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We first give a reminder of some basic concepts needed to state and prove
the main theorem.

Conditional Probability

Let (X,B, µ) be a probability space and A ⊂ B be a sub σ-algebra. The condi-
tional expectation is a continuous linear function:

E[∗|A] : L1(X,B, µ)→ L1(X,A, µ)

such that for every A measurable set A:∫
A

E[f |A]dµ =

∫
A

fdµ

Countably generated σ algebras

A σ-algebra A is called countably generated if it is generated by a countable
set, that is, A = σ({Ai}∞i=1). For every x ∈ X we define the A-atom of x to be:

[x]A =
⋂

x∈Ai⊂A
Ai =

⋂
x∈A⊂A

A

Notice that this definition does not depend on choice of generating set. Atoms
can be defined to any σ-algebra but being countably generated promises mea-
surability of atoms.

Example 1:
Every Borel σ-algebra in a separable metric space is countably generated by
rational size balls around dense countable set.

Example 2:
Let (X,B, µ, T ) be an invertible Ergodic probability space such that points have
zero measure. Then the sub σ-algebra E of T invariant sets is not countably
generated. To see this, assume by contradiction it is generated by a countable
collection {Ei}. For every i, Ei ∈ E so it is T invaraint. Since T is Ergodic
µ(Ei) ∈ {0, 1}. We take intersection of all Ei if µ(Ei) = 1 and X\Ei if µ(Ei) = 0
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to get a full measure set which is an atom [x]E . Notice that the orbit Ox of x is
T invariant hence Ox ∈ E and it contains x so [x]E ⊂ Ox. If y ∈ Ox then since
Ei are T invariant, y ∈ Ei iff x ∈ Ei thus y ∈ [x]E and Ox = [x]E . But an orbit
is at most countable so µ([x]E) ≤

∑∞
0 µ(x) = 0 which stands in contradiction

to [x]E having full measure.

Riesz representation theorem

If (X, d) is a compact Hausdorff space and ϕ is a functional in the dual space to
C(X) which is positive and with ||ϕ|| = 1 then exists a uniqe Borel probability
measure µ on X such that for every f ∈ C(X):

ϕ(f) =

∫
X

fdµ

Conditional measure

We can now state and prove the main result:

Theorem 1 (Conditional Measure). Let (X,B, µ) be a probability space with
(X,B) being a standard Borel space (Locally compact, second countable, metric)
and let A ⊂ B a sub-σ-algebra. Then there exists a subset X ′ ⊂ X of full
measure and Borel probability measures µAx for every x ∈ X ′ such that:

1. For every f ∈ L1(X,B, µ) we have E(f |A)(x) =
∫
f(y)dµAx (y) for almost

every x. In particular, the right-hand side is A-measurable as a function
of x.

2. If A and A′ are equivalent σ-algebras modulo µ, then we have µAx = µA
′

x

for almost every x.

3. If A is countably generated, then µAx ([x]A) = 1 for every x ∈ X ′ and for
x, y ∈ X ′ we have that [x]A = [y]A implies µAx = µAy .

4. The set X ′ and the map τ(x) = µA
′

x are A-measurable on X ′.

Moreover, the family of conditional measures µAx is almost everywhere uniquely
determined by its relationship to the conditional expectation described above.
Notice that the full measure set X ′ is not uniquely determined.

Proof: Since X is a Borel space we may take its compactization and assume
it is compact. The space C(X) of continuous functions on X is seprable. We
choose a countable dense subset {f0 = 1, f1, f2...} which gives rise to a Q-vector
space.
Set g0 = f0 and gi = E[fi|A]. For every i, j, k and every α, β ∈ Q we can find
a null set Ni,j,k,α,β such that:

• If α ≤ fi ≤ β for all x ∈ X then α ≤ gi(x) ≤ β for all x outside the null
set.
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• If αfi + βfj = fk then αgi + βgj = gk

This is true since otherwise we could find a A-measurable set that gi and fi do
not almost agree on. By taking countable union we get a full measure set X ′

that the two conditions hold on for every i, j, k, α, β. So for all x ∈ X ′ we have
a continuous positive linear functional Lx(fi) = gi(x) from C(X) to R of norm
||Lx|| ≤ 1. Since Lx(f0) = 1 we get ||Lx|| = 1 and so by Riesz representation
theorem exists a measure µAx characterized by µAx (f) = E[f |A](x). In particular
the function x→ µAx (f) is measurable for every f ∈ C(X). The result can then
be extended to all integrable functions using standard monotone convergence
arguments, which concludes (1). This result immediately implies (4) since a
countable base to the weak* topology is given by preimages of continuous func-
tions integrals.

