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Introduction

Our settings are:

e (G is a second countable locally compact semigroup with underlying o-
algebra X and probability measure pu

e (B,%#,3,T) is the associated Bernoulli shift, meaning B = G+ is the
space of series with letters from G, Z = XN+ is the product o-algebra,
B = u®N+ is the product measure and T is a shift given by T'(by, b, b3, ...) =

(an b37 b47 )
e X is a compact metrizable topological space with Borel probability mea-
sure v.

e (G acts continuously on X and v is u stationary:

pkv = / gwvdp(g) =v
G

Which means that for an integrable function ¢:
pevlo)= [ [ elgniv@in) = [ plaldvia) =vle)
a¢Jx b'e

e We also make use of convolution power of y, that is u*™ = p* ... x u (n
times). more explictly, p*™ is a probability measure over G given by:

u*”(s@)=/G---/Gso(gl-.-gn)du(gl)---du(gn)

We first construct a family of probability measures 1, on X, where b € B, such
that limy, oo (b1...bp)«v = 1. Then we show some properties of v,. Prior to
proving the main results we state Doob martingale theorem which is a main
tool in this work. A detailed proof is given at the end of this document.



Doob martingale theorem

Let (2, 4, P) be a probability space. Let %,, C £ be an increasing sequence of
sub o-algebras and ,, be a martingale with respect to %,,, that is:

e 1, is %, measurable
o Eflyhn]] < o0
o Elpn|Brn1] =tn
If sup,,»; E[|$hn]] < oo then exists a P integrable function o, such that:

lim wn = woo

n—roo

Main Results

v, construction

First we define the filteration %, = o(by,...b,) the sub c-algebra generated
by the first n coordinate functions on B. We also define for a bounded Borel
function ¢ on X the function f? : B — R:

fe= /Xga(bl...bnz)du(x) = (b1...bn)v(p)

Notice that f¥ is a function of (by,...b,) so it is B, measurable and that ¢ is

bounded so sup, E[|f#|] < co. Finnaly, to see that E[fn,+1]|%,](b) = fn(b), we
choose arbitrary A € £,,:

/fn+1 // @(b1...bpq12)drv(z))dB(b) =

Define G(x) = (by...bya)

/A ( /X $(bnr2)d())dB(b) =

Using Fubini, the fact that u is probability measure over B and that A € £,
$0 bp+1(A) = G:

/// 1) (@) dpp(by g 1) dv (2)dp®" (b, ...by) =

And since v is p invariant:

// (@)du®" by, ..bn /fn

We conclude that f? is a martingale with respect to %,
By applying Doob martingle theorem to f? we promise existence to f¥ =



limy, o0 f¥ for f-a.e b € B. Since X is compact and metrizable we can find a
dense subset of bounded functions D C C°(X). We apply Doob to the functions
in D and by approximation deduce that for g-a.e b:

Vp = limp o0 (b1...b5 )V

We now prove three basic properties of v

v as avarage of v,

We show that v = fB vpdB(b). v is p-stationary, so for any n € N and bounded
 one has:

[ttt = [ szwase) = [ [ olbr iz -

Using similar reasoning to the previous section and the fact that v is u-stationary
we get:

/m 1/ / b @) dv () dp(by ) dp®" " (b, oy by 1) =

/G@m 1/ n 1 )du(x)du(@”*l(bl,...,bn_l) = (blbn_l)*l/(@)

We deduce that for any n € N:

/B FE(0)dBEb) = /X v

By taking limit on both sides and using dominated convergence theorem we
achieve the desired result hence the existence of equivalence in weak-* topology.

v, under Bernoulli shift

We show that v, = (b1)«vrp.
If 1, = p then for every continous ¢ since G acts continuously on X:

n—oo n— oo

i g.pa() =l [ elgo)dun(e) = lim [ Go)din (o) =

[ s@iut) = [ elgidn(e) = g.ue) = 9. im palie)
Using this the result follows directly from the definition of v:

vy = lim (by...by)«v = lim by, (bg....hp) v =

n—oo n—oo

bl* lim (bgbn)*l/ = bl*VTb

n— oo



Invariance of v,

We show that Vm € N for 8 ® p*™-a.e (b,g) € B x G one has

lim (by...bng)«v = vp

n— oo

Let ¢ € C°(X) and define ® : G — R by:

@(h)z/}((p(hx)du(x)

Also, define f¢ : B — R by fJ(b) = ®(b;...b,g). As before, since C°(X)
is seprable, it suffices to show for p*"-a.e ¢ € G and for f-a.e b € B that
limy, o0 [ £7(b) — fn(b)] = 0.

To see that, consider:

f—//w (b)2dB(b)d™ (g)

Notlce that fB fo(b fB bng)dB(b fG (hg)du*™(h) and fB fn(0)
[ ®( dB(b) = fG b*” h), so:
I —/ / |®(hg) — D(h)|*dp™ (g)dp*" (h) =

| [ @ha —20(0)90) + 902)a ™ ) 1)

We define J,, = [, ®(h)?dp*"(h) and see that:

/ / B(hg)2du*™ (g)dp™" (h) = / B(R) A () = Ty
GJa G

/ / )2dp™ (g)dp*™ (h) = /G Tndp™ (g) = J
L [ ataem = [ @) [ stadem @i m 2 [ seracm =,

Where 1 holds since p*™ is a probability measure and 2 holds since v is pu-
stationary so:

/ O(hg)du*™ (g / / (hgz)dv(z)dp*™ (g / / P(gx)dv(z)du* ™ (g) =
el

/X H@)dv(z) =x p(ha)dv(z) = B(h)

We conclude that I, = Jyqm — Jn. ||Jn|| is bounded by ||¢||o which implies
S I, < 00, 50 lim,, ,o I, = 0. The wanted result is then immidate.



Doob’s theorem proof

We prove the first part of the theorem under the assumption that the martin-
gale is uniformly L? bounded. This makes the theorem slightly weaker but it is
sufficient for our needs.

We start by proving the following lemma:

Lemma:
Let 1,, be a martingale with respect to %,, and € > 0. Then:

P( sup || > €) < e B[]
1<k<n

Proof:
We denote:

Ay = {W)l' <€, W12| <€ .., |wk| > Ea}

So it is enough to bound P(A) where A = U}!_, Aj. Using Chebyshev’s inequal-
ity and martingales properties:

A= P <
k=1

> P(Jnlla, =€) < Z El[x|14,]
k=1

Notice that 14, € P so Ypla, = [ nla, | Pr] so by total expectation
E[wklzﬁlk] = E[wn]lAk]:

=Y Bllgnlla,] < B[]
k=1

We assume sup, >, E[2] < co. for m < n:

E[wmwnfl] == ijmwm] = E[Wn]
So:
B[(Yn = ¥m)’] = E[¢n] - El¢r,]
This means that the sequence E[1)2] is non decreasing and therefore converging,
so 9, is Cauchy sequence in L? norm hence converging in L? norm to some

function 1.,. The convergence is L! as well.
Now, define the martingale f;! = 1, — . using the lemma we get:

£ = 2 Bllnsm—toml]

m 1
P( sup [Yrpm—bm| >€) = P( sup |fiT™>¢€) < —E[
1<k<n 1<k<n €



Taking n to oo gets us:

—_

P(Sup |¢k _¢m| > 6) < -
m<k €

E[W)oo - d’m”

Which tends to 0 as m goes to oo



