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1 Introduction

The goal of the introduction is to give some examples for exponential sums, tosuggest interesting questions about them, to highlight some intriguing phenomena,and to touch briefly some applications.Let p be a prime number and
Fp = Z/pZ = {0, . . . , p − 1}be the finite field with p elements. Given two polynomials f , g ∈ Fp[x] with g ̸= 0,we are interested in sums of the form

S = ∑
x∈Fp
g(x )̸=0

exp(2πi
p · f (x)

g(x)
) = ∑

x∈Fp
g(x )̸=0

ep(f (x)/g(x))) ∈ C.

As e(x) := exp(2πix) is 1-periodic, the function ep(x) := e(x/p) is well-defined modulo
pZ. Hence, S is also well-defined.Maybe another remark is in place, just to clarify notation: we invert modulo p, soif, for example p = 7, and g(x) = 3, then 1/g(x) = 5.Sums of the form S arise frequently in number theory.Here are some typical questions and goals we want to study about such sums.1. Is there a closed expression for S?2. S has a trivial upper bound: |S| ≤ p; can we do better |S| ≤ θ−1p, where θ > 1?3. Can one obtain lower bounds? This is more challenging, and luckily, appearsless in applications.4. Assume we have a family of exponential sums Sℓ ; how does it varies as afunction of ℓ?5. ep : Z/pZ → C is an additive character of Fp . Can we take multiplicative char-acter? Mixed sums?6. What happens for higher dimensions?
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1.1 Linear sumsThe simplest example if a linear sum, that is to say, f (x) = ax and g(x) = 1. So
Sa = ∑

x∈Fp

ep(ax).
Put w = ep(a). Then, Sa = 1 + w + · · · + wp−1. So Sa = {

p, a ≡ 0(p)0, a ̸≡ 0(p). The same
argument work for any modulus (and not only prime):
Theorem 1.1.

m−1∑
x=0 em(ax) = {m, a ≡ 0(m)0, a ̸≡ 0(m).

So in this simple case, we have an explicit expression.Let see a fun application of the trivial Theorem 1.1.
Theorem 1.2. Let X be any finite set of integers and let f : X → Fp be a function.
Denote by Nk(a) the number of solutions of

f (x1) + · · · + f (xk) ≡ f (xk+1) + · · · + f (x2k) + a mod p

with xi ∈ X. Then Nk(a) ≤ Nk(0).
Proof. By Theorem 1.1,

Nk(a) = ∑
x1,...,x2k∈X

1
p

p−1∑
c=0 ep(c(f (x1) + · · · + f (xk) − f (xk+1) − · · · − f (x2k) − a))

= ∑
x1,...,x2k∈X

1
p

p−1∑
c=0 ep(−ca) k∏

i=1 ep(cf (xi)
k∏
i=1 ep(−cf (xk+i))

= 1
p

p−1∑
c=0 ep(−ca)(∑

x∈X

ep(cf (x)))k(∑
x∈X

ep(−cf (x)))k

Since f (x) is real and since Nk(a) is a nonnegative integer, we conclude that
Nk(a) = |Nk(a)| =

∣∣∣∣∣∣1p
p−1∑
c=0 ep(−ca) ∣∣∣∣∣∑

x∈X

ep(cf (x))∣∣∣∣∣
2k∣∣∣∣∣∣ ≤ 1

p

p−1∑
c=0
∣∣∣∣∣∑
x∈X

ep(cf (x))∣∣∣∣∣
2k = Nk(0),

as needed.
Exercise 1.1. Conclude that Nk(0) ≥ #X2k

p . (Hint: Compute the expected value of
Nk(a) as a is chosen uniformly from Fp .)
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We may show that the values Nk(a) are close to their expected value, if we canbound exponential sums. Indeed, in the Nk(a) = 1
p
∑p−1

c=0 ep(−ca) ∣∣∑x∈X ep(cf (x))∣∣2k,we notice that c = 0 contributes the expected value #X2k/p. Hence
|Nk(a) − #X2k/p| ≤ 1

p

p−1∑
c=1
∣∣∣∣∣∑
x∈X

ep(cf (x))∣∣∣∣∣
2k
.