Let A1,A2 be two equivalent σ-algebras mod µ and let f ∈ C(X). We take
common refinement A0 such that both Ai ⊂ A0. Notice that Ai and A0 are
equivalent as well. E[f |Ai] isA0-measurable and for any f ∈ C(X) and A0 ∈ A0

the characterizing property holds:∫
A0

E[f |Ai] =

∫
Ai

E[f |Ai] =

∫
Ai

f =

∫
A0

f

Where Ai ∈ Ai such that µ(A04Ai) = 0. So E[f |A1], E[f |A2] are two versions
of E[f |A0] and thus are equivalent a.e. We may now repeat the previous tech-
nique used to prove existence, leaving out countable null sets, and construct two
measure µA1

x , µA2
x which are equal almost everywhere.

Suppose A = σ({A1, A2, ...}) is countably generated. For every i since 1Ai

is A-measurable we get 1Ai(x) = E[1Ai |A] = µAx (Ai), thus for almost ev-
ery x, if x ∈ Ai we get µAx (Ai) = 1. We may take a countable intersec-
tion of full measure set to make sure this holds for all i togather and then
µAx ([x]A) = µAx (

⋂
x∈Ai

Ai) = 1 for almost every x ∈ X. Let x, y ∈ X ′ such that

[x]A = [y]A. For every f ∈ C(X) the function τ(x) = µAx (f) is measurable.
then for every f , x ∈ τ−1(µAx (f)) hence [x]A ⊂ τ−1(µAx (f)) and since y ∈ [x]A
we get that µAx (f) = µAy (f). This holds for every f ∈ C(X) which implies

µAx = µAy .

Countably equivalent σ-algebras

We say two countably generated σ-algebras A1,A2 on a space X are countably
equivalent if every atom of A1 can be covered by at most countably many atoms
of A2 and vice versa. When this is the case we get the following lemma:

Lemma: Let A1,A2 be two countably equivalent σ-algebras. Then for a.e.
x ∈ X:

µA1∨A2
x =

µA1
x |[x]A1∨A2

µA1
x ([x]A1∨A2

)
=

µA2
x |[x]A1∨A2

µA2
x ([x]A1∨A2

)
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Proof: Since A1 is countably equivalent to A2 if and only if A1 is countably
equivalent to A1 ∨ A2 it is enough to show that for two countably equivalent
A ⊂ A′:

µA
′

x =
µAx |[x]A′

µAx ([x]A′)

We first show that the RHS is well defined and A′ measurable and then that it
satisfies the characterizing property of the conditional measure.

Since A′ is countably generated we can take A′n = σ({A1, A2, ..., An}) ⊂ A′.
Consider E[1[x]A′

n
|A] = µAx ([x]A′

n
). Since [x]A′

n
↘ [x]A′ =

⋂
n[x]A′

n
we get

limn→∞ µAx ([x]A′
n
) = µAx ([x]A′). Since A ⊂ A′ the function is A′ measurable.

To show that the RHS is well defined we have to varify that the denominator is
non-zero almost everywhere, that is µ(Y ) = 0 for Y = {x : µAx ([x]A′) = 0}. We
first use total expectation µ(Y ) =

∫
µAx (Y )dµ(x). Since µAx ([x]A) = 1 and from

countable equivalence:

µAx (Y ) = µAx (Y ∩ [x]A) = µAx (
⋃
i∈I

[xi]A′ ∩ Y ) =
∑
i∈I

µAx ([xi]A′ ∩ Y )

So it is suffice to show that each term in the RHS summation is zero. If
[xi]A′ ∩ Y = ∅ this is obvious. Else exists y ∈ [xi]A′ ∩ Y . So [xi]A′ = [y]A′

and since y ∈ Y we get 0 = µAy ([y]A′) = µAy ([xi]A′). Since y ∈ [x]A as well we

get µAx = µAy thus µAx ([xi]A′) = 0.

Finaly, we show that the RHS satisfies the defining property of µA
′

x , that is

E[f |A′](x) =
µA
x |[x]A′

µA
x ([x]A′ )

(f). Let A ∈ A′ and f integrable:∫
A

∫
f(y)

µAx ([x]A′)
dµAx |[x]A′ (y)dµ(x) =

∫
A

1

µAx ([x]A′)

∫
f(y)dµAx |[x]A′ (y)dµ(x) =

∫
A

1

µAx ([x]A′)
E[1[x]A′ f |A]dµ(x) =

∫
A

1

µAx ([x]A′)
E[1[x]A′E[f |A′]|A]dµ(x) =∫

A

µAx ([x]A′)

µAx ([x]A′)
E[f |A′]dµ(x) =

∫
A

fdµ(x)
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