UNDERSTANDING THE CROSS-SECTION MEASURES IN CASE I

Main Theorems

Let $m_{\mathscr{X}_d}, m_{\mathscr{E}_n}, m_{\widehat{\mathbb{Z}}_{\mathrm{prim}}^n}$ be Haar probability measures on $\mathscr{X}_d, \ \mathscr{E}_n, \ \widehat{\mathbb{Z}}_{\mathrm{prim}}^n$.

Theorem 1. For any norm $\|\cdot\|$ on \mathbb{R}^d there is a probability measure $\mu = \mu_{\text{best},\|\cdot\|}$ on $\mathscr{X}_d \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$ such that for Lebesgue almost any $\theta \in \mathbb{R}^d$, the following holds. Let $\mathbf{v}_k \in \mathbb{Z}$ be the sequence of best approximations to θ with respect to the norm $\|\cdot\|$. Then the sequence

$$([\pi_{\mathbb{R}^d}^{\mathbf{v}^k}(\mathbb{Z}^n)], \operatorname{disp}(\theta, \mathbf{v}_k), \mathbf{v}_k)_{k \in \mathbb{N}} \in \mathscr{X}_d \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$$

equidistributes with respect to μ . The measure μ has the following properties:

- (1) It is a product $\mu = \mu^{(\infty)} \times \mu^{(f)}$ where $\mu^{(\infty)} \in \mathcal{P}(\mathscr{X}_d \times \mathbb{R}^d), \ \mu^{(f)} \in \mathcal{P}(\widehat{\mathbb{Z}}^n).$
- (2) The measure $\mu^{(f)}$ is $m_{\widehat{\mathbb{Z}}^n_{nrim}}$ (and in particular, does not depend on the choice of the norm).
- (3) The projection $\mu^{(\mathscr{X}_d)}$ of $\mu^{(\infty)}$ to \mathscr{X}_d is equivalent to $m_{\mathscr{X}_d}$, but is equal to it only in case d = 1.
- (4) The projection $\mu^{(\mathbb{R}^d)}$ of $\mu^{(\infty)}$ to \mathbb{R}^d is boundedly supported, absolutely continuous w.r.t. Lebesgue with a nontrivial density (i.e., is not the restriction of Lebesgue measure to a subset of \mathbb{R}^d). If $\|\cdot\|$ is the Euclidean norm, then it is $SO_d(\mathbb{R})$ -invariant.
- (5) For d > 1, $\mu^{(\infty)} \neq \mu^{(\mathscr{X}_d)} \times \mu^{(\mathbb{R}^d)}$.

Furthermore, each of the coordinate sequences

$$\left(\left[\pi_{\mathbb{R}^d}^{\mathbf{v}^k}(\mathbb{Z}^n) \right] \right) \subset \mathscr{X}_d, \ (\operatorname{disp}(\theta, \mathbf{v}_k)) \subset \mathbb{R}^d, \ (\mathbf{v}_k) \subset \widehat{\mathbb{Z}}^n$$

equidistributes in its respective space, with respect to the pushforward of $\mu^{(\mathscr{X}_d)}, \mu^{(\mathbb{R}^d)}, \mu^{(f)}$ respectively.

Theorem 2. For any norm $\|\cdot\|$ on \mathbb{R}^d and any $\varepsilon > 0$ there is a probability measure $\nu = \nu_{\varepsilon-\operatorname{approx},\|\cdot\|}$ on $\mathscr{X}_d \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$ such that for Lebesgue almost any $\theta \in \mathbb{R}^d$, the following holds. Let $\mathbf{w}_k \in \mathbb{Z}$ be the sequence of best approximations to θ with respect to the norm $\|\cdot\|$. Then the sequence

$$([\pi_{\mathbb{R}^d}^{\mathbf{w}^k}(\mathbb{Z}^n)], \operatorname{disp}(\theta, \mathbf{w}_k), \mathbf{w}_k)_{k \in \mathbb{N}} \in \mathscr{X}_d \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$$

equidistributes with respect to μ . The measure μ has the following properties:

