 ⊗ · · · ⊗ fd dλN

for any functions fi ∈ L∞(μ). In particular,

1

N

N∑
n=1

μ(T −ne1 A ∩ · · · ∩ T −ned A) = λN (Ad).

Thus, our questions of interest may be re-formulated as follows:

● (Convergence) Do the self-joinings λN converge to some limit λ∞ in the
joining topology?

● (Multiple Recurrence) If such a limit λ∞ exists, does it have the property
that

μ(A) > 0 =⇒ λ∞(Ad) > 0 ?

The main results are that both answers are Yes. These notes will prove the
first of these, and a special case of the second.
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Theorem 4.30 In the setting above, the joinings λN converge to some limit
in the joining topology.

A complete description of the limit joining is still lacking in general,
although we will mention a few special cases where it is known precisely.

Before beginning the rest of our work on Theorems 4.30 and 4.29, it is
worth mentioning another convergence theorem. Theorem 4.30 is central to
the approach taken in these notes, but it is weaker than the usual formula-
tion of ‘non-conventional average convergence’, which concerns the functional
averages

AN ( f1, f2, . . . , fd) := 1

N

N∑
n=1

( f1 ◦ T ne1) · ( f2 ◦ T ne2) · · · · · ( fd ◦ T ned )

for f1, f2, . . . , fd ∈ L∞(μ).

Theorem 4.31 (Convergence of Non-Conventional Ergodic Averages) If
(X, μ, T ) is a Zd-system and f1, f2, . . . , fd ∈ L∞(μ), then the averages
AN ( f1, f2, . . . , fd) converge in ‖ · ‖2 as N −→ ∞.

This is the result that was actually proved in [Tao08], rather than its join-
ing analog. The earlier works [CL84, CL88a, CL88b, FW96, HK01, HK05b,
Zie07] on special cases also proved convergence for functional averages. This
functional-average convergence is stronger than Theorem 4.30, because∫

Xd
f1 ⊗ · · · ⊗ fd dλN =

∫
X

AN ( f1, f2, . . . , f2) dμ.

On the other hand, the approach to Theorem 4.30 given in this course can be
turned into a proof of Theorem 4.31 with just a little extra work: the exercise
at the end of Section 4.8 sketches something close to the alternative proof of
Theorem 4.31 from [Aus09].

It is also interesting to ask whether the above functional averages converge
pointwise a.e. as N −→ ∞. This question is still open in almost all cases.
Aside from when d = 1, which reduces to the classical pointwise ergodic
theorem, pointwise convergence is known only for the averages

1

N

N∑
n=1

( f1 ◦ T n)( f2 ◦ T 2n).

This is a very tricky result of Bourgain [Bou90].
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4.4.2 Brief Sketch of the Remaining Sections

The above questions about the joinings λN concern how the orbit 2T n∗ μ�(d),
n = 1, 2, . . ., of the diagonal measure ‘moves around’ in Xd .

One basic intuition about this question is that if the system (X, μ, T )
behaves very ‘randomly’, then these off-diagonal image measures will appear
to ‘spread out’ over the whole of Xd , and in the limit will simply converge
to the product measure μ⊗d . The prototypical example of this situation is the
following.

Example One-dimensional Bernoulli shifts were among the examples in Sub-
section 4.2.1. To obtain a d-dimensional version, let p = (p1, . . . , pm) be a
stochastic vector, let X = {1, 2, . . . ,m}Zd

, let μ := p⊗Z
d
, and let T be the

action of Zd by coordinate-translation: that is,

T n((xk)k
) = (xk+n)k.

The product Xd may be identified with the set ({1, 2, . . . ,m} × · · · ×
{1, 2, . . . ,m})Zd

. To obtain a random element of Xd with law 2T n∗ μ�(d), let
(xk)k be a random element of X with law μ, and form the tuple

(xk+ne1 , . . . , xk+ned)k∈Zd . (4.5)

Now consider a large finite ‘window’ W ⊆ Zd , such as a large box around the
origin. If n is sufficiently large compared with W , then one has (W + nei ) ∩
(W + ne j ) = ∅ whenever i �= j . It follows that, for sufficiently large n, if one
views the tuple (4.5) only in the finite window W , then its components

(xk+ne1)k∈W , (xk+ne2)k∈W , . . . , (xk+ned )k∈W

have the same joint distribution as d independent draws from the probability
measure p⊗W . Thus, when n is large, the measure 2T n∗ μ�(d) ‘resembles’ the
product measure μ⊗d : more formally, one can prove that 2T n∗ μ�(d) −→ μ⊗d

weakly$ as n −→ ∞. This, of course, is even stronger than asserting that
λN −→ μ⊗d weakly$. �

Exercise Let p = (1 − p, p) be a stochastic vector on {0, 1}. Consider
again the proof of Proposition 4.9 (the Furstenberg correspondence princi-
ple). Fix a sequence of boxes R j with all side-lengths tending to ∞. Let

(xk)k∈Zd ∈ {0, 1}Zd
be drawn at random from the measure p⊗Z

d
, and now

let E = {k ∈ Zd : xk = 1}. Show that with probability one in the choice of
(xk)k∈Zd ∈ {0, 1}Zd

, if one implements the proof of Proposition 4.9 with this

choice of E then the resulting measure μ is equal to p⊗Z
d
. (This requires either
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the law of large numbers or the pointwise ergodic theorem, both of which lie
outside these notes.) �

Of course, we cannot expect the simple behaviour of the Bernoulli example
to hold for all systems. In the first place, if one happens to have a Zd -system
(X, μ, T ) in which T ei = T e j for some i �= j , then all the image measures
2T n∗ μ�(d) will be supported on the subset

{(x1, . . . , xd) ∈ Xd : xi = x j },
and hence so will any limit of the joinings λN . However, it turns out that the
ways in which the ‘random’ intuition can fail are somewhat limited. More
specifically, if (λN )N fails to converge to μ⊗d in the joining topology, then the
system (X, μ, T ) must exhibit some special extra ‘structure’, which can itself
be exploited to show that (λN )N converges to some other limit λ∞ instead, and
to deduce something about the structure of that λ∞1.

One of the main discoveries in this area is the right way to describe that
‘structure’. If λN �−→ μ⊗d in the joining topology, then one finds that there
must be a particular ‘part’ of (X, μ, T ) which is responsible for this non-
convergence. Specifically, the template for the results we will prove is the
following: if λN �−→ μ⊗d , then there are d factor maps πi : X −→ Yi ,
i = 1, 2, . . . , d, such that

● each Yi is a system of a special kind, indicated by its membership of some
relevant idempotent class Ci , and

● the ‘random’ intuition does hold relative to these factors, in the sense that
λN converges to some limit joining λ∞ which is relatively independent over
the maps πi (see Subsection 4.3.4).

These factor maps πi are called characteristic factors for the limit join-
ing λ∞. This terminology originates with the ‘partially characteristic’ factors
introduced in [FW96], and used in various ways since. The correct choice of
the idempotent classes Ci depends on the case of convergence that one is study-
ing: that is, on the value of d, and whether one is interested in powers of a
single transformation or in arbitrary Zd -systems. The goal is to obtain classes
Ci whose members are so highly structured that the limiting behaviour of the
image joinings (π1 × · · · × πd)∗λN can be analysed fairly explicitly.

In the case of powers of a single transformation, the actual results can be
made to match the above template exactly, with the added simplification that

1 In fact, the non-averaged sequence 2T n∗ μ�(d) can fail to converge much more easily, and there
seems to be no good structure theory for this failure.
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Yi and Ci are the same for every i . This will be the subject of Section 4.6, after
some more necessary machinery has been developed in Section 4.5.

For general Zd -systems, one can prove results which fit into the template
above, but it is easier to modify the template slightly. It turns out that a certain
subclass of Zd -systems admits a considerably simpler analysis of the possible
limit joinings λ∞, for which the relevant idempotent classes Ci in our tem-
plate are easily described. A general Zd -system X may not have characteristic
factors lying in those classes Ci , but one finds that X always admits an exten-
sion for which that simpler analysis can be carried out. Thus, in the general
case we first extend X to a system whose analysis is easier, and then look for
suitable characteristic factors of that extended system. This will be done in
Sections 4.7 and 4.8, again in tandem with developing some necessary general
tools.

Once this structural information about the limit joining λ∞ has been
obtained, it can also be used to prove Theorem 4.8. That deduction requires
several extra steps, so it will not be completed in this course: see [Aus10a]
or [Aus10c]. The original proofs of multiple recurrence in [Fur77, FK78] were
different, but the proof in [Fur77] also involved some structural analysis of
these limit joinings.

A key feature of the proofs below is that we need to work with ‘candidate’
limit joinings λ∞ before showing that the sequence (λN )N actually converges.
This is where we make crucial use of the compactness of the joining topology
(Corollary 4.21). Given that compactness, we may start our proofs by tak-
ing a subsequential limit λ∞ of the sequence (λN )N . This subsequential limit
must have the following extra property which distinguishes it among arbitrary
joinings.

Lemma 4.32 (Off-Diagonal Invariance) Any subsequential limit of the
sequence (λN )N in the joining topology is invariant under 2T , as well as
under T ×d .

Proof Substituting from Definition (4.4) and observing that most terms
cancel, one obtains

2T∗λN − λN = 1

N
( 2T N+1∗ μ�(d) − 2T∗μ�(d)).

These measures have total variation tending to 0 as N −→ ∞, so if λNi −→
λ is a subsequential limit in the joining topology, then also 2T∗λNi −→ λ.
Since 2T∗ acts continuously on the joining topology (Lemma 4.19), this implies
λ = 2T∗λ.
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It turns out that this extra invariance is already enough to force λ∞ to be a
relative product over some special factors of X: that is, we can prove a result
that matches the above template for any joining having this extra invariance.
Having done so, one can deduce that the sequence (λN )N has only one possible
subsequential limit, and hence that the sequence actually converges. We refer
to this as the ‘joining rigidity’ approach to Theorem 4.30. It is much like the
strategy for studying equidistribution under unipotent flows enabled by Rat-
ner’s theorems: see, for instance, [Sta00], or Manfred Einsiedler’s and Tom
Ward’s chapter (Chapter 5) in the present volume.

In the remainder of this section we take some first steps towards the above
analysis: reducing our work to the case of ergodic systems, and handling the
‘trivial’ case d = 2.

4.4.3 Reduction to Ergodic Systems

Next we show that Theorems 4.29 and 4.30 both follow for general systems if
they are known for ergodic systems.

Indeed, if X = (X, μ, T ) is an arbitrary Zd -system with ergodic decompo-
sition

μ =
∫

Y
μy ν(dy),

then for each d and N one has

μ�(d) =
∫

Y
μ�(d)

y ν(dy) and λN =
∫

Y
λN,y ν(dy),

where λN is as in (4.4) and λN,y is its analog for the system (X, μy, T ).
If convergence as in Theorem 4.30 is known for any ergodic system, this

fact may be applied to the systems (X, μy, T ) to give joining-topology lim-
its λN ,y −→ λ∞,y for each y. Now the dominated convergence theorem
implies that∫

Xd
f1 ⊗ · · · ⊗ fd dλN =

∫
Y

∫
Xd

f1 ⊗ · · · ⊗ fd dλN,y ν(dy)

−→
∫

Y

∫
Xd

f1 ⊗ · · · ⊗ fd dλ∞,y ν(dy)

for any functions fi ∈ L∞(μi ), and hence

λN
join−→ λ∞ :=

∫
Y
λ∞,y ν(dy).
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Having shown this, Theorem 4.29 also follows easily from the ergodic case.
If A ∈ BX has μ(A) > 0, then the set

B := {y ∈ Y : μy(A) > 0}
must have ν(B) > 0. For each y ∈ B, the ergodic case of Theorem 4.29 gives
λ∞,y(Ad) > 0, so integrating in y gives

λ∞(Ad) ≥
∫

B
λ∞,y(Ad) ν(dy) > 0.

We will henceforth freely assume that X is ergodic.

4.4.4 The ‘Trivial’ Case

In our theorems of interest, the ‘trivial’ case means k = 2 or d = 2. In that case
‘multiple’ recurrence is just Poincaré recurrence, as in Theorem 4.6. Neverthe-
less, it is worth describing the joining rigidity approach in this simple case,
both to introduce some of the ideas and because some of the auxiliary results
will be re-used later.

Proposition 4.33 Let G be a countable group, let (X, μ, T ) and (Y, ν, S) be
G-systems, and suppose that λ ∈ Pr(X ×Y ) is invariant under both T × S and
id × S. Then λ is relatively independent over (BT

X ,B
S
Y ).

Proof The assumptions imply that μ is also invariant under

(T × S)g ◦ (id × S)g−1 = T g × id

for any g, so the assumptions are actually symmetric in X and Y .
We will prove the ‘test-function’ formula∫
f ⊗ f ′ dλ=

∫
Eμ( f |BT

X )⊗ Eν( f ′ |BS
Y ) dλ ∀ f ∈ L∞(μ), f ′ ∈ L∞(ν) :

see (4.3). By symmetry, it actually suffices to prove that∫
f ⊗ f ′ dλ =

∫
Eμ( f |BT

X )⊗ f ′ dλ ∀ f ∈ L∞(μ), f ′ ∈ L∞(ν)

and then repeat the argument with the coordinates swapped.
Let πX : X × Y −→ X denote the first coordinate projection, and

πY the second. Fix f ′ ∈ L∞(ν), and consider the conditional expectation
Eλ(1X ⊗ f ′ |π−1

X (BX )): that is, we lift f ′ to X × Y through the second
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coordinate, and then condition onto the first coordinate. Since it is π−1
X (BX )-

measurable, this conditional expectation is a.e. equal to h ⊗ 1Y for some
essentially unique h ∈ L∞(μ).

By the definition of conditional expectation, for any f ∈ L∞(μ) one has∫
f ⊗ f ′ dλ =

∫
( f ⊗ 1Y ) · Eλ(1X ⊗ f ′ |π−1

X (BX )) dλ

=
∫

f h ⊗ 1Y dλ =
∫

f h dμ.

Now let g ∈ G, and observe from the above that∫
f · (h ◦ T g) dμ =

∫
( f ◦ T g−1

) · h dμ =
∫
( f ⊗ f ′) ◦ (T g−1 × id) dλ

=
∫

f ⊗ f ′ dλ =
∫

f h dμ,

by the invariance of λ. Since this holds for every f ∈ L∞(μ), h must be
essentially T g-invariant for every g, and so h agrees a.e. with a BT

X -measurable
function. Now the definition of conditional expectation gives∫

f ⊗ f ′ dλ =
∫

f h dμ =
∫

Eμ( f |BT
X )h dμ =

∫
Eμ( f |BT

X )⊗ f ′ dλ,

as required.

Let us see how this quickly handles the trivial case of Theorem 4.8.

Corollary 4.34 Let (X, μ, T ) be a Zd-system, let μ� ∈ J(X,X) be the 2-fold
diagonal joining, and let π : X −→ Y be a factor map to some other system
which generates the invariant factor BT

X modulo μ. Let Ri be a sequence of
boxes in Zd with all side-lengths tending to ∞. Then

λi := 1

|Ri |
∑
n∈Ri

(id × T n)∗μ� join−→ μ⊗π μ

and also
1

|Ri |2
∑

n,m∈Ri

(T n × T m)∗μ� join−→ μ⊗π μ.

Proof We prove the first result and leave the second as an exercise.
By compactness of J(X,X), we may pass to a subsequence and assume that

λ = limi−→∞ λi exists. It remains to show that λ = μ ⊗π μ for any such
subsequence.
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For any m ∈ Zd , we obtain

λ− (id × T m)∗λ = lim
i−→∞

1

|Ri |
∑
n∈Ri

(
(id × T n)∗μ� − (id × T m+n)∗μ�

)
in the joining topology. Some terms on the right-hand side here cancel, leaving∥∥∥ 1

|Ri |
∑
n∈Ri

(
(id × T n)∗μ� − (id × T m+n)∗μ�

)∥∥∥
TV

≤ |Ri.(Ri + m)|
|Ri | .

Since all side lengths of Ri are tending to ∞, this last estimate tends to 0 for
any fixed m. Hence the above joining limit must also be 0, and so, since m was
arbitrary, λ is (id×T )-invariant. Therefore, by Proposition 4.33, λ is relatively
independent over (BT

X ,B
T
X ).

Finally, suppose that f, f ′ ∈ L2(μ), and let h := E( f |BT
X ) and h′ :=

E( f ′ |BT
X ). Using the relative independence proved above and the T -inva-

riance of h′, we obtain∫
f ⊗ f ′ dλ =

∫
h ⊗ h′ dλ

def= lim
i−→∞

1

|Ri |
∑
n∈Ri

∫
h(x)h′(T nx) μ(dx)

=
∫

hh′ dμ =
∫

f ⊗ f ′ d(μ⊗π μ).

Hence λ = μ⊗π μ.

As a digression, we can now derive from the preceding result a slightly
unconventional proof of the norm ergodic theorem, which has not been used in
these notes so far.

Theorem 4.35 (Norm Ergodic Theorem) If (X, μ, T ) is a Zd-system, the
boxes Ri are as above, and f ∈ L2(μ), then∥∥∥ 1

|Ri |
∑
n∈Ri

f ◦ T n − E( f |BT
X )

∥∥∥
2
−→ 0 as N −→ ∞.

Proof Replacing f by f − E( f |BT
X ), we may assume that E( f |BT

X ) = 0
and show that

Ai := 1

|Ri |
∑
n∈Ri

f ◦ T n −→ 0

in ‖ · ‖2.
Squaring and expanding this norm gives

‖Ai‖2
2 = 1

|Ri |2
∑

n,m∈Ri

〈 f ◦ T n, f ◦ T m〉 =
∫

f ⊗ f dλi



222 T. Austin

with

λi := 1

|Ri |2
∑

n,m∈Ri

(T n × T m)∗μ�.

By the second part of Corollary 4.34, these joinings converge to μ ⊗π μ for
any factor map π generating BT

X , and hence

‖Ai‖2
2 −→

∫
f ⊗ f d(μ⊗π μ) =

∫
E( f |BT

X )⊗E( f |BT
X ) d(μ⊗π μ) = 0.

Remark The above connection notwithstanding, we do not need the ergodic
theorem at any point in this course. �

4.5 Weak Mixing

Our next milestone will be Roth’s theorem, but before reaching it we must
introduce some more general machinery.

Definition 4.36 (Weak Mixing) For a countable group G, a G-system
(X, μ, T ) is weakly mixing if the Cartesian product system (X × Y, μ ⊗ ν,

T × S) is ergodic for any ergodic G-system (Y, ν, S).

This property was studied long before Furstenberg introduced multiple
recurrence. Clearly it requires that (X, μ, T ) itself be ergodic, but not all
ergodic systems are weakly mixing.

Example Let (T,m, Rα) be an ergodic circle rotation (using Corollary 4.47,
this ergodicity holds if and only if α is irrational). Its Cartesian square is
(T2,m⊗2, R(α,α)), in which any set of the form

{(u, v) : u − v ∈ A}, A ∈ BT

is invariant. �

However, it turns out that examples similar to the above are the only way in
which a product of ergodic systems can fail to be ergodic. To explain this, we
must first formalize that class of examples.
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4.5.1 Isometric Systems and the Kronecker Factor

Definition 4.37 For any countable group G, a G-system (X, μ, T ) is con-
cretely isometric if the topology of X can be generated by a T -invariant
compact metric d . A G-system is simply isometric if it is isomorphic to a
concretely isometric G-system.

Given a general G-system (X, μ, T ), a factor S ≤ BX is isometric if it is
generated modulo μ by a factor map from X to an isometric G-system.

Lemma 4.38 The class of all isometric G-systems is idempotent.

Proof Closure under isomorphisms is written into the definition. Given this,
it suffices to check that the concretely isometric G-systems are closed under
joinings and inverse limits, up to isomorphism.

Suppose that X = (X, μ, T ) and Y = (Y, ν, S) are concretely isometric
G-systems with invariant compact metrics dX and dY . Then any λ ∈ J(X,Y)

is a (T × S)-invariant measure on the space X × Y . On this space, any of the
usual compact product-space metrics is (T × S)-invariant, such as

d((x, y), (x ′, y′)) := dX (x, x ′)+ dY (y, y′).

Similarly, given an inverse sequence

. . . −→ X3 −→ X2 −→ X1

of concretely isometric systems, it is easily checked that the inverse limit con-
structed in the proof of Proposition 4.22 is concretely isometric, where again∏

n≥1 Xn is given any standard compact product-space metric.

Definition 4.39 The idempotent class defined above is called the Kronecker
class2 of G-systems, and denoted KG , or just K if G is understood.

Having defined the Kronecker class, Lemma 4.27 immediately gives the
following.

Proposition 4.40 Every G-system (X, μ, T ) has an essentially unique iso-
metric factor S with the property that any other isometric factor is contained
in S modulo μ.

Definition 4.41 The factor given by Proposition 4.40 is called the Kronecker
factor of (X, μ, T ).

2 This is not standard terminology.
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4.5.2 Describing the Failure of Weak Mixing

Theorem 4.42 Let (X, μ, T ) be an ergodic G-system with Kronecker factor
S , and let (Y, ν, S) be another G-system. Suppose that F : X × Y −→ R is
measurable and (T × S)-invariant. Then F is (μ⊗ ν)-essentially measurable
with respect to S ⊗ BY .

In particular, X is weakly mixing if and only if its Kronecker factor is trivial.

The proof of this will require the following lemma.

Lemma 4.43 Let (X, μ, T ) be an ergodic G-system, let (Y, d) be a Polish
(that is, complete and separable) metric space, and let S = (Sg)g∈G be an
action of G on Y by isometries for the metric d. Suppose that F : X −→ Y is
an equivariant Borel map: thus,

F ◦ T g = Sg ◦ F μ-a.s. ∀g ∈ G.

Then there is an S-invariant compact subset K ⊆ Y such that μ(F−1(K ))

= 1.

Proof Let ν := F∗μ, an S-invariant Borel measure on Y . For each r > 0,
consider the non-negative function

fr (x) := ν
(
Br/2(F(x))

)
.

One checks easily that fr is a measurable function on X (exercise!). It is also
T -invariant, because F intertwines T with S, and S preserves both the metric
d and the measure ν. Therefore, by ergodicity, fr (x) is a.s. equal to some
constant, say cr .

