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1 Introduction

The goal of the introduction is to give some examples for exponential sums, to
suggest interesting questions about them, to highlight some intriguing phenomena,
and to touch briefly some applications.

Let p be a prime number and

F, = Z/pZ = {0,...,p — 1}

be the finite field with p elements. Given two polynomials f,g € F,[x] with g + O,
we are interested in sums of the form

s= e (20T - S ertigtan e

xelf, b g(x) xelf,
g(x)#0 g(x)#0
As e(x) := exp(2mix) is 1-periodic, the function e,(x) := e(x/p) is well-defined modulo
pZ. Hence, S is also well-defined.
Maybe another remark is in place, just to clarify notation: we invert modulo p, so
if, for example p = 7, and g(x) = 3, then 1/g(x) = 5.
Sums of the form S arise frequently in number theory.
Here are some typical questions and goals we want to study about such sums.

1. Is there a closed expression for S?
2. S has a trivial upper bound: |S| < p; can we do better |S| < 0~!p, where 0 > 1?2

3. Can one obtain lower bounds? This is more challenging, and luckily, appears
less in applications.

4. Assume we have a family of exponential sums Sy;; how does it varies as a
function of ¢?

5. ey: Z/pZ — C is an additive character of F,. Can we take multiplicative char-
acter? Mixed sums?

6. What happens for higher dimensions?



1.1 Linear sums

The simplest example if a linear sum, that is to say, f(x) = ax and g(x) = 1. So

Sy = Z ep(ax).

xelf,

p, a=0(p)
a # 0(p).

Put w = ep(a). Then, Sq =1 +w+ - + wP™l So S, = { The same
argument work for any modulus (and not only prime):

Theorem 1.1.

ol _|m, a=0(m)
;emm) - {o, a £ 0(m).

So in this simple case, we have an explicit expression.
Let see a fun application of the trivial Theorem [{.1]

Theorem 1.2. Let X be any finite set of integers and let f: X — F, be a function.
Denote by N,(a) the number of solutions of

flxy) + -+ flag) = f(xXp1) + -+ + flxor) +a mod p
with x; € X. Then Np(a) < Ni(0).
Proof. By Theorem [1.1]

Np(a)
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Since f(x) is real and since Ni(a) is a nonnegative integer, we conclude that

2k

p—1 p—1 2k
Nyla) = [Nela)] = =3 epl—ca) [ eplef)] | <=3 | eplefla)| = Ny(0),
b c=0 xeX b c=0 [xeX
as needed. O

Exercise 1.1. Conclude that N,(0) > %Qk. (Hint: Compute the expected value of
Ni(a) as a is chosen uniformly from F),.)



We may show that the values Ni(a) are close to their expected value, if we can
bound exponential sums. Indeed, in the Ni(a) = 1 ZC oep(—ca) |3 oy ep(Cf(x))|2k,
we notice that ¢ = 0 contributes the expected Value #X?¢/p. Hence

Zep cf (x

xeX

2k

INp(a) — #X?k/p| < — Z

c=1

Hence, had we had a nontrivial bound on the exponential sums |7, ., e,(cf(x))|
0-1#X, ¢ + O(p), O > 1, we could have a concentration result: |Ny(a) — #X%/p|
O 2k7E X2k,

<
<

1.2 Gauss quadratic sums

Gauss sums are the simplest example apart from the linear sums. [t is one of the
oldest sums considered, and one of the few interesting ones with explicit expression.
In this case, we take f(x) = ax? and g(x) = 1. We define the Gauss sum to be

Ga=S=)  eplax?.

xelF,

If a = O(p), then Gy = p. So from now on assume a # O(p). If p = 2, then G; = 0.
So assume also that p + 2.
Let w = e,(1), let
0, ify=20
¥y . ¥
<—> =41, if y € F
—1, otherwise.
be the Legendre symbol, and let
y
T, = Z <—> w®.
yel, p

Note that T, is a mixed sum.
We claim that G, = T, if a + O(p). Indeed, since

1+ <%> =#{x cF,:x* =y},

we have that

Ga=Zepax ZZ (ay) Z#{IEFP:x2=y}w”

xeF, yeFp x2= yeF,
=Z<1+<—>> =) W+ To = Ta,
yeFy yeF,

since a # 0.



Lemma 1.3. Assume a # O(p) and p > 2. Then
1. T, = (9)T,.

a
p

1

2. G*=T?=(-1)7p.

(55 (2ol

X

Proof. We have

as needed for 1.
By 1. it suffices to prove 2. for a = 1 since T2 = T{. For any b + O(p), by 1., we
have T, T, = (%) T?. Hence

Y T = <%1> (p —1)T7.

beFy

On the other hand,

-3 (56) (5

beFy beFy \x€Fp yelF,
)
xy - x
- 3 (F) Sw=p () = o -1
x,yelfp p beFy xelF, p
So we conclude that (') T} = p, as needed. O

/D ifp=1(4)
eiy/D if p = 3(4)

The sign €, is always 1. We will not prove it here. Here is a quote from Wikipedia:

Corollary 1.4. We have G; = T} = { , where €, € {£1].

’In fact the identity g(1;p)* = <’?1> p was easy to prove and led to one of

Gauss’s proofs of quadratic reciprocity. However, the determination of
the sign of the Gauss sum turned out to be considerably more difficult:
Gauss could only establish it after several years’ work. Later, Dirichlet,
Kronecker, Schur and other mathematicians found different proofs.”

Exercise 1.2. The corollary remains true if we replace the odd prime p by any odd
integer.

Gauss sums are used to prove the following

Theorem 1.5 (The quadratic reciprocity law). Let p + q be odd primes. Then
()G) = (05
q/ \p



Quick proof using the explicit expression for the quadratic Gauss sum. For a, n, let

Gan = Z elax?/n).

x€eZ/nZ

By the Chinese Remainder Theorem, each x € Z/pqZ may be written uniquely as
X = pxy + qxg, where xy € Fy and xy € F),. Therefore,

Gipq = Z Z <W—qm> Z Z eq(pxi)e,(qxs)e(2xyxy)

x1€Fg xo€Fp x1€Fg x0€Fp
b\ /49
= § eq(px%) § : ep<qx§) = Gp,qGyp = <_> <_> GipGig-
q/ \b
x1€Fy xo€lF,

This finishes the proof if we use the theorem

Gin = ‘{\/H n:1(4)
ivn n = 3(4).

]

We remark, that Gauss only used that G2 = (—1)"7 to deduce the QRL (see
cise 1.4).

1.3 Kloosterman sums

In this sum, we take f(x) = ax? + b and g(x) = x; so that

p—1
Kla, b;p) = Zep(ar +bx ).
x=1
If ab = 0, we have a linear sum.

1.3.1 Upper bounds

Getting nontrivial upper bounds is the most crucial ingredient in the proof of the
following beautiful

Theorem 1.6 (Kloosterman). Let ay, ..., a, be positive integers. Then, for any N
sufficiently large, there exists a solution (xy, ..., x,) € Z* for the Diophantine equa-
tion

ayx? + - +ax? =N,

provided there are no local obstructions.



Today the best bound comes from Weil's resolution of the Riemann hypothesis
for curves which gives |K(a, b;p)| < 2,/p for a,b + 0(p).
This is close to the best possible, as Kloosterman proved that there exists a, b with

|Kla,b;p)| = v2p — 2 (Exercise 1.5).

We now present a weaker bound due to Kloosterman.
Theorem 1.7. Let a,b € F}, then |K(a, b; p)| < 2p*~.

Proof. We try to understand K(a, b; p) as a family and exploit its symmetries. Let

My =) . |Kla,b;p)* (1)

a,beFy

be the 2k moment of the Kloosterman sums. We have the symmetry K(a,b;p) =
K(ac,bc7L;p), ¢ £ 0(p). We get that

(p —1)|K(a, b;p)|* = Z|Kac be )| < M,

SO

|Kmbmng<s?0”%.

Next, we estimate M, for k > 1. Since K(0, b;p) = K(b,0; p), we have

Mp = > [Kla, b;p)|* =2 " Kla,0;p)* - [K(0,0; p)|**.

a,bel, acky

If a + 0, then K(a,0; p) = —1, by Theorem [1.1} Even more trivially, K(0,0;p) = p —1.
We expand the Kloosterman sum, to get

M- Y Y e, <az >ep <bz<x;1—y;1>> ~olp 1) - (p— 1)

a bGFp x yEF xk

(Here x = (xy,..., xp)and y = (yq, ..., Yr).)
Changing order of summation in the first sum, and using Theorem [I.1} we get
that
My, = p*Np —2(p —1) = (p = 1)**

where N, is the number of solutions x,y € F;k to

X+ -+ Xp =31+ + I
gttt =yt 4yt

Obviously, Ny = p — 1. So,

My =p*p—1)-2(p—1)—(p-1)*=p° - 2p* + 1.



If we plug this in (2), we are worse than the trivial bound.

For k = 2, there are 2(p — 1) — (p — 1) obvious solutions y = (xy, x5) or y = (xs, x1).
Moreover, there are (p — 1)? with x; + x5 = 0 or y; + y, = 0, out of which 2(p — 1)
have already been counted.

If (x4, x9,¥31,¥9) is any other solution, then

X1 +Xg =y§1+ ¥
W ¥o(x1 + X0) = X1 X0(y1 + ¥o).

Since x; + xy + 0, we get that 3,3, = x1x9. Hence, both the pairs x;,x, and y;, ¥,
are solutions of the quadratic equation X? — (x; + x9)T + x1xs = 0. Hence either
(x1,x9) = (y1,¥9) or (x1,x9) = (¥, ¥1), contradiction.