- (1) It is a product $\nu = \nu^{(\mathscr{X}_d)} \times \nu^{(\mathbb{R}^d)} \times \nu^{(f)}$ where $\nu^{(\mathscr{X}_d)} \in \mathcal{P}(\mathscr{X}_d), \ \nu^{(\mathbb{R}^d)} \in \mathcal{P}(\mathbb{R}^d), \ \nu^{(f)} \in \mathcal{P}(\widehat{\mathbb{Z}}^n).$
- (2) The measure $\nu^{(\mathscr{X}_d)}$ is $m_{\mathscr{X}_d}$ and the measure $\nu^{(f)}$ is $m_{\widehat{\mathbb{Z}}_{\text{prim}}^n}$ (in particular, these measures do not depend on the choice of ε or of the norm).
- (3) The measure $\nu^{(\mathbb{R}^d)}$ is the normalized restriction of the Lebesgue measure on \mathbb{R}^d , to the ball of radius ε around the origin with respect to the norm $\|\cdot\|$.

Furthermore, each of the coordinate sequences

$$\left(\left[\pi_{\mathbb{R}^d}^{\mathbf{w}^k}(\mathbb{Z}^n)\right]\right) \subset \mathscr{X}_d, \ (\operatorname{disp}(\theta, \mathbf{w}_k)) \subset \mathbb{R}^d, \ (\mathbf{w}_k) \subset \widehat{\mathbb{Z}}^n$$

equidistributes in its respective space, with respect to the pushforward of $\nu^{(\mathscr{X}_d)}, \nu^{(\mathbb{R}^d)}, \nu^{(f)}$ respectively.

Let $\mathbf{v} = (v_1, \ldots, v_n)^{\mathrm{t}} \in \mathbb{Z}_{\mathrm{prim}}^n$, then the maps $\pi_{\mathscr{X}_d}, \rho_{\mathscr{E}_n}, \rho_{\mathscr{X}_d}$ are defined as follows

$$\rho_{\mathscr{X}_d}(\mathbf{v}) = [\pi_{\mathbb{R}^d}^{\mathbf{v}}(\mathbb{Z}^n)],$$
$$\pi_{\mathscr{X}_d}(\Lambda) = \pi_{\mathbb{R}^d}(\Lambda),$$
$$\rho_{\mathscr{E}_n}(\mathbf{v}) \stackrel{\text{def}}{=} a_t u(v) \mathbb{Z}^n,$$

where

$$v = -\frac{1}{v_n} (v_1, \dots, v_d)^t,$$
$$u(v) = \begin{pmatrix} I_d & v \\ 0 & 1 \end{pmatrix}, \quad a_t = \operatorname{diag} \left(e^t, \dots, e^t, e^{-dt} \right),$$

where $t = \log |v_n|$.

The following diagram is commutative:

Set

$$H = \left\{ \begin{pmatrix} A & 0 \\ \mathbf{x}^{t-1} \end{pmatrix} \in \mathrm{SL}_n(\mathbb{R}) : A \in \mathrm{SL}_d(\mathbb{R}), \mathbf{x} \in \mathbb{R}^d \right\}.$$

Then the lattice \mathbb{Z}^n is contained in \mathscr{E}_n , the group H acts transitively on \mathscr{E}_n , and $H(\mathbb{Z})$ is the stabilizer of \mathbb{Z}^n for this action. Thus we may identify $\mathscr{E}_n \simeq H/H(\mathbb{Z})$.

Since $H(\mathbb{Z})$ is a lattice in H, there is a unique H-invariant probability measure on \mathscr{E}_n which we denote $m_{\mathscr{E}_n}$.

From the uniqueness of invariant probability measures for transitive actions we obtain

$$(\pi_{\mathscr{X}_d})_* m_{\mathscr{E}_n} = m_{\mathscr{X}_d}.$$

We defined before a linear functional $f : \mathbb{R}^d \to \mathbb{R}$ that helps reconstruct Λ from its projection Λ' to \mathbb{R}^d along **v**:

(1)
$$\forall \mathbf{w} \in \Lambda \; \exists k \in \mathbb{Z} \text{ such that } \mathbf{w} = \pi_{\mathbb{R}^d}(\mathbf{w}) + (f(\pi_{\mathbb{R}^d}(\mathbf{w})) + k) \mathbf{v}.$$

For any two functionals f_1, f_2 satisfying (1) we will have $f_1(\mathbf{w}) - f_2(\mathbf{w}) \in \mathbb{Z}$ for any $\mathbf{w} \in \Lambda'$, that is they differ by an element of the dual lattice $(\Lambda')^*$, so f is well defined as a class in the torus $\mathbb{T}_{\Lambda'}$, where

$$\mathbb{T}_{\Lambda'} = \left(\mathbb{R}^d\right)^* / \left(\Lambda'\right)^*.$$

