RATNER'S THEOREMS

1. Preliminaries, Formulations and Examples

Orbit Closure Theorem.

Theorem. Let $X = G/\Gamma$, where G is a connected Lie group and Γ a lattice in G. Let U be a connected subgroup of G generated by one-parameter unipotent subgroups. Then for any $x \in X$ there exist a subgroup H containing U such that $\overline{Ux} = Hx$ and Hx carries a finite H-invariant measure.

The space $X = G/\Gamma$.

- We can think of G as a (closed) group of matrices.
- Γ being a lattice means that it is discrete and X admits a G invariant probability measure.

Assume G acts transitively on a space X. Fix $x_0 \in X$, and let $\Gamma = \{g \in G : gx_0 = x_0\}$. Then

$$g\Gamma \mapsto gx_0$$

defines the orbit map, which gives a bijection between the space and the coset space, and so X is a manifold as the quotient of two Lie groups.

Example. Let $X = \mathcal{L}_n = \{$ covolume 1 lattices $\}$. A lattice is $\Lambda = \mathbb{Z}v_1 \oplus \cdots \oplus \mathbb{Z}v_n$ with v_i linearly independent and det $(v_1, \ldots, v_n) = \pm 1$. $G = SL_n(\mathbb{R})$ acts transitively on \mathcal{L}_n by multiplication on the vectors $\{v_1, \ldots, v_n\}$, and

$$\Gamma = \mathrm{SL}_n(\mathbb{Z}) = \{ g \in \mathrm{SL}_n(\mathbb{R}) : g\mathbb{Z}^n = \mathbb{Z}^n \}$$

and so we can identify the space of latticed \mathcal{L}_n with the quotient $\mathrm{SL}_n(\mathbb{R})/\mathrm{SL}_n(\mathbb{Z})$.

Remark. The conclusion Hx is closed (for some closed H) mean that $H/H_x \to X$ where $H_x = \{h \in H : hx = x\}$ then $hH_x \mapsto hx$ is a homeomorphism and H_x is a lattice in H.

The group U. Unipotent matrix: all eigenvalues are equal to 1.

Example. In $SL_2(\mathbb{R})$, consider the groups

$$A = \left\{ \left(\begin{array}{c} e^t \\ \\ \\ e^{-t} \end{array} \right) : t \in \mathbb{R} \right\}, \ U = \left\{ \left(\begin{array}{c} 1 & t \\ \\ \\ \\ 1 \end{array} \right) : t \in \mathbb{R} \right\}.$$

U is unipotent, A is not generated by unipotents.

In $G = SL_3(\mathbb{R})$ we could take for example the following groups U:

$$\left\{ \left(\begin{array}{ccc} 1 & t \\ & 1 \\ & & 1 \\ & & & 1 \end{array} \right) \right\}, \left\{ \left(\begin{array}{ccc} 1 & t & t^2/2 \\ & 1 & t \\ & & & 1 \end{array} \right) \right\}, \left\{ \left(\begin{array}{ccc} 1 & s \\ & 1 & t \\ & & & 1 \end{array} \right) \right\}, \left\{ \left(\begin{array}{ccc} A \\ & & \\ & & 1 \end{array} \right) : A \in \operatorname{SL}_2(\mathbb{R}) \right\}$$

Corollary of the orbit classification theorem. Let $X = \operatorname{SL}_2(\mathbb{R}) / \operatorname{SL}_2(\mathbb{Z})$ and let U as above. Then any orbit is either closed or dense.

Proof. This is because the only subgroups which contain U are G which would give the dense case and U which would give the closed case, and the upper triangular matrices which do not admit a lattice so by Ratner's Theorem is not possible.

Example. Here for groups which are not matrices: $G = \mathbb{R}^n$ and $\Gamma = \mathbb{Z}^n$, so $X = \mathbb{T}^n$. Let $U = \{tx : t \in \mathbb{R}\}$ for some fixed $x \in \mathbb{R}^n$. All U-orbits are tori of dimension $\dim_{\mathbb{Q}} (Span_{\mathbb{Q}} \{v_i\})$.