Hence, had we had a nontrivial bound on the exponential sums ∣∣∑x∈X ep(cf (x))∣∣ ≤
θ−1#X, c ̸= 0(p), θ > 1, we could have a concentration result: |Nk(a) − #X2k/p| ≤
θ−2k#X2k.
1.2 Gauss quadratic sumsGauss sums are the simplest example apart from the linear sums. It is one of theoldest sums considered, and one of the few interesting ones with explicit expression.In this case, we take f (x) = ax2 and g(x) = 1. We define the Gauss sum to be

Ga = S = ∑
x∈Fp

ep(ax2).
If a = 0(p), then G0 = p. So from now on assume a ̸= 0(p). If p = 2, then G1 = 0.So assume also that p ̸= 2.Let ω = ep(1), let (

y
p

) =


0, if y = 01, if y ∈ F×2
p

−1, otherwise.be the Legendre symbol, and let
Ta = ∑

y∈Fp

(
y
p

)
ωay.

Note that Ta is a mixed sum.We claim that Ga = Ta if a ̸= 0(p). Indeed, since
1 + (yp

) = #{x ∈ Fp : x2 = y},

we have that
Ga = ∑

x∈Fp

ep(ax2) = ∑
y∈Fp

∑
x2=y e(ay) = ∑

y∈Fp

#{x ∈ Fp : x2 = y}ωay

= ∑
y∈Fp

(1 + (yp
))

ωay = ∑
y∈Fp

ωay + Ta = Ta,

since a ̸= 0.
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Lemma 1.3. Assume a ̸= 0(p) and p > 2. Then

1. Ta = (ap)T1.
2. G2

a = T2
a = (−1) p−12 p.

Proof. We have (
a
p

)
Ta = ∑

y∈Fp

(
ay
p

)
ωay =∑

x

(
x
p

)
ωx = T1,

as needed for 1.By 1., it suffices to prove 2. for a = 1 since T2
a = T21 . For any b ̸= 0(p), by 1., wehave TbT−b = (−1

p
)
T21 . Hence

∑
b∈F×

p

TbT−b = (−1
p

)(p − 1)T21 .
On the other hand,

∑
b∈F×

p

TbT−b = ∑
b∈F×

p

∑
x∈Fp

(
x
p

)
ωbx

∑
y∈Fp

(
y
p

)
ω−by


= ∑

x,y∈Fp

(
xy
p

)∑
b∈F×

p

ωb(x−y) = p
∑
x∈Fp

(
x2
p

) = p(p − 1).
So we conclude that (−1

p
)
T21 = p, as needed.

Corollary 1.4. We have G1 = T1 = {εp√p if p = 1(4)
εpi

√p if p = 3(4) , where εp ∈ {±1}.

The sign εp is always 1. We will not prove it here. Here is a quote from Wikipedia:
”In fact, the identity g(1;p)2 = (−1

p

)
p was easy to prove and led to one of

Gauss’s proofs of quadratic reciprocity. However, the determination of
the sign of the Gauss sum turned out to be considerably more difficult:
Gauss could only establish it after several years’ work. Later, Dirichlet,
Kronecker, Schur and other mathematicians found different proofs.”

Exercise 1.2. The corollary remains true if we replace the odd prime p by any oddinteger.
Gauss sums are used to prove the following

Theorem 1.5 (The quadratic reciprocity law). Let p ̸= q be odd primes. Then(p
q
)(q

p
) = (−1) p−12 q−12 .
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Quick proof using the explicit expression for the quadratic Gauss sum. For a, n, let
Ga,n = ∑

x∈Z/nZ

e(ax2/n).
By the Chinese Remainder Theorem, each x ∈ Z/pqZ may be written uniquely as
x = px1 + qx2, where x1 ∈ Fq and x2 ∈ Fp . Therefore,

G1,pq = ∑
x1∈Fq

∑
x2∈Fp

e
( (px1 + qx2)2

pq

) = ∑
x1∈Fq

∑
x2∈Fp

eq(px21 )ep(qx22 )e(2x1x2)
= ∑

x1∈Fq

eq(px21 ) ∑
x2∈Fp

ep(qx22 ) = Gp,qGq,p = (pq
)(

q
p

)
G1,pG1,q.