From this we get that Ny = 2(p —1)> —=(p —1)+(p —=1)> = 2(p —1) = 3(p - 1)(p — 2)
and so plfl =3p%(p —2) =2 —(p —1)° = 2p® — 3p? — 3p — 1. Plugging this into (2), we
get

[K(a,b;p)| < 2p®*,

as needed. ]

1.3.2 Lower bounds

We already stated a strong lower bound for max |K(a, b;p) in We aim for a
uniform lower bound.

Let’s derive some more properties of Kloosterman sums. First of, obviously we
have Kl(a, b;p) = K(a, b; p), so K(a,b;p) € R.

Lemma 1.8. For any a,b € F; we have K(a, b;p) 0.

Proof. The proof uses the algebraic properties of cyclotomic extensions: Let £ =

ep(1) be the primitive p-th root of unity, let K = Q(¢) be the cyclotomic field. Then

[K:Q] = p—1 K/Q is Galois, Gal(K/Q) = (Z/pZ)* where (a,p) = 1 defined the

automorphism given by €+ ¢* (ie, Y a;¢" — Y a;¢"), the ring of integers is Ok =

Z[€]. The prime p is totally ramified in K, that means that there exists a prime ideal

p of Ok such that pOg = pP~t. Moreover, p = (1 —¢,p) = {x(1 =€) +yp:x,y € Ok}
We reduce modulo p to get that 1 = ¢ mod p. Hence,

K(a,b;p) = Z goxbrt Z 1=-1 modyp.

xeFy xeFy
In particular, K(a, b; p) + 0. Il
We are now ready to give a uniform lower bound on Kloosterman sums.

Theorem 1.9 (Fouvry). For any a,b € F},




Proof. We adopt the notation of the proof the the lemma. Forany 1 < m < p—1, the
conjugate of K(a, b; p) by the corresponding automorphism of K/Q is K(ma, mb; p).
On the one hand, NxgK(a, b;p) := [, <, Klam,bm;p) € Q as it in invariant fo
the Galois action; on the other hand, Nk ,oK(a, b;p) € Ok as a product of algebraic
integers. By Gauss Lemma, Ox N Q = Z, so Nk,gKl(a, b; p) € Z. In particular,

1 < |NkigKla, b;p)| = Kla, b; p)(2p**)P~

where we applied the Kloosterman upper bound to all terms with m # 1. This
finishes the proof. O

Remark 1. Tt is not clear how to do better, after replacing the Kloosterman bound
by the Weil bound. Kloosterman sums illustrate [Question 2] and [Question 3|

Remark 2. It is open whether, for example, K(1, 1; p) > 0 infinitely often.

The last remark leads us to equidistribution questions.

1.4 Equidistribution

Let's discuss the questions here through the following example: Let f(x) = ax® + bx,
a + 0 and g(x) = 1, so that

Sla, b;p) = Zepax + bx).

xelF,

Then S(a, b;p) € R. The Weil bounds give that |S(a, b;p)| < 2,/p, so it is natural to

ask how the numbers
Sla, b; p)

ab _
05 NG

distribute on [—1,1]. Two natural limits:
1. Horizontal distribution: Fix a,b € Z, a +# 0 and vary p.
2. Vertical distribution: Fix large p and vary a,b € F x F,.

In both cases, it is conjectured that 9;"3 become equidistributed for the Sato-Tate
measure, see Figure [I] The vertical case is a Theorem by Livne:

Theorem 1.10 (Livne). For every interval [a, ] C [—1,1], we have

1
lim—#{a beF; xF,: 00" ¢ / V1 — x?dx.
p-co plp —
Let f = 1j4p be the indicator function for the interval, then the theorem states
that

lim ——— Y f(68°) - /]‘ W1 — x2dx. (3)

—00 —
p=eo p(p ab’IE‘ < xF,



0.2 04 0.6 0.8 1 1

Figure 1: The Sato-Tate measure

Indicator functions are hard to work with using harmonic analysis, because they
are not smooth. So one tries to prove (3) for smooth functions f. If (3) holds true
for all smooth f, then equidistribution holds (that is (3) holds for indicator functions
of intervals).

Furthermore, since we may approximate smooth functions by polynomials, and
since both sides of (3) are linear in f, we conclude that it suffices to consider f(x) = x*.
Let us state this general principle in our case.

Proposition 1.11. To prove Theorem [1.10 it suffices to prove

1
lim o Z (QS'b)k = g/ x*V1 — x2dx,
-1

e P(P B 1> a,beFy xFp 7T

for every k > 0.
The left-hand side of the equation in the proposition is easy to compute:

Exercise 1.3. Calculate ¢, = % j_ii x*v1 — x?dx and show that ¢, = 0 if k is odd and
Cp = m(k@ if k is even.

Denote the right-hand side by

VM = % Y o) (4)



so by expanding and rearranging we get

VM = Okpk/2+i(p — 1) ZZ Zepax + b))

aTL-O b x

Qk k241 (p — 1) ZZ Z l—'ep ax; + bx;)

a0 b x4,.xp i

Qk k/2+1 _1 ZZ Z ep ZI epbzr

a0 b xi. e
= Ok k/zj( Z <§ep ZI ><;ep(b2i:ri)>

By the linear sum (Theorem [1.1), we conclude that

1, 34£0 o , i+ 0
Zep Zx { %;ZO and ;ep(bZIi)={ ZX::IT=O

a0 p-1 P
Hence,
1 1 D) k
VMk = 2kpk/2+1<p — 1>p6236f:0(p62x?:0 - 1) = Qkpk/2+1<p _ 1)(p Xk(FP> - P )

Here #X,(F,) is the number of solutions of Y x; = ¥ x; = 0. Thus, equidistribution
questions leads us naturally to seek precise estimates for the number of points on
higher dimensional varieties. (Questions 4, 6).

Exercise 1.4. Compute VM, for k = 2,3 and show that VM, — c; in cases.

10



Exercises

1. In the notation of Theorem conclude that N,(0) > 2 (Hint: Compute the

p
expected value of Ni(a) as a is chosen uniformly from F,,.)

Prove Theorem using Cauchy-Schwartz (hint: think of the x;-s as iid ran-
dom variables, conclude that X = f(xy)+---+f(xp) and X' = f(xp 1)+ -+ flxop)
have the same distribution, and compute both the relevant probabilities N, (a)/p
explicitly).

Show that Corollary [1.4] remains true if we replace the odd prime p by any
odd integer.

In this exercise, we will prove the QRL (Theorem using Lemma Let
p—1

Ip = Cip = Y, (3)w", where w = ey(1). We also let p* = (%)p = (-1)7p.
a) Show that Q(g,) is a quadratic extension of Q contained in the cyclotomic
field Qlw).
b) Use g2 = p* to prove that g¢™' = (2) mod q. (You may want to use

q
modular arithmetic on the ring of integers Z[g,] modulo some prime

lying above q.)

c¢) Use that raising to g-th power is an automorphism on fields of character-
istic g to compute that g/ = (%) gp mod q. (You may want to use item 1

in Lemma [1.3))
d) Deduce the QRL.

In the notation , note that My < maxg per; K(a, b;p)]?M;, and deduce that
there exist a,b € F; such that |K(a, b;p)| > v2p — 2.

Calculate ¢}, = j%f_llxk\/i — x2dx and show that ¢, = 0 if k is odd and ¢, =

1 BN e s
m(k@) if k is even.

Compute VM, (see ) and show that VM, — ¢, for k = 2,3 (where ¢y, is the
constant from the previous exercise).

2 Finite Fields

2.1 The additive structure

Let F be a field with unit 1r. Then we have a unique ring homomorphism AZ — F
defined by Aln) = 1 + --- + 1p. Then ker(A) = (nZ), for some n > 0. We call
n = Char(F) the characteristic of F.

If n =0, then Z C F (via the canonical embedding A) hence Q C F.

11



Otherwise, n = p is a prime number since the image is a domain (Exercise 2.1)
and by the isomorphism theorem F > A(Z) = Z/pZ =: F,,

If F is finite of cardinality q, then Char(F) = p, and F, C F. Since F is a vector
space over I, of finite dimension f = [F : F,] := dimy, F, we conclude that q = p’.

Theorem 2.1. Let F, be a finite field with q elements. Then q = p’, for p prime
and f € N. Moreover, for every such q there exists a unique field with q elements
in an algebraic closure of F),, and it is defined as the set of solutions of X9 - X = 0.

Proof. We already showed the first claim. For the second, note that as the multi-
plicative group F; is of order q —1, by Lagrange theorem x9'—1 =0forallx € Fy.
Hence, x? —x = 0 for all x € F,. This proves the uniqueness of F,,.

For the existence, write g = X7 — X. So g’ = —1, hence gcd(g,g’) = 1. This
implies that g has exactly g solutions in the algebraic closure. So it remains to show
that the set of solution is a field. And indeed, since x + xP is a homomorphism
in characteristic p, so is the compositum x +— x%. So if g(x) = gly) = 0O, then
gx+y) =x7+y? —x —y =0and glxy) = 2997 —xy = xy —xy = 0. (We do
not have to check closeness for inversion as it is a finite set, but we may easily do
S0). O

Definition 2.2. We call the field automorphism x + x4 of any field of characteristic
p the g-Frobenius and denote it by ¢,. Then, F, equals the set of fixed points of ¢,
in the algebraic closure.

Theorem 2.3. F,» C Fym if and only if n | m. In particular, F, has a unique
extension of any degree.

