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Abstract

We introduce the concepts if IFSes - Iterated Function Systems and the fractals they define. In

addition we shall introduce the concept of random walks on the space of lattices. Using a theorem

regarding equidistribution of the random walk trajectory for such cases (that we shall prove later on in

the seminar) and machinery from the previous meetings we will prove Diophantine results for these types

of fractals.

1 Definitions (IFSs)

Definition 1. (Similarity Map) A map φ : Rd → Rd is called a similarity map if:

φ (x) = cOx+ y (1)

Where O is a d × d matrix orthogonal with respect to the inner product, c ∈ R, c > 0 and y ∈ Rd. A

similarity map is called contracting if c < 1.

Definition 2. (IFS - Iterated Function System) An IFS is a collection of similarity maps, Φ = (φe)e∈E ,

where E is called the alphabet. We will later consider some probability measure on E, and denote it by µ.

An IFS is called strictly contracting if sup
e∈E
|φ′e| < 1, and finite if |E| <∞.

Definition 3. (Open Set Condition) An IFS Φ is said to satisfy the open set condition if ∃U ⊆ Rd open

such that (φe (U))e∈E is a disjoint collection of subsets of U .

Definition 4. (Irreducible IFS) An IFS Φ is irreducible if there is no affine proper subset L ( Rd such that:

φe (L) = L ∀e ∈ E (2)

Definition 5. B = EN, equipped with the measure β = µ⊗N. For b ∈ B we shall denote:

b1n = (bn, ..., b1) (3)

Definition 6. (Coding Map) The coding map of Φ shall be defined as π : B → Rd by:

π (b) = lim
n→∞

φb1n (α0) (4)

Where α0 ∈ Rd is an arbitrary fixed point and:

φb1n = φb1 ◦ · · · ◦ φbn (5)

We shall later see that this limit exists for our setting (which will require a few more assumptions on Φ).

Definition 7. (Limit Set) The image of B under the coding map π is called the limit set of Φ. We denote

it by K = K (φ)

Definition 8. (Compact similarity IFS) Let E be a compact set, and Φ = (φe)e∈E a family of continuously

varying similarities. Then Φ is a compact similarity IFS.
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Definition 9. (Contracting on Average) µ ∈ Prob (E) is contracting on average if:∫
log φ′e dµ (e) < 0 (6)

If µ is contracting on average then by the ergodic theorem, φ′b1n
→ 0 exponentially fast for β a.e. b ∈ B,

and so the limit in Definition 6 converges almost everywhere, thereby defining a measure preserving map

π : (B, β)→
(
Rd, π∗β

)
.

Notice that if we only have contraction on average (as opposed to a contracting IFS where all similarities

are contracting), π must not be continuous, but only measurable, and so the limit set from Definition 7 is

not necessarily compact.

Notice that in our more limited setting, of a finite strictly contracting IFS, π converges everywhere and

is continuous, and therefore the limit set K is compact.

Definition 10. (General Algebraic Self-Similar Measure) Let Φ be a compact, irreducible similarity IFS,

and fix µ ∈ Prob (E) contracting on average, such that supp (µ) = E. Then the Bernoulli measure π∗β is

called a general algebraic self-similar measure.

Note 1. From here on, in order to simplify the discussion, we will only consider the case where d = 1 and

O = 1.

Theorem 1. (SW - Theorem 8.9) If ν is a general algebraic self similar measure on R, then for ν-a.e.

α ∈ R, the forward orbit of the point α − bαc under the Gauss map is equidistributed with respect to the

Gauss measure (i.e. of generic type).

To simplify the discussion, we will prove the following, restricted result:

Theorem 2. Suppose ν is a general algebraic self similar measure on R, originating from a finite strictly

contracting IFS. Then for ν-a.e. α ∈ R, the forward orbit of the point α − bαc under the Gauss map is

equidistributed with respect to the Gauss measure (i.e. of generic type).