We next show that cr > 0. Consider the set

Ur := {y ∈ Y : ν(Br/2(y)) = 0}.
Since Y is separable, so is Ur . Letting y1, y2, . . . be a dense sequence in Ur , it
follows that

ν(Ur ) ≤
∑
n≥1

ν(Br/2(yn)) = 0.

Hence

μ{ fr = 0} = ν(Ur ) = 0,

and so cr > 0 for every r > 0.
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It follows that F a.s. takes values in the set

K :=
⋂
m≥1

{y ∈ Y : ν(B1/2m(y)) ≥ cm}.

This is an intersection of closed sets (exercise!), and each of them is
S-invariant, since S preserves both d and ν. The proof is completed by showing
that K is totally bounded: more specifically, that each of the ‘packing numbers’

max{|F | : F ⊆ K , F is r -separated}
is finite for any r > 0, where we recall that F is ‘r -separated’ if

d(x, y) ≥ r whenever x, y ∈ F are distinct.

To see this, suppose F ⊆ K is r -separated, and let m ≥ 1/r . Then the balls
B1/2m(y) for y ∈ F are pairwise disjoint and all have ν-measure at least cm ,
so |F | must be at most 1/cm .

Proof of Theorem 4.42 By considering a sequence of truncations, it suffices
to prove this for F ∈ L∞(μ ⊗ ν). For such F , its slices F(x, · ) are also
bounded, hence all lie in L1(ν). Now some routine measure theory shows that
the resulting map

π : X −→ L1(ν) : x �→ F(x, · )
is measurable. Let Ŝ be the isometric action of G on L1(ν) given by

Ŝg f := f ◦ Sg−1
.

Then the (T × S)-invariance of F translates into

π(T g x)(y) = F(T gx, y) = F(x, Sg−1
y) = Ŝg(π(x))(y).

We may therefore apply Lemma 4.43 to find a compact, Ŝ-invariant subset
K ⊆ L1(ν) such that π(x) ∈ K for a.e. x . Now π defines a factor map

(X, μ, T ) −→ (K , π∗μ, Ŝ)

with target a concretely isometric system.
Let S1 := π−1(BK ), so by definition we have S1 ≤ S . The map π is

μ-essentially S1-measurable and takes values in the compact metric space K ,
so we may find a sequence of S1-measurable maps πn : X −→ K which take
only finitely many values and such that ‖πn(x) − π(x)‖1 −→ 0 for μ-a.e.
x . Since the level-sets of πn form a finite, S1-measurable partition of X , the
functions

Fn(x, y) := πn(x)(y)



226 T. Austin

are all (S1 ⊗ BY )-measurable. On the other hand, Fubini’s theorem and the
dominated convergence theorem give

‖F − Fn‖L1(μ⊗ν) =
∫

X
‖π(x)− πn(x)‖L1(ν) μ(dx) −→ 0.

Therefore F is essentially (S1⊗BY )-measurable, hence also essentially (S ⊗
BY )-measurable.

Exercise After seeing the structural results of the next subsection, general-
ize the example at the beginning of this section to prove the ‘only if’ part of
Theorem 4.42. �

Later we will need the following slight generalization of Theorem 4.42 in
the case G = Z.

Corollary 4.44 Let (X, μ, T ) be an ergodic system with Kronecker factor
S , and let (Y, ν, S) be another system. Suppose that F : X × Y −→ R is
measurable and (T 2 × S)-invariant. Then F is (μ⊗ ν)-essentially measurable
with respect to S ⊗ BY .

Proof Define a new system (Ỹ , ν̃, S̃) by setting

Ỹ := Y × {0, 1} and ν̃ := ν ⊗ δ0 + δ1

2
.

Consider the transformation S̃ on (Ỹ , ν̃) defined by

S̃(y, 0) := (y, 1) and S̃(y, 1) := (Sy, 0) ∀y ∈ Y.

Observe that S̃2 = S × id. The intuition here is there we have enlarged Y in
order to create a ‘square root’ for the transformation S.

Now consider the product system (X × Ỹ , μ ⊗ ν̃, T × S̃), and on it the
function defined by

F̃(x, y, 0) := F(x, y) and F̃(x, y, 1) := F(T−1x, y).

On the one hand,

(F̃ ◦ (T × S̃))(x, y, 0) = F̃(T x, y, 1) = F(T −1T x, y) = F̃(x, y, 0),

and on the other, the invariance of F under (T 2 × S) gives

(F̃ ◦ (T × S̃))(x, y, 1) = F̃(T x, Sy, 0) = F(T x, Sy)

= F(T−1x, y) = F̃(x, y, 1).
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So F̃ is (T × S̃)-invariant, and thus by Theorem 4.42 it is measurable with
respect to S ⊗ BỸ . Since F is just the restriction of F̃ to X × (Y × {0}), it is
measurable with respect to S ⊗ BY .

Exercise Generalize Corollary 4.44 by showing that any (T n × S)-invariant
function for any n ≥ 1 is essentially (S ⊗ BY )-measurable. �

4.5.3 The Structure of Isometric Zd -Systems

Theorem 4.42 explains the importance of isometric systems. We next give a
much more precise description of their structure.

Recall that a compact metric group is a group G endowed with a compact
metric D such that

● multiplication and inversion are both continuous for the topology defined by
D, and

● D is invariant under left- and right-translation and under inversion:

D(g, h) = D(kg, kh) = D(gk, hk) = D(g−1, h−1) ∀g, h, k ∈ G.

Examples The following are all easily equipped with compact group metrics:

1. finite groups;
2. tori;
3. other compact Lie groups, such as closed subgroups of O(d);
4. countable Cartesian products of other compact metric groups. �

We will soon need the following important fact: If G is a compact metric
group, then there is a unique Borel probability measure on G (as a compact
metric space) which is invariant under both left- and right-translation. It is
called the Haar probability measure, and is denoted by mG . This classical
fact can be found, for instance, in [Fol99, Section 11.1]. From translation-
invariance and the compactness of G, it follows that mG(U ) > 0 for any
nonempty open U ⊆ G (since finitely many translates of U cover G, and
mG(G) = 1).

Lemma 4.45 Let (X, d) be a compact metric space, let Isom(X, d) be the
group of its isometries, and endow this group with the metric

D(S, T ) := sup
x∈X

d(Sx, T x).

Then this is a compact metric group.



228 T. Austin

Proof Exercise. [Hint: On route to compactness, let {xk : k ≥ 1} be a count-
able dense subset of X , and prove that if (Sn)n≥1 is a sequence in Isom(X, d)
such that (Sn xk)n≥1 tends to some limit yk ∈ X for each k, then the map
xk �→ yk is the restriction to {xk : k ≥ 1} of some limiting isometry
T : X −→ X .]

Proposition 4.46 Let (X, μ, T ) be an ergodic and concretely isometric Zd -
system with invariant metric d.

1. Let

Z := {T n : n ∈ Zd} ≤ Isom(X, d),

where the closure is in the metric D. Then (Z , D) is a compact metric
Abelian group, and there is some x ∈ X such that

μ =
∫

Z
δR(x) m Z (dR), (4.6)

where m Z is the Haar probability measure on Z.
2. There are a compact metric Abelian group Z and an action S of Zd by

rotations on Z such that (X, μ, T ) is isomorphic to (Z ,m Z , S).

Proof Part 1. The subgroup Z is closed and therefore compact since
Isom(X, d) is compact. It is Abelian because it contains the dense Abelian
subgroup {T n : n ∈ Zd }.

For any R ∈ Z , the definition of Z gives a sequence (ni )i≥1 in Zd such that
T ni −→ R in the metric D. This implies that

R∗μ = lim
i−→∞ T ni∗ μ = μ

in the weak$ topology (exercise!), and hence that μ is Z-invariant.
For any f ∈ C(X), we may average over the action of Z to define the new

function

!( f )(x) :=
∫

Z
f (R(x))m Z (dR).

One checks easily that !( f ) is still a continuous functions on Z . It is
Z -invariant as an average over the action of Z , hence also invariant under T n

for every n ∈ Zd . Therefore, by ergodicity, for every f ∈ C(X) there is a
Borel subset X f ⊆ X with μ(X f ) = 1 on which !( f ) is equal to the constant∫
!( f ) dμ. Since μ is Z-invariant, this constant may be evaluated as follows:∫

X

( ∫
Z

f (R(x ′))m Z (dR)
)
μ(dx ′)

Fubini=
∫

Z

( ∫
X

f (x ′) (R∗μ)(dx ′)
)

m Z (dR) =
∫

f dμ.
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Now let f1, f2, . . . be a countable and uniformly dense sequence in C(X).
The resulting intersection

⋂
n X fn still has μ-measure 1, hence is nonempty;

let x be an element of this intersection. Having done so, the definition of the
sets X fn gives∫

fn dμ = !( fn)(x) =
∫

X
fn(R(x))m Z (dR) ∀n ≥ 1.

Since { fn : n ≥ 1} is dense in C(X), this must actually hold for every f ∈
C(X), and this now implies that

μ =
∫

Z
δR(x) m Z (dR).

Part 2. Now reconsider the situation of Part 1, but replace X with the com-
pact orbit Z x for some fixed x satisfying (4.6). This is T -invariant and has full
μ-measure, so it gives the same isometric Zd -system up to isomorphism. We
may therefore simply assume X = Z x . We now treat Z as a subgroup of
Isom(X, d) with this extra assumption.

However, if X is itself equal to the single orbit Z x , then the action of Z
on X must be free. Indeed, if R(x ′) = x ′ for some R ∈ Z and x ′ ∈ X , then
also R(R′(x ′)) = R′(R(x ′)) = R′(x ′) for any R′ ∈ Z , because Z is Abelian;
since the Z -orbit of any point x ′ ∈ X equals the whole of X , this implies that
R = idX . Therefore the orbit map

π : Z −→ X : R �→ R(x)

is continuous and injective, and hence is a homeorphism. Equation (4.6) asserts
precisely that μ is equal to π∗m Z . Finally, letting Sn be the rotation of the
group Z by its element T n for each n ∈ Zd , it follows that π defines an
isomorphism

(Z,m Z , S) −→ (X, μ, T ).

Corollary 4.47 (Abstract Weyl Equidistribution) If (X, d) is a compact met-
ric space, T : Zd −→ Isom(X, d) is an action by isometries, and x ∈ X,
then

1

N d

∑
n∈[N ]d

δT nx
weak$−→
∫

Z
δR(x) m Z (dR),

where Z = {T n : n ∈ Zd } ≤ Zd .

Exercise Prove Corollary 4.47 from Proposition 4.46. �
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4.6 Roth’s Theorem

This section proves the special case of Theorem 4.7 with k = 3. This is rather
easier to handle than the general case, but it already exhibits some nontriv-
ial structure. By the Furstenberg correspondence principle, it implies Roth’s
theorem (the case k = 3 of Theorem 4.3).

Example Suppose that (T,mT, Rα) is an ergodic circle rotation. Let f1 : t �→
e4π it ∈ C and f2 : t �→ e−2π it . Then for any n we have

f1(t + nα) f2(t + 2nα) = e4π it+4nπ iαe−2π it−4nπ iα = e2π it ,

and so, even though T is ergodic, the averages

1

N

N∑
n=1

( f1 ◦ T n)( f2 ◦ T 2n)

are all equal to the non-constant function e2π it . By letting A be a set such that
1A has nonzero Fourier coefficients corresponding to both of the characters f1

and f2, and using a little care, one can produce a set A such that

1

N

N∑
n=1

mT(A ∩ T−n A ∩ T −2n A)

tends to some limit other than mT(A)3. �

By analogy with Theorem 4.42, we might hope that the above examples
represent essentially the only way in which the limit joining can fail to be the
product measure. This turns out to be true for the case k = 3 of Theorem 4.7.
The story is more complicated for k ≥ 4 or in higher dimensions.

Proposition 4.48 Let (X, μ, T ) be an ergodic Z-system and let S ≤ BX

be its Kronecker factor. Let λ be any 3-fold self-joining of X which is also
invariant under 2T = T × T 2 × T 3. Then λ is relatively independent over
(S ,S ,S ).

Proof Suppose that fi ∈ L∞(μ) for i = 1, 2, 3.
Consider the projection π23 : X3 −→ X2 onto the second and third coor-

dinates. The measure π23∗λ has both marginals equal to μ and is invariant
under both T × T and T 2 × T 3. It is therefore also invariant under id × T .
Since X is ergodic, this implies that π23∗λ = μ⊗2, by the ergodic case of
Proposition 4.33.

By writing X3 = X × X2, we may now regard λ as a joining of X and X2

which is invariant under both T × (T × T ) and under T × (T 2 × T 3), hence
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also under id × (T × T 2). By another appeal to Proposition 4.33, with this

interpretation λ is relatively independent over (BX ,B
T×T 2

X2 ).

However, now Theorem 4.42 (for T ) and Corollary 4.44 (for T 2) give that

BT×T 2

X2 ⊆ S ⊗ S . Suppose that f1, f2, f3 ∈ L∞(μ). A simple exercise (for
instance, based on the formula (4.2)) shows that

Eμ⊗μ( f2 ⊗ f3 |S ⊗ S ) = Eμ( f2 |S )⊗ Eμ( f3 |S ).

Using this, the law of iterated conditional expectation ([Bil95, Theorem 34.4])
gives

Eμ⊗μ( f2 ⊗ f3 |BT×T 2

X2 ) = Eμ⊗μ

(
Eμ⊗μ( f2 ⊗ f3 |S ⊗ S )

∣∣BT×T 2

X2

)
= Eμ⊗μ

(
Eμ( f2 |S )⊗ Eμ( f3 |S )

∣∣BT×T 2

X2

)
,

and so we obtain∫
f1 ⊗ f2 ⊗ f3 dλ =

∫
f1 ⊗ Eμ⊗μ( f2 ⊗ f3 |BT×T 2

X2 ) dλ

=
∫

f1 ⊗ Eμ⊗μ

(
Eμ( f2 |S )⊗ Eμ( f3 |S )

∣∣BT×T 2

X2

)
dλ

=
∫

f1 ⊗ Eμ( f2 |S )⊗ Eμ( f3 |S ) dλ.

Alternatively, we may regard λ as a joining of X2 and X via the first two
coordinates and the last coordinate, giving the analog of the above with S in
the first and second positions. Combining these equalities, we obtain∫

f1 ⊗ f2 ⊗ f3 dλ =
∫

Eμ( f1 |S )⊗ Eμ( f2 |S )⊗ Eμ( f3 |S ) dλ.

Since the fi s were arbitrary, this is the desired relative independence.

Given A ∈ BX , the above proposition and Lemma 4.32 imply that

λ(A3) =
∫

Eμ(1A |S )⊗3 dλ

for any limit λ of the joinings λN . If μ(A) > 0 and we let f := Eμ(1A |S ),
then this is a [0, 1]-valued function with

∫
f dμ > 0. Therefore the set B :=

{ f > 0} also has positive measure, and the case k = 3 of Theorem 4.7 will
be proved if we show that λ(B3) > 0. However, B is S -measurable, so is
lifted through a factor map from some isometric system. Therefore the desired
conclusion will follow from a final description of λ in the case of an isometric
system.
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Lemma 4.49 Let Z be a compact Abelian group, m its Haar probability mea-
sure, and Rα an ergodic rotation. Consider the off-diagonal-averaged joinings
λN in the case k = 3. These converge to the Haar probability measure of the
subgroup

W := {(z, z + w, z + 2w) : z, w ∈ Z} ≤ Z3.

Proof For any f ∈ C(Z3) and fixed z ∈ Z , Corollary 4.47 gives

1

N

N∑
n=1

f (z, z + nα, z + 2nα) −→
∫

Z
f (z, z + w, z + 2w)m(dw).

Integrating with respect to m(dz) gives

1

N

N∑
n=1

∫
Z
δ(z,z+nα,n+2α) m(dz)

weak$−→ mW .

This is the desired joining convergence, by Lemma 4.20.

Lemma 4.50 If (Z ,m) are as above, then the rotation-action R of Z on
L1(m) is continuous.

Proof Exercise.

Proof of Theorem 4.7 for k = 3 As argued above, Proposition 4.48 reduces
our task to the proof for a concretely isometric system, whose structure may be
described using the second part of Proposition 4.46. So let (Z,m) be a compact
Abelian group with its Haar probability measure. Let R be the rotation action
of Z on itself, and let T = Rα be some particular ergodic rotation. Let A ∈ BX

with δ := m(A) > 0, and let f := 1A. Let λ be the limit joining described in
Lemma 4.49.

Applying Lemma 4.50 to f , let U be a neighbourhood of 0 in Z such that

‖ f − f ◦ R−u‖1, ‖ f − f ◦ R−2u‖1 < δ/3 ∀u ∈ U.

Now we have

λ(A3) =
∫

f ⊗ f ⊗ f dλ =
∫

Z

∫
Z

f (z) f (z + u) f (z + 2u)m(dz)m(du)

≥
∫

U

( ∫
Z

f · ( f ◦ R−u) · ( f ◦ R−2u) dm
)

m(du)
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≥
∫

U

( ∫
Z

f 3 dm Z − δ/3 − δ/3
)

m(du)

= δm(U )/3 > 0.

4.6.1 Generalization: The Furstenberg Tower and
Host–Kra–Ziegler Factors

Furstenberg’s original proof of Theorem 4.7 in [Fur77] relies on a generaliza-
tion of Proposition 4.48 for larger values of k. Formulating this requires a few
definitions.

Definition 4.51 (Isometric Extension) Let (Y, S) be a Z-space, let (Z , d) be
a compact metric space, and let σ : Y −→ Isom(Z , d) be a measurable func-
tion, where the isometry group is given the same compact group metric as
previously. Then the concretely isometric extension of (Y, S) with fibre Z
and cocycle σ is the Z-space (Y × Z , Sσ ) with transformation defined by

Sσ (y, z) = (Sy, σ (y)(z)).

Now let Y = (Y, ν, S) be a Z-system. Then a concretely isometric exten-
sion of Y is a Z-system extension π : (X, μ, T ) −→ Y such that (X, T )
is a concretely isometric extension of (Y, S), π is the obvious coordinate
projection, and μ is any T -invariant lift of ν.

In general, an extension π : X −→ Y is isometric if it is isomorphic to some
concretely isometric extension of Y. To be precise, this means that there are a
concretely isometric extension π ′ : X′ −→ Y and a commutative diagram

X
isomorphism

π

X

π

Y

In this definition, rather than think of Y × Z as a product, one should visu-
alize it as a ‘measurable bundle’ of copies of Z indexed by the base space Y .
The transformation Sσ acts on the fibre {y} × Z by (i) moving the base-point
y to Sy and (ii) acting on the fibre above that base-point by the transfor-
mation σ(y). Clearly one can extend this definition to allow other kinds of
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fibre-transformation than isometries, but the definition above meets the needs
of this subsection.

An isometric system is an isometric extension of the trivial one-point sys-
tem. Much of our work from Section 4.5 has a generalization to extensions of
systems, rather than single systems, and isometric extensions play the rôle of
isometric systems in that generalization.

In the first place, an extension π : X −→ Y of ergodic G-systems is called
relatively weakly mixing if it has the following property: for any other exten-
sion ξ : Z = (Z , θ, R) −→ Y with Z ergodic, the relative product (see
Subsection 4.3.4) of X and Z over the diagonal joining of two copies of Y
is still ergodic. An important generalization of Theorem 4.42 asserts that an
extension π fails to have this property if and only if it has a factorization

X

α

π
Y

X = (X ,µ , T )
β

in which β is a nontrivial isometric extension. Moreover, in this case any
(T × R)-invariant measurable function on X × Z agrees a.e. (for the relative
product measure) with a function lifted from X ′ × Z . This result is a part of
‘Furstenberg–Zimmer theory’, which first appeared independently in [Fur77]
and [Zim76b, Zim76a]; see also [Gla03, Chapter 9] for a textbook treatment.

Secondly, there is a description of the invariant measures on an isomet-
ric extension which generalizes Proposition 4.46. It is essentially due to
Mackey [Mac66]; see also [Fur77, Theorem 8.1] or [Gla03, Theorem 3.25].

Using this theory, Furstenberg gave a generalization of Proposition 4.48 to
larger values of k in terms of a generalization of Kronecker systems.

Definition 4.52 (Distal Class; Distal Systems) The k-step distal class, Dk ,
is the class of Z-systems X which admit height-k towers of factor maps

X = Xk
πk−1−→ Xk−1

πk−2−→ · · · π1−→ X1

in which X1 is an isometric system and each extension Xi+1
πi−→ Xi is

isometric.
A member of Dk is called a k-step distal system.

Exercise Prove that Dk is idempotent. (This is similar to the proof of
Lemma 4.38, with a few extra technicalities.) �
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The technical heart of Furstenberg’s original paper [Fur77], although he
does not use the language of idempotent classes, is the following.

Theorem 4.53 If X = (X, μ, T ) is a system,

λN := 1

N

N∑
n=1

(T × · · · × T k)n∗μ�(k) for each N ,

and λ∞ ∈ J(k)(X) is any subsequential limit of this sequence of joinings, then
λ∞ is relatively independent over (Dk−2

X , . . . ,Dk−2
X ).

This neatly extends the structure given by Proposition 4.48 in case k = 3,
since D1 is the Kronecker class.

Theorem 4.53 tells one a great deal about a subsequential limit joining λ∞,
but it does not obviously imply its uniqueness, and Furstenberg does not prove
that in his paper. However, Theorem 4.53 does imply that, for proving The-
orem 4.7, it suffices to study the special case of (k − 2)-step distal systems.
For these, a more hands-on analysis shows multiple recurrence, even without
knowing convergence of the joinings λN .

Following Furstenberg’s work in [Fur77], he and Katznelson proved the
generalization Theorem 4.8 in [FK78]. That paper adopts the same ergodic-
theoretic point of view, but its use of the structure theory is different. First,
they say that an extension π : X −→ Y of Zd -systems is primitive if there is
a group-theoretic splitting Zd ∼= � ⊕ �′, for some subgroups �,�′ ≤ Zd ,
such that π is isometric when regarded as an extension of �-systems, and
relatively weakly mixing as an extension of �′-systems. By repeatedly apply-
ing Furstenberg–Zimmer theory to different subgroups of Zd , Furstenberg and
Katznelson show that any Zd -system admits a tower of factors in which each
single step is a primitive extension, possibly with different splittings of Zd at
every step. Importantly, one must allow this tower of factors to be ‘transfinite’,
in that it includes taking several inverse limits during the ascent. Having shown
this, they carry out a proof of Theorem 4.8 by ‘transfinite induction’, starting at
the base of that tower and then obtaining the conclusion of multiple recurrence
for every system appearing in the tower.

