Equidistribution on affine symmetric spaces

1 Sources

e Eskin-Mcmullen - Mixing, Counting, and Equidistribution in Lie Groups
e Schlichtkrull - Hyperfunctions and Harmonic Analysis on Symmetric Spaces

e Knapp - Representation Theory of semisimple groups: Beyond an introduction

2 Affine Symmetric Spaces

Definition 2.1. Let G be a connected semi-simple Lie group with finite center. Let ¢ : G — G be an
involution (i.e. a Lie group automorphism with ¢ = id) and let H < G the fixpoint set of 0. Then G/H
is called affine symmetric space and H is called a symmetric group.

Recall that G is semisimple if its Lie algebra g is a direct sum of simple Lie algebras. The differential
of o at the identity gives a Lie automorphism that is an involution, also denoted by o. Any linear
involution is diagonalizable - splitting into +1-eigenspaces. This decomposition keeps holding in the
group level, where however, only one eigenspace is a lie algebra. For a decomposition g = hb we can then
write o(g) = hb~ 1.

Example 2.2. Let G = SL, (R) the group of n x n-matrices of det 1 and o(g) = g~ inverse transpose.

stab(o) = SO, (R). More generally, any classical Lie group that is closed under transposition. For an
involution o with H compact, G/H defines a Riemannian symmetric space.

Example 2.3. G x G/G where G is diagonally embedded comes from the convolution o (g, h) = o(h, g).
Eg {M € Matgq(R)|det M = a} = SLo(R) x SLy(R)/A SLy(R)

Example 2.4. SLy(R)/A where A the diagonal group coming from o : (Z Z) — <ac _db>

Example 2.5. We let I, , = (id,, —id,), p + ¢ = n, and define o, , the involution on SL, (R) obtained
by conjugation with I, ,. The isotropy group is by definition SO, 4(R), the group of orientatation
perserving isometries of the indefinite form Y 7, 27, — >F , 27 Note that SO;1(R) is the diagonal
group in SLy(R) =~ SO; 2(R). One can also take G = SO,, 4(R), and 0,/ o giving rise to some SO, 4 (R) <
SO, ¢(R). Of particular importance is SO, ¢—1(R) < SO, 4(R) from I 41,1 since SO, 4(R)/ SO, -1 (R)
is identified with the hyperboloid
q P
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Any involution ¢ on G induces an involution on g, which we shall denote by the same letter. Then g
splits into o-eigenspaces for the eigenvalues +1

g:ba@qa-

In particular b is the Lie algebra of H. Note that we have

ho,b6) C bo, [B0:90] C G0, [d0,96) C bo

and for any decomposition with such brackets relations there is an involution giving raise to this decom-
position.

Example 2.6. Let g = s[,(R) and o(X) = —X7 inverse transpose. Then the above decomposition is
between symmetric and skew-symmetric traceless matrices.



Definition 2.7. We shall write adx the map Y — [X,Y]. The killing form B(X,Y) = Tr(adx oady)
is non-degenerate iff G is semi-simple and negative definite if G is compact. An involution 6 is called
Cartan involution if By = —B(X,0(Y)) is symmetric and positive definite. Note that the adjoint of adx
with respect to this inner product becomes —ady(x), and thus selfadjoint on pg

Example 2.8. For s, (R), B(X,Y) =2nTr(XY), so that Bp(X,Y) = —2nTr(X0(Y)) = 2n Tr(XYT).
But Tr(XY7T) is an inner product on the space of n x n matrices making 6 a Cartan involution.

Proposition 2.9. e By is symmetric and positive definite
e B is invariant under any automorphism
e t | p with respect to both B and By
Definition 2.10. The decomposition hy @ qp for a Cartan involution 6 is called a Cartan pair.

Example 2.11. For s[,,(R) = ¢® p, € = s0,,(R). Since p consists of symmetric matrices, any Y € p can
be diagonalized, Y = kZk~! = Ady, Z for some Z diagonal (and traceless) and k € K. Let a < g be the
diagonal traceless matrices then p = Adg a.

