
Equidistribution on affine symmetric spaces

1 Sources

• Eskin-Mcmullen - Mixing, Counting, and Equidistribution in Lie Groups

• Schlichtkrull - Hyperfunctions and Harmonic Analysis on Symmetric Spaces

• Knapp - Representation Theory of semisimple groups: Beyond an introduction

2 Affine Symmetric Spaces

Definition 2.1. Let G be a connected semi-simple Lie group with finite center. Let σ : G → G be an
involution (i.e. a Lie group automorphism with σ2 = id) and let H < G the fixpoint set of σ. Then G/H
is called affine symmetric space and H is called a symmetric group.

Recall that G is semisimple if its Lie algebra g is a direct sum of simple Lie algebras. The differential
of σ at the identity gives a Lie automorphism that is an involution, also denoted by σ. Any linear
involution is diagonalizable - splitting into ±1-eigenspaces. This decomposition keeps holding in the
group level, where however, only one eigenspace is a lie algebra. For a decomposition g = hb we can then
write σ(g) = hb−1.

Example 2.2. Let G = SLn(R) the group of n×n-matrices of det 1 and σ(g) = g−T inverse transpose.
stab(σ) = SOn(R). More generally, any classical Lie group that is closed under transposition. For an
involution σ with H compact, G/H defines a Riemannian symmetric space.

Example 2.3. G×G/G where G is diagonally embedded comes from the convolution σ(g, h) = σ(h, g).
Eg {M ∈ Matdd(R)|detM = a} = SL2(R)× SL2(R)/∆ SL2(R)

Example 2.4. SL2(R)/A where A the diagonal group coming from σ :

(
a b
c d

)
→
(
a −b
−c d

)
.

Example 2.5. We let Ip,q = (idp,− idq), p+ q = n, and define σp,q the involution on SLn(R) obtained
by conjugation with Ip,q. The isotropy group is by definition SOp,q(R), the group of orientatation
perserving isometries of the indefinite form

∑q
i=1 x

2
i+p −

∑p
i=1 x

2
i Note that SO1,1(R) is the diagonal

group in SL2(R) ' SO1,2(R). One can also take G = SOp,q(R), and σp′,q′ giving rise to some SOp′,q′(R) <
SOp,q(R). Of particular importance is SOp,q−1(R) < SOp,q(R) from Ip+q−1,1 since SOp,q(R)/SOp,q−1(R)
is identified with the hyperboloid

q∑
i=1

x2
i+p −

p∑
i=1

x2
i = 1

Any involution σ on G induces an involution on g, which we shall denote by the same letter. Then g
splits into σ-eigenspaces for the eigenvalues ±1

g = hσ ⊕ qσ.

In particular h is the Lie algebra of H. Note that we have

[hσ, hσ] ⊂ hσ, [hσ, qσ] ⊂ qσ, [qσ, qσ] ⊂ hσ

and for any decomposition with such brackets relations there is an involution giving raise to this decom-
position.

Example 2.6. Let g = sln(R) and σ(X) = −XT inverse transpose. Then the above decomposition is
between symmetric and skew-symmetric traceless matrices.
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Definition 2.7. We shall write adX the map Y 7→ [X,Y ]. The killing form B(X,Y ) = Tr(adX ◦ adY )
is non-degenerate iff G is semi-simple and negative definite if G is compact. An involution θ is called
Cartan involution if Bθ = −B(X, θ(Y )) is symmetric and positive definite. Note that the adjoint of adX
with respect to this inner product becomes − adθ(X), and thus selfadjoint on pθ

Example 2.8. For sln(R), B(X,Y ) = 2nTr(XY ), so that Bθ(X,Y ) = −2nTr(Xθ(Y )) = 2nTr(XY T ).
But Tr(XY T ) is an inner product on the space of n× n matrices making θ a Cartan involution.

Proposition 2.9. • Bθ is symmetric and positive definite

• B is invariant under any automorphism

• k ⊥ p with respect to both B and Bθ

Definition 2.10. The decomposition hθ ⊕ qθ for a Cartan involution θ is called a Cartan pair.

Example 2.11. For sln(R) = k⊕ p, k = son(R). Since p consists of symmetric matrices, any Y ∈ p can
be diagonalized, Y = kZk−1 = Adk Z for some Z diagonal (and traceless) and k ∈ K. Let a < g be the
diagonal traceless matrices then p = AdK a.

Theorem 2.12. A Cartan involution is unique up to an inner automorphism, i.e. θ = f ◦ θ′ ◦ f−1 and
f = Adg for some g ∈ G. For any involution σ, there exists a Cartan convolution that commutes with
σ.