The success of this approach in the multidimensional setting made it popular
in later accounts: it reappeared in [Fur81] and [FKO82]. However, it gives little
information about the limit joinings, and so lies further from the present notes.

Much more recently than Furstenberg’s work, the case of Theorem 4.31 for
the powers of a single transformation was proved by Host and Kra in [HK05b]
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and by Ziegler in [Zie07]. Although their arguments are different, both of those
works refine Furstenberg’s by narrowing the class of factors needed to under-
stand the behaviour of these limits. Once again, we sketch the story as it applies
to limiting joinings. It requires some familiarity with nilpotent Lie groups, but
these will not reappear later in this course.

Definition 4.54 A k-step nilspace is a Z-space of the form

(G/�, Rg),

where

● G is a k-step nilpotent Lie group;
● � < G is a co-compact lattice; and
● Rg is the left-rotation action on G/� of an element g ∈ G.

A k-step nilsystem is a k-step nilspace equipped with an invariant Borel
probability measure.

Old results of Parry [Par69, Par70] show that any ergodic invariant probabil-
ity measure on a nilspace (G/�, Rg) must be the Haar measure corresponding
to some closed subgroup H ≤ G which contains g. By restricting to the
sub-nilmanifold H/(H ∩ �), one may then assume that the invariant mea-
sure is simply the full Haar measure and that Rg is acting ergodically. Often
one restricts attention to ergodic nilsystems, and includes this choice of invari-
ant measure in the definition. We do not because it is less convenient for the
formalism of idempotent classes.

Using the basic structure theory of nilpotent Lie groups, one can show
that a k-step nilsystem is always k-step distal. More specifically, it has a
tower of k factor maps which starts with a rotation of a finite-dimensional
compact Abelian Lie group, and then extends by an action on a bundle of
tori at each higher step. See, for instance, those papers of Parry, the classic
monograph [AGH63], or the introduction to [GT07].

As previously, we will also need to allow for inverse limits in our
applications.

Definition 4.55 (Pro-Nil Classes; Pro-Nil Systems) Given k ≥ 1, the
k-step pro-nil class of Z-systems is the smallest class that contains all k-
step nilsystems and is closed under isomorphisms and inverse limits. It is
denoted Zk .

A member of Zk is called a k-step pro-nil system.
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More concretely, Z is a k-step pro-nilsystem if it is an inverse limit of some
tower of k-step nilsystems

Z −→ · · · −→ (G2/�2, ν2, Rg2) −→ (G1/�1, ν1, Rg1).

One can now prove that each class Zk is idempotent. The proof of this
is mostly an application of the classical theory of dynamics on nilspaces,
and we do not give it here. Note, however, that it is necessary to introduce
inverse limits explicitly, as we have above. For instance, an ergodic rotation
on the infinite-dimensional torus TN with its Haar measure is not a 1-step nil-
system, since the underlying space is not a finite-dimensional manifold; but
it is a 1-step pro-nilsystem, because it is an inverse limit for the tower of
coordinate-projection factor maps TN −→ Tn .

Since a k-step nilsystem is k-step distal, it follows that Zk ⊆ Dk . In case
k = 1 this is an equality.

Exercise Prove that Z1 is the Kronecker class, using Proposition 4.46 and the
fact that characters separate points on any compact metric Abelian group. �

The main structural result of [HK05b] and [Zie07] can be translated to apply
to joining averages (as in Theorem 4.30) rather than functional averages (as in
Theorem 4.31). It becomes the following.

Theorem 4.56 (Derived from [HK05b], [Zie07]) Let (X, μ, T ) be an ergodic
system, and let

λN := 1

N

N∑
n=1

(T × · · · × T k)n∗μ�(k) for each N .

Then:

i) These joinings λN tend to a limit λ∞ ∈ J(k)(X) as N −→ ∞.
ii) This λ∞ is relatively independent over (Zk−2

X ,Zk−2
X , . . . ,Zk−2

X ).
iii) For each of the nilsystem-factors

X −→ (G/�, ν, Rg)

which generate Zk−2
X , the joining limit of the off-diagonal averages

1

N

N∑
n=1

(Rg × · · · × Rgk )
n∗ν�(k)
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is the Haar probability measure on the nilmanifold H/(H ∩ �k) for some
intermediate nilpotent Lie group

{(g, g, . . . , g) ∈ Gk : g ∈ G} ≤ H ≤ Gk .

Moreover, the factor Zk−2
X is the smallest for which (ii) holds.

Since Zk ⊆ Dk , Theorem 4.56 refines Theorem 4.53. Actually, nilsystems
are a much more constrained class than general distal systems, and so this is a
very great refinement. This is what makes the precise ‘algebraic’ description
of the limit joining in part (iii) possible, and it is why this structure, unlike
Theorem 4.53, is also enough to prove convergence. Part (iii) follows from
those older works of Parry; see also Leibman [Lei05]. In the proof of the above,
the structure that appears in part (iii) is actually used in the deduction of part (i).

4.7 Towards Convergence in General

The last ambition for this course is a proof of Theorem 4.30. The gen-
eral multidimensional case requires some new ideas. Perhaps surprisingly,
the current proofs of convergence still leave the actual structure of the limit
joining rather mysterious, in contrast with the explicit picture sketched in
Section 4.6.

As before, we should like to follow the strategy outlined in Section 4.4: using
the fact that any subsequential limit joining λ∞ has the off-diagonal invariance
given by Lemma 4.32, deduce enough about the structure of λ∞ to conclude
that it is unique. The extra structure that we will seek for λ∞ is a tuple of
‘special’ factors Si ≤ BX , i = 1, 2, . . . , d, such that λ∞ must be relatively
independent over (S1, . . . ,Sd).

However, in the multidimensional setting one cannot expect these factors Si

to be too simple.

Example Let (X, μ, T ) be a Zd -system, and suppose A ∈ BX is T e1−e2 -
invariant. Then

λN (A × A × Xd−2) = 1

N

N∑
n=1

μ(T −ne1 A ∩ T −ne2 A) = μ(A),

so any subsequential limit also gives λ∞(A × A × Xd−2) = μ(A). There-
fore, if λ∞ is relatively independent over (S1, . . . ,Sd), then the Cauchy–
Bunyakowski–Schwarz inequality gives
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‖1A‖2
2 = μ(A) =

∫
E(1A |S1)⊗ E(1A |S2)⊗ 1X ⊗ · · · ⊗ 1X dλ∞

≤ ‖E(1A |S1)‖2‖E(1A |S2)‖2.

This is possible only if 1A = E(1A |S1) = E(1A |S2), and hence if A actually
lies in both S1 and S2 modulo μ.

Generalizing this argument, one finds that any such tuple of factors (S1,

. . . ,Sd) must satisfy

Si ⊇
∨

j∈{1,...,d}�{i}
BT ei −e j

X . (4.7)

�

This example seems intimidating: each of the factors BT ei −e j

X appearing
in this lower bound for Si could still involve a completely arbitrary action
of the other transformations T ek , k �= i, j . Note that one cannot use an
ergodic decomposition to assume that the individual transformations T ei−e j

are ergodic, since the disintegrands μy in the ergodic decomposition for this
transformation need not be invariant under the other T ek s. Ergodic decom-
position allows one to assume only that the Zd -action T is ergodic as a
whole.

However, with a little more thought, one sees that the factors on the right-
hand side of (4.7) do not pose a great problem for proving convergence by
themselves. This will be explained shortly, but first let us give a name to
systems with the property that we may take Si equal to the corresponding
right-hand side in (4.7).

Definition 4.57 (Pleasant System) Let

C = Ce1−e2 ∨ · · · ∨ Ce1−ed ,

the example idempotent class considered following Lemma 4.25.
A Zd -system is pleasant if every self-joining λ ∈ J(d)(X) which is off-

diagonal-invariant is relatively independent over (CX,BX , . . . ,BX ).

Not all systems are pleasant.

Example Let d ≥ 3, and let (G/�, ν, Rg) be a nontrivial (d − 2)-step nil-
system for which Rg j is ergodic for all j �= 0 (such examples are plentiful
among nilsystems). Define a Zd -system on (X, μ) := (G/�, ν) by setting

T e j := Rg j for j = 1, 2, . . . , d. Then each of the factors BT ei −e j

X for i �= j
is trivial, because T ei−e j = Rgi− j is ergodic. However, the last part of Theo-
rem 4.56 shows that the relevant limit joinings for these systems are not product
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measures, and a slightly more careful argument shows that the first coordinate
alone is not independent from the others under this limit joining. Therefore this
system (X, μ, T ) is not pleasant. �

The previous example is obtained by using different powers of the single
transformation Rg as the generators of a Zd -action. This feels a bit like a
pretence, but less artificial examples are also available. In fact, characteristic
factors for general Zd -systems can be described in detail when d = 3, and
that description includes other examples for which one cannot have equal-
ity in (4.7): see [Aus10b, Subsection 7.4]. For Zd -actions with d ≥ 4 no
corresponding general analysis is known.

Nevertheless, pleasant systems are plentiful enough that they can be used to
prove convergence in general. This is a consequence of the following.

Theorem 4.58 (Pleasant Extensions Theorem) Every Zd -system has an
extension which is pleasant.

Proof of Theorem 4.30 Given Pleasant Extensions Let λN ∈ J(d)(X) be the
off-diagonal averages of the diagonal joining. We will prove that (λN )N

converges to some limit joining by induction on d.
When d = 1, λN = μ for all N , so the result is trivial.
Now suppose it is known for Zd−1-systems, and let X be a Zd -system. Let

π : X̃ −→ X be a pleasant extension, as provided by Theorem 4.58, and let λ̃N

be the corresponding sequence of self-joinings for X̃. Then a simple calculation
gives λN = (π × · · · × π)∗̃λN , and the pushforward map (π × · · · × π)∗ is
continuous for the joining topology (Lemma 4.19), so it suffices to prove that
λ̃N converges. Equivalently, replacing X with X̃, we may simply assume that
X itself is pleasant.

By compactness of the joining topology, the sequence (λN )N has subse-
quential limits, and convergence will follow if we prove that they are all
equal. By the pleasantness of X, any subsequential limit joining is relatively
independent over (CX,BX , . . . ,BX ). It therefore suffices to prove that the
sequence∫

f1 ⊗ · · · ⊗ fd dλN = 1

N

N∑
n=1

∫
( f1 ◦ T ne1) · · · ( fd ◦ T ned ) dμ

converges to a single limit whenever f1, f2, . . . , fd ∈ L∞(μ) and f1 is
CX-measurable. Fix f2, . . . , fd . By multilinearity and a simple approximation
argument, it suffices to prove this convergence for all f1 drawn from a subset
of such CX-measurable functions whose linear span is dense in the norm ‖ · ‖2.
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By the definition of C and some routine measure theory (exercise!), such a
subset is provided by the product functions of the form g2 · g3 · · · gd , where
each g j ∈ L∞(μ) is T e1−e j -invariant. Substituting such a product into our
averages now gives the sequence

1

N

N∑
n=1

∫
((g2 . . . gd) ◦ T ne1)( f2 ◦ T ne2) · · · ( fd ◦ T ned ) dμ.

Using the fact that g j ◦ T ne1 = g j ◦ T ne j for each j and n, this can be re-
arranged to

1

N

N∑
n=1

∫
((g2 · f2) ◦ T ne2) · · · ((gd · fd) ◦ T ned ) dμ.

Finally, this an analogous sequence of joining averages for the Zd−1-system
generated by T e2 , . . . , T ed . Our inductive hypothesis therefore gives con-
vergence for all choices of f j and g j , 2 ≤ j ≤ d, so the proof is
complete.

Exercise

1. With C the class in Definition 4.57, prove the following: for any Zd -system
(X, μ, T ) with ergodic decomposition

μ =
∫

Y
μy ν(dy),

if S is a choice of maximal C-factor for (X, μ, T ), then it is also a choice
of maximal C-factor for (X, μy, T ) for ν-a.e. y. [Hints: First prove this for
each class Ce1−e j separately; adapt the proof of Proposition 4.13.]

2. Prove that a general Zd -system is pleasant if and only if almost all the
measures in its ergodic decomposition define pleasant systems.

3. Starting from Theorem 4.58, prove that every ergodic Zd -system has an
extension which is pleasant and ergodic.

4. Now let (X, μ, T ) be a Z-system with the property that T n is ergodic for
every n �= 0 (such as system is called totally ergodic), and define a Zd -
system X̃ := (X, μ, T̃ ) on the same probability space by setting T̃ e j := T j

for j = 1, 2, . . . , d. Show that in this case

CX̃ = BT
X ,

so this is trivial if T is ergodic. In light of this, why is there no con-
tradiction between part 3. of this exercise and the example preceding
Theorem 4.58? �
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Most of the remaining work will go into proving the Pleasant Extensions
Theorem. One can also give a proof of Theorem 4.8 using that theorem, but
this is rather more work, and we leave it aside: see [Aus10a] or [Aus10c].

4.8 Sated Systems and Pleasant Extensions

4.8.1 Satedness

We now make a brief return to the abstract study of idempotent classes. Let C

be an idempotent class of G-systems for some countable group G.

Definition 4.59 (Adjoining) A C-adjoining of X = (X, μ, T ) is an extension
of X of the form

(X × Y, λ, T × S)
π−→ X,

where

● Y = (Y, ν, S) ∈ C;
● λ ∈ J(X,Y);
● and π is the first coordinate projection,

or any extension isomorphic to such a π .

Lemma 4.60 A C-adjoining of a C-adjoining is a C-adjoining.

Proof Given X, any C-adjoining of a C-adjoining of X may be written in the
form

(X × Y1 × Y2, λ, T × S1 × S2)
π−→ X,

where Yi = (Yi , νi , Si ) ∈ C for i = 1, 2, λ ∈ J(X,Y1,Y2), and π is the first
coordinate projection.

Letting λ12 be the projection of λ onto the coordinates in Y1 × Y2, it follows
that Y := (Y1 × Y2, λ12, S1 × S2) ∈ C, because C is closed under joinings.
Since the above triple-joining may be written as a joining of X and this Y, it is
a C-adjoining of X.

Lemma 4.61 Let

· · · π2−→ X2
π1−→ X1

π0−→ X0 = X

be a tower in which each πi is a C-adjoining of Xi . Then its inverse limit is a
C-adjoining of X.
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Proof By a simple induction on i , there are systems Yi = (Yi , νi , Si ) ∈ C

and joinings λi ∈ J(X,Y1, . . . , ,Yi ) for i ≥ 1 such that

Xi = (X × Y1 × · · · × Yi , λi , T × S1 × · · · × Si )

for each i , and πi−1 is the coordinate projection that omits the factor Yi .
Given this, the proof of Proposition 4.22 constructs an inverse limit for the

original sequence of the form(
X ×
∏
i≥1

Yi , λ, T ×
∏
i≥1

Si

)
,

where λ ∈ J(X,Y1,Y2, . . . ). Projecting out the coordinate-copy of X gives
some λ′ ∈ J(Y1,Y2, . . .), and the corresponding system

Y :=
(∏

i≥1

Yi , λ
′,
∏
i≥1

Si

)
.

This is an inverse limit of finite joinings among the systems Yi , so it defines
an inverse limit of joinings of members of C, hence is itself a member of C.

Therefore our original inverse limit is a joining of X and Y ∈ C, so is a
C-adjoining of X.

With the above preliminaries in hand, the key new definition is the following.

Definition 4.62 (Sated System) A G-system X is C-sated if the following
holds: if Y ∈ C, then any λ ∈ J(X,Y) is relatively independent over (CX,BY ):
that is, ∫

X×Y
f ⊗ g dλ =

∫
X×Y

E( f |CX)⊗ g dλ (4.8)

for all f ∈ L∞(μ) and g ∈ L∞(ν).

The intuition here is that a C-sated system admits only very restricted join-
ings with members of the class C: they must be relatively independent over
some member of C that is already a factor of X. The following alternative
characterization will be useful shortly.

Proposition 4.63 For a G-system X, the following are equivalent:

i) X is C-sated;
ii) for every extension π : X̃ −→ X and every f ∈ L∞(μ), one has

Eμ̃( f ◦ π |CX̃) = Eμ( f |CX) ◦ π; (4.9)
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Proof (i) =⇒ (ii). Let π : X̃ −→ X be an extension, and let ξ : X̃ −→ Y
be another factor map which generates the factor CX̃ modulo μ̃. Let λ :=
(π, ξ)∗μ̃ ∈ J(X,Y) be their joint distribution in X̃ (see Subsection 4.3.3).
Applying Definition 4.62 to this joining gives∫

( f ◦ π)(g ◦ ξ) dμ̃ =
∫

f ⊗ g dλ (by the definition of λ)

=
∫

E( f |CX)⊗ g dλ =
∫
(E( f |CX) ◦ π)(g ◦ ξ) dμ̃

for all f ∈ L∞(μ) and g ∈ L∞(ν). Since the functions of the form g ◦ ξ for
g ∈ L∞(ν) are precisely the CX̃-measurable members of L∞(μ̃), this equality
and the definition of conditional expectation prove (4.9).

(ii) =⇒ (i). Suppose that Y = (Y, ν, S) ∈ C and λ ∈ J(X,Y), and let π :
X̃ −→ X be the corresponding C-adjoining. Let f ∈ L∞(μ) and g ∈ L∞(ν),
and let ξ : X̃ = X × Y −→ Y be the second coordinate projection. Then
CX̃ ⊇ ξ−1(CY) modulo μ̃, by the maximality of CX̃ among C-factors of X̃.
Therefore g ◦ ξ is CX̃-measurable, and so applying (4.9) gives∫

f ⊗ g dλ =
∫
( f ◦ π)(g ◦ ξ) dμ̃ =

∫
Eμ̃( f ◦ π |CX̃)(g ◦ ξ) dμ̃

=
∫
(Eμ( f |CX) ◦ π)(g ◦ ξ) dμ̃ =

∫
Eμ( f |CX)⊗ g dλ.

Sometimes condition (ii) of the preceding proposition is easier to verify than
condition (i), often because of the following useful equivalence.

Lemma 4.64 If π : X = (X, μ, T ) −→ Y = (Y, ν, S) is an extension of
G-systems and f ∈ L2(ν), then the following are equivalent:

i) Eμ( f ◦ π |CX) = Eν( f |CY) ◦ π ;
ii) ‖Eμ( f ◦ π |CX)‖L2(μ) = ‖Eν( f |CY)‖L2(ν);

iii) ‖Eμ( f ◦ π |CX)‖L2(μ) ≤ ‖Eν( f |CY)‖L2(ν).

Proof (i) =⇒ (ii) This is immediate, since ‖F ◦ π‖L2(μ) = ‖F‖L2(ν) for
any F ∈ L2(ν).

(ii) =⇒ (iii) Trivial.
(iii) =⇒ (i) The definition of conditional expectation gives

Eν( f |CY) ◦ π = Eμ( f ◦ π |π−1(CY)),
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so condition (iii) is equivalent to

‖Eμ( f ◦ π |CX)‖L2(μ) ≤ ‖Eμ( f ◦ π |π−1(CY))‖L2(μ). (4.10)

Clearly π−1(CY) is a C-factor of X; since CX is the maximal C-factor, it fol-
lows that CX ⊇ π−1(CY) modulo μ. Therefore the law of iterated conditional
expectation gives

Eμ( f ◦ π |π−1(CY)) = Eμ

(
Eμ( f ◦ π |CX)

∣∣ π−1(CY)
)
. (4.11)

Now, the conditional expectation operator E( · |π−1(CY)) is an orthogonal
projection on L2(μ) (recall the discussion following Theorem 4.12). Combin-
ing (4.11) and (4.10), we see that this orthogonal projection does not reduce
the norm of Eμ( f ◦ π |CX), and this is possible only if it actually leaves that
function fixed: that is, only if

Eμ( f ◦ π |π−1(CY)) = Eμ( f ◦ π |CX).

Theorem 4.65 (Sated Extensions Theorem) Let C be an idempotent class of
G-systems. Every G-system X has a C-sated extension.

Proof Step 1. Let S be a countable subset of the unit ball of L∞(μ) which is
dense for the norm ‖·‖2: this is possible because this ball is contained in L2(μ),
which is separable. Now let ( fr )r≥1 be a sequence in S with the property that
every f ∈ S is equal to fr for infinitely many values of r .

Having chosen these, we construct a tower

· · · π2−→ X2
π1−→ X1

π0−→ X0 = X

of C-adjoinings by the following recursion. Assuming Xi has already been
constructed for some i ≥ 0, let π i

0 := π0 ◦ · · · ◦πi−1 : Xi −→ X, and consider
the real number

αi := sup
{‖Eν( fi ◦ π i

0 ◦ ξ |CY)‖L2(ν) :
Y = (Y, ν, S)

ξ−→ Xi is a C-adjoining of Xi
}
.

Let πi : Xi+1 −→ Xi be some choice of C-adjoining with the property that

‖Eμi+1( fi ◦ π i
0 ◦ πi |CXi+1)‖L2(μi+1)

≥ αi − 2−i .

This continues the recursion.
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Let X̃ be an inverse limit of this tower, and let π̃ : X̃ −→ X be the resulting
factor map. By Lemma 4.61, this is still a C-adjoining of X, so we may identify
it with

(X × Y, λ, T × S)
coord. proj.−→ X

for some Y ∈ C and some λ ∈ J(X,Y).
Step 2. We will prove that X̃ satisfies condition (ii) in Proposition 4.63.

Thus, suppose that ψ : Z = (Z , ρ, R) −→ X̃ is a further extension. We must
show that

Eρ(F ◦ ψ |CZ) = Eμ̃(F |CX̃) ◦ ψ
for all F ∈ L∞(μ̃).

Both sides of the desired equation are linear in F and also continuous in F
for the norm ‖ · ‖L1(μ̃). It therefore suffices to prove the equation for F drawn
from a subset of L∞(μ̃) whose linear span is dense in that space for the norm
‖ · ‖L1(μ̃). In particular, it suffices to do so for functions of the form f ⊗ h for
some f ∈ S and h ∈ L∞(ν).