This finishes the proof if we use the theorem
G1,n = {√

n n = 1(4)
i
√
n n = 3(4).

We remark, that Gauss only used that G2
a = (−1) p−12 to deduce the QRL (see Exer-cise 1.4).

1.3 Kloosterman sumsIn this sum, we take f (x) = ax2 + b and g(x) = x; so that
K(a, b;p) = p−1∑

x=1 ep(ax + bx−1).
If ab = 0, we have a linear sum.
1.3.1 Upper boundsGetting nontrivial upper bounds is the most crucial ingredient in the proof of thefollowing beautiful
Theorem 1.6 (Kloosterman). Let a1, . . . , a4 be positive integers. Then, for any N
sufficiently large, there exists a solution (x1, . . . , x4) ∈ Z4 for the Diophantine equa-
tion

a1x21 + · · · + a4x2 = N,

provided there are no local obstructions.
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Today the best bound comes from Weil’s resolution of the Riemann hypothesisfor curves which gives |K(a, b;p)| ≤ 2√p for a, b ̸= 0(p).This is close to the best possible, as Kloosterman proved that there exists a, b with
|K(a, b;p)| ≥

√2p − 2 (Exercise 1.5).We now present a weaker bound due to Kloosterman.
Theorem 1.7. Let a, b ∈ F×

p , then |K(a, b;p)| ≤ 2p3/4.
Proof. We try to understand K(a, b;p) as a family and exploit its symmetries. Let

Mk = ∑
a,b∈F×

p

|K(a, b;p)|2k (1)
be the 2k moment of the Kloosterman sums. We have the symmetry K(a, b;p) =
K(ac, bc−1;p), c ̸= 0(p). We get that

(p − 1)|K(a, b;p)|2k = p−1∑
c=1 |K(ac, bc−1;p)|2k ≤ Mk,

so
|K(a, b;p)| ≤

(
Mk

p − 1
)1/2k

. (2)
Next, we estimate Mk for k ≥ 1. Since K(0, b;p) = K(b, 0;p), we have

Mk = ∑
a,b∈Fp

|K(a, b;p)|2k − 2 ∑
a∈F×

p

K(a, 0;p)2k − |K(0, 0;p)|2k.
If a ̸= 0, then K(a, 0;p) = −1, by Theorem 1.1. Even more trivially, K(0, 0;p) = p−1.We expand the Kloosterman sum, to get
Mk = ∑

a,b∈Fp

∑
x,y∈F×k

p

ep

(
a

k∑
i=1 (xi − yi)) ep

(
b

k∑
i=1 (x−1

i − y−1
i ))− 2(p − 1) − (p − 1)2k.

(Here x = (x1, . . . , xk) and y = (y1, . . . , yk).)Changing order of summation in the first sum, and using Theorem 1.1, we getthat
Mk = p2Nk − 2(p − 1) − (p − 1)2k,where Nk is the number of solutions x, y ∈ F×k

q to{
x1 + · · · + xk = y1 + · · · + yk
x−11 + · · · + x−1

k = y−11 + · · · + y−1
k .

Obviously, N1 = p − 1. So,
M1 = p2(p − 1) − 2(p − 1) − (p − 1)2 = p3 − 2p2 + 1.
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If we plug this in (2), we are worse than the trivial bound.For k = 2, there are 2(p−1)2 − (p−1) obvious solutions y = (x1, x2) or y = (x2, x1).Moreover, there are (p − 1)2 with x1 + x2 = 0 or y1 + y2 = 0, out of which 2(p − 1)have already been counted.If (x1, x2, y1, y2) is any other solution, then{
x1 + x2 = y1 + y2
y1y2(x1 + x2) = x1x2(y1 + y2).Since x1 + x2 ̸= 0, we get that y1y2 = x1x2. Hence, both the pairs x1, x2 and y1, y2are solutions of the quadratic equation X2 − (x1 + x2)T + x1x2 = 0. Hence either(x1, x2) = (y1, y2) or (x1, x2) = (y2, y1), contradiction.From this we get that N2 = 2(p− 1)2 − (p− 1) + (p− 1)2 − 2(p− 1) = 3(p− 1)(p− 2)and so M2