Theorem 2.13. For a Cartan pair g = k ⊕ p, K is a maximal compact subgroup of G. Let a be a
maximal abelian subspace of p and A = exp a. Then G = K exp p (in fact (k,X)→ k exp(X) is a diffeo,
p =

⋃
k∈K Adk a (in fact for any maximal a, a′ in p are K-conjugates and G = KAK.

Proof. Assume G is a classical group, say G ⊂ GL(C, n) and θ is Inverse conjugate transpose. Then
there is a unique polar decomposition g = k exp(X) with k unitary and X Hermitian (exp is surjective
on the positive definite Hermitian matrices since it is on diagonal matrices). Now k̄T = k−1, X̄T = X

θ(g) = k exp−X, θ(g)−1g = exp 2X

which implies expX ∈ G (using the fact that if expX in a algebraic group then X is in the Lie algebra).
Since g ∈ G, also k ∈ G ∩U(n) = K is compact. We see that K must be maximal, since else it contains
an element of exp p but any non-trivial element gives an unbounded subgroup.

Given a, a′ take Z,Z ′ such that no root Σa resp. Σa′
vanishes. Consider the curve

K 3 k 7→ B(Adk Z,Z
′)

. Let k ∈ K be the minimum (which exists by compactness of K). Its derivative,

B(adH Adk Z,Z
′) = B([Adk Z,Z

′], H) = 0

for H ∈ k vanishes, but B(H,H) < 0 for any H ∈ k, and thus [Adk Z,Z
′] = 0. Since Z ′ has non-trivial

projection to any ga
′

λ , Adk Z ∈ ga
′

0 . Since g0 = a ⊕ m, m < k ⊥ p and as Adk Z ∈ p, Adk Z ∈ a′.
By symmetry of the argument, Adk Z ∈ a′. Note also Zg(Z) = Zg(a) generates the centralizer by
construction. But a′ commutes now with Z implying that a′ < Adk a, and by maximality they are equal.

KAK follows from the previous statements.

Theorem 2.14. Let σ be an involution of G with affine symmetric group H and giving rise to g = h⊕q.
Let θ be a commuting Cartan decomposition with symmetry group K giving rise to g = k⊕p. Let a ⊂ p∩q
be a maximal abelian subspace, A = exp a. Then G ⊂ HAK

Proof Sketch. Step 1: (X,Y, k) 7→ expX expY k from (p ∩ h) × (p ∩ q) ×K to G is a local diffeo onto.
Diffeo by local dimensions argument. Assuming a decomposition g = expX expY k for the moment.
Since θ(g−1) = θ(k−1 exp−Y exp−X) = k−1 exp(Y ) exp(X), we have

gθ(g−1) = expX exp 2Y expX

We already know G = exp pK uniquely, and we want to assume g = expS for S ∈ p, in particular
θ(g−1) = g and the LHS is exp 2S Apply σ, to see (σ fixes h thus X)

exp 2σ(S) = expX exp−2Y expX.
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Combining both gives
exp 2σ(S) = exp 2X exp−2S exp 2X

and thus
exp−S exp 2σ(S) exp−S = (exp−S exp 2X exp−S)2

which we may rewrite as
exp 2X = expS expT expS

with
exp 2T = exp−S exp 2σ(S) exp−S

These formulas show that X and Y are uniquely determined, and how to construct them given g.
We reduce to show
Step 2: exp p ∩ q ⊂ HAK.
Define g0 = k0 ⊕ p0 = (k ∩ h)⊕ (p ∩ q). By the bracket relations of involution, it is a sub lie algebra.

Since σ and θ commute, θ preserves the eigenspace decomposition with respect to σ, and thus preserves g0

but also the decomposition g0 = k0⊕p0 (σ acts by ±1, so any intersection of an eigenspace is preserved).
The associated Lie group G0 is by definition reductive, and again allows a K0A0K0 decomposition where
A0 = A and K0 = H ∩K. We now conclude that exp p ∩ q ⊂ G0 ⊂ HA0K.

The maps adZ for Z ∈ a are commuting, and as remarked before, selfadjoint with respect to Bθ.
Introduce the dual a∗ and for λ ∈ a∗,

gλ = {X ∈ g : adZ(X) = λ(Z)X for all Z ∈ a}

Let Σ consists of all λ 6= 0 with gλ, the set of restricted roots. Having chosen a basis on a∗, one might
introduce an ordering on Σ let Σ+ be the posititve restricted roots. A root in Σ+ is called simple if it
cannot be written as sum as any other two. Remark: Given a basis of a∗ coming from elements of Σ,
then these are simple with respect to some choice of Σ+ if any other root in Σ can be expressed in either
all positive or all negative integer coefficients.