Theorem 2.12. A Cartan involution is unique up to an inner automorphism, i.e. @ = fo 8 o f~1 and
f = Ady for some g € G. For any involution o, there exists a Cartan convolution that commutes with
.

Theorem 2.13. For a Cartan pair g = €t ® p, K is a mazimal compact subgroup of G. Let a be a
maximal abelian subspace of p and A =expa. Then G = Kexpp (in fact (k,X) — kexp(X) is a diffeo,
P =Uper Adr a (in fact for any mazimal a,a’ in p are K-conjugates and G = KAK.

Proof. Assume G is a classical group, say G C GL(C,n) and 6 is Inverse conjugate transpose. Then
there is a unique polar decomposition g = kexp(X) with & unitary and X Hermitian (exp is surjective
on the positive definite Hermitian matrices since it is on diagonal matrices). Now k7 = k=1, X7 = X

0(g) = kexp—X, 0(g9)"'g=exp2X

which implies exp X € G (using the fact that if exp X in a algebraic group then X is in the Lie algebra).
Since g € G, also k € GNU(n) = K is compact. We see that K must be maximal, since else it contains
an element of exp p but any non-trivial element gives an unbounded subgroup.

Given a,a’ take Z, Z' such that no root X¢ resp. ¥ vanishes. Consider the curve

K>kw— B(Ady Z,7")
. Let k € K be the minimum (which exists by compactness of K). Its derivative,
B(ady Ady Z,2") = B([Adx Z,Z'|,H) = 0

for H € ¢ vanishes, but B(H, H) < 0 for any H € ¢, and thus [Adg Z, Z'] = 0. Since Z’ has non-trivial
projection to any gf‘\/, Ady Z € ggl. Since gp = a®m, m < € L pand as Ad, Z € p, Adx Z € d'.
By symmetry of the argument, Ady Z € a’. Note also Zy(Z) = Zg(a) generates the centralizer by
construction. But a’ commutes now with Z implying that a’ < Adg a, and by maximality they are equal.

K AK follows from the previous statements. O

Theorem 2.14. Let o be an involution of G with affine symmetric group H and giving rise to g = h @ q.
Let 0 be a commuting Cartan decomposition with symmetry group K giving rise to g = ¢dp. Let a C pNq
be a mazimal abelian subspace, A = expa. Then G C HAK

Proof Sketch. Step 1: (X,Y, k) — exp X expYk from (pNh) x (pNq) x K to G is a local diffeo onto.
Diffeo by local dimensions argument. Assuming a decomposition g = exp X exp Yk for the moment.
Since §(g~!) = 0(k~texp —Y exp —X) = k=t exp(Y) exp(X), we have

g0(g1) = exp X exp2Y exp X

We already know G = exppK uniquely, and we want to assume g = exp S for S € p, in particular
0(g~') = g and the LHS is exp 2S Apply o, to see (o fixes b thus X)

exp 20(S) = exp X exp —2Y exp X.



Combining both gives
exp 20(S) = exp2X exp —2S5 exp 2X
and thus
exp —S exp 20(S) exp —S = (exp —S exp 2X exp —S5)?
which we may rewrite as
exp2X =expSexpTexps
with
exp 2T = exp —S exp 20(S) exp — 5
These formulas show that X and Y are uniquely determined, and how to construct them given g.
We reduce to show
Step 2: exppNgqg C HAK.
Define go = & ® po = (ENhH) ® (p N q). By the bracket relations of involution, it is a sub lie algebra.
Since o and 6 commute, 6 preserves the eigenspace decomposition with respect to o, and thus preserves gg
but also the decomposition gg = €y B pg (o acts by 1, so any intersection of an eigenspace is preserved).

