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Introduction

Our settings are:

• G is a second countable locally compact semigroup with underlying σ-
algebra Σ and probability measure µ

• (B,B, β, T ) is the associated Bernoulli shift, meaning B = GN+ is the
space of series with letters from G, B = Σ⊗N+ is the product σ-algebra,
β = µ⊗N+ is the product measure and T is a shift given by T (b1, b2, b3, ...) =
(b2, b3, b4, ...)

• X is a compact metrizable topological space with Borel probability mea-
sure ν.

• G acts continuously on X and ν is µ stationary:

µ ∗ ν =

∫
G

g∗νdµ(g) = ν

Which means that for an integrable function ϕ:

µ ∗ ν(ϕ) =

∫
G

∫
X

ϕ(gx)dν(x)dµ(g) =

∫
X

ϕ(x)dν(x) = ν(ϕ)

• We also make use of convolution power of µ, that is µ∗n = µ ∗ ... ∗ µ (n
times). more explictly, µ∗n is a probability measure over G given by:

µ∗n(ϕ) =

∫
G

...

∫
G

ϕ(g1...gn)dµ(g1)...dµ(gn)

We first construct a family of probability measures νb on X, where b ∈ B, such
that limn→∞(b1...bn)∗ν = νb. Then we show some properties of νb. Prior to
proving the main results we state Doob martingale theorem which is a main
tool in this work. A detailed proof is given at the end of this document.
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Doob martingale theorem

Let (Ω,B, P ) be a probability space. Let Bn ⊂ B be an increasing sequence of
sub σ-algebras and ψn be a martingale with respect to Bn, that is:

• ψn is Bn measurable

• E[|ψn|] <∞

• E[ψn|Bn−1] = ψn−1

If supn≥1E[|ψn|] <∞ then exists a P integrable function ψ∞ such that:

lim
n→∞

ψn
P−a.e

= ψ∞

Main Results

νb construction

First we define the filteration Bn = σ(b1, ...bn) the sub σ-algebra generated
by the first n coordinate functions on B. We also define for a bounded Borel
function ϕ on X the function fϕn : B → R:

fϕn :=

∫
X

ϕ(b1...bnx)dν(x) = (b1...bn)∗ν(ϕ)

Notice that fϕn is a function of (b1, ...bn) so it is Bn measurable and that ϕ is
bounded so supnE[|fϕn |] < ∞. Finnaly, to see that E[fn+1|Bn](b) = fn(b), we
choose arbitrary A ∈ Bn:∫

A

fn+1 =

∫
A

(

∫
X

ϕ(b1...bn+1x)dν(x))dβ(b) =

Define ϕ̃(x) = ϕ(b1...bnx)∫
A

(

∫
X

ϕ̃(bn+1x)dν(x))dβ(b) =

Using Fubini, the fact that µ is probability measure over B and that A ∈ Bn

so bn+1(A) = G:∫
Ā

∫
X

∫
G

(bn+1)∗ϕ̃(x)dµ(bn+1)dν(x)dµ⊗n(b1, ...bn) =

And since ν is µ invariant:∫
Ā

∫
X

ϕ̃(x)dν(x)dµ⊗n(b1, ...bn) =

∫
A

fn

We conclude that fϕn is a martingale with respect to Bn.
By applying Doob martingle theorem to fϕn we promise existence to fϕ =
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limn→∞ fϕn for β-a.e b ∈ B. Since X is compact and metrizable we can find a
dense subset of bounded functions D ⊂ C0(X). We apply Doob to the functions
in D and by approximation deduce that for β-a.e b:

νb = limn→∞(b1...bn)∗ν

We now prove three basic properties of νb

ν as avarage of νb

We show that ν =
∫
B
νbdβ(b). ν is µ-stationary, so for any n ∈ N and bounded

ϕ one has:∫
B

(b1...bn)∗ν(ϕ) =

∫
B

fϕn (b)dβ(b) =

∫
B

∫
X

ϕ(b1...bnx)dν(x)dβ(b) =

Using similar reasoning to the previous section and the fact that ν is µ-stationary
we get: ∫

G⊗n−1

∫
X

∫
G

ϕ(b1...bnx)dν(x)dµ(bn)dµ⊗n−1(b1, ..., bn−1) =

∫
G⊗n−1

∫
X

ϕ(b1...bn−1)(x)dν(x)dµ⊗n−1(b1, ..., bn−1) = (b1...bn−1)∗ν(ϕ)

We deduce that for any n ∈ N:∫
B

fϕn (b)dβ(b) =

∫
X

ϕdν

By taking limit on both sides and using dominated convergence theorem we
achieve the desired result hence the existence of equivalence in weak-∗ topology.