We will also prove a simpler result to begin with:

Theorem 3. Suppose ν is a general algebraic self similar measure on R, originating from a finite strictly

contracting IFS. Then for ν (BA) = 0.

2 Examples

Some examples of fractals K that are relevant to our discussion:

• K = C, the Cantor set.

• K = C + x, a translate of the Cantor set. (This result is new in SW)

• K is the middle-ε Cantor set constructed by starting with the closed interval [0, 1] and removing at each

stage the open middle subinterval of relative length ε from each closed interval kept in the previous

stage of the construction, for some ε ∈ (0, 1). (This result is new in SW for ε /∈
{

1
3 ,

2
4 ,

3
5 , ...

}
)

• K is the limit set of the IFS: φ1 (x) = x
3 , φ2 (x) = 3+x

4 (This result is new in SW)

In addition, the framework in the paper expands in what we will see in the seminar, and handles fractals of

higher dimension such as K = C × C ⊆ R2.
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3 Random Walks

We will observe a Markov random walk on a space (X,B). In general, such a random walk determined by

the transition probabilities, P (A | x) from x into A ∈ B, or alternatively defined by a Borel map from X

to Prob (X), x 7→ Px. We will also be interested in space
(
XN,BN

)
the space of infinite sequences with

coordinates in X, which are called random paths or trajectories.

Given a sequence s ∈ XN, we will say that s = (x0, x1, ...) equidistributes in X with respect to the

measure m if the sampling measures:

1

N

N−1∑
n=0

δxi (7)

Converge to m as N →∞ in the weak-* topology. (δxi is the Dirac mass on X centered at xi).

In our seminar we will be interested in a more specific setting. As follows:

Notation 1. (Random walk setting)

• G = SL2 (R), Λ = SL2 (Z), X1 = G/Λ and x0 ∈ X1 corresponds to the coset of Λ.

• m is the measure on X derived from the Haar measure on G.

• E is a compact set, e 7→ ge is a continuous map from E to G and µ ∈ Prob (E) is a measure such that

supp (µ) = E. Sometimes we will choose to consider E ⊆ G, and then e = ge.

• Γ+ (resp. Γ) is the semigroup (resp. group) generated by {ge : e ∈ E}

• We denote B = EN. For b = (e1, e2, ...) ∈ B and n ∈ N, gbn1 denotes the product gen · · · ge1 . B is

equipped with the measure β = µ⊗N, and T : B → B is the left shift. Similarly we denote by B̄ = EZ

and β̄ = µ⊗Z

The transition probabilities are determined by µ in the following manner: Px is the pushforward of µ

under the map e 7→ gex, where ge is the corresponding element in G. I.e.:

Px (A) =

∫
G

1A (gex) dµ (e) (8)

Theorem 4. (SW - Theorem 1.1) Take E = {1, ..., t}. For each i ∈ E, fix di > 1, hi ∈ R and let:

gi =

[
di hi
0 d−1i

]
∈ G (9)

And assume that h1 = 0, and some hi 6= 0. Fix p1, ..., pt > 0 with
∑t
i=1 pi = 1, and let µ =

∑t
i=1 piδi, where

δi is the Dirac mass on E centered at i. Then for any x ∈ X, and for β a.e. b ∈ B the sequence:(
gbn1 x

)
n∈N

(10)

Equidistribues in X with respect to m.

Notation 2.

at =

[
et 0

0 e−t

]
, uα =

[
1 −α
0 1

]
(11)

And A = {at : t ∈ R} , U = {uα : α ∈ R} , P = AU . Notice that P < G, and A normalizes U .

A more refined version of the Theorem 4 is:

Theorem 5. (SW - Theorem 10.1) Let µ be a probability measure with compact support E ⊆ G, that

satisfies:

1. supp (µ) ⊆ P , i.e. every g ∈ supp (µ) decomposes into: g = atguαg for some tg, αg ∈ R. We denote:

θ1 (g) = tg and θ2 (g) = αg.
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2. The function θ1 : P → R satisfies:

c1
def
=

∫
P

θ1 (g) dµ (g) > 0 (12)

3. The Lie algebra of Γ contains V +, the Lie algebra of U .

Then for all x ∈ X:

1. Γ+ is dense in X.