Measure Classification Theorem.

Definition. A Borel probability measure μ on X is homogeneous if μ is H- invariant and its support is a closed orbit of a point under H, that is $\sup \mu = Hx$ for some closed group $H \subset G$ and some $x \in X$.

Theorem. Let $X = G/\Gamma$, and U as above. Then for any U-inv. ergodic measure is homogeneous.

Genericity Theorem.

Definition. Let $U = \{u_s : s \in \mathbb{R}\}$ a one parameter group, μ a measure on $X, x_0 \in X$. We say x_0 is generic for μ if for any $f \in C_C(X)$ we have

$$\frac{1}{T} \int_0^T f\left(u_s x_0\right) ds \to \int_X f d\mu$$

Theorem. Let $X = G/\Gamma$ where G is a connected Lie group, Γ a lattice, and U is a one-parameter connected unipotent subgroup. Then any $x \in X$ is a generic point for some homogeneous measure on X.

Overall structure of argument:

- (1) Ratner proved the measure classification theorem (long hard part).
- (2) Genericity deduced by measure classification.
- (3) Orbit closure deduced by genericity.

A couple of Lemmas - getting used to the definitions.

Definition. Let μ be an ergodic Borel probability measure on $X = G/\Gamma$. The stabilizer of μ is

stab
$$(\mu) := \{g \in G : \text{ the action of } g \text{ on } X \text{ preserves } \mu\}.$$

Lemma. stab (μ) is a closed subgroup of G and therefore a Lie group.

Proof. Let g_n be a sequence in G such that all g_n preserve μ and assume $g_n \to g$. We have to show that g preserves μ . By the Riesz representation theorem, g preserves μ if for for any $f \in C_C(X)$ we have

$$\int_{X} f(gx) d\mu = \int_{X} f(x) d\mu$$

For every point $x \in X$, since $g_n x \to gx$ and f is continuous, we have $f(g_n x) \to f(gx)$. By the Lebesgue dominated convergence theorem

$$\int_{X} f(g_n x) \, d\mu \to \int_{X} f(g x) \, d\mu$$

But for all $n \in \mathbb{N}$, since g_n preserves μ ,

$$\int_{X} f(g_n x) d\mu = \int_{X} f(x) d\mu,$$

so the sequence is a constant sequence and

$$\int_{X} f(gx) \, d\mu = \int_{X} f(x) \, d\mu.$$

So stab (μ) is a closed subgroup of a Lie group. By the closed subgroup theorem it is also a Lie group. \Box

Recall that μ is homogeneous if it is H- invariant and supported on a closed orbit of H, for some closed subgroup H.

Lemma. μ is homogeneous if and only if it is supported on one orbit of stab (μ).

Proof. Since stab (μ) is closed, if we assume that μ is supported on one orbit of stab (μ) , then by definition μ is homogeneous with $H = \text{stab}(\mu)$.

Assume now that μ is homogeneous, so it is *H*-invariant for some closed *H*, and therefore $H \subset \operatorname{stab}(\mu)$. In addition $S = \operatorname{supp} \mu = Hx$ for some $x \in X$, and so H acts transitively on S. Since H acts transitively on S so does stab (μ) , and since stab (μ) preserves S by definition, this means that S is one orbit under $\operatorname{stab}(\mu).$

2. The CASE
$$X = \operatorname{SL}_2(\mathbb{R}) / \operatorname{SL}_2(\mathbb{Z})$$

From here on $G = \operatorname{SL}_2(\mathbb{R})$ and $\Gamma = \operatorname{SL}_2(\mathbb{Z})$, and $X = G/\Gamma$ is the space of lattices \mathcal{L}_2 . Let

$$u_t = \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right)$$

The group $U = \{u_t : t \in \mathbb{R}\}$ is unipotent and acts on \mathcal{L}_2 . We wish to classify the U-inv. measures on \mathcal{L}_2 .

Lemma. For $L \in \mathcal{L}_2$, the U-orbit of L is closed is and only if L contains a horizontal vector.