However, if

F = f ⊗ h = ( f ⊗ 1Y ) · (1X ⊗ h)

for some f ∈ S and g ∈ L∞(ν), then the second factor here is lifted from
the system Y ∈ C, hence must be CX̃-measurable. Therefore (1X ⊗ h) ◦ ψ is
CZ-measurable. Using this, the desired equality becomes

Eρ(( f ⊗1Y )◦ψ |CZ) ·((1X ⊗h)◦ψ) = (Eμ̃( f ⊗1Y |CX̃)◦ψ) ·((1X ⊗h)◦ψ).

This will now follow if we prove it without the presence of h.
To do this, observe that for any i , the definition of αi and the way we chose

Xi+1 give that

‖Eμ̃( fi ⊗ 1Y |CX̃)‖L2(μ̃) ≥ ‖Eμi+1( fi ◦ π i+1
0 |CXi+1)‖L2(μi+1)

≥ αi − 2−i ≥ ‖Eρ(( fi ⊗ 1Y ) ◦ ψ |CZ)‖L2(ρ) − 2−i .

The last inequality here holds because Z is a C-adjoining of each Xi , by Lem-
mas 4.60 and 4.61, and hence falls within the scope of the supremum that
defined αi . Since fi = f for infinitely many i , it follows that

‖Eμ̃( f ⊗ 1Y |CX̃)‖L2(μ̃) ≥ ‖Eρ(( f ⊗ 1Y ) ◦ ψ |CZ)‖L2(ρ).

This verifies condition (iii) of Lemma 4.64, and hence proves the desired
equality.
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4.8.2 Pleasant Extensions from Satedness

Theorem 4.66 If C is as in Theorem 4.58, then a C-sated system is pleasant.

Proof Suppose X is C-sated, and let λ ∈ J(d)(X) be an off-diagonal-invariant
self-joining. Let Y := Xd−1, and let ν ∈ Pr Y be the marginal of λ on the
coordinates indexed by 2, 3, . . . , d . We may consider λ as a coupling of μ and
ν on X × Xd−1.

Now define a Zd -action S on (Y, ν) as follows:

Sei :=
{

T e2 × · · · × T ed if i = 1
T ei × · · · × T ei if i = 2, 3, . . . , d.

Crucially, this is not the diagonal action: the first generator, Se1 , is part of the
off -diagonal transformation.

This gives a well-defined Zd -system Y = (Y, ν, S) owing to the off-
diagonal-invariance of λ, which implies that ν is Se1 -invariant. Moreover, λ
is invariant under both

T ei × Sei for each i = 2, 3, . . . , d

and

T e1 × Se1 = T e1 × T e2 × · · · × T ed ,

so λ ∈ J(X,Y).
Finally, observe that Y is itself a joining of the Zd -systems Y j :=

(X, μ, S j ), j = 2, 3, . . . , d, where

Se1
j := T e j and Sei

j := T ei for i = 2, 3, . . . , d.

These systems satisfy Y j ∈ Ce1−e j , and so Y ∈ C. Therefore λ defines a
C-adjoining of X, and so for any functions f1, f2, . . . , fd ∈ L∞(μ) the C-
satedness of X gives∫

Xd
f1 ⊗ ( f2 ⊗ · · · ⊗ fd) dλ =

∫
Xd

Eμ( f1 |CX)⊗ ( f2 ⊗ · · · ⊗ fd) dλ.

This is equivalent to pleasantness.

Proof of Theorem 4.58 This follows immediately from the conjunction of
Theorems 4.65 and 4.66.

Exercise This exercise will deduce Theorem 4.31 from an analysis of self-
joinings, much as Theorem 4.35 was deduced from Corollary 4.34. Let X =
(X, μ, T ) be a Zd -system, let f1, . . . , fd ∈ L∞(μ), and let

AN ( f1, . . . , fd) := 1

N

N∑
n=1

( f1 ◦ T ne1) · · · ( fd ◦ T ned ) for N ≥ 1.
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1. For each N ≥ 1, let

θN := 1

N 2

N∑
m,n=1

(T me1 × · · · × T med × T ne1 × · · · × T ned )∗μ�,

where μ� is the diagonal (2d)-fold self-joining of X on Xd × Xd . Prove
that each θN is a self-joining of X, and that

‖AN ( f1, . . . , fd)‖2
2 =
∫

Xd×Xd
f1 ⊗ · · · ⊗ fd ⊗ f1 ⊗ · · · ⊗ fd dθN .

2. Let θ be a subsequential joining-topology limit of (θN )N≥1. Show that θ is
also invariant under

2T1 := T e1 × · · · × T ed × id × · · · × id

and

2T2 := id × · · · × id × T e1 × · · · × T ed .

3. Let C be the idempotent class

Ce1−e2 ∨ · · · ∨ Ce1−ed ∨ Ce1 .

Prove that if X is C-sated, then θ is relatively independent over (CX,

BX ,BX , . . . ,BX ). [This is the tricky part: as in the proof of Theo-
rem 4.66, the key is to choose a Zd -action on (Xd × Xd , θ), using some
combination of diagonal transformations and 2T1 and 2T2, so that it may be
interpreted as a C-adjoining of X.]

4. Deduce that if X is C-sated, then

‖AN ( f1, . . . , fd)− AN (Eμ( f1 |CX), f2, . . . , fd)‖2 −→ 0 as N −→ ∞.

Use this, together with an approximation of CX-measurable functions
similar to that in the proof of Theorem 4.30, to complete the proof of
Theorem 4.31 by induction on d. �

4.9 Further Reading

I have been quite sparing with references in this course. But it gives only a very
narrow view of quite a large area of ergodic theory. The following references,
though still incomplete, offer several directions for further study.
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General Ergodic Theory
There are many good ergodic theory textbooks. Among these books, [Pet83]
and [Gla03] include factors, joinings, and their rôles in other parts of ergodic
theory; [Gla03] is thorough, but [Pet83] is somewhat gentler. The recent book
[EW11] also covers this machinery, as well as giving its own treatment of
ergodic Ramsey theory. That presentation is close to [Fur81] and omits some
of the more modern ideas presented in this course.

Idempotent classes are a more recent definition than the others, having
appeared first in preprint versions of [Aus15]. They have not yet been used
outside the study of multiple recurrence, so do not appear in other accounts of
general ergodic theory.

Finer Analysis in the One-Dimensional Setting
For Z-systems, Theorem 4.56 has enabled several much finer results on
nonconventional averages and multiple recurrence, both in ergodic theory
and in the neighbouring field of topological dynamics. For some examples,
see [BHK05, HKM10, HKM14, SY12, DDM+13].

The first proof of Theorem 4.56 is due to Host and Kra [HK05b]. Their
approach introduces a very useful family of seminorms on L∞(μ) for a gen-
eral system (X, μ, T ), defined in terms of certain self-joinings and which turn
out to detect the presence of nilsystem-factors. These ‘Host–Kra’ seminorms
appear again in several of the other papers listed above, and have been sub-
jected to a more detailed analysis of their own in [HK08, HK09]. They are
related to the ‘Gowers uniformity’ norms in additive combinatorics, mentioned
again below.

The paper [FK05] shows that Theorem 4.56 can also be brought to
bear on nonconventional averages of Zd -systems under the assumption
of total ergodicity. That assumption makes all the factors on the right-
hand side of (4.7) trivial, and prevents one from needing to construct any
extensions.

Another intriguing relation between one and higher dimensions is Frant-
zikinakis’ recent result from [Fra]. It characterizes the sequences∫

( f1 ◦ T ne1) · · · · · ( fd ◦ T ned ) dμ, n ∈ N,

that one can obtain from an arbitrary Zd -system (X, μ, T ) and functions
f1, . . . , fd ∈ L∞(μ). He shows that such a sequence can always be decom-
posed into a nilsequence (roughly, this is a sequence generated by sampling
some function along the orbit of a nilsystem) and a sequence that tends to zero
in uniform density. Thus, these sequences of integrals for Zd -systems can be
described in terms of nilsystems, a class of ‘one-dimensional’ objects. It would
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be very interesting to know whether this characterization can be turned into any
further information about limit joinings.

Polynomial Sequences, Nilpotent Groups, and Prime Numbers
Several generalizations of Theorem 4.7 or 4.8 are obtained by restricting
the possible values of n. One usually obtains a counterpart generalization of
Theorem 4.3 or 4.4.

One class of these generalizations is obtained by demanding that n be a value
taken by a certain polynomial. More generally, one can consider tuples in Zd

produced by several different polynomials. One of the main results of [BL96]
is a sufficient condition on a tuple p1, . . . , pk of polynomials Z −→ Zd for the
following to hold: if E ⊆ Zd has d(E) > 0, then there is some n ∈ Z such that

{p1(n), . . . ,pk(n)} ⊆ E .

Leibman has given a further generalization to subsets and polynomial map-
pings of discrete nilpotent groups in [Lei98]. Other more recent developments
involving polynomials or nilpotent groups, some based on Theorem 4.56, can
be found in [HK05a, FK06, BLL08, Fra08, Ausd, CFH11]. If one studies poly-
nomials that are ‘different enough’ from one another, then there are also results
for tuples of transformations that do not commute, and hence do not define a
Zd -action: see [CF12, FZK15].

In this polynomial setting, the problem of norm convergence for the associ-
ated functional nonconventional ergodic averages was open for a long time. It
was recently solved by Walsh [Wal12], using an approach similar to [Tao08]
together with some clever new ideas. Zorin-Kranich has generalized Walsh’s
argument further in [ZK].

A more recent trend is to study multiple recurrence along the sequence of
prime numbers or other sequences related to them. Results in this direction
are proved by adapting the ergodic-theoretic machinery and combining it with
estimates from analytic number theory on the distribution of the primes. For
examples, see [BLZ11, FHK13, WZ12].

Pointwise Convergence
Among ergodic theorists, perhaps the best-known open problem in this area
is whether the functional averages of Theorem 4.31 converge pointwise a.e.,
as well as in norm. For general Z-systems, one such sequence of averages
was shown to converge pointwise in [Bou90]. Aside from this, results have
been obtained for some related but ‘smoother’ sequences of averages, such as
‘cubical averages’, or under some extra assumptions on the system: see [Les87,
Ass05, Ass07, Ass10, HSY, DS]. The general case still seems far out of reach.
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Extensions and Satedness
Theorem 4.58 was first proved in [Aus09]. Shortly after that paper appeared,
Host gave an alternative construction in [Hos09] which he called ‘magic’
extensions. The rather more abstract approach via satedness originated
in [Aus15], which seeks to construct extensions that retain some extra alge-
braic structure in the original group action. See also [Aus10c] for an overview
of this story.

Host’s construction in [Hos09] introduces the analogues of the Host–Kra
seminorms for a general Zd -system. These offer a good way to organize the
discussion of extensions and characteristic factors for any of the different
extension methods, although I have not followed that route in the present
course.

Machinery for constructing extensions with improved behaviour has now
found other uses in this area, and has been adapted to other settings, such as
systems defined by several commuting actions of a general amenable group.
See [Aus13, Chu11, CZK, Ausa, DS].

Even after one has ascended to a pleasant extension, the limit joining of
Theorem 4.30 for a Zd -system has not been described completely. As far as I
know, the most detailed results are still those in [Aus10a].

Finitary Approaches to Additive Combinatorics
In addition to the ergodic-theoretic and hypergraph approaches to Szemerédi’s
theorem, Gowers introduced an approach based on Fourier analysis in [Gow98,
Gow01]. This major breakthrough gives by far the best-known bounds for
quantitative versions of Szemerédi’s theorem. It builds on Roth’s proof of his
theorem in [Rot53], which is Fourier-theoretic; but to extend Roth’s ideas it
is necessary to replace traditional Fourier analysis with a new theory, now
sometimes referred to as ‘higher-order Fourier analysis’.

An important part of this new theory is a family of norms on functions on
cyclic groups, now often called ‘Gowers uniformity norms’. These are closely
analogous to the Host–Kra seminorms in ergodic theory.

Gowers uniformity norms and higher-order Fourier analysis have since been
the subject of intense development, at least in the one-dimensional setting of
Szemerédi’s theorem. Most famously, Green and Tao proved in [GT08] that
the set of prime numbers contain arithmetic progressions. This fact is not
covered by Szemerédi’s theorem since the primes have upper Banach density
equal to zero, but a proof can be given by building on some of Gowers’ ideas
and incorporating results about the distribution of the primes. More recently,
Green, Tao and Ziegler have proved an important structural result for the uni-
formity norms which can be viewed as a finitary analog of Theorem 4.56:



252 T. Austin

see the papers [GTZ11, GTZ12] and their predecessors listed there, and also
Szegedy’s alternative approach to this result in [Szea, Szeb]. This result can
be turned into precise asymptotics for the density of arithmetic progressions
appearing in the prime numbers [GT10]. The body of works in additive combi-
natorics that derive other consequences from this kind of machinery is growing
fast, but I will not try to list it further.

Once again, the story in higher dimensions is far less complete. Some
important first steps were taken by Shkredov in [Shk05, Shk06]. Also, the
papers [Ausb, Ausc] study an essentially algebraic problem which arises from
certain questions about Gowers-like uniformity norms in higher dimensions.

Tim Austin
Courant Institute, NYU
251 Mercer St, New York, NY 10012, USA
email: tim@cims.nyu.edu
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5

Diophantine Problems and Homogeneous
Dynamics

Manfred Einsiedler and Tom Ward

Abstract

We will discuss some classical questions that have their origins in the work
of Gauss from 1863, along with some more recent developments due primar-
ily to Duke, Rudnick and Sarnak (Duke Math. J. 71 (1993), no. 1, 143–179),
and to Eskin and McMullen (ibid., 181–209). Rather than aiming for maxi-
mal generality, we will try to expose the striking connection between certain
equidistribution problems in dynamics and some asymptotic counting prob-
lems. In the second part we will discuss the connection between the theory of
Diophantine approximation and homogeneous dynamics.

5.1 Equidistribution and the Gauss Circle Problem

We start1 with a connection between an equidistribution result and a lattice-
point counting problem in the classical setting of the Gauss circle problem.
This problem asks for estimates of the number of integral points in the disk of
radius R with centre at the origin. It is clear that the first estimate is given by
the area of the disk, so the emphasis is on the error term. We write ‖ · ‖ for the
Euclidean norm on R2.

Proposition 5.1 For any R > 0 let

N (R) =
∣∣∣{n ∈ Z2 | ‖n‖ � R}

∣∣∣ . (5.1)

1 In these notes we will make use of several concepts from ergodic theory and dynamical
systems. For most of these a suitable source is [13], and for some of the material on the space
of lattices particularly a suitable source is [14].

258



Diophantine Problems and Homogeneous Dynamics 259

S

Figure 5.1 Containing the error term for N (R) inside an annulus.

Then

N (R) = πR2 + O(R).

The proof of this initial estimate is geometric, and has no connection to
dynamics. The main term πR2 is the area of the two-dimensional ball of
radius R, and the error term is controlled by the area of the annulus between the
largest circle inside the grid of unit squares lying inside the circle of radius R
and the smallest circle containing all the unit squares that intersect the circle
of radius R, as indicated in Figure 5.1.

PROOF. Consider the unit square S = [− 1
2 ,

1
2) × [− 1

2 ,
1
2 ), which is a

fundamental domain for Z2 < R2. Then, as indicated in Figure 5.1, we have

BR− 1√
2
(0) ⊆ S + {n ∈ Z2 | ‖n‖ � R} ⊆ BR+ 1√

2
(0).

By taking areas, we conclude that(
R − 1√

2

)2

π � N (R) �
(

R + 1√
2

)2

π

so N (R) = πR2 + O(R) as required.

It is conjectured that

N (R) = πR2 + Oε

(
R

1
2+ε
)

(5.2)

for all ε > 0. We refer to the paper of Ivić, Krätzel, Kühleitner and Nowak [19]
for a survey of the many partial results towards this conjecture2.

2 The error term N(R)− π R2 was shown to be bounded above by 2
√

2π R by Gauss [16,
pp. 269–291]. Hardy [17] and Landau [23] found a lower bound for the error by showing that
the error is not o(R1/2(log R)1/4), so the power of R must be at least 1

2 . Huxley showed the

estimate O(R
131
208 ) in [18].
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To motivate later arguments, we want to explain a connection between the
error term in N (R) and equidistribution properties of large circles in R2 mod-
ulo Z2. It seems unlikely that this would help in proving the conjecture, but
with some effort such an equidistribution result could give

N (R) = πR2 + O
(

R1−δ
)

for some δ > 0. We will prove only that the error term is o(R).
Let

T1R2 = {(x, v) | x ∈ R2, v ∈ R2, ‖v‖ = 1} = R2 × S1

be the unit tangent bundle of R2, and let

T1T2 = {(x, v) | x ∈ T2, v ∈ R2, ‖v‖ = 1} = T2 × S1

be the unit tangent bundle of T2. Also write

(x, v) (mod Z)2 = (x (mod Z)2, v)

for the canonical map from T1R2 to T1T2 and d(x, v) for the canonical volume
form in T1T2.

Proposition 5.2 Let

γR : [0, 1] −→ T1R2

t �−→ (Re2π it , e2π it )

be the constant speed parametrization of the outward tangent vectors on the
circle of radius R. Then∫ 1

0
f (γR(t)) dt −→

∫
T1T2

f (x, v) d(x, v)

as R → ∞, for every f ∈ C
(
T1T2
)
.

SKETCH PROOF. As t varies in [0, 1], γR(t) = (xR(t), v(t)) goes through all
directions with unit speed, so it is enough to show that the positional part xR(t)
restricted to any interval [α, β] ⊆ [0, 1] equidistributes in T2. Indeed, if this
equidistribution is known then we can split [0, 1] into subintervals

[0, 1
n ] ∪ [ 1

n ,
2
n ] ∪ · · · ∪ [ n−1

n , 1]
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and use the continuity of f ∈ C
(
T1T2
)

together with the equidistribution
of xR(t) to see that for large n = n( f ) and R = R(n),∫ 1

0
f (γ (t)) dt ≈

n−1∑
j=0

∫ ( j+1)/n

j/n
f (xR(t), e2π i j/n) dt

≈ 1

n

n−1∑
j=0

∫
T2

f (x, e2π i j/n) dx

≈
∫

T1T2
f (x, v) d(x, v)

where the suggested errors are o(1) as n → ∞ (and also R → ∞).
Thus it remains to show that for any α, β ∈ [0, 1] with α < β, we have

1

β − α

∫ β

α

f
(
xR(t)
)

dt −→
∫

T2
f (x) dx (5.3)

as R → ∞, for any f ∈ C(T2). Since the linear hull of the space of characters

en(x) = e2π i(n1x1+n2x2)

for n = (n1, n2) ∈ Z2 is dense in C(T2), it is enough to show (5.3) for
characters en with n �= (0, 0) (the case n = (0, 0) is clear).

We now fix n �= (0, 0) and claim that we may assume that(− sin 2π t
cos 2π t

)
is never orthogonal to n for t ∈ [α, β]. To see this, notice that if it fails for
some t0 ∈ [α, β], then we may split the interval, writing

[α, β] = [α, t0] ∪ [t0, β].
Moreover, for a sufficiently small ε > 0 we may replace these with the inter-
vals [α, t0 − ε] and [t0 + ε, β]. Repeating this if necessary one more time
(with t0 replaced by the fractional part of t0 + 1

2 ), we obtain finitely many dis-
joint intervals satisfying the non-orthogonality condition whose union differs
from the original interval [α, β] in a set of small measure. The equidistribution
in (5.3) for each of the small intervals implies that (5.3) also holds for [α, β]
up to a small error. Thus we may assume that

| − n1 sin 2π t + n2 cos 2π t | � κ

for some κ > 0 and all t ∈ [α, β].
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Now split the interval [α, β] into m =  R3/4" subintervals

[α1, α2] ∪ [α2, α3] ∪ · · · ∪ [αm, αm+1]
with α j = α + ( j − 1)β−α

m . By the Taylor expansion we have

xR(t) = R

[(
cos 2πα j

sin 2πα j

)
+ (t − α j )2π

(− sin 2πα j

cos 2πα j

)
+ O
(

1
m2

)]
= R

(
cos 2πα j

sin 2πα j

)
+ R(t − α j )2π

(− sin 2πα j

cos 2πα j

)
+ O
(

1
R1/2

)
for all t ∈ [α j , α j+1] and j = 1, . . . ,m. As n �= 0 is fixed and R → ∞, it is
clear that this gives

∣∣∣∣ 1

β − α

∫ β

α

en(xR(t)) dt

∣∣∣∣ =
∣∣∣∣∣∣ 1

β − α

m∑
j=1

∫ α j+1

α j

en

(
R

(
cos 2πα j

sin 2πα j

)

+R(t − α j )2π

(− sin 2πα j

cos 2πα j

))
dt

∣∣∣∣+ o(1)

� 1

β − α

m∑
j=1

∣∣∣∣∣
∫ α j+1

α j

e4π2iRt (−n1 sin 2πα j+n2 cos 2πα j ) dt

∣∣∣∣∣+ o(1)

� 1

β − α

m∑
j=1

2

4π2 R| − n1 sin 2πα j + n2 cos 2πα j | + o(1).

However, since we assume that |−n1 sin 2πα j +n2 cos 2πα j | � κ we deduce
that

1

β − α

∫ β

α

en(xR(t)) dt −→ 0

as R → ∞, as required.

We are now ready to present a modest improvement to the error term in
Proposition 5.1 using the equidistribution from Proposition 5.2. As before we
write N (R) = ∣∣{n ∈ Z2 | ‖n‖ � R}∣∣.
Theorem 5.3 N (R) = πR2 + o(R).

PROOF. In order to take advantage of the equidistribution result, we need to
find a function defined on the unit tangent bundle with the property that the
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0
x

v

L(x, v)

Figure 5.2 The value h(x, v) is the area of the polygon determined by S and the
half-space with x on its boundary and v as outward normal, minus 1 if and only
if 0 lies in the polygon.

integral along a line segment relates to the difference between an area cal-
culation and a lattice point count. To this end we define a function h on the
fundamental domain

T1S = [− 1
2 ,

1
2 )× [− 1

2 ,
1
2)× S1

using Figure 5.2 (recall that S is the unit square [− 1
2 ,

1
2)× [− 1

2 ,
1
2 )).

In other words, we define h(x, v) to be the difference between an area
calculation and the simple lattice count of whether or not 0 belongs to the
polygon. In anticipation of a later line integral calculation, we also define a
function f : S × S1 → R by

f (x, v) = h(x, v)

length of L(x, v)
,

where L(x, v) is the line segment in S going through x and normal to v, as
illustrated in Figure 5.2.