p−1 = 3p2(p− 2) − 2 − (p− 1)3 = 2p3 − 3p2 − 3p− 1. Plugging this into (2), weget
|K(a, b;p)| ≤ 2p3/4,as needed.

1.3.2 Lower boundsWe already stated a strong lower bound for max |K(a, b;p) in 2. We aim for auniform lower bound.Let’s derive some more properties of Kloosterman sums. First of, obviously wehave K(a, b;p) = K(a, b;p), so K(a, b;p) ∈ R.
Lemma 1.8. For any a, b ∈ F×

p we have K(a, b;p) ̸= 0.

Proof. The proof uses the algebraic properties of cyclotomic extensions: Let ζ =
ep(1) be the primitive p-th root of unity, let K = Q(ζ) be the cyclotomic field. Then[K : Q] = p − 1, K/Q is Galois, Gal(K/Q) = (Z/pZ)∗ where (a, p) = 1 defined theautomorphism given by ζ 7Ï ζa (i.e., ∑aiζi 7Ï

∑
aiζai), the ring of integers is OK =

Z[ζ]. The prime p is totally ramified in K, that means that there exists a prime ideal
p of OK such that pOK = pp−1. Moreover, p = (1−ζ, p) = {x(1−ζ)+yp : x, y ∈ OK}.We reduce modulo p to get that 1 ≡ ζ mod p. Hence,

K(a, b;p) = ∑
x∈F×

p

ζax+bx−1 = ∑
x∈F×

p

1 = −1 mod p.

In particular, K(a, b;p) ̸= 0.We are now ready to give a uniform lower bound on Kloosterman sums.
Theorem 1.9 (Fouvry). For any a, b ∈ F×

p ,

|K(a, b;p)| ≥
( 12p2/3

)p−2
.
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Proof. We adopt the notation of the proof the the lemma. For any 1 ≤ m ≤ p−1, theconjugate of K(a, b;p) by the corresponding automorphism of K/Q is K(ma,mb;p).On the one hand, NK/QK(a, b;p) := ∏1≤m≤p−1 K(am, bm;p) ∈ Q as it in invariant tothe Galois action; on the other hand, NK/QK(a, b;p) ∈ OK as a product of algebraicintegers. By Gauss Lemma, OK ∩ Q = Z, so NK/QK(a, b;p) ∈ Z. In particular,
1 ≤ |NK/QK(a, b;p)| = K(a, b;p)(2p3/4)p−2,

where we applied the Kloosterman upper bound to all terms with m ̸= 1. Thisfinishes the proof.
Remark 1. It is not clear how to do better, after replacing the Kloosterman boundby the Weil bound. Kloosterman sums illustrate Question 2 and Question 3.
Remark 2. It is open whether, for example, K(1, 1;p) > 0 infinitely often.The last remark leads us to equidistribution questions.
1.4 EquidistributionLet’s discuss the questions here through the following example: Let f (x) = ax3 +bx,
a ̸= 0 and g(x) = 1, so that

S(a, b;p) = ∑
x∈Fp

ep(ax3 + bx).
Then S(a, b;p) ∈ R. The Weil bounds give that |S(a, b;p)| ≤ 2√p, so it is natural toask how the numbers

θa,bp = S(a, b;p)2√pdistribute on [−1, 1]. Two natural limits:1. Horizontal distribution: Fix a, b ∈ Z, a ̸= 0 and vary p.2. Vertical distribution: Fix large p and vary a, b ∈ F×
p × Fp .In both cases, it is conjectured that θa,bp become equidistributed for the Sato-Tatemeasure, see Figure 1. The vertical case is a Theorem by Livne:

Theorem 1.10 (Livne). For every interval [α, β] ⊆ [−1, 1], we have

lim
p→∞

1
p(p − 1)#{a, b ∈ F×

p × Fp : θa,bp ∈ [α, β]} = 2
π

∫ β

α

√1 − x2dx.
Let f = 1[α,β] be the indicator function for the interval, then the theorem statesthat lim

p→∞

1
p(p − 1) ∑

a,b∈F×
p ×Fp

f (θa,bp ) = 2
π

∫ 1
−1 f (x)√1 − x2dx. (3)

8



Figure 1: The Sato-Tate measure
Indicator functions are hard to work with using harmonic analysis, because theyare not smooth. So one tries to prove (3) for smooth functions f . If (3) holds truefor all smooth f , then equidistribution holds (that is (3) holds for indicator functionsof intervals).Furthermore, since we may approximate smooth functions by polynomials, andsince both sides of(3) are linear in f , we conclude that it suffices to consider f (x) = xk.Let us state this general principle in our case.

Proposition 1.11. To prove Theorem 1.10 it suffices to prove

lim
p→∞

1
p(p − 1) ∑

a,b∈F×
p ×Fp

(θa,bp )k = 2
π

∫ 1
−1 xk

√1 − x2dx,
for every k ≥ 0.

The left-hand side of the equation in the proposition is easy to compute:
Exercise 1.3. Calculate ck = 2

π
∫ 1

−1 xk√1 − x2dx and show that ck = 0 if k is odd and
ck = 12k(k/2+1)( k

k/2) if k is even.
Denote the right-hand side by

VMk = 1
p(p − 1) ∑

a,b∈F×
p ×Fp

(θa,bp )k (4)
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so by expanding and rearranging we get
VMk = 12kpk/2+1(p − 1)∑

a ̸=0
∑
b

(∑
x
ep(ax3 + b))k

= 12kpk/2+1(p − 1)∑
a ̸=0
∑
b

∑
x1,...,xk

∏
i

ep(ax3
i + bxi)

= 12kpk/2+1(p − 1)∑
a ̸=0
∑
b

∑
x1,...,xk

ep(a∑
i

x3
i )ep(b∑

i

xi)
= 12kpk/2+1(p − 1) ∑x1,...,xk

(∑
a ̸=0 ep(a

∑
i

x3
i ))(∑

b

ep(b∑
i

xi))
By the linear sum (Theorem 1.1), we conclude that
∑
a ̸=0 ep(a

∑
i

x3
i ) = {−1, ∑

x3
i ̸= 0

p − 1, ∑
x3
i = 0 and ∑

b

ep(b∑
i

xi) = {0 ,
∑

xi ̸= 0
p,

∑
xi = 0

Hence,
VMk = 12kpk/2+1(p − 1)pδ∑xi=0(pδ∑x3

i =0 − 1) = 12kpk/2+1(p − 1)(p2Xk(Fp) − pk).
Here #Xk(Fp) is the number of solutions of ∑x3

i =∑xi = 0. Thus, equidistributionquestions leads us naturally to seek precise estimates for the number of points onhigher dimensional varieties. (Questions 4, 6).
Exercise 1.4. Compute VMk for k = 2, 3 and show that VMk → ck in cases.
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1.5 Exercises1. In the notation of Theorem 1.2, conclude that Nk(0) ≥ #X2k
p . (Hint: Compute theexpected value of Nk(a) as a is chosen uniformly from Fp .)2. Prove Theorem 1.2 using Cauchy-Schwartz (hint: think of the xi-s as iid ran-dom variables, conclude that X = f (x1)+ · · ·+f (xk) and X′ = f (xk+1)+ · · ·+f (x2k)have the same distribution, and compute both the relevant probabilities Nk(a)/pexplicitly).

