RATNER’S THEOREMS

1. PRELIMINARIES, FORMULATIONS AND EXAMPLES

Orbit Closure Theorem.

Theorem. Let X = G/T', where G is a connected Lie group and T' a lattice in G. Let U be a connected
subgroup of G generated by one-parameter unipotent subgroups. Then for any x € X there exist a subgroup

H containing U such that Uz = Hx and Hx carries a finite H-invariant measure.

The space X = G/T.

e We can think of G as a (closed) group of matrices.

e I being a lattice means that it is discrete and X admits a GG invariant probability measure.

Assume G acts transitively on a space X. Fix zp € X, and let I' = {g € G : gzo = x0}. Then
gL' = gxo

defines the orbit map, which gives a bijection between the space and the coset space, and so X is a

manifold as the quotient of two Lie groups.

Example. Let X = £,, = {covolume1lattices}. A lattice is A = Zv; ® --- ® Zv,, with v; linearly
independent and det (vy,...,v,) = £1. G = SL,(R) acts transitively on £,, by multiplication on the
vectors {vy,...,v,}, and

I = SL,(Z) = {g € SLn(R) : gZ" = Z"}

and so we can identify the space of latticed £,, with the quotient SL,,(R)/SL,,(Z).

Remark. The conclusion Hz is closed (for some closed H) mean that H/H, — X where H, = {h € H : hx =z}

then hH, — hz is a homeomorphism and H, is a lattice in H.
The group U. Unipotent matrix: all eigenvalues are equal to 1.

Example. In SLs (R), consider the groups

A= cteRy, U= telR

U is unipotent, A is not generated by unipotents.
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In G = SL3(R) we could take for example the following groups U:
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Corollary of the orbit classification theorem. Let X = SLj (R) /SLy (Z) and let U as above. Then

any orbit is either closed or dense.

Proof. This is because the only subgroups which contain U are G which would give the dense case and
U which would give the closed case, and the upper triangular matrices which do not admit a lattice so

by Ratner’s Theorem is not possible. O

Example. Here for groups which are not matrices: G = R® and I' = Z", so X = T". Let U =

{tx : t € R} for some fixed x € R". All U-orbits are tori of dimension dimg (Spang {v;}).
Measure Classification Theorem.

Definition. A Borel probability measure p on X is homogeneous if p is H- invariant and its support is

a closed orbit of a point under H, that is suppp = Hz for some closed group H C G and some x € X.
Theorem. Let X = G/T, and U as above. Then for any U-inv. ergodic measure is homogeneous.
Genericity Theorem.

Definition. Let U = {us: s € R} a one parameter group, p a measure on X, o € X. We say zg is

generic for y if for any f € Ce (X) we have

}/Owasxo)dH/deu

Theorem. Let X = G/T' where G is a connected Lie group, T' a lattice, and U is a one-parameter

connected unipotent subgroup. Then any x € X is a generic point for some homogeneous measure on X .

Overall structure of argument:

(1) Ratner proved the measure classification theorem (long hard part).
(2) Genericity deduced by measure classification.

(3) Orbit closure deduced by genericity.
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A couple of Lemmas - getting used to the definitions.

Definition. Let p be an ergodic Borel probability measure on X = G/T". The stabilizer of p is
stab (u) := {g € G : theactionof gon X preserves u} .

Lemma. stab (u) is a closed subgroup of G and therefore a Lie group.

Proof. Let g, be a sequence in G such that all g, preserve u and assume g, — g. We have to show that

g preserves p. By the Riesz representation theorem, g preserves p if for for any f € Co (X) we have

/Xf(g:cmu:/Xf@)du.

For every point # € X, since g, — gz and f is continuous, we have f (¢g,z) — f (9z). By the Lebesgue

dominated convergence theorem
[ t@ydn [ 5igoan
X X

But for all n € N;| since g,, preserves u,

/Xf(gnfc)du=/xf(w)du,

so the sequence is a constant sequence and

/Xf(gx) dyi = /Xf(w) .

So stab (u) is a closed subgroup of a Lie group. By the closed subgroup theorem it is also a Lie group. O

Recall that p is homogeneous if it is H- invariant and supported on a closed orbit of H, for some closed

subgroup H.
Lemma. p is homogeneous if and only if it is supported on one orbit of stab (u).