The associated Lie group Gy is by definition reductive, and again allows a KgAKy decomposition where
Ag = A and Kg = HN K. We now conclude that exppnNgq C Go C HA K. O]

The maps adz for Z € a are commuting, and as remarked before, selfadjoint with respect to By.
Introduce the dual a* and for A € a*,

gy ={X€eg:adz(X)=AN2)X forall Z € a}

Let X consists of all A £ 0 with gy, the set of restricted roots. Having chosen a basis on a*, one might
introduce an ordering on X let X1 be the posititve restricted roots. A root in ¥ T is called simple if it
cannot be written as sum as any other two. Remark: Given a basis of a* coming from elements of X,
then these are simple with respect to some choice of 7 if any other root in X can be expressed in either
all positive or all negative integer coeflicients.

Example 2.15. Let E;; be the elementary matrices in sl,(R) and Z = diag(hi,...,h,) € a then
adz(E;j) = (h; — h;)E;j. Let ej € a* by e;j(H) = h;, then e; — e; are precisely such A for which gy # 0
forming .. Taking the order induced from ey, ..., e,, a root is positive if the first coefficient is positive
in that basis (so that e; — e, is the largest posititve root and e, _; — e,, the smallest), and e; — ¢;41 form
a base of simple positive roots.

Theorem 2.16. ® g=00®B > ycx 0 (orthogonal sum)

® [0), 0, C Orip
e Og) = g_\ and hence A € 3 implies —\ € 3. Same for o.
e gy L g, with respect to By
We study now the Lie subalgebra of g,
n= Z [15)
Aext
Theorem 2.17. Assume for the moment that o = 6. Then the above theorem can be extended to say
go=adm

and the Twasawa decomposition:
g=¢tPadn

and K x A x N — G is a diffeo onto.

Proof. Any X € [ has non-zero projection to m or » "5, g—» together with g = n+go+n making t+a+n
a direct sum. It is everything since

atm4+m+R)dZ+Xo+> Xa=Xo+ Y (X A+0X )+Z+> (Xx—0X_ ) )ct+a+n

For the group level one uses that if g = s @t of two subalgebras then the differential of the multiplication
map vanishes nowhere. The image is closed since K is compact and AN are closed (for any subsequence,
take a subseqeuence where the K part converges, then take limit in AN, still of product form). The
image is also open. Thus everything. Now also multiplication from A x N to AN is smooth and onto. [



Definition 2.18. The hyperplanes in a ~ a* defined by ker A cut a into finitely many open regions {C}
called Weyl chambers. For any set of simple roots A C ¥ there is a unique Ca defined by the intersection
of the half-spaces A > 0 in a where A € A, and EZ denotes the positive roots with respect to A, i.e.
those A for which A(Wa) > 0. Denote by na = Z)\GEZ g and

Na =< expna >, AA:expa
Any Weyl chamber contains exactly one root, the maximal element with respect to the ordering.

Example 2.19. Picture of triangulation of equilateral triangles coming from As. If a, 8 are two simple
roots a + (3 is maximal and contained in the cone of the corresponding Weyl chamber. It is the highest
weight of the adjoint representation.

Proposition 2.20. There exists a a shrinking family of open neighborhoods N, of e € Na invariant
under conjugation by Aa, i.e. for any open e € U there is V., C O with

ecaViacV.cU
for any a € Aa

Proof. Let X = Z)\€2+ A X\ € n where X spans the one-dimensional space gx. Let ¢, : N — N the
conjugation map n — ana~!, its derivative acts on n by Ad(a) : n — n which is related the previous
adjoint action by Ad(exp Z) = exp(adyz), and so Ad(a=1) X, = exp(—=\(2)) for a = exp Z € A,

Ad(@™ )X = Y zyexp(—A(Z)) Xy €n
Aex+

and we see that a~! contracts as A(Z) > 0. Take V. to be a product neighbourhood.
O

Theorem 2.21. Let M = Zk(A), then H x M x A x N — G is open in a neighborhood of the identity
in G.

Proof. Tt suffices to show h +m+a+n =g. We have g = n® gy & n. We decompose any X with respect
to that decomposition and thus assume X € n @ go. For the n part we observe that also o(gy) = g_x
since

[Z,0(X)] = o([0(2), X] = —0([2, X] = =A(Z)o(X)

for X € gy and X +o(X) € b.
Thus for any X € n = Srex+9-_»,

X=X+0oX))—-0c(X)ehon.