2. For β-a.e. b ∈ B, the random walk trajectory:(
gbn1 x

)
n∈N

(13)

Equidistribues in X with respect to m.

Theorem 6. (SW - Theorem 10.4) Fix x ∈ X and suppose that for β-a.e. b ∈ B the random walk trajectory(
gbn1 x

)
n∈N

is equidistributed in X with respect to m. Let Y be a locally compact topological space and let

f : B̄ → Y be a measurable transformation. Then for β̄-a.e. b ∈ B̄, the sequence:(
gbn1 x, f (Tnb)

)
n∈N

(14)

Equidistributes in X × Y with respect to m⊗ f∗β̄.

4 Connection Between IFSes and Random Walks - Original

For our proof, we would like to translate the language if IFSes into the language of random walks, so that

we can use Theorems 6 and 4 to prove Theorem 2. Note that if we wanted to prove Theorem 1, we will use

Theorem 5 instead of 4.

Therefore, given an IFS (φe)e∈E our objective is to translate the maps φe into elements ge ∈ G that act

on X. Specifically, we want them to be in upper triangular form, as that is the form we use in Theorems 4

and 5.

Notice that in the IFS setup, we were interested in φb1n , and in the homogeneous space we are interested

in the objects gbn1 . Therefore we would like the relation to be of the form ge = φ−1e , so that the coding map

agrees with the random walk, and we have gbn1 = φ−1b1n
. Therefore, we need to understand how to view the

similarity map as an element of G.

Notice that the elements of G = SL (2,R) can be views as Mobius transformations acting on the real line.

Specifically, the upper triangular matrices are exactly the group of similarity maps, as a matrix:

uαat =

[
1 −α
0 1

] [
et 0

0 e−t

]
=

[
et −e−tα
0 e−t

]
(15)

Defines the similarity map: φ (x) = etx−e−tα
e−t = e2tx− α. Therefore, for a similarity map φ (x) = cx+ b we

will need to take α = −b, t = 1
2 log c, so is represented by the element:

φ = u−ba 1
2 log c =

[
1 b

0 1

] [
c

1
2 0

0 c−
1
2

]
=

[
c

1
2 c−

1
2 b

0 c−
1
2

]
(16)

The corresponding group element for the random walk will be:

g = φ−1 =

[
c−

1
2 −c− 1

2 b

0 c
1
2

]
(17)

Example 1. We’ll observe the Cantor set C which is defined by the maps:

φ1 (x) =
x

3
, φ2 (x) =

2 + x

3
(18)

Here, the corresponding group elements will be:

g1 =

[√
3 0

0 1√
3

]
, g2 =

[√
3 −

√
3 2
3

0 1√
3

]
=

[√
3 − 2√

3

0 1√
3

]
(19)
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5 Common Steps in the Proof

Our objective is to show that for ν-a.e. α, α /∈ BA for 3 and that (Gn (α))n∈N equidistributes for Theorem

2. In a previous lecture we saw that this translates into the language of the diagonal flow {atuαx0 : t ≥ 0},
where α /∈ BA if and only if the trajectory is bounded, and is of generic type if and only if the trajectory

equidistributes in X with respect to m.

Denote by π+ (b) = π (b∞1 ). Therefore, by the definition of ν, if we must prove that for β̄-a.e. b ∈ B̄,

these properties hold for the trajectory
{
atuπ+(b)x0 : t ≥ 0

}
.