Proof. Since stab (p) is closed, if we assume that u is supported on one orbit of stab (u), then by definition
uis homogeneous with H = stab (u).

Assume now that p is homogeneous, so it is H-invariant for some closed H, and therefore H C stab (u).
In addition S = suppyu = Hzx for some = € X, and so H acts transitively on S. Since H acts transitively
on S so does stab (1), and since stab (u) preserves S by definition, this means that S is one orbit under

stab (p). O
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2. THE CASE X = SLs (R) /SLy (Z)

From here on G = SLy (R) and T" = SLg (Z), and X = G/T is the space of lattices Lo. Let
Uy =

The group U = {u; : t € R} is unipotent and acts on L5. We wish to classify the U-inv. measures on Ls.
Lemma. For L € Ly, the U-orbit of L is closed is and only if L contains a horizontal vector.

Proof. Note that the action of U preserves the y-components and fixes horizontal vectors. Assume v € L

is horizontal, then v € u,L for all ¢ and so v € UL. Let a matrix for L be

containing the horizontal vector (a,0). All vectors in UL have y-components that are multiples of d and
the horizontal vectors in UL are the same as those in L. We will show that the U-orbit is closed: Let

L' € UL, then it can be represented by the matrix

a c

0 d

and since the covolume of the lattice is |ad]| it follows that d’ = +d and without loss of generality we can
assume d’ = d, and since d # 0 then there is some ¢ so that ¢ = ¢+ td, and so L' = u;L € UL.

Assume now that L does not contain a horizontal vector, then it is generated by two vectors whose
y-coordinates are incommensurable, and in particular L contains vectors with y-coordinates arbitrarily

close to 0. Let v,, € L be primitive vectors with

1
0 < (v —.
(Un), <

Pick t so that uv, = (17 (’Un)y) and find a second vector generating u;L so that it’s x-coordinate is
in [0,1]. Tts y-coordinate should be close to 1 because the lattice is o covolume 1. Let w, be the
sequence of such second vectors, then they are contained in compact set and therefore have a converging
subsequence, and the sequence of pairs (uvy, ,wy, ) converges to a pair of generators for a lattice with

the first coordinate horizontal, therefore UL # UL. (]

Any closed U-orbit supports a U-invariant probability measure, and these measures are ergodic. Denote

by v the Haar measure on L.



RATNER’S THEOREMS 5

Theorem. Let p be an ergodic U-invariant probability measure on Lo. Then either u is supported on a

closed orbit, or u = v.

Proof. Denote by L), the U-invariant set of lattices which contain a horizontal vector, then either u (£}) =
0or p(Ly) =1.

Assume first p (£5) = 1, and parameterize orbits in £/ by a, which is the length of the primitive horizontal
vector. Let S, C Lo be the set of lattices with a-coordinate in [n,n + 1). Since S,, is U-invariant then
1 (Sy) is 1 for some unique n. Further partitioning of this interval will determine a unique value of a,
such that p is supported on that particular orbit.

Assume now £ (£5) = 0. Let f € Ce (L2) and let € > 0. We want to show that

fdu—/ fdv| <e.
ﬁg £2
Let
et 0 1 0
ag = , Ut =
0 et t 1

A direct computation shows

—1 -1
AtUsQyp — = Ue2tg, AtVsUy = Ve—2tg,

Consider the subgroups U as before, V = {v; : t € R} and A = {a; : t € R}, so conjugation by a; with
t > 0 contracts V and expands U.
By uniform continuity of f, there exist neighborhoods of the identity W} C A and W’ C V such that for

any a € W, and v € W’ and any L € £,

€
(2.1) |f (val) — f(L)| < 3 (VL € L5).
Before we continue we need the following definition of flowbox:

Definition. Let W, Cc U, W_ C V and Wy C A be (images of) open intervals containing 0, that is the
identity matrix. A subset of G of the form W_WyW, g for some g € G is called a flowbox, and it is an

open set containing ¢ which is isometric to W_W,W..
Definition. Let £; (¢) C L2 denote the set of lattices with shortest non-zero vector of length at least .
Theorem (Mahler compactness). For any € > 0 the set Ly (€) is compact.