νb under Bernoulli shift

We show that νb = (b1)∗νTb.
If µn → µ then for every continous ϕ since G acts continuously on X:

lim
n→∞

g∗µn(ϕ) = lim
n→∞

∫
ϕ(gx)dµn(x) = lim

n→∞

∫
ϕ̃(x)dµn(x) =

∫
ϕ̃(x)dµ(x) =

∫
ϕ(gx)dµ(x) = g∗µ(ϕ) = g∗ lim

n→∞
µn(ϕ)

Using this the result follows directly from the definition of νb:

νb = lim
n→∞

(b1...bn)∗ν = lim
n→∞

b1∗(b2....bn)∗ν =

b1∗ lim
n→∞

(b2...bn)∗ν = b1∗νTb
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Invariance of νb

We show that ∀m ∈ N for β ⊗ µ∗m-a.e (b, g) ∈ B ×G one has

lim
n→∞

(b1...bng)∗ν = νb

Let ϕ ∈ C0(X) and define Φ : G→ R by:

Φ(h) =

∫
X

ϕ(hx)dν(x)

Also, define fgn : B → R by fgn(b) = Φ(b1...bng). As before, since C0(X)
is seprable, it suffices to show for µ∗m-a.e g ∈ G and for β-a.e b ∈ B that
limn→∞ |fgn(b)− fn(b)| = 0.
To see that, consider:

In =

∫
G

∫
B

|fgn(b)− fn(b)|2dβ(b)dµ∗m(g)

Notice that
∫
B
fgn(b)dβ(b) =

∫
B

Φ(b1...bng)dβ(b) =
∫
G

Φ(hg)dµ∗n(h) and
∫
B
fn(b) =∫

B
Φ(b1...bn)dβ(b) =

∫
G

Φ(h)dµb∗n(h), so:

In =

∫
G

∫
G

|Φ(hg)− Φ(h)|2dµ∗m(g)dµ∗n(h) =

∫
G

∫
G

(Φ(hg)2 − 2Φ(hg)Φ(h) + Φ(h)2)dµ∗m(g)dµ∗n(h)

We define Jn =
∫
G

Φ(h)2dµ∗n(h) and see that:∫
G

∫
G

Φ(hg)2dµ∗m(g)dµ∗n(h) =

∫
G

Φ(h)dµ∗(m+m)(h) = Jm+n∫
G

∫
G

Φ(h)2dµ∗m(g)dµ∗n(h) =

∫
G

Jndµ
∗m(g)

1
= Jn∫

G

∫
G

Φ(hg)Φ(h) =

∫
G

[Φ(h)

∫
G

Φ(hg)dµ∗m(g)]dµ∗n(h)
2
=

∫
G

Φ(h)2dµ∗n(h) = Jn

Where 1 holds since µ∗m is a probability measure and 2 holds since ν is µ-
stationary so:∫
G

Φ(hg)dµ∗m(g) =

∫
G

∫
X

ϕ(hgx)dν(x)dµ∗m(g) =

∫
G

∫
X

ϕ̃(gx)dν(x)dµ∗m(g) =

∫
X

ϕ̃(x)dν(x) =X ϕ(hx)dν(x) = Φ(h)

We conclude that In = Jn+m − Jn. ||Jn|| is bounded by ||ϕ||∞ which implies∑∞
In ≤ ∞, so limn→∞ In = 0. The wanted result is then immidate.
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Doob’s theorem proof

We prove the first part of the theorem under the assumption that the martin-
gale is uniformly L2 bounded. This makes the theorem slightly weaker but it is
sufficient for our needs.
We start by proving the following lemma:

Lemma:
Let ψn be a martingale with respect to Bn and ε > 0. Then:

P ( sup
1≤k≤n

|ψk| ≥ ε) ≤ ε−1E[|ψn|]

Proof:
We denote:

Ak = {|ψ1| < ε, |ψ2| < ε, ..., |ψk| ≥ ε, }
So it is enough to bound P (A) where A = ∪nk=1Ak. Using Chebyshev’s inequal-
ity and martingales properties:

P (A) =

n∑
k=1

P (Ak) ≤

n∑
k=1

P (|ψk|1Ak
≥ ε) ≤

n∑
k=1

ε−1E[|ψk|1Ak
]

Notice that 1Ak
∈ Bk so ψk1Ak

= E[ψn1Ak
|Bk] so by total expectation

E[ψk1Ak
] = E[ψn1Ak

]:

= ε−1
n∑

k=1

E[|ψn|1Ak
] ≤ ε−1E[|ψn|]

�

We assume supn≥1E[ψ2
n] <∞. for m < n:

E[ψnψm] = E[E[ψmψn|Bn−1]] = E[ψmE[ψn|Bn−1]] =

E[ψmψn−1] = ... = E[ψmψm] = E[ψ2
m]

So:
E[(ψn − ψm)2] = E[ψ2

n]− E[ψ2
m]

This means that the sequence E[ψ2
n] is non decreasing and therefore converging,

so ψn is Cauchy sequence in L2 norm hence converging in L2 norm to some
function ψ∞. The convergence is L1 as well.
Now, define the martingale fnm = ψn − ψm. using the lemma we get:

P ( sup
1≤k≤n

|ψk+m−ψm| ≥ ε) = P ( sup
1≤k≤n

|fk+m
m | ≥ ε) ≤ 1

ε
E[|fn+m

m |] =
1

ε
E[|ψn+m−ψm|]
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Taking n to ∞ gets us:

P ( sup
m≤k
|ψk − ψm| ≥ ε) ≤

1

ε
E[|ψ∞ − ψm|]

Which tends to 0 as m goes to ∞
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