Proof. Note that the action of U preserves the y-components and fixes horizontal vectors. Assume $v \in L$ is horizontal, then $v \in u_t L$ for all t and so $v \in \overline{UL}$. Let a matrix for L be

$$\left(\begin{array}{cc}a&c\\0&d\end{array}\right)$$

containing the horizontal vector (a, 0). All vectors in \overline{UL} have y-components that are multiples of d and the horizontal vectors in \overline{UL} are the same as those in L. We will show that the U-orbit is closed: Let $L' \in \overline{UL}$, then it can be represented by the matrix

$$\left(\begin{array}{cc} a & c' \\ 0 & d' \end{array}\right)$$

and since the covolume of the lattice is |ad| it follows that $d' = \pm d$ and without loss of generality we can assume d' = d, and since $d \neq 0$ then there is some t so that c' = c + td, and so $L' = u_t L \in UL$.

Assume now that L does not contain a horizontal vector, then it is generated by two vectors whose y-coordinates are incommensurable, and in particular L contains vectors with y-coordinates arbitrarily close to 0. Let $v_n \in L$ be primitive vectors with

$$0 < (v_n)_y < \frac{1}{n}.$$

Pick t so that $u_t v_n = (1, (v_n)_y)$ and find a second vector generating $u_t L$ so that it's x-coordinate is in [0, 1]. Its y-coordinate should be close to 1 because the lattice is o covolume 1. Let w_n be the sequence of such second vectors, then they are contained in compact set and therefore have a converging subsequence, and the sequence of pairs $(u_t v_{n_k}, w_{n_k})$ converges to a pair of generators for a lattice with the first coordinate horizontal, therefore $UL \neq \overline{UL}$.

Any closed U-orbit supports a U-invariant probability measure, and these measures are ergodic. Denote by ν the Haar measure on \mathcal{L}_2 . **Theorem.** Let μ be an ergodic U-invariant probability measure on \mathcal{L}_2 . Then either μ is supported on a closed orbit, or $\mu = \nu$.

Proof. Denote by \mathcal{L}'_2 the U-invariant set of lattices which contain a horizontal vector, then either $\mu(\mathcal{L}'_2) = 0$ or $\mu(\mathcal{L}'_2) = 1$.

Assume first $\mu(\mathcal{L}'_2) = 1$, and parameterize orbits in \mathcal{L}'_2 by a, which is the length of the primitive horizontal vector. Let $S_n \subset \mathcal{L}_2$ be the set of lattices with *a*-coordinate in [n, n + 1). Since S_n is *U*-invariant then $\mu(S_n)$ is 1 for some unique n. Further partitioning of this interval will determine a unique value of a, such that μ is supported on that particular orbit.

Assume now $\mu(\mathcal{L}'_2) = 0$. Let $f \in C_C(\mathcal{L}_2)$ and let $\varepsilon > 0$. We want to show that

$$\left|\int_{\mathcal{L}_2} f d\mu - \int_{\mathcal{L}_2} f d\nu\right| < \varepsilon.$$

Let

$$a_t = \left(\begin{array}{cc} e^t & 0\\ 0 & e^{-t} \end{array}\right), \quad v_t = \left(\begin{array}{cc} 1 & 0\\ t & 1 \end{array}\right).$$

A direct computation shows

$$a_t u_s a_t^{-1} = u_{e^{2t}s}, \ a_t v_s a_t^{-1} = v_{e^{-2t}s},$$

Consider the subgroups U as before, $V = \{v_t : t \in \mathbb{R}\}$ and $A = \{a_t : t \in \mathbb{R}\}$, so conjugation by a_t with t > 0 contracts V and expands U.

By uniform continuity of f, there exist neighborhoods of the identity $W'_0 \subset A$ and $W'_- \subset V$ such that for any $a \in W'_0$ and $v \in W'_-$ and any $L \in \mathcal{L}_2$

(2.1)
$$|f(vaL) - f(L)| < \frac{\varepsilon}{3} \quad (\forall L \in \mathcal{L}_2)$$

Before we continue we need the following definition of flowbox:

Definition. Let $W_+ \subset U$, $W_- \subset V$ and $W_0 \subset A$ be (images of) open intervals containing 0, that is the identity matrix. A subset of G of the form $W_-W_0W_+g$ for some $g \in G$ is called a flowbox, and it is an open set containing g which is isometric to $W_-W_0W_+$.