3. Show that Corollary 1.4 remains true if we replace the odd prime p by anyodd integer.
4. In this exercise, we will prove the QRL (Theorem 1.5) using Lemma 1.3. Let
gp = G1,p =∑x∈Fp

(x
p
)
ωx , where ω = ep(1). We also let p∗ = (−1

p
)
p = (−1) p−12 p.a) Show that Q(gp) is a quadratic extension of Q contained in the cyclotomicfield Q(ω).b) Use g2

p = p∗ to prove that gq−1
p = (p∗

q
) mod q . (You may want to usemodular arithmetic on the ring of integers Z[gp] modulo some primelying above q .)c) Use that raising to q-th power is an automorphism on fields of character-istic q to compute that gqp = (q

p
)
gp mod q . (You may want to use item 1in Lemma 1.3.)d) Deduce the QRL.

5. In the notation (1), note that M2 ≤ maxa,b∈F×
p |K(a, b;p)|2M1, and deduce thatthere exist a, b ∈ F×

p such that |K(a, b;p)| ≥
√2p − 2.

6. Calculate ck = 2
π
∫ 1

−1 xk√1 − x2dx and show that ck = 0 if k is odd and ck =12k(k/2+1)( k
k/2) if k is even.

7. Compute VMk (see (4)) and show that VMk → ck for k = 2, 3 (where ck is theconstant from the previous exercise).
2 Finite Fields

2.1 The additive structureLet F be a field with unit 1F . Then we have a unique ring homomorphism λZ → Fdefined by λ(n) = 1F + · · · + 1F . Then ker(λ) = (nZ), for some n ≥ 0. We call
n = Char(F ) the characteristic of F .If n = 0, then Z ⊆ F (via the canonical embedding λ) hence Q ⊆ F .
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Otherwise, n = p is a prime number since the image is a domain (Exercise 2.1)and by the isomorphism theorem F ⊃ λ(Z) ∼= Z/pZ =: Fp .If F is finite of cardinality q , then Char(F ) = p, and Fp ⊆ F . Since F is a vectorspace over Fp of finite dimension f = [F : Fp] := dimFp F , we conclude that q = pf .
Theorem 2.1. Let Fq be a finite field with q elements. Then q = pf , for p prime
and f ∈ N. Moreover, for every such q there exists a unique field with q elements
in an algebraic closure of Fp , and it is defined as the set of solutions of Xq −X = 0.

Proof. We already showed the first claim. For the second, note that as the multi-plicative group F×
q is of order q−1, by Lagrange theorem xq−1 −1 = 0 for all x ∈ F×

q .Hence, xq − x = 0 for all x ∈ Fq . This proves the uniqueness of Fq .For the existence, write g = Xq − X. So g ′ = −1, hence gcd(g, g ′) = 1. Thisimplies that g has exactly q solutions in the algebraic closure. So it remains to showthat the set of solution is a field. And indeed, since x 7Ï xp is a homomorphismin characteristic p, so is the compositum x 7Ï xq . So if g(x) = g(y) = 0, then
g(x + y) = xq + yq − x − y = 0 and g(xy) = xqyq − xy = xy − xy = 0. (We donot have to check closeness for inversion as it is a finite set, but we may easily doso).
Definition 2.2. We call the field automorphism x 7Ï xq of any field of characteristic
p the q-Frobenius and denote it by φq . Then, Fq equals the set of fixed points of φqin the algebraic closure.
Theorem 2.3. Fpn ⊆ Fpm if and only if n | m. In particular, Fq has a unique
extension of any degree.

Proof. If Fpn ⊆ Fpm , then pm = (pn)[Fpm :Fpn ]. So, n | m.Vice-versa, assume m = kn, so if we put q = pn, we have qk = pm. Let x ∈ Fpn ,then φq(x) = x. Since, φpm = φq ◦ · · · ◦φq , we get that φpm (x) = x. Hence, x ∈ Fpm .The extension Fq ⊆ Fqn is of degree n and Galois (as the splitting field of theseparable polynomial Xqn − X). In particular, φq = φq|Fqn ∈ Gal(Fqn/Fq). Also, since
φq(x) = x if and only if x ∈ Fq , we get that F⟨φq⟩

qn = Fq . Hence,
Corollary 2.4. The extension Fq ⊆ Fqn is Galois with cyclic Galois group having a
distinguished generator: Gal(Fqn/Fq) = 〈φq|Fqn〉 ∼= Z/nZ.