Example 2.15. Let Eij be the elementary matrices in sln(R) and Z = diag (h1, . . . , hn) ∈ a then
adZ(Eij) = (hi − hj)Eij . Let ej ∈ a∗ by ej(H) = hj , then ei − ej are precisely such λ for which gλ 6= 0
forming Σ. Taking the order induced from e1, . . . , en, a root is positive if the first coefficient is positive
in that basis (so that e1− en is the largest posititve root and en−1− en the smallest), and ei− ei+1 form
a base of simple positive roots.

Theorem 2.16. • g = g0 ⊕
∑
λ∈Σ gλ (orthogonal sum)

• [gλ, gµ] ⊂ gλ+µ

• θgλ = g−λ and hence λ ∈ Σ implies −λ ∈ Σ. Same for σ.

• gλ ⊥ gµ with respect to Bθ

We study now the Lie subalgebra of g,

n =
∑
λ∈Σ+

gλ

Theorem 2.17. Assume for the moment that σ = θ. Then the above theorem can be extended to say

g0 = a⊕m

and the Iwasawa decomposition:
g = k⊕ a⊕ n

and K ×A×N → G is a diffeo onto.

Proof. Any X ∈ l has non-zero projection to m or
∑

Σ+ g−λ together with g = n+g0 + n̄ making k+a+n
a direct sum. It is everything since

a + m + (n + n̄) 3 Z +X0 +
∑

Xλ = (X0 +
∑

(X−λ + θX−λ) + Z +
∑

(Xλ − θX−λ) ∈ k + a + n

For the group level one uses that if g = s⊕ t of two subalgebras then the differential of the multiplication
map vanishes nowhere. The image is closed since K is compact and AN are closed (for any subsequence,
take a subseqeuence where the K part converges, then take limit in AN , still of product form). The
image is also open. Thus everything. Now also multiplication from A×N to AN is smooth and onto.
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Definition 2.18. The hyperplanes in a ' a∗ defined by kerλ cut a into finitely many open regions {C}
called Weyl chambers. For any set of simple roots ∆ ⊂ Σ there is a unique C∆ defined by the intersection
of the half-spaces λ > 0 in a where λ ∈ ∆, and Σ+

∆ denotes the positive roots with respect to ∆, i.e.
those λ for which λ(W∆) > 0. Denote by n∆ =

∑
λ∈Σ+

∆
gλ and

N∆ =< exp n∆ >, A∆ = exp C∆

Any Weyl chamber contains exactly one root, the maximal element with respect to the ordering.

Example 2.19. Picture of triangulation of equilateral triangles coming from A2. If α, β are two simple
roots α+ β is maximal and contained in the cone of the corresponding Weyl chamber. It is the highest
weight of the adjoint representation.

Proposition 2.20. There exists a a shrinking family of open neighborhoods Nε of e ∈ N∆ invariant
under conjugation by A∆, i.e. for any open e ∈ U there is Vε ⊂ O with

e ∈ a−1Vεa ⊂ Vε ⊂ U

for any a ∈ A∆

Proof. Let X =
∑
λ∈Σ+ xλXλ ∈ n where Xλ spans the one-dimensional space gλ. Let ca : N → N the

conjugation map n 7→ ana−1, its derivative acts on n by Ad(a) : n → n which is related the previous
adjoint action by Ad(expZ) = exp(adZ), and so Ad(a−1)Xλ = exp(−λ(Z)) for a = expZ ∈ A∆,

Ad(a−1)X =
∑
λ∈Σ+

xλ exp(−λ(Z))Xλ ∈ n

and we see that a−1 contracts as λ(Z) > 0. Take Vε to be a product neighbourhood.

Theorem 2.21. Let M = ZK(A), then H ×M ×A×N → G is open in a neighborhood of the identity
in G.

Proof. It suffices to show h+m+ a+ n = g. We have g = n⊕ g0⊕ n̄. We decompose any X with respect
to that decomposition and thus assume X ∈ n̄ ⊕ g0. For the n̄ part we observe that also σ(gλ) = g−λ
since

[Z, σ(X)] = σ([σ(Z), X] = −σ([Z,X] = −λ(Z)σ(X)

for X ∈ gλ and X + σ(X) ∈ h.
Thus for any X ∈ n̄ = ⊕λ∈Σ+g−λ,

X = (X + σ(X))− σ(X) ∈ h⊕ n.