Given $\Lambda' \in \mathscr{X}_d$, a lift functional f, and a vector $\mathbf{v} \in \Lambda_{\text{prim}} \setminus \mathbb{R}^d$ we can recover Λ as follows:

(2)
$$\Lambda = \Lambda(\Lambda', f, \mathbf{v}) = \left\{ |v_n|^{-1/d} \mathbf{x} + (f(\mathbf{x}) + k) \mathbf{v} : \mathbf{x} \in \Lambda', \, k \in \mathbb{Z} \right\}.$$

We use $\mathbf{v} = \mathbf{e}_n$, so the image of the map $\Lambda(\cdot, \cdot, \mathbf{v})$ is \mathscr{E}_n .

Theorems 1 and 2 both follow from this Theorem.

Theorem 3. Let $\|\cdot\|$ be a norm on \mathbb{R}^d , let $\varepsilon > 0$. Then there are measures

$$\mu^{(\mathbf{e}_n)}, \nu^{(\mathbf{e}_n)}$$

on $\mathscr{E}_n \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$ such that, denoting by $(\mathbf{v}_k)_{k \in \mathbb{N}}$, $(\mathbf{w}_k)_{k \in \mathbb{N}}$ the sequence of best approximations and ε -approximations of $\theta \in \mathbb{R}^d$, the sequences

$$(\rho_{\mathscr{E}_n}(\mathbf{v}_k), \operatorname{disp}(\theta, \mathbf{v}_k), \mathbf{v}_k)_{k \in \mathbb{N}} \in \mathscr{E}_n \times \mathbb{R}^d \times \mathbb{Z}^n$$
$$(\rho_{\mathscr{E}_n}(\mathbf{w}_k), \operatorname{disp}(\theta, \mathbf{w}_k), \mathbf{w}_k)_{k \in \mathbb{N}} \in \mathscr{E}_n \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$$

equidistribute with respect to $\mu^{(\mathbf{e}_n)}$ and $\nu^{(\mathbf{e}_n)}$ respectively for Lebesgue a.e. θ . Furthermore, the properties of these measures, listed in Theorems 1 and 2, remain valid, provided we replace everywhere \mathscr{X}_d with \mathscr{E}_n .

Chapter 11 – Properties of the cross-section measures (Case I)

We let $\overline{B}_{r_0} \subset \mathbb{R}^d$ denote the closed ball centered at $0 \in \mathbb{R}^d$, with respect to our chosen norm (note that the norm is suppressed from the notation). Consider the map

$$\varphi: \mathscr{E}_n \times \overline{B}_{r_0} \to \mathcal{S}_{r_0}, \ \varphi(\Lambda, v) = u(v)\Lambda$$

Note that the map $v \mapsto u(v)\mathbf{e}_n$ is a bijection between \overline{B}_{r_0} and D_{r_0} . It follows that φ is onto \mathcal{S}_{r_0} , and

for any
$$r \in (0, r0)$$
, $\varphi(\mathscr{E}_n \times \overline{B}_r) = \mathcal{S}_r$

Furthermore, for $\Lambda \in \mathcal{S}_{r_0}$,

$$#\varphi^{-1}(\Lambda) = #(\Lambda_{\text{prim}} \cap D_{r_0}).$$

Indeed, for any $v \in \Lambda_{\text{prim}} \cap D_{r_0}$,

$$\left(u(\pi_{R^d}(v))^{-1}\Lambda,\pi_{R^d}(v)\right)\in\varphi^{-1}(\Lambda),$$

and this assignment is easily seen to be a bijection. Let

$$\psi: \mathcal{S}_{r_0}^{\#} \to \mathscr{E}_n \times \overline{B}_{r_0},$$
$$\psi(\Lambda) = (u(v_{\Lambda})^{-1}\Lambda, v_{\Lambda}),$$

where

$$v_{\Lambda} = \pi_{R^d}(v(\Lambda))$$
 and $\{v(\Lambda)\} = \Lambda \cap D_{r_0}$.