2.2 The multiplicative structureThe goal is to prove the following
Theorem 2.5. The multiplicative group F×

q is cyclic.We first prove two lemmas.
Lemma 2.6. Let φ(n) = #{1 ≤ m ≤ n : gcd(n,m) = 1} be the Euler totient function.
Then n =∑d|n φ(d).
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Sketch of Proof. Use that h(n) =∑d|n φ(d) is multiplicative (Exercise 2.2) and checkthe equality on prime powers:
h(pk) = ∑

1≤ℓ≤k

pk(1 − p−1) + 1 = pk+1 − p
p − 1 (1 − p−1) + 1 = pk.

A different proof is to use the partition {1 ≤ m ≤ n} = ⋃d|n Xd , where Xd = {1 ≤
m ≤ n : gcd(m,n) = d} and noting that Xd is in bijection with {1 ≤ m ≤ n/d :gcd(m,n/d) = 1} (by m ∈ Xd 7Ï m/d).
Lemma 2.7. Let H be a finite group of order n. Assume that for #{x ∈ H : xd =1} ≤ d, for all d | n. Then H is cyclic.

Proof. Let d | n. If there exists x of order d, then every of the d elements xi alsosatisfies (xi)d = 1. By assumption, there are no others, so if yd = 1, then y ∈ ⟨x⟩. Inparticular, the number of elements nd of order d, is φ(d) or 0.We conclude that n = |H| = ∑
d|n nd ≤

∑
d|n φ(d) = n. If one of the nd = 0, thenwe have contradiction. Hence, nd > 0 for all d, in particular nn > 0, so there existsan element of order n, hence H is cyclic.

Proof of Theorem 2.5. Since Fq is a field, #{xm − 1 = 0} ≤ m. So by the lemma F×
qis cyclic.

2.3 Chevalley-Warning TheoremA key ingredient in understanding exponential sums, is to study solutions to equationsover finite fields. For example, the equation X2 + Y 2 = 0 has a nontrivial solution in
Fq if and only if q ≡ 1(4). But the equation X2 + Y 2 + Z2 = 0 always has a nontrivialsolution. It turns out that once the number of variables is large enough, there is asolution over any finite field:
Theorem 2.8. Let f1, . . . , fk ∈ Fq [X1, . . . , Xn] be polynomials such that

∑ deg fi < n.
Then

N = #{x ∈ Fnq : f1(x) = · · · = fk(x) = 0} ≡ 0 mod p.

In particular, if the fi are homogenous of positive degree (or if the free coefficient
is zero), then there exists a nontrivial solution.

We present an easy proof by Ax that only uses what we’ve learned so far on Fq .
Proof. Let P = ∏k

i=1(1 − fq−1
i ) and x ∈ Fnq . If f1(x) = · · · = fk(x) = 0, then P(x) = 1.Otherwise, for some i, fi(x) ̸= 0, so fi(x)q−1 = 1, and P(x) = 0. We conclude that

N = ∑
x∈Fqn

P(x) mod p.
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By hypothesis, degP < n(q− 1). That means that the monomials appearing in P areof the form Xa = Xa11 · · ·Xan
n , with ∑ai < n(q − 1). Hence, it suffices to prove that∑

x∈Fnq x
a = 0, for any such a. Suppose w.l.o.g. that a1 < q − 1. So it suffices to provethat ∑a1∈Fq x

a11 = 0.If a1 = 0, then ∑a1∈Fq x
a11 = 0, and hence ∑x∈Fnq x

a = 0, and we are done.Otherwise, 1 ≤ a1 < q−1. So, there exists y ∈ F×
q such that ya1 ̸= 1 (Theorem 2.5).So,

ya1 ∑
x1∈Fq

xa11 = ∑
x1∈Fq

(yx1)a1 = ∑
x1∈Fq

xa11 .
Thus ∑x1∈Fq x

a11 = 0.
2.4 The trace and norm mapsLet Fqn/Fq . We define to maps: The trace map

Tr = TrFnq /Fq : Fqn → Fq, Tr(x) = x + xq + · · · + xqn−1 ,
and norm map

Norm = NormFqn /Fq : Fqn → Fq, Norm(x) = xxq · · ·xqn−1 = x
qn−1
q−1 .