Proof. 1f Fyn C Fpm, then p™ = (p™)lFomFl So, n | m.
Vice-versa, assume m = kn, so if we put ¢ = p", we have g* = p™. Let x € Fp»,
then ¢,(x) = x. Since, ¢pm = ¢q0- - -0 ¢y, we get that p,m(x) = x. Hence, x € Fym. O

The extension F, C F,» is of degree n and Galois (as the splitting field of the
separable polynomial X9 — X). In particular, ¢, = Pylr, € Gal(Fyn/Fy). Also, since

(x) = x if and only if x € F,, we get that AR o Hence,
q q q q

Corollary 2.4. The extension F, C Fy. is Galois with cyclic Galois group having a
distinguished generator: Gal(Fq./F,) = <(bq][pqn> = Z/nZ.

2.2 The multiplicative structure

The goal is to prove the following

Theorem 2.5. The multiplicative group F; is cyclic.
We first prove two lemmas.

Lemma 2.6. Let ¢(n) = #{1 < m < n:gcd(n, m) = 1} be the Euler totient function.
Thenn =3, o(d).

12



Sketch of Proof. Use that h(n) = 3, ¢(d) is multiplicative (Exercise 2.2) and check
the equality on prime powers:

k+1

By _ Bl —p )41 =2 TPy _ptypq_pk
hi(pf) = Y pft—p7)+ s 1-pt=p

A different proof is to use the partition {1 <m < nf = (J;, X4, where X4 = {1 <
m < n :ged(m,n) = d} and noting that X, is in bijection with {1 < m < n/d :
gedim,n/d) =1} (by m € X4 +— m/d). ]

Lemma 2.7. Let H be a finite group of order n. Assume that for #{x € H : x4 =
1} <d, for alld | n. Then H is cyclic.

Proof. Let d | n. If there exists x of order d, then every of the d elements x' also
satisfies (x!) = 1. By assumption, there are no others, so if y¢ = 1, then y € (x). In
particular, the number of elements ny of order d, is ¢(d) or O.

We conclude that n = [H| =}, ng < 34, ¢(d) = n. If one of the ny = 0, then
we have contradiction. Hence, ng > O for all d, in particular n, > 0, so there exists
an element of order n, hence H is cyclic. O]

Proof of Theorem Since I, is a field, #{x™ —1 = 0] < m. So by the lemma F;
is cyclic. O

2.3 Chevalley-Warning Theorem

A key ingredient in understanding exponential sums, is to study solutions to equations
over finite fields. For example, the equation X? + V2 = 0 has a nontrivial solution in
F, if and only if q = 1(4). But the equation X? + Y2 + Z? = 0 always has a nontrivial
solution. It turns out that once the number of variables is large enough, there is a
solution over any finite field:

Theorem 2.8. Let fy,..., fee Fo[Xy, ..., X,] be polynomials such that Y deg f; < n.
Then
N =#{x cF;:filx)="---=felx) =0} =0 mod p.

In particular, if the f; are homogenous of positive degree (or if the free coefficient
is zero), then there exists a nontrivial solution.

We present an easy proof by Ax that only uses what we've learned so far on IF,,.

DProof. Let P = ]_[le(i — fiq_l) and x € Fg. If fi(x) = -~ = fr(x) = 0, then P(x) = 1.
Otherwise, for some i, f;(x) + 0, so f;(x)9~! = 1, and P(x) = 0. We conclude that

N = Z P(x) mod p.

IEFqn

13



By hypothesis, deg P < n(q —1). That means that the monomials appearing in P are
of the form X® = X' .- X%, with Y a; < n(qg —1). Hence, it suffices to prove that
erFg x®* = 0, for any such a. Suppose w.lo.g. that a; < g — 1. So it suffices to prove

that 33, ., xi" = 0.
It a; =0, then }}, . xi" = 0, and hence Y rery ¥ = 0, and we are done.
Otherwise, 1 < a; < q—1. So, there exists y € F; such that y** £ 1 (Theorem .

So,
yH Z xft = Z(yn)(“ = Z xyt.

x1€Fy x1€Fy x1€Fy

Thus o, X' = 0. O

2.4 The trace and norm maps

Let Fyn/F,. We define to maps: The trace map

n-1

Tr = Treye,: For —» Fy,  Tr(x) = x +x7+ - + x1

and norm map

n-1 q" -1

Norm = Normg,, r,: Fgn — Fq, Norm(x) = xx---x% =xat.

Often, one restricts the domain of Norm to Fj. and the range to F; and view it as
a map between the multiplicative groups of the fields. We leave the proof of the
following basic properties as an exercise:

1. Tr is F4-linear map.

2. Norm|]F;n is a group homomorphism.

3. Both maps are Gal(F;/F,) invariant, that is to say, for any o € Gal(F/F,) we
have Tr(o(x)) = Tr(x) and Norm(o(x)) = Norm(x).

4. Given x € Fyn, consider the linear map given by multiplication by x: m,: Fyn —
Fgn, m,(y) = xy. Prove that Trg,_,r,(x) = Tr(m,) and that Norm(x) = det(m,).

In our setting, Hilbert's Theorem 90 gives the kernels of these maps.

Lemma 2.9 (H90). Let Fy:/F; and Tr: Fgn — Fy and Norm: . — T the respective
trace and norm maps.

1. The trace map is surjective and kerTr = {x e Fpn:x =y -y, y € Fn |

2. The norm map is surjective and ker Norm = {x € F}, : x = yi/y = yitye
Fon }.

14



Proof. Consider &: Fpn — Fyn given by 6(y) = y1 — y. Then 6 is Fy-linear, ker6 =
{y1—y =0} = Fg, so dim(Im ) = n —1. It suffices to prove that Im 6 = ker Tr, since
then dimImTr = n — (n — 1) = 1, hence Tr would be surjective.

Clearly, Tro6 = 0, so Im6 C kerTr. On the other hand, kerTr = {x € Fgn :
P(x) = 0} where P(x) = x + --- + x4 is a polynomial of degree < q"'. So
dimker Tr < n — 1. This finishes the proof of 1.

The proof of 2. is similar: Let A: Fy. — F; be the group homomorphism given
by Aly) = y9~!. Similarly to the previous case, ker A = Fy. Im A C ker Norm, hence
it suffices to prove that # ker Norm < Cf;%f, which is true since F.. is cyclic. ]

Let us summarize in diagrams. We have the following two exact sequences:

2.5 Exercises

1. Let R, S be two rings with 1 and ¢: R — S be a ring homomorphism (which, by
assumption, satisfies ¢(1p) = 15). Prove that the image of ¢(R) is a domain (i.e,
has no zero divisors) if and only if ker ¢ is a prime ideal (that is, xy € ker ¢
implies that x € ker¢ or y € ker ¢).

2. Recall that an arithmetic function is a function f: N — C. We say that f is
multiplicative if f(mn) = f(m)f(n) whenever gcd(m, n) = 1.

a) Let f,g be multiplicative arithmetic functions such that f(p*) = g(p*) for
every prime power p*. Prove that f = g.

b) Show that if f, g are multiplicative, then f x g is also multiplicative, where
fxgln) =34, fld)gn/d).

c) Prove that 1(n) = 1 and ¢(n) = #{1 < a < n:gcd(n,a) = 1} are multi-
plicative.

d) Deduce that h = ¢ % 1 is multiplicative.

3. Prove the basic properties of the trace and norm map:
a) Tr is F,-linear map.
b) Norrn[F;n is a group homomorphism.

¢) Both maps are Gal(F;/FF,) invariant, that is to say, for any o € Gal(Fy:/F,)
we have Tr(o(x)) = Tr(x) and Norm(o(x)) = Norm(x).

d) Given x € [F4n, consider the linear map given by multiplication by x:
my: Fgn — Fygn, my(y) = xy. Prove that Trg,r,(x) = Tr(m,) and that
Norm(x) = det(m,).
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3 Characters of finite fields

3.1 The general theory

Let G be an abstract group. A character of G is a group homomorphism x: G — C*.
The set of characters of G form a group G = {x: G — C* } which is called the dual
group. The operations are given by

Oa - xo)(x) = (@X)xelx)  and  x '(x) = xlx) (= xlx) = x(x),

and the unit element is defined by xo(x) = 1.
If G is a topological group, we tactically assume that y is continuous. R
If G is a finite group of order n, then 1 = x(1) = x(g") = x(g)", for every x € G.
Hence, the values are in p, = {¢ € C: " =1} = {eyla):a € Z/nZ}.

Example 1. e, € Iﬁ‘;

We want to prove the following
Theorem 3.1. Let G be a finite abelian group, then G = G.
We break the proof into a few lemmas.

Lemma 3.2. Let C, be a cyclic group of order n with a generator g (written mul-
tiplicatively). For each a € 7Z/nZ, we have that x, € G, where Xq 1s given by
xa(g!) = eqlat). Moreover, the map X: Z/nZ — G defined by a s ¥, IS an isomor-
phism.

In particular, a = C,.

Proof. 1t is obvious that ¥, € G. Also, it is clear that X is injective. So, it remains to
show that for every x € G there exists a € Z/nZ with x = x,.

Since we must have ¥(g) € p, we have that x(g) = enla) = x.(n) for some
a € Z/nZ. But as C, is cyclic, we get that x = x,. ]

Remark 3. The isomorphism in the lemma is not canonical, as it depends on the
generator of C,, and there is no canonical generator. For example, we proved that
[} is cyclic using a counting argument, but there is no canonical generator.