Observe our setup: We have a finite set E = {1, ..., t} indexing contracting similarity maps:

φi (x) = cix+ yi (20)

I.e. for all i ∈ E, 0 < ci < 1. We’ll denote the corresponding elements in G given by the translation above

(17) by {gi : i ∈ E}.
We first intend to apply Theorem 4 to show that for any x ∈ X, for β-a.e. b ∈ B the associated random

walk trajectory is equidistributed in X.

Note that replacing the elements gi by their pushforward under conjugation in G does not affect the valid-

ity of the conclusion, as if
(
gbn1 x

)
n∈N

is bounded or equidistributed, then so is
(
g0gbn1 x

)
n∈N

=
(
g0gbn1 g

−1
0 g0x

)
n∈N

which is the trajectory of g0x with respect to the conjugated elements
{
g′i = g0gig

−1
0 : i ∈ E

}
. Taking:

g0 =

[
1 γ

0 1

]
(21)

We’ll get:

g′1 = g0g1g
−1
0 =

[
1 γ

0 1

] [ 1√
c1
− y1√

c1

0
√
c1

] [
1 −γ
0 1

]
=

[
1√
c1
− y1√

c1
+ γ
√
c1

0
√
c1

] [
1 −γ
0 1

]
=

=

[
1√
c1
− γ√

c1
− y1√

c1
+ γ
√
c1

0
√
c1

]
=

[
1√
c1

(√
c1 − 1√

c1

)(
γ − y

c1−1

)
0

√
c1

]
(∗)
=

[
1√
c1

0

0
√
c1

]
(22)

Where (∗) will hold for the value: γ = y
c1−1 , which is well defined as c1 < 1.

Notice that we conjugated by an element uα ∈ U , so we so not affect the projection to A, and remain in

P . Therefore we have that the elements are of the form:

g′i =

[√
ci
−1 hi

0
√
ci

]
=

[
di hi
0 d−1i

]
(23)

Where by (22) we have that h1 = 0. Because φi are contracting, we have 0 < ci < 1, and so di =
√
ci
−1 > 1.

Therefore, g′i are of the form required in Theorem 4, and so we can apply the theorem, i.e. we have that for

every x ∈ X and β-a.e. b ∈ B the random walk trajectory
(
gbn1 x

)
n∈N

equidistributes in X.

6 Proof of Theorem 3

Denote:

• gn = gbn1 = atnuαn (as it is an element of P )

• βn = π+ (Tnb)

• hn = u−βnatnuπ+(b)
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Clearly hn, gn ∈ P and agree on their projections to A. On the other hand, observing their action on R as

Mobius transformations (where uα =
[
1 −α
0 1

]
, at =

[
et 0
0 e−t

]
encode the maps φuα (x) = x−α, φat (x) = e2tx):

h−1n (βn) = u−1π+(b)a
−1
tn u

−1
−βn (βn) = u−π+(b)a

−1
tn uβn (βn) = u−π+(b)a

−1
tn (0) = u−π+(b) (0) =

= π+ (b)
(∗)
= φb1n (βn)

(∗∗)
= g−1bn1

(βn) = g−1n (βn) (24)

Where (∗) is by the definition of the coding map (Definition 6):

π+ (b) = lim
N→∞

φb1N (α0) = lim
N→∞

φb1nφbn+1
N

(α0) = φb1n

(
lim
N→∞

φbn+1
N

(α0)
)

=

= φb1n

(
lim
N→∞

φTnb1N (α0)
)

= φb1n (π+ (Tnb)) = φb1n (βn) (25)

And (∗∗) is the relation between the similarity maps and their corresponding group elements (17). Therefore

the U element must be equal as well (the A element is equal and so they must have the same “c” if viewed as

similarity maps, and because they agree on a point they must have the same “y” as well, and so are equal).