Proposition 4. In Case I,

$$\mu_{\mathcal{S}_{r_0}} = \frac{1}{\zeta(n)} \varphi_*(m_{\mathscr{E}_n} \times m_{\mathbb{R}^d}|_{\overline{B}_{r_0}})$$

(where $\zeta(n) = \sum_{k \in \mathbb{N}} k^{-n}$). In particular, $\mu_{\mathcal{S}_{r_0}}$ is finite and $\operatorname{supp}(\mu_{\mathcal{S}_{r_0}}) = \mathcal{S}_{r_0}$.

Let $\mathscr{X}_n^{\mathbb{A}}$ be the adelic space, let $\pi : \mathscr{X}_n^{\mathbb{A}} \to \mathscr{X}_n$ be the projection, and let $m_{\mathscr{X}_n^{\mathbb{A}}}$ be a $\mathrm{SL}(\mathbb{A})$ -invariant probability measure on $\mathscr{X}_n^{\mathbb{A}}$.

Let $\widetilde{\mathcal{S}}_{r_0}^{\#} = \pi^{-1}(\mathcal{S}_{r_0}^{\#})$. We augment ψ and define a map

$$\widetilde{\psi}: \widetilde{\mathcal{S}}_{r_0}^{\#} \to \mathscr{E}_n \times \overline{B}_{r_0} \times \widehat{\mathbb{Z}}^n \text{ by } \widetilde{\psi} = (\psi \circ \pi, \psi_f).$$

I am not defining ψ_f here. Just think of it as nice continuous map to $\widehat{\mathbb{Z}}^n$.

We now describe the image of the cross-section measure under $\widetilde{\psi}$. Given an $\{a_t\}$ -invariant measure μ on $\mathscr{X}_n^{\mathbb{A}}$, let $\mu_{\widetilde{S}_{r_0}}$ be the cross-section measure, and define a measure on $\mathscr{E}_n \times \mathbb{R}^d \times \widehat{\mathbb{Z}}^n$ by

$$\nu = \widetilde{\psi}_* \mu_{\widetilde{\mathcal{S}}_{r_0}}.$$

Let $\nu^{(\mathscr{E}_n)}, \nu^{(\mathbb{R}^d)}, \nu^{(f)}, \nu^{(\infty)}, \nu^{(\mathbb{S}^{d-1})}, \nu^{(\mathscr{X}_d)}$ denote the projection of ν to $\mathscr{E}_n, \mathbb{R}^d, \widehat{\mathbb{Z}}^n, \mathscr{E}_n \times \mathbb{R}^d, \mathbb{S}^{d-1}, \mathscr{X}_d$ respectively.

Theorem 5. In Case I, with $\mu = m_{\mathscr{X}_n^{\mathbb{A}}}$, we have

$$\nu = \frac{1}{\zeta(n)} \left(m_{\mathscr{E}_n} \times m_{\mathbb{R}^d} |_{\overline{B}_{r_0}} \times m_{\widehat{\mathbb{Z}}^n_{\text{prim}}} \right);$$

in particular, the measures $\nu^{(\mathscr{E}_n)}, \nu^{(\mathbb{R}^d)}, \nu^{(f)}, \nu^{(\mathscr{X}_d)}$ are scalar multiples of the measures $m_{\mathscr{E}_n}, m_{\mathbb{R}^d}|_{\overline{B}_{r_0}}, m_{\widehat{\mathbb{Z}}_{prim}^n}, m_{\mathscr{X}_d}$ and the measures $\nu^{(\mathbb{R}^d)}$ and $\nu^{(S^{d-1})}$ are invariant under any linear transformations of \mathbb{R}^d preserving the norm $\|\cdot\|$.

Let

$$\lambda_{\varepsilon} = \widetilde{\psi}_* \left(\left. \mu_{\widetilde{\mathcal{S}}_{r_0}} \right|_{\widetilde{\mathcal{S}}_{\varepsilon}} \right), \ \lambda_{\text{best}} = \widetilde{\psi}_* \left(\left. \mu_{\widetilde{\mathcal{S}}_{r_0}} \right|_{\widetilde{\mathcal{B}}} \right)$$

Let $\lambda^{(\mathscr{E}_n)}, \lambda^{(\mathbb{R}^d)}, \lambda^{(n)}, \lambda^{(\infty)}, \lambda^{(\mathbb{S}^{d-1})}, \lambda^{(\mathscr{X}_d)}$ denote the projection of λ to $\mathscr{E}_n, \mathbb{R}^d, \widehat{\mathbb{Z}}^n, \mathscr{E}_n \times \mathbb{R}^d, \mathbb{S}^{d-1}, \mathscr{X}_d$ respectively.