It remains to show g0 ⊂ m + a + h.
Remark: If σ = θ, i.e. a maximal in p, we have g0 = a⊕m (orthogonal sum) where m = Zk(a). Since

a in general smaller, g0 is larger and the claim is that the new contribution is along h.
Both θ and σ preserve g0 by the same calculation we just did, in particlar we have a direct sum

decomposition of g0 (given by 2X = X + σ(X) +X − σ(X) and in particular both parts are in g0). For
θ we have in fact k⊕ p with respect to Bθ giving

g0 = k ∩ g0 ⊕ p ∩ g0

which respects θ.
We see that by definition of m, k ∩ g0 = m. (k ∩ g0 consists of the kernel of ada contained in k.)
Now we also decompose p ∩ g0 = p ∩ h ∩ g0 + p ∩ q ∩ g0 and p ∩ g0 < h + a follows if p ∩ q ∩ g0 < a.

But any X ∈ g0 commutes with a, which as chosen maximal abeliean in p ∩ q, in particular contains
p ∩ q ∩ g0.
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3 Wavefront Lemma

Theorem 3.1. For any open neighbourhood U of e ∈ G there is V ⊂ G open such that

HV g ⊂ HgU

for all g ∈ AK.

Proof. Assume first that g ∈ A. Then g ∈ exp(C̄) for some Weyl chamber. Let N be the corresponding
unipotent subgroup, with a contraction invariant neighborhoods VN . We also let VM , VA, neighbourhoods
in M and A and put V = HVMVAVN a neighbourhood of G by HMAN decomposition, by which we
may also assume that VMVAVN ⊂ U

HV g = HVMVAVNg = HgVMVA(g−1VNg) ⊂ HgVMVAVN ⊂ HgU

This V = VC depends on the Weyl chamber, and we take the intersection of all of them.
For general g = ak, we may choose that U ′ ⊂ U which is K-conjugation invariant and take V coming

the above construction for a. Then

HV g = HV ak ⊂ HaU ′k = Hakk−1U ′k = Hgk−1U ′k ⊂ HgU

4 Equidistribution

Let Γ < G be a lattice and let X = Γ\G. We assume that Γ projects densely onto G/G′ for any G′

normal noncompact Liegroup G′ ⊂ G. This implies that L2(X) does not contain non-trivial Gi-invariant
vectors for any i, and therefore, by Howe-Moore,

Theorem 4.1. The action of G on X is mixing, that is for any α, β ∈ L2(X),

ˆ
X

α(xg)β(x)dx→ 1

m(X)

ˆ
X

α

ˆ
X

β

Assume that H is such that Γ ∩ H intersects H in a lattice. Then ΓH is a closed orbit of finite
volume, naturally identified with Γ∩H\H of measure m(Y ) induced by a fixed Haar measure on H. We
may push these measures to measures on ΓHg.

Theorem 4.2. The translates Y g, Y = ΓH become equidistributed in X as Hg →∞ in H/G:

1

m(Y )

ˆ
Y g

α(y)dy → 1

m(X)

ˆ
X

α(x)dx.

for any α ∈ Cc(X).

Proof. Let Hgn →∞ in H\G, gn ∈ AK. Let (U, ε) such that α(gu) is ε-close to α(g) fpr all u ∈ U . By
the wave front lemma, there is HV g ⊂ HgU for all g in AK and by mixing,

1

m(Y V )

ˆ
Y V gn

α(g)dg =
1

m(Y V )

ˆ
Γ\G

χY V (g)α(ggn)dg → 1

m(X)

ˆ
X

α(g)dg.

The LHS is a convex combination of the integrals

1

m(Y )

ˆ
Y gnu

α(h)dh

which are ε-close to 1
m(Y )

´
Y gn

α(h)dh.
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5 Counting

Theorem 5.1.
|{M ∈ Matdd(Z)|detM = a, ‖M‖ ≤ R}| � caRd(d−1)

V = {M ∈ Matdd(R)|detM = a} = SL2(R) × SL2(R)/ SL2(R). Claim: V (Z) finite union of Γ =
SL2(Z) × SL2(Z)-orbits. Action of G × G on V by gMh−1. H = ∆G. The maximal abelian space a is
A′ = {(a, a−1)} ∈ A×A, and

G×G = (K ×K)A′H

Theorem 5.2. Va level set of the standard quadratic surface of signature (m,n), a ∈ Z and assume
V (Z) not empty then

|V (Z) ∩BVR | � caRm+n−2
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