For example, is 2 a generator of F} infinitely often? This is open. The Artin
conjecture says that if a € Z is not a square or —1, then it generates F infinitely
often (we say that a is primitive root modulo p).

e Hooley proved that GRH implies the Artin conjecture (using exponentials sums...)

e Ram Murty showed that there exists infinitely many a-s for whihc the Artin
conjecture holds true.

e Heath-Brown showed that the set of primes for which the conjecture is not
true has at most two elements. So 2,3 or 5 are primitive roots infinitely often.
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e There is no number that is known to be primitive infinitely often.

Lemma 3.3. Let G = Gy x Gy be a direct product of abelian groups. Then G2
61 X GQ.

Proof. Let : Gy x G, — G be given by x := $lx1, x2)(g1, 62) = x1(g1)xo(gz). Then,
readily we see that y is a character. Moreover, if we write y;(g1) = x(gy1,1) and

xo(go) = x(1, go), then the inverse of ¥ is given by ®(x) = (x1, xo). O
Remark 4. Here the isomorphism is canonical.

Proof of Theorem [3.1] By the structure theorem of finite abelian groups G = [[; G;,
where G; are cyclic groups. So, by the lemmas

Gz[]G=]]a =6
as needed. n

Corollary 3.4. The map g +— (x — x(g)) induces an isomorphism G = G.

The next key property that we need is orthogonality. Recall that we denote by o
the trivial character.

Theorem 3.5 (Orthogonality relations). Let G be a finite abelian group. Then

1 1, x=
@ZX(Q)={OI r

gy X+ Xo
1 R
IGIX%X(Q) {0, o1,

Proof. By the corollary, the two orthogonality relations are equivalent. Hence, we
will prove only the first. Put X =3 _;x(g). If x = xo, then x(g) = 1 for all g, and
hence X = |G|, as needed. If ¥ + xo, then there exists h € G such that x(h) # 1. So,

x(h)X =) xthg) = " xlg) = X.
geG g'e
This implies that X = 0. ]

Exercise 3.1. Deduce from the orthogonality relation the following more general
orthogonality relations

1 B 1, x1=x
— > xi(g)xelg) =

|Gl g;; 0, X1t x
1 B 1, g1 =09
— Y xlg)xlgst) =
|G|X§ 0 gt
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3.2 Additive characters of finite fields

It is easy to give a satisfactory description of the additive characters of a finite field.
Let F,, @ = p" be a finite field. First, we construct one non-trivial character:

LUK IE‘q - C, 1P<I) = ep(TrE,/Fp(I»-

Proposition 3.6. If ¥ is any nontrivial character of F,, then the map that sends
a € Fy to Y, € Fy given by Y,(x) = ¥lax) = ep(Trr, r,(ax)) is an isomorphism.

Proof. It is obvious that a + 1, is an isomorphism. Since F, = F,, it only remains
to show that it is injective. And indeed, if a # O, and if x € F, is such that ¥(x) + 1,
then ¥, (a™'x) + 1, so ¥, + Yy = id, as needed. O

3.3 Multiplicative characters

Let us start by denoting by x, € Iﬁq; the principal character: y(x) =1 for all x € Fy-

For any other y € Iﬁq;, we say that the order of x is d if min(k > 1 : x* = o) = d.
Since F; is cyclic, d | ¢ — 1 and there is a character x of order g — 1 so that all
other characters are powers of . Abstractly, if g € F; is a primitive element, then
x(g?) = eq_1(a), is a character of order q — 1.

However, as we have no canonical generator for F;, we do not have a uniform
way to construct the principal character.

We first start with pulling up characters via the norm map:

Lemma 3.7. Let y € ﬁq; be a character of order d, the x + X(Norm]Fqn,]Fq (x)) is a
character of Fon of order d.

Proof. The first part follows from the multiplicativity of the norm map, and the
second part from the surjectivity of the norm map. ]

It is convenient to extend the definition of multiplicative characters to all of F, by

setting:
0,
w0 {0 Kt
7 = O'

3.4 Exercises

1. Deduce from the orthogonality relation the following more general orthogo-
nality relations

1 B 1, x1=x
— > xi(g)xelg) =

|Gl g;; 0, X1+ x
1 _ 1, g1=0g
— Y xlg)xlgst) =
|G|X§ o gt
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2. Let I, be a finite field with q elements, d | ¢ — 1, and x € F,. Prove that
Z xlx)=#{y cFy:y% =x}.
x=x0

Here the sum runs over all characters of order dividing d.

4 Example of general exponential sums

We keep the notation that F, is a finite field, ¥, ¥ denoting arbitrary additive and
multiplicative characters, respectively, and vy, xo are the principal (aka trivial) char-
acters.

4.1 Gauss Sums

We generalize the Gauss sums appeared before:

— 3 xloia)

xelfy

If one of the characters are principal, we readily compute the sum:

I, ¥) =0, Y+
glx.v) =0, x#+x
g(x0. o) = q.

Assume q is odd, and X = Xxo is the unique character of order 2, and for ¥ + ¥y. By
Exercise 3.2 xo(x) = #{y?> = x} — 1.

g(m,w>=Z<Zi—1 Zw =) W) =D iy

IEFq y2=x

Thus, if also g = p, we retrieve the classical Gauss sum, introduced before.
We now fix a nontrivial character ¥ so that ¥,(x) := ¥lax), a € F, are all the
additive characters. Then

gl Ya) = ZX a™) ZX x(a)g(x, ). (5)

Theorem 4.1. If ¥ + xo and ¥ + o, |glyx, V)| =
Proof. Let g = g(x, ¥). Then

gl” =) 0D xlx)dlx)xly)Yly).
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As x + xo, we have that ¥(0) = 0, hence we may restrict the sum to nonzero y-s and
we get

g =30 Txley ol —y) =Y 0 T xlu)dly(u 1)

x  y+0 u y#0
=S Txlw)Y Wy 1) =q -y xu)=q,
u y#0 u
as needed. =

Let pause to note the remarkable property of Gauss sums: They are algebraic
integers of modulus exactly q'>. Moreover, for any embedding o: Q(g) — C, the

lo(g)| = |glox, ov)| = "~

Definition 4.2. Let g be prime number and m € Z an integer. A q-Weil number of
weight m is an algebraic integer a such that for any embedding o: Q(a) — C we
have |o(a)| = q™.

So Gauss sums are Weil numbers of weight 1 and roots of unity of weight 0.

4.2 Jacobi Sums

Let x, A be multiplicative characters. The Jacobi sum associated to them is

i, A) = x(x)rly)

x+y=1
They appear in counting solutions, for example:

Proposition 4.3. Let N, be the number of solutions to X* + ¥ =1 in F,, p > 2.
Then )
%er-(5)

Proof. Let y, be the character of order 2, aka the Legendre symbol. We have

Np = Y L+ (@)t + x(b) = p + J(x2, x0)-

a+b=1
So the proof follows from the following lemma. ]

Lemma 4.4. For any non-prinicipal x, we have that J(x, x~ ) = —x(-1).

Proof. Since x(0) = 0, we get that J(x,¥~!) = Yo X)) = Y x(2) = —x(-1),
where we applied the change of variables z = x/(1 —x) that maps F,— {1} to F,—{—1}
(note that x = z/(z +1) if z £ —1). O

We may express Jacobi sums via Gauss sums:
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Theorem 4.5. Let x, A be non-principal with xA non-principal. Then, for any ¥ + o,

we have -
gx, v)g,
JA) =
i) gxr, ¥)
Proof. Since x(0) = A(0) = 0, we have

e Mgler, v) = > 0 xlxg)rly — x)dly).

x£0,1 40

The assignment u = xy and v = y(1 —x), so (u, v), gives a bijection of the pairs (x, y)
as in the sum, and the pairs (u, v) with uv + 0 and u + v # 0 (indeed the invertible

assignment is y = u + v and x = ). Hence,

TG, Mgl ) = Y xwrlv)dlu + v)

u,veFg
u+v+0

S WAV + v)

u,vely
u+v+0
- glx. - xlu gl Vg, ¥)
uely
where the last equality follows from the orthogonality relations since y # A. O]

Corollary 4.6. J(x, ) is a g-Weil number of weight 1.

Theorem 4.7. (Fermat) Let p = 1(4) be a prime. Then there exists a,b € Z such
that p = a® + b”

Proof. Since 4 | p — 1, there exists a character y of order 4. Let | = J(x, x2). Then
I7|?> = p. On the other hand, | = a + bi, as the values of y and ys are in {1, +i}. so
I7]? = a® + b2 [

5 Salié sums

One generalization of Kloosterman sums is

- Y !

X
xqu

where 1, n are additive characters. A related, but easier, sum is the Salié sum

= > o)),

X
xqu

where ¥, n are additive characters and y, is multiplicative character of order 2.
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Theorem 5.1. Assume ¥, n + . Then
T, n) = gl ¥) Y | By),

y2=4a
where a € F is such that n = .

Proof. The idea is to study the variation of the function

¢b) = Ty, ) ZXQ P(bx +ax ), beF;.
x40

By the orthogonality relations (Fourier transform)
= " dlx)x(b)
X

where

_1Z¢ Jx(b

b#0
We compute the Fourier coefficients:

1
-1\ _ -1 _
ij §jmumwr+wr>—5t7§jm@wmx>§jmmwmm
b#:O 140 140 b#0
Applying , we get that the right-hand sum equals x(x)g (¥, ¥), so

Bly) = i,bi 11P) XEZF: ol blaxt) = g, w;g_(xizx, Ya) _ 9% tb)g(xsx_&f)m(a)x(a)

By we get that g(x, ¥)g0ek, ¥) = x(4) g v)g(xe, ¥) if x + xo xo- If
X = Xo. Xo. then g(x, ¥)g(xex. ¥) = 0. Plugging this in, we get

) xola)x(4)g (e, ¥)g (X%, )
dlx) = g1 :

T, Z(b X2¢ZX4Q (%, ).