Thus hnx0 = gnx0. Since Φ is strictly contracting, the limit K is compact, and so the sequence (βn)n∈N

is bounded. Therefore the distance from gnx0 = hnx0 = u−βnatnuπ+(b)x0 to atnuπ+(b)x0 (which is affected

by u−βn) is bounded by a number independent of n. In addition, the sequence (atn)n∈N has bounded gaps

in (at)t≥0 (each gap is determined by an ate factor of an element from {ge : e ∈ E}). So we have that:

(gnx0)n∈N is bounded⇔
(
atnuπ+(b)x0

)
n∈N

is bounded⇔
(
atuπ+(b)x0

)
t≥0 is bounded (26)

And therefore, as for β-a.e. b ∈ B the random walk trajectory
(
gbn1
)
n∈N

equidistributes in X, it is not

bounded, and so
(
atuπ+(b)x0

)
t≥0 is not bounded as well and π+ (b) /∈ BA.

7 Proof of Theorem 2

We shall now apply Theorem 6. The equidistribution above is the one required by the theorem. We will

choose Y = E × R and f : B̄ → Y to be f (b) = (b0, π+ (b)). Then by the theorem, for β̄-a.e. b ∈ B̄, the

sequence: (
gbn1 x0, f (Tnb)

)
n∈N

(27)

Equidistributes in X×Y with respect to m⊗ f∗β̄. Note that f∗β̄ = µ⊗ ν where ν = f∗β. Consider the map

f2 : X × Y → X × E define by:

f2 (x, (e, α)) = (uαx, e) (28)

Since f2 is continuous, the image of (27) under f2, i.e. the sequence:

(xn, bn)n∈N where xn = uπ+(Tnb)gbn1 x0 (29)

is equidistributed in X × E with respect to the measure (f2)∗
[
m⊗ f∗β̄

]
= m ⊗ µ (equality on the second

coordinate is clear, and the first is by left invariance of the Haar measure).

As in (24) here too we have gn = hn = u−π+(Tnb)atnuπ+(b). Substituting in (29) we get:

xn = uπ+(Tnb)gnx0 = uπ+(Tnb)u−π+(Tnb)atnuπ+(b)x0 = atnuπ+(b)x0 (30)

for all n ∈ N.

For each e ∈ E, let te ∈ R be such that πA (ge) = ate . Since πA is a homomorpism we have that

tn = tn−1 + tbn for all n ∈ N. Now let F : X → R be a bounded continuous function. Then the function

F ′ : X × E → R defined by the formula:

F ′ (x, e) =

∫ 0

−te
F (atx) dt (31)
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is also a bounded continuous function. We use the convention:
∫ b
a
F dt = −

∫ a
b
F dt. Since (xn, bn)n∈N from

(29) is equidistributed, plugging in (30) we get that:

∫
F ′ d (m⊗ µ) = lim

n→∞

1

n

n∑
i=1

F ′ (xn, bi) = lim
n→∞

1

n

n∑
i=1

F ′
(
atiuπ+(b)x0, bi

)
=

= lim
n→∞

1

n

n∑
i=1

∫ ti

ti−1

F
(
atuπ+(b)x0

)
dt

(∗)
=

(∫
te dµ (e)

)
lim
n→∞

1

tn

∫ tn

0

F
(
atuπ+(b)x0

)
dt (32)

where the equality (∗) is due to limit multiplication with
(∫
te dµ (e)

)
lim
n→∞

n
tn

= 1 which is due to lim
n→∞

tn
n =∫

te dµ (e). On the other hand:∫
F ′ d (m⊗ µ) =

∫ (
te

∫
F dm

)
dµ (e) =

(∫
te dµ (e)

)(∫
F dm

)
(33)

Since tn →∞ and the gaps tn+1 − tn (n ∈ N) are bounded, it follows that:

1

T

∫ T

0

F
(
atuπ+(b)x0

)
dt→

∫
F dm (34)

i.e. that
(
atuπ+(b)

)
t≥0 is equidistributed with respect to m. Notice that we have not used Theorem 5 in the

proof here. This theorem should be used instead of 4 when proving the more general result, Theorem 1. It is

required as it allows more general measures, coming from contracting on average, and not necessarily finite

IFSes.
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