We claim that f is Riemann integrable. First notice that it is bounded, since
the length of L(x, v) is small if and only if the whole line segment is close to
one of the corners of S, in which case we have

h(x, v) = O
(
(length of L(x, v))2

)
.

Moreover, the set of discontinuities of f is contained in the null set

(∂S)× S1 ∪ {(x, v) | 0 ∈ L(x, v)}.
This implies that f is Riemann integrable. By the symmetries of the con-
struction we have

∫
T1T2 f d(x, v) = 0. Moreover, the equidistribution claim

in Proposition 5.2 extends to the function f by the following argument. For
any ε > 0, there are continuous functions f−, f+ ∈ C(T1T2) with the
properties that f− � f � f+ and∫

T1T2
( f+ − f−) d(x, v) � ε.
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Since
∫

T1T2 f d(x, v) = 0 we also get

−ε �
∫

T1T2
f− d(x, v) � 0 �

∫
T1T2

f+ d(x, v) � ε.

Applying Proposition 5.2 to the continuous functions f− and f+ shows that
if R is large enough then

− 2ε �
∫

T1T2
f− d(x, v)− ε �

∫ 1

0
f−(γR(t)) dt �

∫ 1

0
f (γR(t)) dt

�
∫ 1

0
f+(γR(t)) dt �

∫
T1T2

f+ d(x, v)+ ε � 2ε, (5.4)

which shows that Proposition 5.2 also holds for f . Nonetheless, it will be con-
venient to continue to work with the continuous functions f− and f+ instead
of f a little longer.

We now split the path γR into segments by splitting [0, 1] into a disjoint
union of adjacent intervals Ik for k = 1, . . . , K in such a way that for each k
there is a unique nk ∈ Z2 with Re2π it − nk ∈ S for t ∈ Ik . We also require, as
we may, that nk �= n� for k �= �, as illustrated in Figure 5.3.

Now define a new path γ R that is affine on each of the intervals Ik and
coincides with the path γR at the boundaries ∂ Ik for 1 � k � K . In other
words, the path γ R is the piecewise linear path forming a straight line from
one intersection on the circle of radius R with the grid ∂S +Z2 to the next one
(shown by the dots in Figure 5.3). Since γR and γ R are uniformly O(R−1)-
close, we may use (5.4) for large R to see that

−3ε �
∫ 1

0
f−(γ R(t)) dt �

∫ 1

0
f (γ R(t)) dt �

∫ 1

0
f+(γ R(t)) dt � 3ε,

in other words we have shown that∫ 1

0
f (γ R(t)) dt = o(1)

as R → ∞.

Figure 5.3 The dots indicate the boundaries of the intervals Ik .
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Pk

Lk S + nk

Figure 5.4 The polygon Pk .

Recalling the definition of f , the integral over one subinterval is given by∫
Ik

f (γ R(t)) dt = (area of Pk − 1Pk (nk))
|Ik |

length of Lk
,

where Pk is the polygon inside S + nk determined by a portion of ∂S + nk

and the line segment Lk = γ R(Ik), and |Ik | is the length of the interval Ik (see
Figure 5.4).

By construction, the length |Ik | of Ik is φk
2π where φk is the angle of the arc

on the circle of radius R corresponding to Ik , so φk = O(R−1). On the other
hand,

length of Lk = 2R sin
φk

2
= 2R

(
φk

2
+ O
(
φ3

k

))
.

Therefore∫ 1

0
f
(
γ R(t)
)

dt =
K∑

k=1

(
area of Pk − 1Pk (nk)

) |Ik |
length of Lk

= 1

2πR

(
K∑

k=1

(
area of Pk − 1Pk (nk)

)+ K∑
k=1

O
(
φ3

k

))

= 1

2πR

(
area of polygon enclosed by γ R

−no. of lattice points inside)+ O(R−3).

To summarize, we have shown that the difference between the area enclosed
by γ R and the number of lattice points within this polygon is o(R).

We now need to analyse how the area and lattice point count for the poly-
gon defined above differ from the same quantities for the circle. The area of
the polygon enclosed by γ R differs from the area of the circle by O(1). We
claim that the number of lattice points inside the circle but outside the polygon
is o(R). These claims together prove the theorem.
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In order to prove the claim, notice that any lattice point n inside the circle
but outside the polygon satisfies

0 � R − ‖n‖ = O(R−1).

Fix δ > 0 and let g(x, v) = 1B2δ (0)(x) be the characteristic function of
the 2δ-ball around the identity 0 ∈ T2 (but considered as a function on T1T2).
If now ‖n‖ lies in [R − δ, R], then there is a corresponding subinterval of
length � δ

R such that g(γR(t)) = 1 for all t in that interval. Therefore

NR,δ =
∣∣∣{n ∈ Z2 | R − δ � ‖n‖ � R

}∣∣∣� R

δ

∫ 1

0
g(γR(t)) dt.

By construction, g is Riemann integrable and so, for sufficiently large R,

NR,δ � 2R

δ

∫
T1T2

g(x, v) d(x, v) � R

δ
δ2 = Rδ.

This proves the claim, and hence the theorem.

Remark Similar methods may be used to prove various extensions and
refinements of these results, including the following.

1. For d � 2 let N∗(R) = |{n ∈ Zd | n is primitive and ‖n‖ � R}| (an integer
vector is said to be primitive if the greatest common divisor of its entries
is 1). Then N∗(R) = (ζ(d)−1Vd + o(1))R2 as R → ∞. Here Vd is the
volume of the unit ball in Rd and ζ(s) = ∑∞

n=1 n−s denotes the Riemann
zeta function.

2. Proposition 5.1 may be improved to give an effective statement of the form∣∣∣∣∣
∫ 1

0
f
(
γR(t) (mod Z)2

)
dt −
∫

T1T2
f (x, v) d(x, v)

∣∣∣∣∣� R−δ1 S( f ),

for some fixed δ1 > 0, where S( f ) denotes some Sobolev norm, and f is a
function in C∞ (T1T2

)
.

3. Inserting this into the proof of Theorem 5.3 gives

N (R) = πR2 + O
(

R1−δ2
)

for some δ2 > 0.
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5.2 Counting Points in SL2(Z) · i ⊆ H

The Upper Half-Plane Model of the Hyperbolic Plane

In order to formulate the next counting problem we briefly recall the basic
properties of the hyperbolic plane, starting with the upper half-plane

H = {x + iy ∈ C | y > 0}
and its tangent bundle TH = H × C. If φ : [0, 1] → H is differentiable
at t ∈ [0, 1] with φ(t) = z, then the derivative of φ at t is defined to be

Dφ(t) = (φ(t), φ′(t)) ∈ TzH,

where TzH = {z} × C is the tangent space at z, which may be viewed as a
complex vector space simply by ignoring the first component. This structure
allows us to define the hyperbolic Riemannian metric using the collection of
inner products

〈v,w〉z = 1

y2 (v · w)

for z = x + iy ∈ H and v,w ∈ TzH, where (v · w) is the inner product in C

under the identification of C with R2 as real vector spaces. If

φ : [0, 1] → H

is a path (that is, a continuous piecewise differentiable curve), then its length is

L(φ) =
∫ 1

0
‖Dφ(t)‖φ(t) dt

where ‖Dφ(t)‖φ(t) denotes the length of the tangent vector

Dφ(t) = (φ(t), φ′(t)) ∈ Tφ(t)H

with respect to the norm derived from 〈·, ·〉φ(t). In other words the speed of
the path at time t is ‖Dφ(t)‖φ(t) and we obtain the length of the curve by
integration. The hyperbolic metric is

d(z0, z1) = inf
φ

L(φ),

where the infimum is taken over all continuous piecewise differentiable
curves φ with φ(0) = z0 and φ(1) = z1. The real line R ⊆ C together with a
single point ∞ is the boundary ∂H of H.

The geometry of the upper half-plane model is connected to dynamics via
the natural action of SL2(R). Recall that an action of a group G on a set X is
said to be transitive if for any x1, x2 ∈ X there is a g ∈ G with g.x1 = x2,
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and is simply transitive if there is a unique g ∈ G with g.x1 = x2. The
group SL2(R) acts on H by the Möbius transformations

g =
(

a b
c d

)
: z �→ az + b

cz + d
. (5.5)

The matrix −I2 acts trivially on H, so (5.5) actually defines an action of the
projective special linear group

PSL2(R) = SL2(R)/{±I2},

but we will write

(
a b
c d

)
for the element ±

(
a b
c d

)
of PSL2(R).

We assemble the main properties arising from this action (see [13, Ch. 9] for
the details).

1. The action of PSL2(R) on H in (5.5) is isometric, meaning that

d (g(z0), g(z1)) = d(z0, z1)

for any z0, z1 ∈ H and g ∈ PSL2(R), and is transitive.
2. The action of PSL2(R) on TH defined by the derivative D g of the action

of g ∈ PSL2(R) on H preserves the Riemannian metric. This also implies
that the volume measure defined by the formula

vol(B) =
∫

B

dx dy

y2

is preserved by the action of PSL2(R) (which can also be checked rigor-
ously by a direct calculation without knowing what a Riemannian metric
is).

3. The stabilizer

StabPSL2(R)(i) = {g ∈ PSL2(R) | g(i) = i}
of i ∈ H is the projective special orthogonal group

PSO(2) = SO(2)/{±I2}
where

SO(2) =
{(

cos θ − sin θ
sin θ cos θ

)
| θ ∈ R

}
is the compact group of rotations of the plane.

4. In particular, the action gives an identification

H ∼= PSL2(R)/PSO(2),

and under this identification the coset g PSO(2) corresponds to g(i).
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Write T1H = {(z, v) ∈ TH | ‖v‖z = 1} for the unit tangent bundle of H

consisting of all unit vectors v attached to all possible points z ∈ H. Since
the action of D g preserves the length of tangent vectors, the restriction of D g
defines an action of PSL2(R) on T1H (naturally extending the action on H

itself).

5. The action of PSL2(R) on T1H is simply transitive, giving the identification

T1H ∼= PSL2(R) (5.6)

by choosing an arbitrary reference vector (z0, v0) in T1H correspond-
ing to I2 ∈ PSL2(R); the identification is then given by sending g
to D g(z0, v0). We will make the convenient choice z0 = i and v0 = i.

The isometric action of elements of PSL2(R) can be used to fold H into a
smaller surface (whose unit tangent bundle can be obtained by folding T1H).
We note that this is similar to how one uses the isometric translations on Rd

by vectors in Zd to obtain the quotient space Td = Rd/Zd . The prototypi-
cal example of a discrete subgroup of PSL2(R) that we can use in this way
is PSL2(Z). The quotient space PSL2(Z)\H actually has finite volume (see
Figure 5.5, where the identification of z ∈ H with −1/z and with 1 + z are
used), and is called the modular surface. A discrete subgroup � < PSL2(R)

is called a lattice if �\H (or equivalently �\ PSL2(R)) has finite volume, once
again we refer to [13] for the details. Note that after taking the quotient by the
lattice on the left there is no natural action on the left, but there is still a natural
action of PSL2(R) on �\ PSL2(R) on the right. Here the diagonal subgroup
has the natural interpretation as the geodesic flow on the unit tangent bundle
of the surface �\H.

i
−1

2,

√
3
2

1
2,

√
3
2

Figure 5.5 A fundamental domain for PSL2(R)\H obtained by using the identifi-
cations z �→ −1/z and z �→ 1 + z.
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The above provides the first example of homogeneous dynamics, that is the
study of actions of subgroups of a Lie group G on quotients �\G, where �

is a lattice subgroup (a discrete subgroup whose associated quotient space has
finite volume with respect to the measure inherited from the Haar measure
on G). We write g.x = xg−1 for the action of an element g ∈ G on x = �h in
�\G. We will also make use of several results from homogeneous dynamics.
The first of these will be a rather general mixing3 principle: for any lattice � in
SL2(R) the action of SL2(R) on �\ SL2(R) is mixing (and so, in particular, the
action of any infinite subgroup will also be mixing). We refer to [13, Sec. 11.4]
for the proof.

5.2.1 The Counting Problem

For � = PSL2(Z) (or any other lattice in PSL2(R)), we define

N (R) = |{γ (i) | d(γ (i), i) < R, γ ∈ �}| .

Theorem 5.4 (Selberg)

N (R) = vol
(
BH

R (i)
)

vol (�\H) |Stab�(i)| + o
(

vol
(

BH

R (i)
))

as R → ∞.

Selberg [29] used spectral methods to prove this4, and also obtained more
information about the error term. We present an approach following Eskin and
McMullen [15] that uses the ergodic-theoretic property of mixing, following
the approach of Duke, Rudnick and Sarnak [12]. In Section 5.1, the main
term for the lattice point counting problem came from the simple geometric
approach of tiling a ball of large radius with translates of a chosen fundamen-
tal domain for Z2 in R2, and this might be expected to give a heuristic rationale
for the main term once again. However in the new setting this thinking cannot
carry us further for two reasons connected to the geometry of the space.

1. We will see shortly that vol
(
BH

R (i)
) ∼ πeR , so the volume of an

annulus BH

R+c(i)�BH

R (i) is approximately πeR(ec − 1), and is therefore
comparable in size to the volume of the ball. In other words, the error

3 The action of G is called mixing if for any Borel measurable sets A, B ⊆ X we
have m(A ∩ gn.B) → m(A)m(B) as gn → ∞ in G, where m is the measure inherited from
Haar measure on G and gn → ∞ means that for any compact subset K ⊆ � there is
some N = N (K ) such that gn /∈ K for n � N .

4 For the history and primary references of these developments we refer to the paper of Phillips
and Rudnick [27].
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term produced by the annulus has the same order of magnitude as the main
term. In Section 5.1 the analogous volume grew quadratically, giving the
corresponding annulus linear growth.

2. The tiles that arise in the case � = SL2(R) are unbounded with respect to
the metric, so in order to use an annulus to capture all of them we should
really use c = ∞ (or at least some large value to capture most of the
translates of the fundamental domain).

These phenomena – manifestations of the hyperbolic geometry of the
space SL2(Z)\ SL2(R) – make the lattice point counting problem consider-
ably more subtle. Nonetheless, the volume of the ball does give us a starting
point to discuss the problem.

Lemma 5.5 vol
(
BH

R (i)
) = 2π (cosh(R)− 1) for all R > 0.

An immediate consequence is that vol
(
BH

R (i)
)

is asymptotic to πeR as R
goes to infinity, as claimed above.

OUTLINE PROOF OF LEMMA 5.5. The volume calculation may be carried
out using the disc model D = {w ∈ C | |w| < 1} of the hyperbolic plane,
which carries the Riemannian metric

4
dx2 + dy2

(1 − r2)2

at the point w = x + iy, where r2 = x2 + y2. A calculation shows that the
maps

D - w �−→ z(w) = i
1 +w

1 − w
∈ H;

H - z �−→ w(z) = z − i

z + i
∈ D

are holomorphic and are inverses to each other. Moreover,

5 (z(w)) = 1 − |w|2
|1 −w|2

and
dz

dw
= 2i

(1 − w)2 .

From this, one can check that the hyperbolic Riemannian metric

dx2 + dy2

y2
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is mapped to

4
dx2 + dy2

(1 − r2)2 .

So it is sufficient to take w = 0 and calculate the volume of the ball of radius R
around w, which by symmetry is a disc of some radius ρ around w in the
Euclidean metric as well. The Euclidean radius ρ may be calculated using the
relation

R = 2
∫ ρ

0

dr

1 − r2
= ln

(
1 + r

1 − r

) ∣∣∣ρ
0
= ln

(
1 + ρ

1 − ρ

)
,

or equivalently

ρ = eR − 1

eR + 1
.

Thus the volume of the hyperbolic ball of radius R around w is given by

vol
(

BH

R (i)
)
= 4
∫ ρ

0

∫ 2π

0

r dr dφ

(1 − r2)2

= 4π
∫ ρ2

0

du

(1 − u)2

= 4π
1

1 − u

∣∣∣ρ2

0

= 4π

(
1

1 − ρ2
− 1

)
= 2π

(
2(eR + 1)2

(eR + 1)2 − (eR − 1)2 − 2

)
= 2π (cosh(R)− 1) .

We will also need the following equidistribution result concerning large
circles as illustrated in Figure 5.6 (which will be seen as a consequence of mix-
ing). Below we will work with PSL2(R) but will still use the matrix notation
for the elements of PSL2(R). Thus, for example, we will write

kφ =
(

cos φ − sinφ
sinφ cosφ

)
∈ K = SO(2)/{±1} = {kφ | φ ∈ [0, π)}.

Theorem 5.6 (Equidistribution of Large Circles) For any point z in H, the
circles obtained by following geodesics from z in all directions for time t
equidistribute in PSL2(Z)\T1H. Indeed, for any finite volume quotient

X = �\PSL2(R)
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Figure 5.6 Equidistribution of large circles in the modular surface becomes vis-
ible after the circle is moved into the fundamental domain using the isometries
in �.

we have5

1

π

∫ π

0
f
(
gkφ.x) dφ −→ 1

m X (X)

∫
X

f dm X (5.7)

as g → ∞ in PSL2(R).

PROOF OF THEOREM 5.6. Recall that any element g can be written

g = k1ak2

with k1, k2 ∈ K , a =
(
λ

λ−1

)
, and λ > 0. Here k2 simply represents a

rotation inside the integral on the left-hand side of (5.7), while the effect of k1

may be thought of as replacing the function f by the function f k1 , defined
by f k1(y) = f (k1.y). Along a sequence gn = k(n)1 a(n)k(n)2 → ∞, the choices

we make for k(n)1 lie in the compact group K , so we may choose a converg-

ing subsequence. So assume that k(n)1 converges to k0 say. Uniform continuity

of f ∈ Cc(X) then shows that f k(n)1 converges uniformly to f k0 . This reduces
the problem to the case of a sequence

gn = an =
(
λn

λ−1
n

)
with λn → ∞ as n → ∞ (also since the case λn → 0 as n → ∞ may be dealt
with similarly using the other unipotent). Given f ∈ Cc(X) and any ε > 0
there is some δ0 > 0 with

5 We will not normalize the Haar measure on �\ PSL2(R) to be a probability measure, and
instead will assume a canonical compatibility of the various Haar measures involved.
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d(e, h) < δ0 =⇒ | f (y)− f (h.y)| < ε

for all y ∈ X . Write

B =
{(

λ

s λ−1

)}
and let

B B
δ = {h ∈ B | d(h, I ) < δ},

(where the metric is inherited from the metric on H) so that

an B B
δ a−1

n ⊆ B B
δ0

for δ sufficiently small and all n � 1. Thus∣∣∣ f (ankφ.x)− f (anha−1
n ankφ.x)

∣∣∣ < ε,

and so∣∣∣∣∣ 1π
∫ π

0
f (ankφ.x) dφ − 1

m B
(
B B
δ

) ∫
B B
δ

1

π

∫ π

0
f (anhkφ.x) dφ dm B(h)

∣∣∣∣∣<ε.

Now notice that B B
δ K ⊆ BK is a neighbourhood of the identity in the

group PSL2(R), and the Haar measure is locally the product of the two Haar
measures, so the second integral in the above estimate equals

1

mG
(
B B
δ K
) ∫

B B
δ K

f (an g.x) dmG(g) = 1

m X
(
B B
δ K.x)

〈
f,1an B B

δ K.x

〉
,

which converges to
1

m X (X)

∫
f dm X

by the mixing property as an → ∞.

PROOF OF THEOREM 5.4. We define for every g ∈ G the counting function
for the modified counting problem by

FR(g) = 1

vol(BH

R )

∣∣∣{gγ (i) | γ ∈ �} ∩ BH

R (i)
∣∣∣ ,

where we write vol(BH

R ) for the volume of the hyperbolic R-ball around i (or
any other point). It is clear that FR(g) = FR(gγ ) for any γ ∈ � so that we can
think of FR(g�) = FR(g) as a function of6

x = g� ∈ X = G/�.

6 This shows that in the connection of equidistribution problems to counting problems one is
automatically led to the quotient X = G/� (where of course the same theorems hold as
on �\G).
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We want to show the convergence

FR(�) −→ 1

vol (�\H) |Stab�(i)| = c,

as R → ∞. The more general definition allows us to first prove the weaker
claim that

FR(x) dm X −→ c dm X

in the weak* topology as R → ∞. This will be deduced from Theorem 5.6
and a technique called unfolding, which means using different ways to express
the integrals on the spaces shown below:

G

X = G/Γ G/SO(2) ∼= H.

We use the hyperbolic area measure on H and the isomorphism

B =
{(

1 x
1

)(√
y

1√
y

)
| x ∈ R, y > 0

}
∼= H = {x + yi | x ∈ R, y > 0}

to normalize the left Haar measure on B, normalize the Haar measure on

K = SO(2)/{±I }
to satisfy mK (K ) = π , and use the Iwasawa decomposition G = BK to
normalize the Haar measure on G (by declaring the proportionality constant to
be equal to one).

For α ∈ Cc(X) the claimed weak* convergence involves the integral7∫
X

FRα dm X = 1

vol(BH

R )

∫
G/�

∑
γ∈�/ Stab�(i)

1BH

R (i)
(gγ (i))α(g�) dm X

= 1

vol(BH

R )

1

|Stab�(i)|
∫

G/�

∑
γ∈�

1BH

R (i)
(gγ (i))α(g�) dm X

= 1

vol(BH

R )

1

|Stab�(i)|
∫

G
1BH

R (i)
(g(i))α(g�) dmG

= 1

vol(BH

R )

1

|Stab�(i)|
∫

B
1BH

R (i)
(b(i))
∫

K
α(bk�) dmK (k) dm B(b)

= π

|Stab�(i)|
1

vol(BH

R )

∫
BH

R (i)

1

π

∫
K
α(bk�) dm K (k) dmH(b.i).

7 The sum over γ ∈ �/Stab�(i) is defined so that every coset contributes precisely one
summand (by using an arbitrary representative of the coset).
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However, by Theorem 5.6, the last expression is an integral version of a Cesàro
average of a convergent sequence. It follows that∫

K
FRα dm X −→ π

m X (X)|Stab�(i)|
∫

X
α dm X

as R → ∞. By our normalizations of the Haar measures we also have

m X (X) = vol (�\H)mK (K ) = vol (�\H) π.

Hence we have shown that an averaged version of our orbit-point counting
asymptotic exists. To arrive at the actual count from the averaged version we
will localize the function α near � ∈ X .