Opening the inner sum and using orthogonality,

T(p, 1) = Xz( X2 ¢ széar ) _ Xz V) Z blx

x+0 x x=4a?

Thus,

Finally, we may remove the factor ys(a), because if it equals —1, then the inner sum
is O. O

Since y? = 4a has either 0 or 2 solution, T(1, n) is a sum of at most two q-Weil
numbers of weight 1, hence:

Corollary 5.2. |T(1, n)| < 2,/p.
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5.1 Exercises

1. Prove that if p = 3(4), then q + a® + b

2. Let g be odd prime power. Let x, be the character of order 2, and y, ¥ char-
acters so that x + xo, xo and ¥ # . Prove

gO, 0)gle, ) = x(4)gx. V)gxxe. ¥).

6 Equations over finite fields

Given a field F, we write

for the affine n-space over F. It is a vector space over F.
On Am*! < [0} define an equivalence relation

(x0, ..., Xn) ~ (Y0, ..., Vo) = IIecIFWVi:ix;=Ay.

We denote the equivalence classes by [x( : --- : x,], and we define the n-projective
space over F to be

PYF) = (A""YF)~ {0})) ~= {[xo:---:xn] i x; € F}.

We call points [x] = [xg : -+ : x,] with xg # O finite points, and those with xy = 0
points at infinity.

Lemma 6.1. There is a bijection between the finite points and A"(F) and the points
at infinity and P*~(F).

Proof. Indeed, every finite point is equivalent to exactly one point of the form [1 : x; :

-+ 1 xp], hence the bijection with A™(F) is trivial. Similarly, if [0:x;:---:x,] € P"(F),
then not all x; are zero, and hence it defines a point on P*~!(F), and this is obviously
a bijection. O]

We usually abbreviate and write the above lemma as
P"(F) = A"(F)| [P*'(F).

If F is finite, we readily compute the sizes of the affine and projective spaces:

Proposition 6.2. #A"(F,) = q" and #P"(F,) =q" +---+1 = qr::i.
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For a vector of nonnegative integersi = (iy, ..., in) we write |i| = Z]’;i i;, and given

a vector X = (X, ..., X,) of elements of a ring, we write X' = Xff -+ XIn. Given
fX) = f(X1, o, Xn) = ) aiX!
li|<d

with a; € F,, and degree < d, we are interested in
Ny = #{x € A"(F,) : f(x) = 0}.

The equation f(X) = 0 defines a hypersurface in A"
In the projective setting, we are given a homogenous polynomial of degree d

F(Xo,....Xn) =Y aiX', @ €F,
ji]=d

Now the value F(x) is not well-defined for x € P"(F), but the solutions to F = 0 in
P" are well-defined. We are interested in

Ni = #{[x] € P"(F,): F(x) = 0},

and we say that F' = O defines a hypersurface in P".

6.1 Crude bounds
Let f(X) = f(Xy,..., Xy) € Fy[X] be a nonzero polynomial of degree d.
Proposition 6.3. N; < dq" .

Proof. If d = 0O, then Ny = 0 and we are done. If d = 1, then f = O defines a
translation of a linear subspace of codimension 1, so Ny = q"~%. If n = 1, then f is
univariate, hence Ny < d.

We proceed by double induction on n,d.

Case 1: Assume there exists a € F, such that (X; —a) | f. Then, f(X) = (X; —a)g(X),
with degg = d — 1. So by induction

Nf S qn—l + Ng S qn—i + (d . 1)qn—1 _ dqn—i‘

Case 2: Forany a € Fy, gq(Xo, ..., Xn) = fla, Xy, ..., Xp) is nonzero and of degree
< d. So by induction,

Ny < qmax(N(ga)) < qdq"™* = dq" ™",

as needed for the proof. ]

*(Xo, ..., Xn) = X3f(X1/Xo, ..., Xn/Xo).

So f* is a degree-d form.
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Lemma 6.4. Ny < Nj. < Ny +dq"*(1 —q 7).

DProof. Let F(X4, ..., Xn) = f*0,Xy,..., Xn). Then, F is a nonzero form of degree d,
and
N = Nj + Np.

It remains to show that Ni < dq"2(1 — q7!). And indeed, N; = N¢/(q —1) <
dq™'/(q — 1), by Lemma O

We try to understand the statistics of N;. For this, we write

Qg = {f c ]Fq[Xi ..... Xn] cdegf < d}

Since there are wy := (”+d

)-many i = (iy, ..., in) with |i| = d, we get that
#Qd = qwd.

Theorem 6.5. Let f be uniform in Q4, then

E(Ny) = q" .
Proof. By direct computation and the fact that given an x € Iy, the condition f(x) = 0
is linear in the coefficients of f. O
Exercise 6.1. For f uniform in Qg4 we have that Var(Ny) = q*! — g2

These two exercises may be expressed that typically
Ny =q"'+0lq'7),

that is, we have square root cancelation.
We proceed into some cases where such an estimate can be achieved.

6.2 Quadratic hypersurfaces

Assume q is odd. A quadratic form over F, is a form of degree 2 and is given by
equation

QX) = QXp, ..., Xn) = Y | ayXiX;

1<i,j<n
with a;; = a;; € Fy. In other words,
QX) = XTAX,
with A = (a;;) a symmetric matrix. Define
det Q = det A.

Two quadratic forms are equivalent, written as Q; ~ Q,, if there is a nonsingular
matrix M such that Q;(X) = Qy(MX), or equivalently, Ay = MTA,M. Hence, if
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O ~ Oy, we have det Q; = det Qom?, with m € F,. Ford € F;, we use the Legendre

1, d=0
symbol: For d ¢ F;, we use the Legendre symbol (g) — {Jrl " ' So,
—1, otherwise.

Qi ~ Q, implies that (¥L2) = (4€22).
We say that Q represent a € Iy, if there exists x € Fj such that Q(x) = a. We say

that Q represents zero if in addition x + 0.

Lemma 6.6. Suppose Q represents a € F;. Then Q(X) ~ aX? + P(Xy, ..., Xp), for
some quadratic form P over F,.

Proof. Exercise. O
Corollary 6.7. Every Q is equivalent to a diagonal quadratic form.

Lemma 6.8. If a nonsingular quadratic form Q represents O, then it represents
any a € IF;.

Proof. Since equivalent quadratics represent the same elements, we may assume
that Q(X) = Y, a;X? a; # 0. Let 0 # x € [y be such that Q(x) = 0. Wlog, we

may assume x; # 0. Let yy = xy(1 +t)and y; = x;(1 — 1), i = 2,..., n. Then,
Oly) = Y aix? + Y aix? + 4ayxit — 2ty aix? = 4ajxit. So when we vary t, we
get all elements in F,,. O

Let Q(X) be a nonsingular quadratic form in n > 3 variables. By Chevalley-
Warning Theorem, Q represents 0, hence it represents 1. So Q(X) ~ X?+P(Xs, ..., Xn).
We conclude that there exists a nonzero solution x € Fj to xi = Plxo, ..., Xn). If
x; # 0, then P represents —1. If x; = O, then P represents 0, hence —1. So,

OIX) ~ X? — X2 + R(Xs,...,Xn) ~ X1 X0 + R(X5, ..., X0)

for some nonsingular quadratic form R in n — 2 variables.
We shall use the above elementary consideration to estimate

Ng = #{x € F; : Qlx) = 0}.
In fact, we give an exact formula:

Theorem 6.9. Let Q(X) € Fy[Xy, ..., Xy»] be a nonsingular quadratic form, n > 1,
and write A = det Q. Then

N qn—il 2*’1’[
Q = n— n-2 ,(_1\n/2
"+ (g - 1) (FER), 2 n

Proof. We prove the statement by induction on n. If n = 1, then Np = 1, as needed.
If n = 2 then Q = aX} + bX} = a(X} + b/aX3), for nonzero a,b. Moreover,

(=) = (=2%). If (=%2) — 1, then we only have the trivial solution. So No = 1, as

needed. If (=22)1, then there are 1 + 2(q — 1) = 2q — 1, solutions, as needed.
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For the induction step, assume n > 3. We may assume w.l.o.g. that Q = X; Xy +

R(X5,..., Xn), with R nonsingular quadratic form. There are 2q —1 pairs (xy, xy) with
x1x9, hence the number of x counted by N with R = 0 is (2q — 1)Ng.

Likewise, given xs, ..., x, such that R # 0, there exist q — 1 choices of (xy, xy)
such that xjxy = —R(xs, ..., Xn), hence this contributes to the count in N exactly
(q —1)(q"~* — Ng). So 1 )

No=q"" —q" "+ qNg. (6)
By induction,
N qn—S' 2 J( n
R = n— _q\n/2
Q"+ q - 17 (FE2), 2] n.
Plugging this in (6), immediately gives the assertion. ]

6.3 Diagonal hypersurfaces

Given any polynomial f € F,[Xy,..., X,], by orthogonality of characters, we have
1
Ny ==> "> dlaflx)), (7)
q ackFy xe]Fg

where Y + 1) is a non-principal character. We to give a formula for a diagonal
hypersurface of degree d.