Definition. Let $\mathcal{L}_{2}(\varepsilon) \subset \mathcal{L}_{2}$ denote the set of lattices with shortest non-zero vector of length at least ε .

Theorem (Mahler compactness). For any $\varepsilon > 0$ the set $\mathcal{L}_2(\varepsilon)$ is compact.

Let W_-, W_0, W_+ be small enough so that for all $g \in G$ with $\pi(g) \in \mathcal{L}_2(\varepsilon)$, where $\pi : G \to \mathcal{L}_2$ is the natural projection, the restriction of π to the flowbox $W_-W_0W_+g$ is injective (such flowbox exists because of compactness of $\mathcal{L}_2(\varepsilon)$). We can also assume $W_0 \subset W'_0$ and $W_- \subset W'_-$. Denote $\delta = \nu(W_-W_0W_+)$. **Lemma.** Let $\phi_t : X \to X$ be a flow preserving an ergodic probability measure μ , and let $f \in L^1(\mu)$. For any $\varepsilon > 0$ and $\delta > 0$ there exists $T_0 > 0$ and a set E with $\mu(E) < \varepsilon$ such that for every $x \notin E$ and any $T > T_0$ we have

$$\left|\frac{1}{T}\int_{0}^{T}f\left(\phi_{t}\left(x\right)\right)dt-\int_{X}fd\mu\right|<\delta.$$

Proof. Let E_n be the set of $x \in X$ such that for some T > n

$$\left|\frac{1}{T}\int_{0}^{T}f\left(\phi_{t}\left(x\right)\right)dt-\int_{X}fd\mu\right|\geq\delta$$

then by Birkhoff ergodic theorem

$$\frac{1}{T}\int_{0}^{T}f\left(\phi_{t}\left(x\right)\right)dt\rightarrow\int_{X}fd\mu$$

almost everywhere and so $\mu(\cap E_n) = 0$. Therefore for some *n* we have $\mu(E_n) < \varepsilon$, and we take $T_0 = n$ and $E = E_n$.

Since the flow by U is ergodic for the measure ν , the lemma implies that there exists a set $E \subset \mathcal{L}_2$ with $\nu(E) < \delta$ and $T_1 > 0$ so that or any interval I containing the origin and of length $|I| \ge T_1$ and any lattice $L' \notin E$,

(2.2)
$$\left|\frac{1}{|I|}\int_{I}f(u_{t}L')\,dt - \int_{\mathcal{L}_{2}}f\,dv\right| < \frac{\varepsilon}{3} \quad (\forall L' \notin E)\,.$$

On the other hand, applying Birkhoff's ergodic theorem to the measure μ , we have for μ -a.e $L \in \mathcal{L}_2$ and for some $T_2 > 0$ that for all intervals I containing the origin and of length $|I| \ge T_2$

(2.3)
$$\left|\frac{1}{|I|}\int_{I}f(u_{t}L)\,dt - \int_{\mathcal{L}_{2}}fd\mu\right| < \frac{\varepsilon}{3} \quad (\text{for }\mu \text{ almost every } L \in \mathcal{L}_{2})\,.$$

Lemma. There exists an absolute constant $\varepsilon > 0$ such that $L \in \mathcal{L}_2$ cannot contain two linearly independent vectors each of length less than ε . In addition, if $L \in \mathcal{L}_2$ does not contain a horizontal vector then there exists $t \ge 0$ so that $a_t^{-1}L \in \mathcal{L}_2(\varepsilon)$.