Proposition 6 (Case I, ε -approximations). Let $\varepsilon \in (0, r_0)$. Let $\mu = m_{\mathscr{X}_n^{\mathbb{A}}}$. Let B_{ε} denote the ball of radius ε around the origin in \mathbb{R}^d and let $V_d = m_{\mathbb{R}^d}(B_{\varepsilon})$. Then

$$\lambda_{\varepsilon}^{(\mathscr{E}_n)} = \frac{\varepsilon^d V_d}{\zeta(n)} m_{\mathscr{E}_n}, \qquad \qquad \lambda_{\varepsilon}^{(\mathbb{R}^d)} = \frac{1}{\zeta(n)} m_{\mathbb{R}^d}|_{B_{\varepsilon}},$$
$$\lambda_{\varepsilon}^{(f)} = \frac{\varepsilon^d V_d}{\zeta(n)} m_{\widehat{\mathbb{Z}}_{\text{prim}}^n}, \qquad \qquad \lambda_{\varepsilon}^{(\mathscr{X}_d)} = \frac{\varepsilon^d V_d}{\zeta(n)} m_{\mathscr{X}_d}.$$

The measures $\lambda_{\varepsilon}^{(\mathbb{R}^d)}$, $\lambda_{\varepsilon}^{(\mathbb{S}^{d-1})}$ are preserved by any linear transformations of \mathbb{R}^d preserving the norm $\|\cdot\|$.

For the best approximations, let

$$\widehat{\mathcal{B}} = \psi(\mathcal{B}) \subset \mathscr{E}_n \times \mathbb{R}^d,$$

so that

$$(\Lambda, v) \in \widehat{\mathcal{B}} \Leftrightarrow \varphi(\Lambda, v) \in \mathcal{B},$$

and denote the indicator function of $\widehat{\mathcal{B}}$ by $\mathbf{1}_{\widehat{\mathcal{B}}}$.

Proposition 7. Let λ_{best} be the measure (best approximations). Then $\lambda_{\text{best}} = \lambda_{\text{best}}^{(\infty)} \times \lambda_{\text{best}}^{(f)}$, where $\lambda_{\text{best}}^{(f)}$ is a multiple of $m_{\widehat{\mathbb{Z}}_{\text{prim}}^n}$. The measure $\lambda_{\text{best}}^{(\infty)}$ is absolutely continuous with respect to the measure $\nu^{(\infty)}$, and the Radon-Nikodym derivative is given by

$$\frac{d\lambda_{\mathrm{best}}^{(\infty)}}{d\nu^{(\infty)}}(\Lambda,v) = \mathbf{1}_{\widehat{\mathcal{B}}}(\Lambda,v).$$

Proposition 8. In Case I, for best approximations, the measures

$$\lambda_{\mathrm{best}}^{(\mathscr{E}_n)}, \; \lambda_{\mathrm{best}}^{(\mathbb{R}^d)}, \; \lambda_{\mathrm{best}}^{(\mathbb{S}^{d-1})}, \; \lambda_{\mathrm{best}}^{(\mathscr{X}_d)}$$

are absolutely continuous with respect to $m_{\mathscr{E}_n}$, $m_{\mathbb{R}^d}$, $m_{\mathbb{S}^{d-1}}$, $m_{\mathscr{X}_d}$, and we have the following formulae for the Radon-Nikodym derivatives:

$$\begin{split} \frac{d\lambda_{\text{best}}^{(\mathscr{E}_n)}}{dm_{\mathscr{E}_n}}(\Lambda) &= \frac{1}{\zeta(n)} \int_{B_{r_0}} \mathbf{1}_{\widehat{\mathcal{B}}}(\Lambda, v) \, dm_{\mathbb{R}^d}(v), \\ \frac{d\lambda_{\text{best}}^{(\mathbb{R}^d)}}{dm_{\mathbb{R}^d}}(v) &= \frac{1}{\zeta(n)} \int_{\mathscr{E}_n} \mathbf{1}_{\widehat{\mathcal{B}}}(\Lambda, v) \, dm_{\mathscr{E}_n}(\Lambda), \\ \frac{d\lambda_{\text{best}}^{(\mathscr{M}_d)}}{dm_{\mathscr{K}_d}}(\Lambda') &= \frac{1}{\zeta(n)} \int_{B_{r_0}} \int_{\mathbb{T}_{\Lambda'}} \mathbf{1}_{\widehat{\mathcal{B}}}(\Lambda(\Lambda', f, \mathbf{e}_n), v) \, dm_{\mathbb{T}_{\Lambda'}}(f) \, dm_{\mathbb{R}^d}(v) \end{split}$$