Theorem 6.10. Assume d | q — 1, f(X) = a;X{ + -+ + a, X%, with nonzero a; € F,,
i=1,..., n. Then

Ny=q""+(1-q7) Z ﬂféi(aﬂg(}(hw)/ (8)

where the sum runs over multiplicative characters y, ..., xn of By satisfying y; +
xo [Tii # xo and x& = xo (foralli =1,..., n) and g(x, ¥) is the Gauss sum. In
particular,

Ny = q"'| < Ald) —q~")g"™?,

where A(d) is the number of b = (by, ..., b,) € Z" with0 < b; <d and by +---+b, =
0 mod d.

Proof. Applying (6), we get that

aNy = > ) e ax) = > N | [vlaaxd) =D ] D | dlaax)

acFq erFg i acFy re]F(’; i=1 acFq i=1 x;€lfy

=q"+ Zl—[ Z Ylaaxy)

at0 i xielFy
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Using Y 4, x(¥) = #{x 1y = x?], we may rewrite the inner sums in the right-hand
side as

Z ll)(aaixid) = Z Ylaa;y;) Z Xi (Vi)

xicFy yicFq X,d=XO

Since a # 0 in these sums, we may change order of summation and make the
change of variables y; — y;/(aa;), to get

Y | dlaaix)) Z xilaa) Y | Vi) Z xilaai)g (. v).

xicFy yiclFy

Collecting everything together, we get

aNy = q" = > [ [xladgba, )Y | [#la)

dew-Xn a+0 i
Xi =X0

It %1+ xn # xo then Y, []; xila) = 0 by orthogonality. Otherwise, 3, ., [1; xila) =
q—1. If ¥ = xo then gl(x;, V) = 0, hence we may remove these terms from the
sums. This finishes the proof of the formula for Ny.

The second part follows immediately from the formula, after noting that error
term is a sum of A(d) g-Weil numbers of weight n. ]

Exercise 6.2. Prove by induction on n that A(d) = &2[(d —1)" — (=1)"'] < (d —1)",
and deduce
Ny —q"| < (1 —q~"){d - 1)"q""*,

for diagonal form f of degree d and n variables.

Next, we want to study the dependence of the number of solutions on the field of
coordinates. For an integer v > 1, let

N¢(v) = #{x € Fpo : f(x) = O}

(Here, as before, f = Y""  a;X¢%, d | q —1,and a; € Fy.)
Since d | g — 1, then multiplicative characters of order d of F,» are exactly

Xv i= x o Normp,_,/r,,

as x runs over characters of order d of IF,. Since a; € F,, Norm,,/r, (a;) = a?,

Y, 80
lai) = (¥(a;))” Moreover,

Y, =1vo TI“]qu 1Ty

is a non-principal additive character of Fp. Let gu(x, ¥) = gy, ¥v).We will prove
below the Hasse-Davenport relations that shows that —g, = (—¢g)". Plugging all of
these into (8) gives

Ni(v) = @7 4 (=)0 — ) Z ([Trotew) )
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where the sum is over non-principal multiplicative characters yi, ..., xn of F, with
xd = x0 and [, x: = xo- Thus,

Nty =) jai =) B

where a; and f; are g-Weil numbers of various weights.
In 1949, Weil conjectured that such formula always exists for the counting function
N¢(v), associated to any f € Fq[Xy, ..., Xn]. We will return to this later on.

6.4 The Hasse-Davenport relations

Let x be a multiplicative character if F; and ¥ an additive character. As before,
for an extension F,./F, we write y, = x o Norquv r, and P, = Po TI’FQV r, for the
associated characters of Fpv. Let g = g(x, ¥) and g, = g(xv, ¥). Our goal is to prove
that —g, = (—g)".

For a polynomial,

fIX) = X = XU+ -+ (=1)%eq € Fy[X]
we define A(f) = x(cq)¥(cy) and A(1) = 1.
Lemma 6.11. For any f,g € F,[X] we have A(fg) = A(f)A(g).
Proof. Obvious. [

Lemma 6.12. Let a € Fy» and let f be the minimal polynomial of a over F,, and
putd = degf. Then

AP = xla)iula).
Proof. We have

d
fIX) = X = XU 4 (—1)eq = [ (X = a?),
i=1

So Trla) = i ga? = 23" 1a?) = ¢y, and similarly, Norm(a) = [['-) a9 =
- i/ ) v ) ) v v
(T @)™ = e, So, Al = lea)wle)"™ = xlciWGer) = mleapler. O

We apply the lemma to rewrite g,: Let f, be the minimal polynomial of a € Fg,
then deg f | v, so by the lemma we have

gy = Z )L(fa)v/degfa‘
C(G]qu

There is a d-to-1 correspondence between elements of degree d and irreducible
polynomials of degree d, hence

gv=>_ > dAp), (10)

d|v deg P=d
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where P denotes irreducible monic polynomial.
We add a piece of notation: let JI C [F,[X] be the subset of monic polynomials,
and My = {f € J:degf =d}.

Theorem 6.13 (Hasse-Davenport relation). Let x + xo be a multiplicative charac-
ter and y # Yy an additive character, and v > 1 an integer. The g(x,, ¥,) =

(—1)"" g (x, ).

Proof. Expand (1 — A(P)u®9”)~! as a geometric series im uand applying unique fac-
torization in [F,[X], we have

'—[(1 _)\' degP Z)L ydess — Z Z )L(]()Ud

p fedt d=0 feiq

We compute the Coefﬁcien’[ of u?. For d = 1, the coefficient is 1. For d = 1, the

coefficient is Zae]F —a) =Y ayxla)yla) = glx, ¥). For d > 1, the coefficient is
Z Mf) = q* Z x(ca)Ples) = 0.
fedtq c1,cq4€Fy

Hence,

[ ] = AP)u®e?)™ =1 + glx, Pu.
1%

Now we apply logarithmic derivative and multiplication by u to both sides. The
left-hand side transformsin to

ey = Y4 Y 4y e

p degP=d r=1
YWY Y e =Yg
v=1 d|v deg P=d v>1

where the last equility follows from (10). The right-hand side transforms to

gu _ Z(_i)v~1gvuv'

1+ gu -

Comparing the coefficients, finishes the proof. O]

6.5 The Zeta function of a hypersurface
Let F € Fy[Xo, ..., X,] be a form of degree d. For any v, let

Ni(v) = #{]x] € P"(Fy) : Flx) = 0}.
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We define the zeta function to be
N#(v
Zr(u) = exp <Z #u‘) : (11)
v>1

We view it as a formal power series with rational coefficients, that is, Zr(u) € Q[[u]],
or as a complex function that is analytic in the disc {|u| < q™"}.

Example 2. Let us consider Py _(e.g., take F = X414 € Fo[Xo, ..., Xn+1]). Then,

Yorod L\ (q'u)\ 1
Zpy = exp <Z—£ u> —L—O[exp <Z > > RS T p—rE

v>1 v>1

In particular, Zg» is a rational function.
q

Example 3. We compute the zeta function of F(Xo, Xy, Xp) = X§ + x7 + X3 = 0in P§ .

We have Ne(v) 1
% F\V) —
Ne(v) = -1

where Np(v) = {x € IFZ : F(x) = 0} is the number of affine solutions. By (9),

Ne() = ¢* + (=1)"""1 = q N gl ¥ + gl v)™),

where ¥ + xo is a character of order 3 and ¥ # 1. Combining the these equations
together yields
-1 v—1 ) 3v + 2’ 3v
NE() = q* +1 + (1) (glx lpci” gl ™)

Since

exp <—Z (—a'glx, w>3u>v> 4 qrgly vt

v
v>1
and similarly, for x*, we have

1 +q gl v’u)l + q'glx® ¥)°u)
(1 —u)1 —qu)

Zp(u) =

As x? = ¥, we have,

gl Vg’ ) = gl V)g(x. ¥) = gl Vx(—1)g (e, ¥) = x(-1)g(x. Y)g(x, ¥) = x(—1)q.
Note that, as y is of order 3, it follows that x(—1) = x((—1)*) = x°(—1) = 1. Applying
Theorem (45| (g(x, ¥)* = wg(x?, ¥), 7 = J(x. x)) we get

gl )’ =0 x)glx, Yglx® ) = nq.
Similarly, g(x?, ¥) = 7tq. To conclude, we get that

(1 + stu)(1 + 7ru)
(1 -wd - qu)

Zr(u) = € Qu)

where 71 is a g-Weil number.
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The Zeta function is a priori in Q((u)), and we saw two examples in which the Zeta
function is in fact rational in Q(u). Moreover, in these examples, the zeros and poles
of the zeta functions were q-Weil numbers.

This is an incident of a very general theme. Given a nonzero form F ¢ F,[Xo, X;, Xo]
of degree deg F' = d which is non-singular over any algebraic extension of [F,, Weil
(1948) proved that

P(T)
(1 = T)1 —qu)’

where p(T) € Z[T] of degree (d —1)(d — 2) = 2g, g is the genus of the curve defined
by F = 0. Furthermore, he proved that the roots of P are g-Weil numbers of weight
—1,ie. P =[]¥,(1 —mu) and || = q*%

The last statement is called The Riemann Hypothesis for Curves. To see the
analogy with the classical Riemann Hypothesis, change variables to s with u = q~*.
Then

Zr(u) =

Crls) = Zrlg™) = (1 —q ) "1 —q" %) "P(q™).