It remains to show gg C m+a+b.

Remark: If 0 = 0, i.e. a maximal in p, we have go = a@®m (orthogonal sum) where m = Z¢(a). Since
a in general smaller, gq is larger and the claim is that the new contribution is along b.

Both 6 and o preserve gg by the same calculation we just did, in particlar we have a direct sum
decomposition of gg (given by 2X = X + 0(X) + X — o(X) and in particular both parts are in gg). For
0 we have in fact £ @ p with respect to By giving

go=¢tNgo®pNgo

which respects 6.

We see that by definition of m, €N gy = m. (N gy consists of the kernel of ad, contained in £.)

Now we also decompose pNgo=pNhNgo+pNgNgo and pNgy < h+afollowsif pNgngy < a.
But any X € gg commutes with a, which as chosen maximal abeliean in p N ¢, in particular contains
pOgngo. O



3 Wavefront Lemma
Theorem 3.1. For any open neighbourhood U of e € G there is V C G open such that
HVgC HgU

for all g € AK.

Proof. Assume first that g € A. Then g € exp(C) for some Weyl chamber. Let N be the corresponding
unipotent subgroup, with a contraction invariant neighborhoods V. We also let Vi, V4, neighbourhoods
in M and A and put V = HVy;V4,Vy a neighbourhood of G by HM AN decomposition, by which we
may also assume that Vy;VaVy C U

va = HV]V[VAVNQ = HgVMVA(gilng) C HgVMVAVN C HgU

This V = V depends on the Weyl chamber, and we take the intersection of all of them.
For general g = ak, we may choose that U’ C U which is K-conjugation invariant and take V' coming
the above construction for a. Then

HVg=HVak C HaU'k = Hakk™'U'k = Hgk™ U’k C HgU

4 Equidistribution

Let ' < G be a lattice and let X = I'\G. We assume that T' projects densely onto G/G’ for any G’
normal noncompact Liegroup G’ C G. This implies that L?(X) does not contain non-trivial G;-invariant
vectors for any ¢, and therefore, by Howe-Moore,

Theorem 4.1. The action of G on X is mizing, that is for any «, 3 € L*(X),

/Xa(:cg)ﬁ(x)dw%m(lX)/Xa/Xﬂ

Assume that H is such that I' N H intersects H in a lattice. Then I'H is a closed orbit of finite
volume, naturally identified with I'N H\ H of measure m(Y’) induced by a fixed Haar measure on H. We
may push these measures to measures on I'Hyg.

Theorem 4.2. The translates Yg, Y = T'H become equidistributed in X as Hg — oo in H/G:
71 [ s — [ aG@

— a(y)dy » ——= [ a(x)dx.

m(Y) Yg m(X) Jx

for any a € Co(X).

Proof. Let Hg, — oo in H\G, g, € AK. Let (U, ¢) such that a(gu) is e-close to a(g) fpr all u € U. By
the wave front lemma, there is HV g C HgU for all g in AK and by mixing,

1 1 1
m(YV)/YVgn o(g)dg = m(YV)/r\G xvv(g)alggn)dg — m(X)/Xa(g)dg.

The LHS is a convex combination of the integrals

1
WL()/)~/anu a(h)dh

which are e-close to W Jyq, a(h)dh. O



5 Counting

Theorem 5.1.
{M € Matgq(Z)|det M = a, || M| < R}| < cy R

V = {M € Matgq(R)|det M = a} = SLa(R) x SL3(R)/SLa(R). Claim: V(Z) finite union of I' =
SL2(Z) x SLa(Z)-orbits. Action of G x G on V by gMh~!. H = AG. The maximal abelian space a is
A'={(a,a™!)} € Ax A, and

GxG=(KxK)A'H

Theorem 5.2. V, level set of the standard quadratic surface of signature (m,n), a € Z and assume
V(Z) not empty then
\V(Z)N By| =< caR™" 2
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