Given ε > 0 there exists some δ > 0 such that

vol(BH

R−δ)

vol(BH

R )
> 1 − ε

for large enough R (since by Lemma 5.5 the former quantity is asymp-
totic to e−δ). Given this δ there exists some ρ > 0 such that g ∈ BG

ρ

implies dH(g(i), i) < δ.
Suppose now that α ∈ Cc(�\G) has

∫
α dm X = 1, α � 0, and

supp(α) ⊆ BG
ρ �.

Then for x ∈ supp(α) we have

FR−δ(x) = 1

vol(BH

R−δ)

∣∣∣{gγ (i) | γ ∈ �} ∩ BH

R−δ(i)
∣∣∣

= 1

vol(BH

R−δ)

∣∣∣∣∣∣∣∣{γ (i) | γ ∈ �} ∩ g−1(BH

R−δ(i))︸ ︷︷ ︸
⊆BH

R (i)

∣∣∣∣∣∣∣∣
�

vol(BH

R )

vol(BH

R−δ)

1

vol(BH

R )

∣∣∣�(i) ∩ BH

R

∣∣∣ ,
where we used the fact that dH(z, i) < R − δ and g ∈ BG

ρ implies

dH(g
−1(z), i) � dH(g

−1(z), g−1(i))+ dH(g
−1(i), i) < R.

We multiply by α and integrate to get

vol(BH

R−δ)

vol(BH

R )

∫
FR−δ(x)α(x) dm X︸ ︷︷ ︸
−→ 1

vol(�\H)Stab�(i)

� N (R)

vol(BH

R )
.
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This gives

lim inf
R→∞

N (R)

vol(BH

R )
� (1 − ε)

1

vol(�\H)|Stab�(i)| .

The reverse inequality works in the same way. Choosing δ > 0, ρ > 0,
and α ∈ Cc(X) according to some ε > 0 we get

FR+δ(x) = 1

vol(BH

R+δ)

∣∣∣∣∣∣∣∣�(i) ∩ g−1(BH

R+δ(i))︸ ︷︷ ︸
⊃BH

R (i)

∣∣∣∣∣∣∣∣
� vol(BH

R )

vol(BR+δ)

N (R)

vol(BH

R )

whenever x = g� with g ∈ BG
ρ . As before, this leads to the bound

lim sup
R→∞

N (R)

vol(BH

R )
� (1 + ε)

1

vol(�\H)|Stab�(i)| .

These kinds of methods have been developed much further by Eskin and
McMullen [15] (building on work of Duke, Rudnick and Sarnak [12], who
were using a different argument to obtain the equidistribution) using mixing to
establish asymptotic counting results in a more general context. This relates a
counting problem for points in �-orbits on V = G/H to the equidistribution
problem for ‘translated’ H -orbits of the form

gH� ⊆ X = G/�.

In many cases (for example, in the context of affine symmetric spaces), these
methods can be used to count integer points on varieties asymptotically. If G
and H consist of the R-points of algebraic groups defined over Q, then the
variety V = G/H can be identified with a variety defined over Q, and V (Z) is
non-empty. In this case V (Z) is a disjoint union

V (Z) =
⊔

i

G(Z)vi

of different � = G(Z)-orbits. This is often a finite union, in which case the
asymptotic for |V (Z) ∩ Bt | can be obtained by gluing together the results for
the individual counts |G(Z)vi ∩ Bt |. We refer to the original papers for these
results.
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5.3 Dirichlet’s Theorem and Dani’s Correspondence

We start with a classical result on simultaneous Diophantine approximation.
In stating this we will write p

q for the vector (
p j
q ) j if p = (p j ) j is a vector

and q ∈ N.

Theorem 5.7 (Dirichlet’s Theorem [9]) For any v ∈ Rd and any integer Q
there exist an integer q with 1 � q � Qd, and an integer vector p ∈ Zd with∥∥∥v − p

q

∥∥∥∞ � 1
q Q .

THE CLASSICAL PROOF OF THEOREM 5.7. Consider the (Qd + 1) points

0, v, . . . , Qdv (mod Zd) (5.8)

as elements of Td ∼= [0, 1)d . Now partition [0, 1) into the Q intervals

[0, 1
Q ), [ 1

Q , 2
Q ), . . . , [ Q−1

Q , 1),

and correspondingly divide [0, 1)d into Qd cubes with sides chosen from the
partition of each of the d axes. By the Pigeonhole principle8 there exist two
integers k, � with 0 � k < � � Qd such that the points kv and �v considered
modulo Zd from (5.8) belong to the same subcube. Letting q = �− k gives

‖qv − p‖∞ � 1
Q

for some p ∈ Zd as required.

We will describe the connection between the theory of Diophantine approx-
imation and homogeneous dynamics by studying the following refined prop-
erty.

Definition 5.8 Fix λ ∈ (0, 1]. A vector v ∈ Rd is called λ-Dirichlet
improvable if for every large enough Q there exists an integer q satisfying

1 � q � λQd and
∥∥∥v − p

q

∥∥∥∞ � λ
1

q Q
(5.9)

for some p ∈ Zd . A vector is simply called Dirichlet-improvable if it is λ-
improvable for some λ < 1.

8 Dirichlet [10] called it the Schubfachprinzip (drawer or shelf principle), and it is sometimes
called Dirichlet’s principle because he used it in this setting.
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In order to describe the correspondence between this notion and homoge-
neous dynamics, we write9 �v = uvZd+1 where

uv =
(

1
v Id

)
,

and

gQ =
(

Q−d

Q Id

)
.

Proposition 5.9 (Dani Correspondence) Let v ∈ Rd , Q > 1, and λ be given
with 0 < λ � 1. Then there exists an integer q satisfying (5.9) if and only if the
lattice in Rd+1 corresponding to gQ�v intersects [−λ, λ]d+1 non-trivially.

PROOF. Suppose that the integer q satisfies (5.9) for some p ∈ Zd . Then the
vector (

q
qv − p

)
=
(

1 0
v 1

)(
q
−p

)
∈ �v

belongs to the lattice corresponding to v, and

gQ

(
q

qv − p

)
∈ gQ�v

satisfies∥∥∥∥gQ

(
q

qv − p

)∥∥∥∥
∞

= max
(
|q Q−d |, Q‖qv − p‖∞

)
� λ. (5.10)

Now suppose on the other hand that there is a non-trivial vector(
q

qv − p

)
∈ �v

satisfying (5.10). We claim that q �= 0. Assuming this for the moment, we may
also assume that q is positive10, and then (5.10) is equivalent to (5.9).

To prove the claim, suppose that q = 0. However, in this case (5.10)
becomes ∥∥∥∥gQ

(
0
p

)∥∥∥∥
∞

= Q‖p‖ � λ � 1,

9 Most of the research papers concerning the interaction between homogeneous dynamics and
Diophantine approximation use the description X = G/� instead of X = �\G, so we will
adhere to this tradition here.

10 For otherwise we may replace

(
q

qv − p

)
by

( −q
−qv + p

)
.
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which forces p = 0 since Q > 1. This contradicts our assumption that(
q

qv − p

)
is non-trivial, which proves the claim and completes the proof.

This correspondence allows Dirichlet’s theorem to be proved using homoge-
neous dynamics. The most important locally homogeneous space for ergodic
theory and its connections to number theory is the space

Xd = SLd(R)/SLd(Z),

which may be identified with the space of unimodular lattices in Rd . Just as in
the case of the space X2 from the last section, the space Xd has finite volume
which enables us to use ergodic theoretic and dynamical properties of actions
of subgroups of SLd(R) on it. We refer to [14] for more details about the
properties of this space and dynamical properties of various subgroups acting
on it.

PROOF OF THEOREM 5.7 USING DYNAMICS. We set λ = 1 in Proposi-
tion 5.9. Then the theorem follows if we recall that any unimodular lattice �

in Rd+1 has to intersect [−1, 1]d+1. In fact this is the content of Minkowski’s
theorem on convex bodies (and follows quite easily from the property that the
volume of [−1

2 − ε, 1
2 + ε]d is larger than one and so must contain points that

are equivalent modulo �).

Using ergodicity of the dynamics of

at =
(

e−dt

et Id

)
on Xd+1 = SLd+1(R)/ SLd+1(Z) we can prove the following, recovering a
result of Davenport and Schmidt [8].

Corollary 5.10 Almost no vector v ∈ Rd is Dirichlet-improvable.

PROOF. Let λ ∈ (0, 1) and define the open neighbourhood

Oλ = {� ∈ Xd+1 | � ∩ [−λ, λ]d+1 = {0}}
of Zd+1. Furthermore, let O ′

λ ⊆ Oλ be a non-trivial open subset with the

property that O ′
λ ⊆ Oλ, so that in particular the Hausdorff distance

ε = d(O ′
λ,Xd+1�Oλ)

from O ′
λ to the complement of Oλ is positive.
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As a consequence of ergodicity we obtain that almost every v ∈ Rd has the
property that the at -orbit for t � 0 of �v = uvZd+1 is dense. This should be
surprising at first, since the space Xd+1 is (d2 + 2d)-dimensional and ergod-
icity concerns the uniform measure on this space, while v varies over only
the d-dimensional plane. We sketch the argument: given some v0, any lattice �
near �v0 can be written in the form

� =
(

a u
0 B

)
�v

for some a near 1, some matrix B ∈ GLd(R) near the identity, some row
vector u ∈ Rd , and some v near v0 (as these elements of the various spaces
just give a smooth coordinate system of a neighbourhood of the identity
in SLd+1(R) by the implicit function theorem). It is now easy to check that

the vector u in the matrix D =
(

a u
0 B

)
gets contracted by conjugation by at

as t → ∞. For the dynamics on Xd+1 this implies that the orbit of � = D�v

is dense if and only if the orbit of �′
v =
(

a 0
0 B

)
�v is dense. Next we

notice that the remaining matrix D′ =
(

a 0
0 B

)
commutes with at . Using

this we obtain that the orbit of D′�v is simply the orbit of �v multiplied
by D′ on the left – so once more either both orbits are dense or neither of
them is. Therefore the set of dense orbits is locally a product of some sub-
set of Rd (corresponding to the parameter v) and the remaining directions,
and the almost everywhere statement on Xd+1 really just becomes an almost
everywhere statement on Rd .

Now let t � 0 be very large and chosen so that at.�v ∈ O ′
λ. We set Q =  et"

and deduce that

gQa−1
t =
(

Qd e−td

Q−1et Id

)

is very close to Id+1, in particular d(gQa−1
t , Id+1) < ε for sufficiently large t .

From this we conclude that

gQ�v = gQa−1
t at�v ∈ Oλ.

By Proposition 5.9, there is no integer q satisfying (5.9) for Q. It follows that v
is not λ-Dirichlet improvable.

Applying this to λ = 1 − 1
n gives the corollary.
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5.3.1 Nondivergence of Polynomial Trajectories and Diophantine
Approximation

A general theme in the theory of Diophantine approximation is to try and show
inheritance of Diophantine properties on Rd to submanifolds, or even more
generally to fractals. We will not discuss the general framework concerning
the inheritance of Diophantine properties to ‘sufficiently curved smooth mani-
folds’ but will explore some key developments by using a concrete polynomial
curve.

As mentioned before, Davenport and Schmidt [8] showed that almost every
point of Rd is not Dirichlet-improvable and later showed in [7] that almost
every point on the curve (t, t2) is not (1/4)-improvable. Baker [1] extended
this to the same statement for almost every point on a sufficiently smooth curve
in R2, and Dodson, Rynne, and Vickers [11] to almost every point on a suffi-
ciently smooth curved manifold. Bugeaud [2] extended the result to the specific
curve (t, t2, . . . , td). Kleinbock and Weiss [21] used the correspondence intro-
duced by Dani [5], [4] and the machinery of Kleinbock and Margulis [22] to
formulate some of these questions in homogeneous dynamics, and the argu-
ment used for the proof of Corollary 5.12 is the argument used in [21]. We refer
to a paper of Shah [30] for more details on the background and for another
direction of similar results for curves that do not lie in translates of proper
subspaces.

One of the driving forces for using dynamical theorems to prove results
concerning Diophantine approximations is the following quantitative non-
divergence result. Identifying an element � = g SLd(Z) ∈ Xd with the
corresponding unimodular lattice gZd in Rd , we define

Xd(ε) = {� ∈ Xd | � ∩ Bε(0) = {0}},
and note that these are compact sets – this statement is usually referred to as
Mahler’s compactness criterion. Given a discrete subgroup � < Rd (which
may be of lower rank than d) we write covol(�) for the volume of the
quotient R�/�, where R� is the R-linear hull of �.

Theorem 5.11 (Quantitative Non-Divergence by Margulis, Dani and Klein-
bock11) Suppose that p : R → SLd(R) is a polynomial and T > 0 is such
that

sup
t∈[0,T ]

covol(V , t) � ηdim V (5.11)

11 This result has a long history; see Margulis [24], [25]; Dani [3], [6]; Kleinbock and
Margulis [22]; Kleinbock [20]. For simplicity we present it here only for polynomial maps,
but the actual result is more general.
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(where covol(V , t) = covol
(
(V ∩ Zd)p(t)

)
) for some η ∈ (0, 1] and all

rational subspaces V ⊆ Rd . Then, for any choice of ε ∈ (0, η],
1

T
|{t ∈ [0, T ] | �p(t) /∈ Xd(ε)}| �d,D

(
ε

η

)1/D

, (5.12)

where D depends only on the degree of the polynomial p.

Corollary 5.12 For d � 2 there exists some λ0 ∈ (0, 1) such that almost
no t ∈ R has the property that

v(t) =

⎛⎜⎜⎜⎝
t
t2

...

td

⎞⎟⎟⎟⎠ ∈ Rd

is λ0-Dirichlet improvable.

For the proof we will need the following geometric input regarding the
dynamics of gQ on Rd+1.

Lemma 5.13 Let W ⊆ Rd+1 be a k-dimensional subspace, and let

c = d(e1,W ) = inf
w∈W

‖e1 − w‖ � 0.

If w1, . . . , wk ∈ W is an orthonormal basis of W , then

‖gQw1 ∧ · · · ∧ gQwk‖ � cQk .

PROOF. Let

wi = εi e1 +w′
i

with εi ∈ R and w′
i ∈ 〈e2, . . . , ed〉 for i = 1, . . . , d. Clearly

w1 ∧ · · · ∧ wk = w′
1 ∧ · · · ∧w′

k +
k∑

i=1

εi w
′
1 ∧ · · · ∧ e1 ∧ · · · ∧w′

k︸ ︷︷ ︸
with e1 in place of w′

i

. (5.13)

We calculate the norm using the fact that e1 is normal to w′
1, . . . , w

′
k , the

identity (5.13), and the fact that ‖w1 ∧ · · · ∧wk‖ = 1 to obtain

‖w′
1 ∧ · · · ∧w′

k‖ = ‖e1 ∧ w′
1 ∧ · · · ∧w′

k‖
= ‖e1 ∧ w1 ∧ · · · ∧wk‖ = c · 1
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since the distance from e1 to W is c. We now apply the map gQ to get

‖gQw1 ∧ · · · ∧ gQwk‖2 = ‖gQw
′
1 ∧ · · · ∧ gQw

′
k‖2

+
∥∥∥ k∑

i=1

εi gQw
′
1 ∧ · · · gQe1 ∧ · · · gQw

′
k

∥∥∥2
� (Qkc)2,

where we have used the fact that

gQw
′
1 ∧ · · · ∧ gQw

′
k = Qkw′

1 ∧ · · · ∧w′
k

is orthogonal to the other sum.

PROOF OF COROLLARY 5.12. We will use the notation Oε from the proof
of Corollary 5.10. We set η = 1 and wish to apply Theorem 5.11 on Xd+1. We
will define the precise polynomial for the application of Theorem 5.11, but for
now let us agree that this will be a modified version of the polynomial

p0(t) =
(

1
v(t) Id

)
=

⎛⎜⎜⎜⎝
1
t 1
...

. . .

td 1

⎞⎟⎟⎟⎠ ,
so that the parameter D in Theorem 5.11 is already determined. By that theo-
rem, and the equivalence of the norms ‖ · ‖ and ‖ · ‖∞ on Rd+1, there exists
some ε > 0 so that for any polynomial p(t) (with the same D as p0) satisfying

sup
t∈[0,T ]

covol(V, t) � 1 (5.14)

for all rational subspaces V ⊆ Rd has

1

T

∣∣∣{t ∈ [0, T ] | p(t)Zd+1 /∈ Oε

}∣∣∣ � 1

2
. (5.15)

Now assume that the corollary is false for λ0 = ε. Then

DTε = {t ∈ R | v(t) is ε-Dirichlet improvable}
must have a Lebesgue density point. In particular, there exists an inter-
val [α, β] ⊆ R such that

1

β − α
|{t ∈ [α, β] | v(t) is ε-Dirichlet improvable}| � 9

10
.
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Using the definition of ε-Dirichlet improvable (and the basic property of
measures), we find some Q0 such that

1

β − α
|{t ∈ [α, β] | v(t) has (5.9) with λ = ε for every Q � Q0}| � 3

4
.

Using the matrix p0(t) =
(

1
v(t) Id

)
and Dani’s correspondence (Proposi-

tion 5.9), we can also phrase this as

1

β − α

∣∣∣{t ∈ [α, β] | gQ p0(t)Z
d+1 /∈ Oε for every Q � Q0

}∣∣∣ � 3

4
. (5.16)

To get a contradiction to (5.15), we have to show the assumption (5.14) for

p(t) = gQ p0(α + t)

and T = β − α. Assume therefore that (5.14) does not hold, meaning that for
every Q � Q0 there is a rational subspace VQ ⊆ Rd with

sup
t∈[α,β]

covol(VQ, t) < 1,

where we are using gQ p(t) for the definition of covol(VQ, t). Since the square
of the covolume is a polynomial, this implies that

sup
t∈[0,1]

covol(VQ, t) �α,β 1.

We set t = i
d , W = p

( i
d

)
VQ and obtain

Qdim VQ d(e1,W ) � ‖gQw1 ∧ · · · ∧ gQwk‖ = covol(VQ,
i
d ) �α,β 1

from Lemma 5.13. Applying p0
( i

d

)−1
, this gives

d
(

p0
( i

d

)−1
e1, VQ

)
�α,β Q−1 (5.17)

for i = 1, . . . , d. However, the vectors p0
( i

d

)−1
e1 for i = 0, 1, . . . , d

are easily checked to be linearly independent, and for large enough Q the
condition (5.17) forces VQ = Rd+1. Since

covol(Rd+1, t) = 1

this contradicts our choice of VQ , which proves (5.14) for large enough Q and
gives a contradiction between (5.15) and (5.16).

Using unipotent dynamics (Ratner’s measure classification [28] – see also
the monographs of Witte Morris [26] and the authors [14] for later treat-
ments – and the full force of the linearization technique) Shah significantly
strengthened Corollary 5.12, giving in particular the following result.
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Theorem (Shah [31]) Let d � 2. Then almost no t ∈ R has the property that

v(t) =
⎛⎜⎝ t

...

td

⎞⎟⎠
is Dirichlet improvable.

This result is a consequence of a more general equidistribution theorem, a
special case of which is the following.

Theorem (Shah [31]) Let d � 2, let I ⊆ R be a non-trivial compact interval,
and let μI be the image of the Lebesgue measure under the map

I - t �−→
(

1
v(t) Id

)
Zd+1.

Then (
gQ
)
∗ μI −→ mXd+1

in the weak ∗ topology as Q → ∞.
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6

Applications of Thin Orbits

Alex Kontorovich1

Abstract

This text is based on a series of three expository lectures on a variety of topics
related to ‘thin orbits’, as delivered at Durham University’s Easter School
on ‘Dynamics and Analytic Number Theory’ in April 2014. The first lec-
ture reviews closed geodesics on the modular surface and the reduction theory
of binary quadratic forms before discussing Duke’s equidistribution theorem
(for indefinite classes). The second lecture exposits three quite different but (it
turns out) not unrelated problems, due to Einsiedler–Lindenstrauss–Michel–
Venkatesh, McMullen, and Zaremba. The third lecture reformulates these in
terms of the aforementioned thin orbits, and shows how all three would follow
from a single ‘Local–Global’ Conjecture of Bourgain and the author. We also
describe some partial progress on the conjecture, which has led to some results
on the original problems.

6.1 Lecture 1: Closed Geodesics, Binary Quadratic Forms,
and Duke’s Theorem

This first lecture has three parts. In §6.1.1, we review the geodesic flow on
the hyperbolic plane to study closed geodesics on the modular surface. Then
§6.1.2 discusses Gauss’s reduction theory of binary quadratic forms. Finally, in
§6.1.3, we combine the previous two discussions to connect indefinite classes
to closed geodesics, and state Duke’s equidistribution theorem.

1 The author is partially supported by an NSF CAREER grant DMS-1455705, an NSF FRG
grant DMS-1463940, an Alfred P. Sloan Research Fellowship, and a BSF grant.
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6.1.1 Closed Geodesics

Let H = {x + iy : y > 0} denote the Poincaré (or, perhaps more precisely,
Beltrami) upper half-plane, let T H be its tangent bundle, and for (z, ζ ) ∈ T H,
equip the tangent bundle with Riemannian metric ‖ζ‖z := |ζ |/5z. Here z ∈ H

is the ‘position’ and ζ ∈ TzH ∼= C is the ‘direction’ vector. Let T 1H be the
unit tangent bundle of all (z, ζ ) ∈ T H having ‖ζ‖z = 1. The fractional linear
action of the group G = PSL2(R) = SL2(R)/{±I } on H induces the following
action on T 1H:

G -
(

a b
c d

)
: (z, ζ ) ∈ T 1H �→

(
az + b

cz + d
,

ζ

(cz + d)2

)
, (6.1)

with invariant measure

dμ = dx dy dθ

y2
, (6.2)

in coordinates (x + iy, ζ ), where arg ζ = θ .

Exercise: This is indeed an action, which is moreover free, transitive, and
invariant for the measure in (6.2).

The geodesics on H are vertical half-lines and semicircles orthogonal to the
real line. Given (z, ζ ) ∈ T 1H, the time-t geodesic flow moves z along the
geodesic determined by ζ to the point at distance t from z. The visual point
from some (z, ζ ) ∈ T 1H is the point on the boundary ∂H ∼= R ∪ {∞} that one
obtains by following the geodesic flow for infinite time.