where $\mathbb{T}_{\Lambda'} = \left(\mathbb{R}^d\right)^* / \left(\Lambda'\right)^*$ and $\Lambda(\cdot)$ as in (2), and for some c > 0,

$$\frac{d\lambda_{\text{best}}^{(\mathbb{S}^{d-1})}}{dm_{\mathbb{S}^{d-1}}}(w) = c \int_0^{r_0} t^{d-1} \int_{\mathscr{E}_n} \mathbf{1}_{\widehat{\mathcal{B}}}(\Lambda, tw) \, dm_{\mathscr{E}_n}(\Lambda) \, dt.$$

Proposition 9. In Case I, for best approximations, the measures

$$\lambda_{\mathrm{best}}^{(\infty)}, \lambda_{\mathrm{best}}^{(\mathscr{E}_n)}, \ \lambda_{\mathrm{best}}^{(\mathbb{R}^d)}, \ \lambda_{\mathrm{best}}^{(\mathbb{S}^{d-1})}, \ \lambda_{\mathrm{best}}^{(\mathscr{X}_d)}$$

satisfy:

- (a) $\lambda_{\text{best}}^{(\infty)}$ is not a scalar multiple of $\lambda_{\text{best}}^{(\mathscr{E}_n)} \times \lambda_{\text{best}}^{(\mathbb{R}^d)}$.
- (b) The measures $\lambda_{\text{best}}^{(\mathscr{E}_n)}$, $\lambda_{\text{best}}^{(\mathbb{S}^{d-1})}$, $\lambda_{\text{best}}^{(\mathscr{X}_d)}$ have full support, and the support of $\lambda_{\text{best}}^{(\mathbb{R}^d)}$ contains a neighborhood of the origin.
- (c) For d > 1, there is c > 0 such that for any $\Lambda \in \mathscr{E}_n$ and any $\Lambda' \in \mathscr{X}_d$,

$$\frac{d\lambda_{\text{best}}^{(\mathscr{E}_n)}}{dm_{\mathscr{E}_n}}(\Lambda) \leqslant c \cdot \text{sys}(\pi_{\mathbb{R}^d}(\Lambda))^d \text{ and } fracd\lambda_{\text{best}}^{(\mathscr{X}_d)} dm_{\mathscr{X}_d}(\Lambda') \leqslant c \cdot \text{sys}(\Lambda')^d$$

where $\operatorname{sys}(\Lambda')$ is the length of the shortest nonzero vector of $\Lambda' \in \mathscr{X}_d$. In particular $\lambda_{\text{best}}^{(\mathscr{E}_n)}$ and $\lambda_{\text{best}}^{(\mathscr{X}_d)}$ are not scalar multiplies of $m_{\mathscr{E}_n}$ and $m_{\mathscr{X}_d}$.

(d) For any $\Lambda \in \mathscr{E}_n$ with no nonzero horizontal vectors, and any $w \in \mathbb{S}^{d-1}$, the function

$$t \mapsto \frac{d\lambda_{\text{best}}^{(\mathbb{R}^d)}}{dm_{\mathbb{R}^d}}(tw)$$

is monotone non-increasing, is not a.e. an indicator function, and $\operatorname{supp} \lambda^{(\mathbb{R}^d)}$ is star-shaped around the origin.

(e) The measures $\lambda_{\text{best}}^{(\mathbb{R}^d)}, \lambda_{\text{best}}^{(\mathbb{S}^{d-1})}$ are invariant under any linear transformation of \mathbb{R}^d preserving the norm $\|\cdot\|$. In particular, for the Euclidean norm, $\lambda_{\text{best}}^{(\mathbb{R}^d)}$ and $\lambda_{\text{best}}^{(\mathbb{S}^{d-1})}$ are $\text{SO}_d(\mathbb{R})$ -invariant.