So ¢r has a simple pole at s = 1, and the roots of ¢ are on the critical line R(s) = 1/2
if and only if the roots of Zr(u) are q-Weil numbers of weight —1.
For higher dimensions, namely nonzero forms F ¢ F,[Xo, ..., Xn], Dwork (1959)

proved that
(1 — a;u)

I
Zp(u) = m

The fact that the constant term is 1 is easy, just note that Z(0) = 1 by its definition.

a;,B; € C. (12)

Lemma 6.14. Assume Zr(u) has the form as in (12). Then
Nib) = B/ =2 o
j i

Proof. As usual, we apply the operator uddlflg to and using the definition (11) and
we get

—a;u —Biu
N* v _ J )
) Niloju — 1 —qu Zl—ﬁju
v>1 i j
Expanding to geometric series and comparing coefficients finish the proof. ]

Remark 5. The converse of the lemma is easily seen to be true.

Let us end the section with a brief cohomological interpretation of the zeta func-
tion.

Let V be a non-singular projective hypersurface defined by a form F € F,[X, ..., Xl
Let Q: V — V be given by Q([x, ..., xn]) = [xd, ..., x7] be the (n + 1)-fold Frobenius
operator. We have [x] € P"(F,) if and only if Q"([x]) = [x]. So

V(Fp) = {[x] € PY(Fyp): Flx) = 0} = V(F,)*.
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In topology, we have the Lefschetz fixed-point theorem, which counts the number of
fix points of an operator by means of traces on the induced mapping on the homol-
ogy. The analog in arithmetic is the Grothendieck-Lefschetz fixed-point formula
stating that for any prime ¢ + p = Char[F,, we have

2(n—1)

Ni) = Y (=1)Tr(Q™ H'(V, Qy)),

i=0

where H' denotes the i-th étale cohomology group, Q, the ¢-adic numbers, and Q*
the induced mapping on the cohomology group. In face H' = H(V,Q,) is a finite
dimensional vector space over Q, with B; := dim H' the ith Betti number. The
cohomology groups vanish for i > 2dim V = 2(n —1). By linear algebra, we deduce
that

2(n-1) 00 ’ on—1) |
Zetw) = [ | exo | Ym0 O ) = [ dettr - uos 1"
i=0 j=1 i~0
_ Pi(u) - - - Poy_3(u)
Po(u)Po(u) - - - Popo(u)’

where P;(u) = det(I-uQ*; H') € Q[T] and deg P; = B;. Write P;(u) = [[,(1 —aju). The
values «;; are called the characteristic values of the zeta function and they are the
eigenvalues of the Frobenius morphism Q*. If V is non-singular, most cohomologies
vanish:

Theorem 6.15 (Deligne). Lete = n —1 = dim V.
1. Bi(u) € Z[u], Py =1 —u and Pye =1 — q°u.

2. (RH) For any 0 < i < 2e the characteristic values a;; are q-Weil numbers of
Weight i

3. (Functional equation) Let (V) = Z?ﬁl(—i)iBi and € = 1 if e is odd and (—1)N
if e is even and N is the multiplicity of the eigenvalue q®* of Q* acting on He.
Then

ex(

Zelqcu™) = €q™ " Zp(u),

De(u), 2te

4 Zp(u) = Pou)="" TT5_0(1 — ¢/u)~", where P =
plu) = Pifu) ™ TLo(t — '), where P; {pe<u><1—q2/eu>, 2] e.

We will not prove this theorem here! Grothendieck (1972) has calculated the Betti
numbers:

d-1

Bo = ——I[(d — )" + (~1)™*'] + {0' 2|e

1, 2]e,

where d = deg F. Hence, the using the Lemma [6.14] we deduce the following general
results, which generalizes the diagonal case:

d
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Corollary 6.16. Assume V = {F = 0} is nonsingular projective hypersurface of
dimension e defined over F,, then

[#V(F,) — #P°(F,)| < Beq®”.

6.6 Exercises

1. For f uniform in Q4, we have that Var(N;) = q"~! — q" 2.

2. Prove Lemma

3. Let A(d) = A,(d) be the number of b = (by,..., b,) € Z" with 0 < b; < d and
by +---+ b, =0 modd. Prove by induction on n that A(d) = %[(d —1)" -
(—1)"'] < (d —1)", and deduce

INf —q"| < (1 —q~h(d —1)"q"?,

for diagonal form f of degree d and n variables.

7 Riemann Hypothesis for sums in one variable

In this section, we formulate the Weil estimates for exponential sums in one variable
and provide an elementary self-contained proof for hyperelliptic curves V2 = f(X).

7.1 Statements

Let IF, be a finite field and let x and ¥ be multiplicative and additive characters of
[F,, respectively. Let f € F,[X] be a polynomial of degree d. The Weil bounds are
given by:

Theorem 7.1. Assume that y is of order e > 1, e | q—1. Let1 < m < d be the
number of distinct roots of f in I_Fq. Assume further that f + h° for any h € F,[X].
Then

Y xlfla))] < (m - 1)v/q. (13)
acFy

Theorem 7.2. Assume that ¥ + ¥, that d < q and that (d,q) = 1. Then
Y T W(fla) < (d - 1)/q. (14)
acFy

Let us introduce the companion sums

SU(f) = ) x(Normg,,m,(f(a)))

aE]qu

SPAf) = S (Tes, e, )

(IEIqu
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Then we can form the associated zeta functions:

(i) v
Zf(i)(u) = exp <Z > (1]:)11 > , i=1,2. (15)

As before, those are rational functions and one may observe the analogy with the
Riemann Hypothesis of ordinary zeta functions. More generally, we have:

Theorem 7.3 (Dwork). Let f, g € Fy[X], and x and ¥ be multiplicative and additive
characters of F,, respectively. Let

Sy = > x(Normg,,x, (f(a))¥(Tre,x, (g(a)).

aeIqu

Then there exist coprime polynomials P, Q € C[T] with P(0) = Q(0) = 1 such that
S,u? P(u)
Z(u) ;= ex = .
= exe <Z v > Qlu)

We will not prove Dwork’s theorem in general in the course, but we will prove

the special case when g = 0.
Recall that the Hasse-Davenport relation is equivalent to

Z(u) = exp <i w> =1+glx Yu,
v=1

which is a special case of Dwork’s theorem.
Another special is for Kloosterman sums: Let K = K(,n) = eru?; Y(x)n(xh),
and consider the companion sums

K, = Z Y(Trs,. i, (X)N(Tre,m, (x 7).

x eIF‘;v

Also in this case we may compute the zeta function explicitly, similarly:
Exercise 7.1. Prove that Z(u) = exp(} ., K,u"/v) =

1

1+Ku+qu?*

Lemma 7.4. Let f € F,[X] be a non-constant monic polynomial, and let e | g — 1.
Then, for all v > 1 we have:

#{(x,y) € For:9° = f(X)} —q" = > > x(Norms,. g, (f(x))),
X IE]qu
where x runs over all multiplicative characters of I, satisfying x + xo and x° = xo.

Proof. Using the fact that characters of F,. of order dividing q —1 are coming from
FF, via the norm map (Lemma and the fact that #{y € Fpo:y° =a} =Y ._, xla)
we conclude that

#{(x,y) € Fo:y® = flx)} = > Y | x(Normg,, e, (f(x)).

Moving the contribution of the principal character to the left-hand side, finishes the
proof. ]
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7.2 Proof the Riemann Hypothesis on number of points bound

In this section we assume the following proposition, which we will prove later, and
deduce from it the Riemann Hytpothesis from multiplicative characters (13).

Proposition 7.5. Let v > 1, let f(X) € F,[X] be a monic and non-constant polynomial
of degree d, and let e | g —1 with (e,d) = 1. Then there exists C = C(d, e) > 0 such
that

[#{(x,y) eFo i y° = flx)} - q"| < Cq*™.
An auxiliary result that we will need is:

Lemma 7.6. Let wy, ..., w, € C let A,B > 0, and assume |) w!| < AB" for all
v > 1. Then |w;| < B for all i.

Proof. Consider the complex power series

D(z) = Zwaz” = Zl —1W~z'

v>1 i=1 i=1

By hypothesis D converges absolutely in the disc |z| < B!, so D is analytic there,
hence its poles w; are outside the region. That is to say 1/|w;| > 1/B. O

The rest of the subsection is devoted to the proof of (13).

Let x be multiplicative character of I, of order e | g — 1, let f € F,[X] be non-
constant of degree d, let 1 < m < d be the number of distinct roots of f in ]F‘q, and
assume f + h®. We need to prove the inequality (13).

We assume Dwork’s theorem, which in fact gives in our setting[l] that

Z(u) = exp <Z%u”> = ﬂ (1 —wyu),

v>1 1<j<m-1

with w; € C and where S, = Zaquv x(Normg,,r,(f(a))). Then, by Lemma we

have
Sy=—(wy + -+ wy_y)

so by Lemma [7.4]

Ny =q" = =) (wil)" + -+ wina(x)"),

X

where the sum runs on characters ¥ = yp and y # xo. Assuming Proposition
and Lemma[7.6) we get that |w;(x)| < q'% so [N, —q"| < (m —1)q"’%, and this finishes
the proof when v = 1. O

It time permits, we will prove this.
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7.3 The Stephanov method

The goal now is to prove Proposition So we fix f € F,[X] monic and non-constant
of degree d and we fix e | ¢ — 1 with ged(e,d) = 1. Write

alf) = #{(x,y) e Fy:y° = f(x)} — q
Lemma 7.7. We have a(f) > —(e — 1) maxccr; |alef)|.