People studied such flows on manifolds purely geometrically for some
time before Gelfand championed the injection of algebraic and representation-
theoretic ideas. With Fomin [GF51], he discovered that under the identification

G ∼= T 1H, g � g(i,↑), (6.3)

the geodesic flow on T 1H corresponds in G to right multiplication by the
diagonal subgroup

A =
{

at :=
(

et/2

e−t/2

)}
;

see e.g. [BM00, EW11].
To study (primitive, oriented) closed geodesics we move to the modular sur-

face, defined as the quotient �\H, with � = PSL2(Z). Its unit tangent bundle
X := T 1(�\H) is, as above, identified with �\G, and the geodesic flow again
corresponds to right multiplication by at . It is useful to think of this flow in
two equivalent ways: (i) as a broken ray in a fundamental domain for X which
is sent back inside when it tries to exit (see Figure 6.1a), or (ii) as a whole
collection of �-translates of a single geodesic ray in the universal cover, H, as
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(a) As a broken ray (b) As the collection of PS2(  )-translates

Figure 6.1 The geodesic flow on the modular surface

in Figure 6.1b. Thus, we will sometimes write g ∈ �\G for the first notion,
and �g for the second.

To obtain a closed geodesic on the modular surface, we start at some point
�g and come back to the same exact point (including the tangent vector) after
a (least) time � > 0 (here � is for length). That is,

�ga� = �g, or equivalently, ga� = Mg,

for some matrix2 M ∈ �. Then

M = ga�g−1, (6.4)

so M has eigenvalues e±�/2, and g is a matrix of eigenvectors. Note that M is
hyperbolic with trace

tr M = 2 cosh(�/2),

and the expanding eigenvalue, λ, say, is given by

λ = e�/2 = (tr M +
√

tr M2 − 4)/2. (6.5)

Actually, since �g is only determined up to left-� action, the matrix M is only
determined up to �-conjugation (which of course leaves invariant its trace).
In this way, primitive closed geodesics correspond to primitive (meaning: not
of the form [Mn

0 ] for some M0 ∈ �, n ≥ 2) hyperbolic conjugacy classes
[M] in �.

We note already from (6.5) that the lengths of closed geodesics are far from
arbitrary; since M ∈ �, its eigenvalues are quadratic irrationals. It will also be

2 Technically, as � = SL2(Z)/{±I }, we should be using cosets ±M here. We will abuse
notation and treat the elements of � as matrices, with the convention that their trace is positive.
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useful later to note the visual point of g. Exercise: Writing M as M = ( a b
c d

)
,

then if c > 0, the matrix g of eigenvectors can be given by

g = 1

(c2(tr2 M − 4))1/4

(
λ− d 1/λ− d

c c

)
. (6.6)

The scaling factor is to ensure g has determinant 1. If c < 0, negate the first
column in (6.6). Any other choice of g is obtained by rescaling the first col-
umn by a factor σet/2 and the second by σe−t/2, σ ∈ {±1}; this of course
corresponds to the right action by at in PSL2(R). The visual point α from g is
determined by computing

α = lim
t→∞ gat · i = λ− d

c
= a − d +√

tr2 M − 4

2c
. (6.7)

Note again that this is a quadratic irrational, and its Galois conjugate α is the
visual point of the backwards geodesic flow. Note also that α is independent of
the choice of g above. Finally, we record here that the fractional linear action
of M on R fixes α; indeed, starting from ga� = Mg, multiply both sides on the
right by at , have that matrix act on the left by i , and take the limit as t → ∞:

α = lim
t→∞ ga�at · i = lim

t→∞ Mgat · i = Mα. (6.8)

To see an explicit example, let us construct the geodesic corresponding to
the hyperbolic matrix

M =
(

12 5
−5 −2

)
. (6.9)

From (6.5), (6.6), and (6.7), we compute

λ= 5 + 2
√

6, g= 1
4
√

2400

(−7 − 2
√

6 7 − 2
√

6
5 −5

)
, α= −7 − 2

√
6

5
.

(6.10)
Using the identification (6.3) and action (6.1), the point g ∈ G corresponds to
the point (z, ζ ) ∈ T 1H where

z = −7

5
+ 2i

√
6

5
, ζ = −2

√
6

5
. (6.11)

The points z, ζ, and α are shown in Figure 6.2, as well as their images in
the standard fundamental domain F for �. The resulting closed geodesic, also
shown in F, has length � = 2 log λ ≈ 4.58. Had we started with M2 instead
of M , we would have obtained the same g, z, ζ , and α but the length would
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Figure 6.2 The closed geodesic corresponding to M in (6.9)

have doubled, corresponding to looping around the geodesic twice (hence our
restriction to primitive geodesics and conjugacy classes). Replacing M by
some conjugate, γ Mγ−1, with γ ∈ �, results in replacing g, z, and α by γ g,
γ z, and γα, respectively (of course, the geodesic remains unchanged).

Next we wish to discuss the cutting sequence of the geodesic flow. Recall
that � is generated by two elements T = ( 1 1

0 1

)
and S = ( 0 1−1 0

)
, and that its

standard fundamental domain F is the intersection of the domains

FT := {7z > −1/2}, FT−1 := {7z < 1/2}, and FS := {|z| > 1}.
As we follow the geodesic flow from F, thought of as a subset of the univer-
sal cover, H, we pass through one of the boundary walls, leaving one of the
domains FL , L ∈ {T, T−1, S}; here L is the ‘letter’ we must apply to return
the flow to F. Given a starting point (z, ζ ) ∈ T 1(�\H), its cutting sequence is
this sequence of letters L .

To illustrate this, consider again the example in Figure 6.2. The flow first
hits the wall 7z = −1/2, and must be translated by L1 = T back inside F.
Next the flow encounters the wall |z| = 1, and is reflected using L2 = S.
Continuing in this way (see Figure 6.3), we find that the cutting sequence of
(z, ζ ) in (6.11) is:

T, S, T−1, T −1, S, T, S, T −1, S, . . . , (6.12)

repeating ad infinitum. It is easy to see from the geometry that such sequences
are some number of T s or T−1s separated by single Ss. Computing these
counts converts (6.12) into:

T︸︷︷︸
1

, S, T −1, T−1︸ ︷︷ ︸
2

, S, T︸︷︷︸
1

, S, T −1︸︷︷︸
1

, S, . . . ,
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L1=T L2=S

L7=S L9=S

L5=S L6=T

L3=T−1

L8=T−1

L4=T−1

Figure 6.3 The cutting sequence of the geodesic flow

which corresponds to the sequence

1, 2, 1, 1, 1, 2, 1, 1, . . . , (6.13)

repeating.
It seems to have first been observed by Humbert [Hum16] that this sequence

should be compared to the continued fraction expansion of the visual point α
of (z, ζ ). We write the continued fraction expansion of any x ∈ R as

x = a0 + 1

a1 + 1

a2 + . . .

= [a0, a1, a2, . . . ],

where a0 ∈ Z and the other a j ∈ N are positive. These numbers are called the
partial quotients of x , and we will sometimes call them ‘digits’ or ‘letters.’ For
the visual point α in (6.10), we compute:
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α = −7 − 2
√

6

5
= [−3, 1, 1, 1, 1, 1, 2], (6.14)

where the bar means ‘repeating the last sequence of digits forever’.
Comparing (6.14) to (6.13), we see that the periodic parts match, up to cyclic

permutation (since a closed geodesic has no canonical ‘starting point’ anyway).
This leads us to the notion of a reduced form for α.

Definition A quadratic irrational α is called ‘reduced’ if it and its Galois
conjugate α satisfy the inequalities:

− 1 < α < 0 < 1 < α. (6.15)

A representative M of a hyperbolic conjugacy class [M] is also called reduced
if its visual point α is reduced.

Exercise: A quadratic irrational α is reduced iff its continued fraction is
exactly (as opposed to eventually) periodic.

How should we reduce the representative M in (6.9)? It’s actually quite easy.
Note that, in general, if α has continued fraction expansion

α = [a0, . . . , ah, ah+1, . . . , ah+�],
then (

0 1
1 −a0

)
· α = 1

α − a0
= [a1, . . . , ah, ah+1, . . . , ah+�]. (6.16)

That is, such matrices eat away the first digit (this, of course, is the left-shift
map from dynamics). For α in (6.14), we could try acting (on the left) by
γ0 = ( 0 1

1 −1

) · ( 0 1
1 −1

) · ( 0 1
1 3

)
to make an exactly periodic continued fraction

[1, 1, 1, 2]. But this matrix γ0 has determinant −1, being an odd product of
determinant −1 matrices. To act instead by an element of PSL2, we eat away
one more digit, using the matrix

γ =
(

0 1
1 −1

)
·
(

0 1
1 −1

)
·
(

0 1
1 −1

)
·
(

0 1
1 3

)
=
(

2 5
−3 −7

)
, (6.17)

to obtain

α̃ = γα = 1 + √
6

2
= [1, 1, 2, 1]. (6.18)
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That is, we replace M by

M̃ = γ Mγ−1 =
(

7 5
4 3

)
, (6.19)

with M̃ now reduced.
In this way, the geodesic flow corresponds to the symbolic dynamics on

the continued fraction expansion of the visual point of the flow. Actually, we
have been quite sloppy; for example, it is not clear what one should do if the
geodesic flow passes through an elliptic point of the orbifold �\H. There is in
fact a better way of encoding the cutting sequence, as elucidated beautifully
by Series [Ser85]. That said, the less precise (but more immediate) description
given here will suffice for the purposes of our discussion below.

6.1.2 Binary Quadratic Forms

This will be a very quick introduction to an extremely well-studied and beau-
tiful theory; see e.g. [Cas78] for a classical treatment. The theory is largely
due to Gauss (building on Lagrange and Legendre), as developed in his 1801
magnum opus, Disquisitiones Arithmeticae.

For integers A, B, and C , let Q = [A, B,C] denote the (integral) binary
quadratic form Q(x, y) = Ax2 + Bxy + Cy2. The general problem being
addressed was: Given Q, what numbers does it represent? That is, for which
numbers n ∈ Z do there exist x, y ∈ Z so that Q(x, y) = n? The question is
perhaps inspired by the famous resolution in the case Q = x2 + y2 by Fermat
(and other special cases due to Euler and others). See [Cox13] for a beautiful
exposition of this problem.

Some observations:
(i) If A, B, and C have a factor in common, then so do all numbers rep-

resented by Q, and by dividing out this factor, we may and will assume
henceforth that Q is primitive, meaning (A, B,C) = 1.

(ii) The set of numbers represented by Q does not change if Q is replaced
by Q′(x, y) = Q(ax + by, cx + dy), with ad − bc = ±1; this of course is
nothing but an invertible (over integers!) linear change of variables.

Gauss defined such a pair of forms Q, Q′ to be equivalent but for us it will
be more convenient to use strict (some authors call this proper, or narrow)
equivalence, meaning we only allow ‘orientation-preserving’ transformations.
That is, we will write Q ∼ Q′ only when there is some γ ∈ SL2(Z) (as
opposed to GL2) with Q = Q′ ◦ γ .

Exercise: This is indeed an action; that is, (Q ◦ γ1) ◦ γ2 = Q ◦ (γ1γ2), and
hence ∼ is an equivalence relation.
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For a given Q, the set of all Q′ ∼ Q is called a class (or equivalence class)
and denoted [Q]. Because we are considering strict equivalence here, this is
often called the narrow class of Q.

Exercise: If Q ∼ Q′ then DQ = DQ′ , where

DQ := discr(Q) = B2 − 4AC (6.20)

is the discriminant. That is, the discriminant is a class function (invariant under
equivalence). Observe that discriminants are quadratic residues (mod 4), and
hence DQ ≡ 0 or 1 (mod 4).

Exercise: When D < 0, the form Q is definite; that is, it only takes either
positive or negative values, but not both. When D > 0, the form is indefinite,
representing both positive and negative numbers.

If discr(Q) = D = 0, or more generally, if D = D2
0 is a perfect square,

then Q is the product of two linear forms. Then the representation question
is much less interesting, and will be left as an exercise. We exclude this case
going forward.

Exercise: Let

αQ = −B + √
D

2A
(6.21)

be the root of Q(x, 1) (assuming A �= 0), and suppose Q′ = Q◦γ . Then αQ′ =
γ−1 · αQ , where the action here of γ−1 is by fractional linear transformations.

We have seen that if two forms are equivalent, then their discriminants agree.
It is then natural to ponder about the converse: does discr(Q) = discr(Q′)
imply that Q ∼ Q′?

To study this question, let CD be the set of all inequivalent, primitive classes
having discriminant D,

CD := {[Q] : discr(Q) = D},
and let h D := |CD| be its size; this is called the (narrow) class number.

This set CD is now called the class group (it turns out there is a composition
process under which CD inherits the structure of an Abelian group, but this
fact will not be needed for our investigations; for us, CD is just a set). If having
the same discriminant implied equivalence, then all class numbers would be
1. This turns out to be false, but actually it is not off by ‘very’ much, in the
following sense: the class number is always finite.

Theorem 6.1.1 (Gauss) For any non-square integer D ≡ 0, 1(4), we have:

1 ≤ h(D) < ∞.
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It is easy to see that h(D) ≥ 1. Indeed, if D ≡ 0(4), then x2 − D
4 y2 is

primitive of discriminant D; and if D ≡ 1(4), then x2 + xy − D−1
4 y2 works.

We give a very quick sketch of the very well-known Theorem 6.1.1, as it
will be relevant to what follows. The proof decomposes according to whether
or not the class is definite.

Sketch when D < 0. Let αQ be the root of Q(x, 1) as in (6.21); since Q is
definite, αQ ∈ H. We have already discussed the standard fundamental domain
F for �\H, so we know (from the exercise below (6.21)) that there is a trans-
formation γ ∈ SL2(Z) taking αQ to F. Such a transformation γ is moreover
unique (up to technicalities when αQ is on the boundary of F), and gives rise
to a unique reduced representative Q′ = Q ◦ γ−1 in the class [Q]. It remains
to show there are only finitely many such forms having a given discriminant
D < 0. This is an easy exercise using |7(αQ)| ≤ 1/2 and |αQ | ≥ 1; indeed,
one finds that

A ≤
√ |D|

3
, and |B| ≤ A,

and hence the number of reduced forms is finite.

Example: Take D = −5. This D is not congruent to 0 or 1 mod 4, so instead
we consider D = −20. Then A ≤ √

20/3; that is, A is at most 2. If A = 1,
then B = 0 or ±1. The latter case, B = ±1, gives no integral solutions to
C = (B2−D)/(4A), but the former gives C = 5, corresponding to the reduced
form Q0 = x2 + 5y2. Next we consider A = 2, whence B ∈ [−2, 2]. Only
the choices B = ±2 give integral values for C = 3, corresponding to forms
Q± = 2x2 ±2xy +3y2. Actually, this turns out to be a boundary case, and the
two forms Q± are equivalent. Hence the class group C−20 = {Q0, Q+} has
class number h−20 = 2. The fact that this class number is not 1 is well known
to be related to the failure of unique factorization in Z[√−5]; e.g. the number
6 factors both as 6 = 2 · 3 and as 6 = (1 + √

5i)(1 − √
5i).

Sketch when D > 0. Again we assume A > 0. This case is more subtle, as
the root αQ and its Galois conjugate are real, so cannot be moved to the fun-
damental domain F. Instead we notice that, since αQ is real and quadratic, it
has an eventually periodic continued fraction expansion, and transformations
γ ·αQ simply add (or subtract) letters to (or from) this expansion. In particular,
there is a γ ∈ SL2(Z) which makes the continued fraction exactly periodic;
that is, the transformed root αQ·γ then satisfies the familiar condition (6.15).
(This is our first hint that indefinite forms are related to closed geodesics!) We
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thus call an indefinite form Q reduced if its root αQ is reduced. As before, it
is easy to see using

αQ = −B +√
D

2A
> 1, −1 < αQ = −B − √

D

2A
< 0,

that

0 < −B <
√

D,
1

2
(
√

D + B) < A <
1

2
(
√

D − B),

which forces the class number to be finite.

Example: Take D = 7, or rather D = 28, since 7 �≡ 0, 1(4). Then the
possibilities for B range from −1 to −5. To solve B2 − D = 4AC, we must
have B2 − D ≡ 0(4), which leaves only B = −2 or B = −4. In the former
case, the possible positive divisors of (B2 − D)/4 = −6 are A = 1, 2, 3, or 6,
of which only A = 2 and 3 lie in the range 1

2 (
√

28 − 2) < A < 1
2 (
√

28 + 2).
These two give rise to the forms

Q1 = 2x2 − 2xy − 3y2 and Q2 = 3x2 − 2xy − 2y2. (6.22)

The latter case of B = −4 leads in a similar way to the two reduced forms
Q3 = x2 − 4xy − 3y2 and Q4 = 3x2 − 4xy − y2.

Note that, unlike the definite case, reduced forms are not unique in their
class, as any even-length cyclic permutation of the continued fraction expan-
sion of αQ gives rise to another reduced form. So we cannot conclude from

the above computation that h28
?= 4. Writing α j for the larger root of Q j ,

j = 1, . . . , 4, we compute the continued fractions:

α1 = [1, 1, 4, 1], α2 = [1, 4, 1, 1], α3 = [4, 1, 1, 1], α4 = [1, 1, 1, 4].
(6.23)

It is then easy to see by inspection that Q1 and Q3 are equivalent, as are Q2

and Q4, e.g.

Q1 ◦ [( 0 1
1 −1

)(
0 1
1 −1

)]−1 = Q3.

(Exercise: Verify this and compute the change of basis matrix to go from Q2

to Q4.) Thus h28 = 2.

Class groups and class numbers are extremely mysterious. A discriminant is
defined to be fundamental if it is the discriminant of a (quadratic, in our con-
text) field; such Ds are either ≡ 1 (mod 4) and square-free, or divisible by 4
with D/4 square-free and ≡ 2, 3 (mod 4). Dirichlet’s Class Number Formula
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(see e.g. [Dav80, IK04]) gives an approach to studying class groups: if D is a
fundamental discriminant, then

h D = √|D| L(1, χD)×
{

1/(2π), if D ≤ −5, or

1/ log εD, if D > 0.
(6.24)

Here L(1, χD) is called a ‘special L-value’, and for D > 0, the factor εD ∈
Q(

√
D) is determined by:

εD = t + s
√

D

2
, (6.25)

where (T, S) = (t, s) is the least solution to the Pellian equation

T 2 − S2 D = 4. (6.26)

It follows from (6.26) that εD is a unit in Q(
√

D), as its algebraic norm is
εDεD = 1. (If the Pell equation (6.26) has no solutions with 4 replaced by −4
on the right side, then εD is the fundamental unit; otherwise it is the square of
the latter.) The L-value, which we will not bother to define (as it is not relevant
to our discussion), is so fascinating an object about which one could say so
much, that we will instead say very little. For example, it is not hard to show
that

L(1, χD) ≤ C log |D|.
Siegel famously proved [Sie35, Lan35] the reverse inequality, that for any
ε > 0,

L(1, χD) ≥ Cε · |D|−ε,

though the constant Cε is ineffective; that is, the proof does not give any means
to estimate it for any given ε. (These days, we have other less strong but, on
the other hand, effective estimates: see [Gol76, GZ86].) Either way, we may
think of the L-value as very roughly being of size 1. Then definite class groups
are, very roughly, of size

h−D ≈ √|D|,
while indefinite ones are of size

h D ≈ √
D/ log εD. (6.27)

(We will not give the symbol ≈ a precise meaning here.) As a consequence,
we obtain Gauss’s conjecture, that for definite class numbers, h−D → ∞ , as
−D → −∞; see [Deu33, Hei34].
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For indefinite forms, the behaviour is even more mysterious, and it is a
longstanding conjecture that infinitely often the class number is 1:

lim inf hD
?= 1, (6.28)

where the limit is over fundamental D → +∞. (If one does not require
fundamental discriminants, this problem was apparently solved long ago by
Dirichlet; see [Lag80].) In light of (6.27), this conjecture suggests that the unit
εD , defined in (6.25), should infinitely often be massive, of size about e

√
D .

Today, no methods are known to force such large solutions to the Pell equation
(6.26), despite rather convincing evidence (see e.g. [CL84]) that this event is
far from rare. On the other hand, it is quite easy to make giant class numbers,
since one can force very small units; e.g. by taking Ds of the form D = t2 −4,

one sees that εD = t+√
D

2 ≈ √
D, and h D ≈ √

D/ log D is as large as possi-
ble. Another long-standing conjecture in the indefinite case is that the average
class number is roughly bounded, in the crude (more refined conjectures are
available) sense that: ∑

0<D<X

h D
?= X1+o(1). (6.29)

We have insufficient space to delve further into this fascinating story, so we
will leave it there.

6.1.3 Duke’s Theorem

We now combine the previous two sections, giving a bijection between
primitive, indefinite classes [Q] and primitive, oriented, closed geodesics
γ on the modular surface. This equivalence was apparently first observed
by Fricke and Klein [FK90], and is also discussed in many places, e.g.
[Cas78, Sar80, Hej83, IK04, Sar07].

We first attach a form Q to a given hyperbolic matrix M = ( a b
c d

)
, the

passage being through equating αs in (6.7) and (6.21), as follows. Pattern
matching (6.7) with (6.21), we obtain a preliminary (possibly imprimitive) set
of variables B0 = d − a, A0 = c, D0 = tr2 M − 4, leading to

C0 = B2
0 − D0

4A0
= −b.

Setting s = gcd(A0, B0,C0), the primitive quadratic form [A0, B0,C0]/s is
almost what we want, but does not quite work because M is really in PSL2(Z),
and, as is, −M could give a different form. To fix this, we set
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Q = sgn(tr M)

s
[c, d − a,−b], (6.30)

which is now well defined on PSL2(Z). The discriminant of this form is

D = tr2 M − 4

gcd(c, d − a, b)2 . (6.31)

For example, if we take M̃ = ( 7 5
4 3

)
in (6.19), then s = gcd(4,−4,−5) = 1

and sgn(tr M) = +1, so M̃ corresponds to the binary quadratic form Q̃ =
4x2−4xy−5y2 of discriminant 96. Note that if we had done the same operation
starting with M in (6.9), the form Q = −5x2−14xy−5y2, also of discriminant
96, and of course, Q = Q̃ ◦ γ−1 with change of variables matrix γ given by
(6.17). (Exercise: Verify all this.)