Let W_, Wy, W, be small enough so that for all g € G with 7 (g) € L2 (g), where 7 : G — Lo is the
natural projection, the restriction of 7 to the flowbox W_W,W_ g is injective (such flowbox exists because

of compactness of Lo (¢)). We can also assume Wy C W and W_ C W’. Denote § = v (W_WyW,).
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Lemma. Let ¢; : X — X be a flow preserving an ergodic probability measure u, and let f € L* (u). For
any e > 0 and § > 0 there exists Ty > 0 and a set E with u(F) < € such that for every x ¢ E and any

T > Ty we have

1 (T
f/ f(¢t(x))dt—/fdu <.
0 b's
Proof. Let E,, be the set of z € X such that for some T" > n
1 (T
T/ f(gbt(x))dt—/fdu >0
0 b's

then by Birkhoff ergodic theorem

r [ s [ i

almost everywhere and so p (NE,) = 0. Therefore for some n we have u (E,) < ¢, and we take Ty = n

and ¥ = FE,,. O

Since the flow by U is ergodic for the measure v, the lemma implies that there exists a set £ C Lo with
v (E) < § and T} > 0 so that or any interval I containing the origin and of length |I| > T; and any lattice
L' ¢ E,

(2.2) ’|}|/If(utL’) dt—/£2 Fdv

On the other hand, applying Birkhoff’s ergodic theorem to the measure p, we have for p-a.e L € Lo and

<§ VL' ¢ E).

for some T5 > 0 that for all intervals I containing the origin and of length |I| > T4

(2.3) ’|I| /f usL / fdu‘ < 3 (for palmost every L € L) .

Lemma. There exists an absolute constant € > 0 such that L € Lo cannot contain two linearly indepen-
dent vectors each of length less than €. In addition, if L € Lo does not contain a horizontal vector then

there exists t > 0 so that a; 'L € Lo (¢).
Proof. For any two linearly independent vectors v, vy in L we have
llo1]] |v2]| > covolumelL = 1,

and so we can take ¢ < 1. Suppose L does not contain a horizontal vector and L ¢ L5 (¢), then L contains
a vector v of norm less than ¢ which is not horizontal. Note that a; ' stretches the second coordinate of
v, so there exists a smallest ¢ty so that Hat_olvH =¢. For all t € [0,1p), the lattice L contains no vectors

shorter of & except a; v and possibly multiple of it, and so at_olL € Ly (e). O
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Since p (£4) = 0, we may assume that L does not contain any horizontal vectors. By repeatedly applying

the lemma we obtain ¢ arbitrarily large with a; 'L € L5 (¢) . For such values of ¢ consider
Q=Q(L)=aW_-WoWia; 'L = (a;W_a;") Wy (4Wsa; ") L

so when t is large, @ is long in the U direction and short in the A and V directions. Note that @ is a
copy of a flowbox containing L and v (Q) = ¢.

Consider the foliation of @ by orbits of U. For Le Qlet I (f) be the connected component containing
the origin of the set {t eER: wlL € Q} Note that the length of 1 (Z) is just the length of W, multiplied
by €% and is independent of the choice of Le Q. For all large t we have ‘I (Z)} > max {1y, T>}. Note
that a;,W_a;* € W_ € W’ and W, C W/, and applying equation 2.1 we have for any Le Q (L) with
L e Lo\L)

1 ~ 1 ~ ,
(2.4) ) /1 . 7 (wl) dt - T o £ o] < N R N A AVAY

Since v (E) < § and v (Q) = 8, there exists L' € Q N E*, and so we obtain

/ﬁzfdu—/ﬁzfdv

from equations 2.2, 2.3 and 2.4. |

<E.

We are now in the position to prove the orbit closure result:
Theorem. Let L € Lo. Then the U-orbit of L is either closed or dense.

Proof. Suppose UL is not closed, then as we have seen this means that L ¢ £,. We wish to show that
UL passes through every open set O C L,. Let O be an open subset of a compact subset C' C O. Let f

be a uniformly continuous nonnegative function supported on C' and equal to 1 on O, then

0<v(0) < £zfcwsV(é),

and let ¢ < v (O). As in the proof above, using equations 2.2 and 2.4, we can find an interval I such that

‘fﬂ/lf(utL)dt—/bfdy

However, by the definition of f this is only possible if f (u;L) visits O C O. Since O was arbitrary we

<e.

deduce that UL is dense in Ls. O