Proof. Fix representatives {€; = 1,e,..., €} for Fo/Fg . Let fo = e~ 1f so that
degfe = d. Let
Ci={lr,y) e Fy xF;:3° = felx)}.
Then,
#C: = q +alf) — Ny, (16)

where Ny = #{x € F, : f(x) = 0} < d. Since, for each x with f(x) # 0, there is
unique ¢; and e values of y such that f(x) = €;y°, we get that

e e
Se-Y Y - Y] eela-)
i=1 i=1 ye=€lf1f(x) x,f(x)#0

f(x)#0

Plugging in (16) and rearranging, we get that
O = Z a(féf);

hence aff) = alfy) = —(e = 1)max;_o . |alfe)[- O

.....

In view of the lemma, to prove Proposition [7.5 it suffices to establish an upper
bound of the form
Ny <q+0@"?), a»1, (17)

where the implied constant depends only on d,e. We assume that gcd(e,d) = 1
and e | g — 1. In particular, this implies that the polynomial V¢ — f(X) is absolutely
irreducible (we leave it as an exercise).

The plan to prove is surprisingly simple, called the polynomial method. Namely,
we will construct an auxiliary polynomial A € [F,[X] and a parameter m > 1 such
that

1. A+ 0, and
2. if (x,y) € Fyp is counted by Ny (that is, y° = f(x)), then (X —x)" | A.
This will imply that

N, < edegA.
m

So, the proof would be reduced to bounding deg A.
Let

s}
@l
-
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Lemma 7.8. Let hj(X) = kijo(X) + Xk (X)+-- -+ XKk, 0 < i < e—1 be polynomials
with deg k;; < ¢ —d. Suppose that Zf;oi hi(X)g(X)' = 0. Then k;; = 0 for all i,].

Proof. A typical summand is of the form
by = g(X) XVky;.

It suffices to show that the degree of the non-zero summands are all distinct, because
then the sum cannot be zero. And indeed,

idlq -1) (ej + id) + deg k;; — i
e e

deg bij = qj + : + deg k;; =

D |Q

By the assumption on deg k;;, we get

q

degt; < Lej+id) + L —d
e e

while since i/e < 1 we get that
a, . .
deg 6; > g(e] + id) — d.

Hence it suffices to show that for (i, ) # (i’,j) we have ej +id + ej +i'd. And indeed,
if ej +id + ej’ +i'd, then id = i’"d mod e, soi =i mod e, as gcd(d, e) = 1 and thus
i=1i,as0<1i,i"<e. Thus alsoj=7j. ]

To produce the polynomial A with zeros of high multiplicity, it is natural to use
derivatives. However, in positive characteristic there are some a-normalities, coming
from the fact that f®(X) = 0 for all i > p. So the Taylor expansion

deg f

fX+T) =)

i=0

il

which holds true in characteristic O, is not well-defined by derivatives in positive
characteristic (as f/ = 0 and il = 0 for i > p).There is an easy formal fix to that:

Definition 7.9. Let K be a field, and f € K[X] a polynomial. We define the i-th Hasse-
Schmidt derivative f{/(T) € F,[T] of f to be the coefficient of X! in the equation

fIX+T) =) U)X (18)

In particular, fl%(X) = f(X), fII(X) = f/(X). If the characteristic of K is p, then we
have f1(X) = f9(X)/i! for all i < p.

Exercise 7.2. Prove that (X*)¥ — (¢)X%* for any integers a,k > 0 and deduce a
close formula for f¥.
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Lemma 7.10. (ﬂlefi)[k] — Z nllifi[kd_

ki+-+k.=k

Proof. The general case follows from the case r = 2 by induction. So to this end

assume r = 2. By linearity, we may assume that f; = X%, i = 1,2. By the[Exercise 7.4
the left-hand side equals to
<a1 + a2>xa1+a2—k

k
and the right-hand side equals to
' la a
1 2 a)+ag—k
L) S
i=0
Since (“7%) = Y28 (%) ("), the proof is done. O

Lemma 7.11. (X —c)")¥ = (§)(X — ).

Proof. By the previous lemma,
o= 5 [Tc-et - (-
i+ +ko=k i=1

where in the last equality we used that the derivative is non-zero if and only if
ki =0,1. O

Exercise 7.3. Prove that for any 0 < ¢ < t, a,f € K[X], we have

for some b € K[X] with degb = dega + ¢(degf —1).

We now state formally the property that Hasse-Schmidt derivatives detect high
order zeros.

Proposition 7.12. For x € K and f(X) € K[X], we have that f%x) = 0 for all
0<¢<M~—1ifand only if (X —x)M | f(X).

Proof. Substituting x for T and X — x for X in Definition [18 gives that fl%(x) for all
0<¢<M—1ifand only if (X —x)M | f. O

Lemma 7.13. Lete € [1,e — 1] N Z and a € F,[X] of degree €. Let
S={xeF,:alglx)) =0or flx)=0}

Let M > d +1 be an integer such that (M + 3)2 < %q. Then there exists nonzeror ¢
[F4[X] which has zero of order > M for every x € S and satisfies degr < <qM +4dq.
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Proof. We consider r(X) = h(X, X9), where

h(X, V) = O™

e-1 K
ki(X)g(X)'V,
0

i=0 j

and deg k;; < € —d with coefficients to be determined, and K = [£(M +d +1)] (recall
that g = f9te).
First, the zeros of f appear with multiplicity > M. Second,

degrng+%_d+(e—1>(eq—1)d

+§q(M+d+1)

M d

geeq+M2+%(1/d+(e—1)+6+6/d)
M

g%%dq.

Hence, it remains to show we can choose the k;; so that the other x € S will have
multiplicity > M and such that r + 0.

We start by computing derivatives: Since g = f %, by we have
K

FOOMY  Ry(X)g (X)) = FXOM Ry X)g (X)),

-0

]

where k;j(X) has degree degk;; + ¢(d — 1). Hence, by whenever 0 <
¢ < M < q, we have

e—1 K

POX) = FXMOY Y Rl X)g (X)X, (19)

i=0 j=0

Fix x with a(g(x)) = 0. By Proposition [7.19} it suffices to prove that rl(x) = 0,
0 < ¢ < M. Let y € F, be such that a(y) = 0. Then y© = :é cy!'. Therefore, for

any i > 0 we may write
e—1
J/i = thiyt-
t=0

In particular, we apply this to y = g(x) to get that g(x)’ = ZZ& cqig(x)!, and thus, as
x9 = x, may plug this in (19), to get

where



In particular, if all s are the zero polynomial, but r # 0, we are done.
We have

deg su(X) < maxdeg by, + K < maxdegk; + 6(d — 1) + K < g vod—1)+ K —1.
i,j )

Let B be the total number of coefficients of all the s;. Then

e—-1 M- e—1 M-1
B < Zegswg Ze d—1)+K-1)
t=0 =0 t=0 =0
M-1
=eM(qle+ K—-1)+e) 0d-1)<eMlgle+K)+
=0
2 2
gﬂM+€—M(M+d+1)+M7(d—1)e
< qM+6M(d+1)+eM2(d21+§)
< —qM+eM(d+1)+eM2(d;1).

Let C be the total number of coefficients of all k;;, then

C> (g ~d)e(K +1) > %M + %(d +1) — 9Mde.

If C > A, then sy = 0 defines a homogenous system of linear equations in the

coefficients of k;; with more variable than equations, hence it admits a non-trivial
solution. By Lemma r # 0 in this case, and we are done.

And indeed, as (M +3)? < 21, we have that M? + 6M < 2q/e. Hence M*(d +1)/2 +

3M(d +1) < (d + 1) which implies that B < C. O

Corollary 7.14. For every M as in the lemma we have #S < de—A?I” < gq + 4%’.

To conclude the proof of Proposition E we apply the corollary with M = |4/ %q -

3], so that M > d + 1 if q is sufficiently large, and thus #S < £q + 461/2q”2
Take a(VY) = Y —1sothate = 1. Then S = {x € F, : g(x) = 1 or f(x) = 0}. Hence

N <e-#S<q+ OL/Q).

7.4 Exercises

1. Prove that

K,u"’ 1
Zlu) = exp <Z v > “ 1+ Ku + qu?’

v>1
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where Ky, = Y o ¥(Trg, /e, (X))0(Tre . m,(x ")) and K = K; is the Kloosterman
q
sum.

Hint: Mimic the proof of the Hasse-Davenport relation with the character
p(X® + ay X4t + o+ ag) = Ylagnlag_1/ag) extended to G = {flg : f,g €
J1.f(0)g(0) + O}

. Assume a bound of the form |[#{(x,y) € F2, : 39 —y = f(x)} — q"| < Cq"? and
prove (14). Hint follow similar steps as in the proof of (14).

. Assume that ged(e,d) = 1 and e | g — 1 and f(X) € F4[X] is of degree d. Then
Ve — f(X) is absolutely irreducible (that is to say, ¥Y¢ — f(X) is irreducible in the
ring F,[V, X]).

. Prove that (X*)¥ — (¥)X*°* for any integers a,k > 0 and deduce a close
formula for fI¥.

. Open brackets in f;(T + X)fo(T + X) to give an alternative proof to Lemma

. Show that if r(X) = h(X,X9) e F,[X], where h(X,V) € F,[X, V], then, for
any 0 < ¢ < q, we have rl9(X) = hiJ(X, X9), where h{J is the Hasse-Schmidt
derivative with respect to X (i.e, as an element of F,(V)[X]).

Hint: Use that (X9)¥ = 0 for ¢ < q.

. Prove that for any 0 < ¢ < 't, a, f € K[X], we have

for some b € K[X] with degb = dega + ¢(degf —1).
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