To invert the map (6.30) given some Q = [A, B,C] with discriminant D >

0 and not a perfect square, we seek a matrix M = ( a −Cs
As d

) ∈ SL2(Z) so that
a +d > 0, say, and d −a = Bs. Inserting the last identity into the determinant
equation and completing the square gives:

1 = a2 + Bsa + ACs2 = 1

4
(2a + Bs)2 − 1

4
Ds2.

Multiplying both sides by 4, we come to the familiar Pellian equation (6.26);
if (t, s) is a fundamental solution, then a = (t − Bs)/2, d = (t + Bs)/2, and
we have found our desired hyperbolic matrix

M =
(

(t − Bs)/2 −Cs
As (t + Bs)/2

)
.

That M is primitive follows from the fundamentality of the solution (t, s)
(Exercise). For example, to turn Q1 = 2x2−2xy−3y2 of discriminant D = 28
into a closed geodesic, we find the fundamental solution (t, s) = (16, 3) to
(6.26), leading to M1 = ( 11 9

6 5

)
.

Note that the key to finding M above is to solve a Pellian equation, which
itself goes through continued fractions; here is a more direct version of this
inverse map. We first state the following simple exercise.

Exercise: The matrix

M =
(

a0 1
1 0

)
·
(

a1 1
1 0

)
· · ·
(

a� 1
1 0

)
(6.32)

fixes the real quadratic irrational α having continued fraction expansion α =
[a0, a1, . . . , a�]. [Hint: Compare to (6.16).]
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Recall from (6.8) that the desired matrix M1 fixes α1, where α1 = (2 +√
28)/4 is the root of Q1(x, 1). As the continued fraction expansion of α1 is

given in (6.23), it is trivial to find the corresponding matrix M1:

M1 =
(

1 1
1 0

)
·
(

1 1
1 0

)
·
(

4 1
1 0

)
·
(

1 1
1 0

)
=
(

11 9
6 5

)
,

again. If the product in (6.32) had odd length, one would obtain a matrix of
determinant −1, whose square is the desired element of SL2(Z). This cor-
responds to the situation when T 2 − Ds2 = −4 is solvable; then, writing
(t, s) for the least solution, we find that εD is expressed as η2

D = εD , where
ηD = (t + s

√
D)/2 is the fundamental unit.

Definition The discriminant of a closed geodesic γ on the modular sur-
face, or its corresponding hyperbolic conjugacy class, is defined to be that
of its associated equivalence class of binary quadratic forms. Explicitly, the
discriminant of M = ( a b

c d

)
is D = (tr2 M−4)/s2, where s = gcd(c, d−a, b).

The idea in Duke’s Theorem is to look at the equidistribution of closed
geodesics on the modular surface, but instead of studying them individually,
one may, like classes of binary forms, group them by discriminant. First, some
examples.

For D = 1337 (which is ≡ 1 (mod 4) and square-free, and hence fun-
damental), we find that the class number is h1337 = 2 and the class group
C1337 is comprised of two classes, represented by Q1 = [7,−35,−4] and
Q2 = [4,−35,−7]. Following the duality above to hyperbolic matrices, we
find that Q1 and Q2 correspond, respectively, to

M1 =
(

2 676 336 167 523 561 808
299 178 176 58 527 127

)
, and M2 = M8

1 .

The entries are so large because the fundamental solution (T, S) = (t, s) to
T 2 − 1337S2 = 4 is:

(t, s) = (2 734 863 294, 74 794 544),

which also explains why the class group is so relatively small (cf. the dis-
cussion below (6.27)). The larger roots α1 and α2 of Q1(x, 1) and Q2(x, 1),
respectively, have continued fraction expansions:

α1 = [8, 1, 17, 2, 1, 1, 3, 1, 35, 1, 3, 1, 1, 2, 17, 1, 8, 5], (6.33)

α2 = [5, 8, 1, 17, 2, 1, 1, 3, 1, 35, 1, 3, 1, 1, 2, 17, 1, 8].
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(a) D=1337 (c) D=1365 : α3, α4(b) D=1365 : α1, α2

(d) D=1365 : α5, α6 (f) D=1365 : All(e) D=1365 : α7, α8

Figure 6.4 The geodesics in CD corresponding to (6.33) and (6.34).

These have the same even length, and differ by an odd shift (by one), so the two
forms Q1 and Q2 are equivalent under GL2(Z)-action but not under SL2(Z).
That is, while the narrow class number of 1337 is 2, the wide class num-
ber is 1. The corresponding geodesics are actually the same curve, but with
opposite orientation; so they look the same in �\H but differ in T 1(�\H),
because the tangent vectors all change direction. See Figure 6.4a for an illus-
tration, which appears as just one curve, since the tangent vectors are not
displayed.

For another example, we study the case D = 1365. This discriminant is
also ≡ 1 (mod 4) and square-free, and therefore fundamental. This time the
class number is h1365 = 8, and we also leave it as an Exercise to work out
representatives for the classes [Q1], . . . , [Q8], the corresponding hyperbolic
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matrices M1, . . . , M8, and the Pellian solution (t, s). The roots α1, . . . , α8

have continued fractions:

α1 = [1, 35], α2 = [35, 1], α3 = [5, 7], α4 = [7, 5], (6.34)

α5 = [1, 1, 1, 11], α6 = [1, 1, 11, 1],

α7 = [1, 1, 1, 2, 1, 2], α8 = [1, 1, 2, 1, 2, 1].
Each pair α2 j−1, α2 j is the same geodesic but with opposite orientation; the
four distinct geodesics in �\H are illustrated in Figures 6.4b–6.4e. Recall from
(6.13) that the cutting sequence of the geodesic flow is a symbolic coding of
the visual point; then the first pair of αs above corresponds to a geodesic that
simply shoots up in the air and falls back down (Figure 6.4b); the next two
pairs are mid-level geodesics (Figures 6.4c and 6.4d); and the last pair of αs
gives a very low-lying geodesic (Figure 6.4e).

So the behaviour of each geodesic in C1365 is quite different, while there
is only one geodesic (up to orientation) in C1337. That said, combining all
four geodesics in C1365 into one picture (Figure 6.4f), one finds that, were
the geodesics in C1365 all coloured the same, it would be quite difficult
to distinguish this image from Figure 6.4a for C1337. Moreover the density
of both plots is reminiscent of the invariant measure dx dy/y2 on H from
(6.2). That is, these curves, when grouped by discriminant, become ‘equidis-
tributed’ with respect to the invariant measure as the discriminant grows.
Equidistribution here means that the average amount of time this union of
curves spends in a given nice region, say A ⊂ �\H, becomes propor-
tional to the area of the region. This observation was turned into a beautiful
theorem by Duke in [Duk88]. To formulate the statement more precisely,
suppose such an A is given, and write 1A for the indicator function of A
in �\H.

Theorem 6.1.2 (Duke’s Theorem) As D → +∞ through fundamental
discriminants,

1

h D

∑
γ∈CD

1

�(γ )

∫
γ

1A ds −→ 1

vol(�\H)

∫
�\H

1A
dx dy

y2 . (6.35)

Here �(γ ) is the length of the closed geodesic γ , and ds is the (hyperbolic)
arclength measure.

For simplicity, we have stated (6.35) for the base space �\H, but a similar
result holds for the unit tangent bundle as well. Also, one can prove (6.35)
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with effective (power savings) rates, and dropping the ‘fundamental’ condi-
tion; see e.g. [CU04]. Again, this is a big theory, of which we have only
scratched the surface; the proceeding discussion will suffice for our purposes
here.

6.2 Lecture 2: Three Problems in Continued Fractions:
ELMV, McMullen, and Zaremba

6.2.1 ELMV

Duke’s proof of (6.35) is a tour-de-force of analytic gymnastics, involving a
Maass ‘theta correspondence’ to convert period integrals into Fourier coef-
ficients of half-integral weight forms, and implementing methods pioneered
by Iuraniec [Iwa87] (using Kuznestov’s formula, sums of Kloosterman sums,
and estimates of Bessel-type functions) to give non-trivial estimates of such.
Meanwhile, the theorem itself (6.35) seems like a beautifully simple dynamical
statement; perhaps there is a more ‘ergodic-theoretic’ proof? Indeed, one was
eventually obtained, after much work, by Einsiedler–Lindenstrauss–Michel–
Venkatesh [ELMV12] (which is henceforth referred to as ELMV), with some
ideas pre-empted decades earlier by Linnik [Lin68].

ELMV wanted to approach the problem (and higher-rank analogues; see
[ELMV09]) from a type of ‘measure rigidity’ à la Rather’s theorems – one
must show that the only measure arising as a limit of the measures on the
left-hand side of (6.35) is the Haar measure, dx dy/y2. This raised the ques-
tion: does one really need the full average over the class group here, or could
individual geodesics already equidistribute? Despite some partial progress to
the affirmative (see e.g. [HM06, Pop06]), because of the symbolic coding of
the geodesic flow, closed geodesics can be made to have arbitrary behaviour
simply by choosing the partial quotients in the visual point and working back-
wards. So, certainly not all long closed geodesics equidistribute. But perhaps
if one restricts oneself only to fundamental closed geodesics – that is, ones
whose corresponding discriminant is fundamental – the equidistribution will
be restored? Even then, it is easy to produce examples of non-equidistributing
sequences of closed geodesics, which, for example, have limit measure dy/y
supported on the imaginary axis (see [Sar07, p. 233]). But what if we do
not allow the ‘mass’ to escape into the cusp of �\H? Can we find closed
fundamental geodesics which stay away from the cusp? Among these would
certainly be some interesting limiting measures, which would demonstrate the
difficulty of Duke’s Theorem. Such considerations naturally led ELMV around
2004 to propose the following:
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Problem: (ELMV) Does there exist a compact subset Y⊂ X= T 1(�\H) of
the unit tangent bundle of the modular surface which contains infinitely many
fundamental closed geodesics?

The answer to this question turns out to be YES, as resolved (in a nearly
best-possible quantitative sense) by Bourgain and the author in [BK15a]. We
will say more about the proof in the last lecture, but we first move on to two
other (seemingly unrelated) problems.

6.2.2 McMullen’s (Classical) Arithmetic Chaos Conjecture

Here is a more recent problem posed by McMullen [McM09, McM12], which
he calls ‘Arithmetic Chaos’ (not to be confused with Arithmetic Quantum
Chaos, for which see e.g. [Sar11]). The problem’s statement begins in a similar
way to ELMV, asking for closed geodesics on X contained in a fixed compact
set Y, but the source is quite different.

McMullen was studying questions around the theme of Margulis’s conjec-
tures on the rigidity of higher-rank torus actions, and observed that a very
interesting problem in rank 1 had been overlooked.3 The statement is the
following.

Conjecture 6.2.1 (Arithmetic Chaos) There is a compact subset Y of X such
that, for all real quadratic fields K , the set of closed geodesics defined over K
and lying in Y has positive entropy.

Before explaining the meaning of the above words, we reformulate the
conjecture as a simple statement about continued fractions.

Conjecture 6.2.2 (Arithmetic Chaos II) There is an A < ∞ such that, for
any real quadratic field K , the set

{[a0, a1, . . . , a�] ∈ K : all a j ≤ A} (6.36)

has exponential growth (as � → ∞).

The reformulation is quite simple. Recall yet again that the geodesic flow
is a symbolic coding of the continued fraction expansion of the visual point.
Thus, going high in the cusp means having large partial quotients, and vice

3 See [McM09, Conj. 6.1] and for a more precise statement which implies Arithmetic Chaos,
and moreover predicts that the entropy mentioned below can be made arbitrarily close to the
natural limit.
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versa. So a geodesic which is ‘low-lying’ in some compact set Y – that is,
avoiding the cusp – is one whose visual point has only small partial quotients.
Now, since closed geodesics correspond to classes of binary forms with roots
that are quadratic irrationals, the visual points automatically lie in some real
quadratic field; in fact, it is easy to see that they lie in K = Q(

√
D), where

D is the discriminant of the geodesic (i.e. that of the class). This explains the
appearance of real quadratic fields in both versions of the conjecture, as well as
how being ‘low-lying’ in Conjecture 6.2.1 corresponds to having small partial
quotients in Conjecture 6.2.2. Without defining entropy, let us simply say that
this condition in the first version corresponds in the second to the exponential
growth of the set in (6.36).

In the third lecture, below, we will present a certain ‘Local–Global Conjec-
ture’ which would easily imply McMullen’s in the strongest from: that is, with
A = 2 in Conjecture 6.2.2. The same conjecture also has as an immediate
consequence the aforementioned resolution of the ELMV Problem, as well as
Zaremba’s Conjecture (to be described below). Unlike the latter two problems,
it seems McMullen’s problem requires the full force of this Local–Global Con-
jecture; embarrassingly, the only meagre progress made so far is numerical, as
we now describe.

In McMullen’s lecture [McM12], he gives numerical evidence for Con-
jecture 6.2.2 with A = 2, taking the case K = Q(

√
5): he is able to find

the following (primitive, modulo cyclic permutations and reversing of partial
quotients) continued fractions:

[1]= 1 + √
5

2
, [1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2]= 554 + 421

√
5

923
.

McMullen presents these two surds as evidence of the conjectured exponential
growth.

Using the Local–Global Conjecture as a guide, the author found the
following further examples:

[1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1] = 90603 + 105937
√

5

207538
,

[2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2] = 12824 + 7728
√

5

11667
.

Most recently, Laurent Bartholdi and Dylan Thurston (private communica-
tion) have pushed these numerics even further, finding the following further
examples:
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[1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2],

[1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2],

[1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1,

1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2],

[1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1,

2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2],

[1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2,

2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2],

[1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2,

1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2],

[1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1,

2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2,

2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2],

[1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1,

2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2]
all in Q(

√
5). One may now argue whether this list (of 13 distinct surds in all)

is yet indicative of exponential growth.

6.2.3 Zaremba’s Conjecture

Our final problem originates in questions about pseudorandom numbers and
numerical integration. A detailed discussion of these questions is given in
[Kon13, §2], so we will not repeat it here. The statement of the conjecture,
understandable by Euclid, is as follows.4

4 See [McM09, §6] for McMullen’s connection of Zaremba’s Conjecture to Arithmetic Chaos.
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Conjecture 6.2.3 (Zaremba [Zar72]) There is some A < ∞ such that, for
every integer d ≥ 1, there is a coprime integer b ∈ (0, d) such that the reduced
rational b/d has the (finite) continued fraction expansion

b

d
= [0, a1, . . . , a�],

with all partial quotients a j bounded by A.

Progress on the advertised Local–Global Conjecture allowed Bourgain and
the author to resolve a density version of Zaremba’s Conjecture:

Theorem 6.2.4 ([BK14]) There is an A < ∞ such that the proportion of
d < N for which Zaremba’s conjecture holds approaches 1 as N → ∞.

In the original paper, A = 50 was sufficient, and this has since been
reduced to A = 5 in [Hua15, FK14]. Most recently, Zaremba’s conjecture
has found application to counterexamples to Lusztig’s conjecture on modu-
lar representations, via the groundbreaking work of Geordie Williamson: see
[Wil15].

6.3 Lecture 3: The Thin Orbits Perspective

All three problems discussed in Lecture 2 are collected here under a com-
mon umbrella as a ‘Local–Global’ problem for certain ‘thin’ orbits. We discuss
recent joint work with Jean Bourgain which settles the first problem (ELMV),
and makes some progress towards the last (Zaremba).

To motivate the discussion, recall from the exercise below (6.32) and the
expression (6.7) that the quadratic surd

α = [a0, a1, . . . , a�]
is fixed by the matrix

M =
(

a0 1
1 0

)
·
(

a1 1
1 0

)
· · ·
(

a� 1
1 0

)
,

with

α ∈ Q(
√

tr2 M − 4).

This tells us that studying traces of such matrices M , we might learn something
about both ELMV and McMullen’s conjectures. For example:
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Exercise: If tr2 M−4 is square-free, then the corresponding closed geodesic
is fundamental.

Yet another elementary exercise is that, if b/d = [0, a1, . . . , a�], then(
a1 1
1 0

)
· · ·
(

a� 1
1 0

)
=
(

d b
∗ ∗

)
,

so studying the top-left entries of matrices of the above form tells us about
Zaremba’s conjecture.

In all the above problems, the partial quotients a j are bounded by some
absolute constant A. Thus we should study the semigroup generated by matri-
ces of the form

(
a 1
1 0

)
, with a ≤ A. Actually, we will want all elements in

SL2(Z) (whereas the generators have determinant −1), so we define the key
semigroup

�A :=
〈(

a 1
1 0

)
: a ≤ A

〉+
∩ SL2,

of even length words in the generators; here the superscript ‘+’ denotes
generation as a semigroup.

We first claim that this semigroup �A is thin. We give the definition by
example. As soon as A ≥ 2, the Zariski closure of �A is SL2; that is, the zero
set of all polynomials vanishing on all of �A is that of the single polynomial
P(a, b, c, d) = ad −bc−1. The integer points, SL2(Z), of the Zariski closure
grow like:

#(SL2(Z) ∩ BX ) � X2,

where BX is a ball about the origin of radius X in one’s favourite fixed
Archimedean norm. On the other hand, an old result of Hensley [Hen89] gives
that

#(�A ∩ BX ) � X2δA . (6.37)

Here δA is the Hausdorff dimension of the ‘limit set’ CA of �A, defined as
follows:

CA := {[0; a1, a2, . . . ] : ∀ j, a j ≤ A}.
The dimensions of these Cantor-like sets have been studied for a long time
[Goo41, JP01], e.g.

δ2 ≈ 0.5312, δ3 ≈ 0.7056, δ4 ≈ 0.7889, (6.38)

and as A → ∞, Hensley [Hen92] showed that

δA = 1 − 6

π2 A
+ o

(
1

A

)
.
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The point is that all of these dimensions δA are strictly less than 1, so it follows
from (6.37) that

#(�A ∩ BX ) = o (#(SL2(Z) ∩ BX )) ,

as X → ∞. This is the defining feature of a so-called thin integer set (defined
this way in [Kon14, p. 954]) – it has Archimedean zero density in the integer
points of its Zariski closure. When the set in question is actually a subgroup
of a linear group, this definition agrees with the ‘other’ definition of thinness,
namely the infinitude of a corresponding co-volume, or index; see e.g. [Sar14].

The ELMV, McMullen and Zaremba problems do not just study the semi-
group �A itself; they all study the image of �A under some linear map F on
M2×2(Z) taking integer values on �A. For example, in Zaremba’s conjecture,
one takes F : ( a b

c d

) �→ a, which picks off the top-left entry. For ELMV and
Arithmetic Chaos, one studies the trace, F : ( a b

c d

) �→ a + d. Then the key
object of interest is F(�A) ⊂ Z, and even more precisely, the multiplicity with
which an integer n is represented in F(�A). We define the multiplicity as:

mult(n) := #{γ ∈ �A : F(γ ) = n}.
A priori this count may be infinite (e.g. if F is constant), so it is useful to also
define a quantity guaranteed to be finite, by truncating:

multX (n) := #{γ ∈ �A ∩ BX : F(γ ) = n}.
Since F is linear, the image of an Archimedean ball BX will also be of order
X , so one may naively expect the multiplicity of some n � X to be of order

1

X
· #(�A ∩ BX ) � X2δA−1. (6.39)

It is easy to see that such a prediction is too primitive; e.g. if F : ( a b
c d

) �→ 2a,
then all odd integers are missing in the image.

Given �A and F , we define an integer n ∈ Z to be admissible if it passes all
‘local obstructions’:

n ∈ F(�A) (mod q),

for every integer q ≥ 1. While this condition may seem difficult to verify (for
instance, it asks about infinitely many congruences!), it turns out that, thanks
to the theory of Strong Approximation, it is very easy to check in practice; see
e.g. [Kon13, §2.2] for a discussion.

The Local–Global Conjecture, formulated by Bourgain and the author, states
that, once these local obstructions are passed, the naive heuristic (6.39) holds.
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Conjecture 6.3.1 (The Local–Global Conjecture) Assume that A ≥ 2, so
that �A is Zariski dense in SL2, and that its image under the linear map F
is infinite; equivalently the Zariski closure of F(�A) is the affine line. For a
growing parameter X and an integer n � X which is admissible, we have

multX (n) = X2δA−1−o(1). (6.40)

Notice that the dimensions in (6.38) all exceed 1/2, whence the exponents
2δA − 1 in (6.40) are all positive. So, for large X , these multiplicities are
non-zero; that is, large numbers which pass all local obstructions should be
‘globally’ represented in F(�A).

We leave it as a pleasant Exercise to prove McMullen’s Conjecture 6.2.2
from (6.40); see also [BK13, Lemma 1.16].

The progress leading to Theorem 6.2.4 uses the fact that the Zaremba
map F : ( a b

c d

) �→ a is of ‘bilinear type’, in that F can be written as
F(M) = 〈v1 · M, v2〉, where v1 = v2 = (1, 0). A similar result can be proved
(see [BK10]) whenever F is of this form; equivalently (Exercise) whenever
det F = αδ − βγ = 0, where F : ( a b

c d

) �→ αa + βb + γ c + δd.
Quite recently, a more precise formulation of Zaremba’s conjecture, based

on the Local–Global Conjecture, and the execution of certain Hardy–Little-
wood-type estimations and identities for the ‘singular series’ was given by
Cohen [Coh15], a Rutgers summer REU student.

Conjecture 6.3.2 In the Zaremba setting of F : ( a b
c d

) �→ a, we have

mult(n) ∼ 2δA
#(�A ∩ Bn)

n
× π2

6
×
∏
p|n

(
1 − 1

p

)
.

A plot of the left-hand side divided by the right-hand side is given in
Figure 6.5; the data is rather convincing in support of the refined conjecture,
which hopefully also serves as evidence for the more general Local–Global
Conjecture.

6.3.1 Tools: Expansion and Beyond

We give here but a hint of some of the methods developed to prove the
results in [BK14, BK15a]. A key initial ingredient is what we shall refer
to broadly as ‘expansion’, or ‘SuperApproximation’. This has also been dis-
cussed rather extensively in numerous surveys; see e.g. [Sar04, Lub12], and
[Kon13, §5.2], [Kon14, §3.3]. To go ‘Beyond Expansion’, one needs to
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Figure 6.5 Numerical verification of Conjecture 6.3.2 for A = 5. Image by P.
Cohen in [Coh15].

develop more sophisticated tools outside the scope of this survey; a hint is
given in [Kon14, §3.7], and the interested reader is invited to peruse the
original papers [BK15a, BK15b, BK16].
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