Proof. For any two linearly independent vectors v_1, v_2 in L we have

$$||v_1|| ||v_2|| \ge \operatorname{covolume} L = 1,$$

and so we can take $\varepsilon \leq 1$. Suppose L does not contain a horizontal vector and $L \notin \mathcal{L}_2(\varepsilon)$, then L contains a vector v of norm less than ε which is not horizontal. Note that a_t^{-1} stretches the second coordinate of v, so there exists a smallest t_0 so that $||a_{t_0}^{-1}v|| = \varepsilon$. For all $t \in [0, t_0)$, the lattice L contains no vectors shorter of ε except $a_t^{-1}v$ and possibly multiple of it, and so $a_{t_0}^{-1}L \in \mathcal{L}_2(\varepsilon)$. Since $\mu(\mathcal{L}'_2) = 0$, we may assume that L does not contain any horizontal vectors. By repeatedly applying the lemma we obtain t arbitrarily large with $a_t^{-1}L \in \mathcal{L}_2(\varepsilon)$. For such values of t consider

$$Q = Q(L) = a_t W_- W_0 W_+ a_t^{-1} L = \left(a_t W_- a_t^{-1}\right) W_0 \left(a_t W_+ a_t^{-1}\right) L$$

so when t is large, Q is long in the U direction and short in the A and V directions. Note that Q is a copy of a flowbox containing L and $\nu(Q) = \delta$.

Consider the foliation of Q by orbits of U. For $\tilde{L} \in Q$ let $I\left(\tilde{L}\right)$ be the connected component containing the origin of the set $\left\{t \in \mathbb{R} : u_t \tilde{L} \in Q\right\}$. Note that the length of $I\left(\tilde{L}\right)$ is just the length of W_+ multiplied by e^{2t} and is independent of the choice of $\tilde{L} \in Q$. For all large t we have $\left|I\left(\tilde{L}\right)\right| \geq \max\{T_1, T_2\}$. Note that $a_t W_- a_t^{-1} \subset W_- \subset W'_-$ and $W_0 \subset W'_0$ and applying equation 2.1 we have for any $\tilde{L} \in Q(L)$ with $L \in \mathcal{L}_2 \setminus \mathcal{L}'_2$

$$(2.4) \qquad \left| \frac{1}{\left| I\left(\widetilde{L}\right) \right|} \int_{I\left(\widetilde{L}\right)} f\left(u_t \widetilde{L}\right) dt - \frac{1}{\left| I\left(L\right) \right|} \int_{I(L)} f\left(u_t L\right) dt \right| < \frac{\varepsilon}{3} \quad \left(\forall \widetilde{L} \in Q\left(L\right), \ L \in \mathcal{L}_2 \backslash \mathcal{L}_2' \right).$$

Since $\nu(E) < \delta$ and $\nu(Q) = \delta$, there exists $\widetilde{L}' \in Q \cap E^c$, and so we obtain

$$\left|\int_{\mathcal{L}_2} f d\mu - \int_{\mathcal{L}_2} f d\nu\right| < \varepsilon.$$

from equations 2.2, 2.3 and 2.4.

We are now in the position to prove the orbit closure result:

Theorem. Let $L \in \mathcal{L}_2$. Then the U-orbit of L is either closed or dense.

Proof. Suppose UL is not closed, then as we have seen this means that $L \notin \mathcal{L}'_2$. We wish to show that UL passes through every open set $\widetilde{O} \subset \mathcal{L}_2$. Let O be an open subset of a compact subset $C \subset \widetilde{O}$. Let f be a uniformly continuous nonnegative function supported on C and equal to 1 on O, then

$$0 < \nu(O) \le \int_{\mathcal{L}_2} f d\nu \le \nu\left(\widetilde{O}\right),$$

and let $\varepsilon < \nu(O)$. As in the proof above, using equations 2.2 and 2.4, we can find an interval I such that

$$\left|\frac{1}{|I|}\int_{I}f\left(u_{t}L\right)dt-\int_{\mathcal{L}_{2}}fd\nu\right|<\varepsilon.$$

However, by the definition of f this is only possible if $f(u_t L)$ visits $O \subset \widetilde{O}$. Since \widetilde{O} was arbitrary we deduce that UL is dense in \mathcal{L}_2 .