Often, one restricts the domain of Norm to F×
qn and the range to F×

q and view it asa map between the multiplicative groups of the fields. We leave the proof of thefollowing basic properties as an exercise:
1. Tr is Fq-linear map.
2. Norm|F×

qn
is a group homomorphism.

3. Both maps are Gal(Fnq /Fq) invariant, that is to say, for any σ ∈ Gal(Fqn/Fq) wehave Tr(σ (x)) = Tr(x) and Norm(σ (x)) = Norm(x).
4. Given x ∈ Fqn , consider the linear map given by multiplication by x: mx : Fqn →

Fqn , mx(y) = xy . Prove that TrFqn /Fq (x) = Tr(mx) and that Norm(x) = det(mx).In our setting, Hilbert’s Theorem 90 gives the kernels of these maps.
Lemma 2.9 (H90). Let Fqn/Fq and Tr : Fqn → Fq and Norm : F×

qn → F×
q the respective

trace and norm maps.

1. The trace map is surjective and ker Tr = {x ∈ Fqn : x = yq − y, y ∈ Fqn}.

2. The norm map is surjective and ker Norm = {x ∈ F×
qn : x = yq/y = yq−1, y ∈

Fqn}.
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Proof. Consider δ : Fqn → Fqn given by δ(y) = yq − y . Then δ is Fq-linear, ker δ =
{yq −y = 0} = Fq , so dim(Im δ) = n−1. It suffices to prove that Im δ = kerTr, sincethen dim Im Tr = n − (n − 1) = 1, hence Tr would be surjective.Clearly, Tr ◦ δ = 0, so Im δ ⊆ ker Tr. On the other hand, ker Tr = {x ∈ Fqn :
P(x) = 0} where P(x) = x + · · · + xqn−1 is a polynomial of degree ≤ qn−1. Sodim kerTr ≤ n − 1. This finishes the proof of 1.The proof of 2. is similar: Let ∆: F×

qn → F×
q be the group homomorphism givenby ∆(y) = yq−1. Similarly to the previous case, ker ∆ = F×

q , Im ∆ ⊆ ker Norm, henceit suffices to prove that # kerNorm ≤ qn−1
q−1 , which is true since F×

qn is cyclic.Let us summarize in diagrams. We have the following two exact sequences:
0 // Fq // Fqn δ // Fqn Tr // Fq // 0
0 // F×

q
// F×

qn
∆ // F×

qn
Norm // F×

q
// 0

2.5 Exercises1. Let R, S be two rings with 1 and φ : R → S be a ring homomorphism (which, byassumption, satisfies φ(1R) = 1S). Prove that the image of φ(R) is a domain (i.e.,has no zero divisors) if and only if kerφ is a prime ideal (that is, xy ∈ kerφimplies that x ∈ kerφ or y ∈ kerφ).2. Recall that an arithmetic function is a function f : N → C. We say that f is
multiplicative if f (mn) = f (m)f (n) whenever gcd(m,n) = 1.a) Let f , g be multiplicative arithmetic functions such that f (pk) = g(pk) forevery prime power pk. Prove that f = g .b) Show that if f , g are multiplicative, then f ∗ g is also multiplicative, where

f ∗ g(n) =∑d|n f (d)g(n/d).c) Prove that 1(n) = 1 and φ(n) = #{1 ≤ a ≤ n : gcd(n, a) = 1} are multi-plicative.d) Deduce that h = φ ∗ 1 is multiplicative.3. Prove the basic properties of the trace and norm map:a) Tr is Fq-linear map.b) Norm|F×
qn

is a group homomorphism.c) Both maps are Gal(Fnq /Fq) invariant, that is to say, for any σ ∈ Gal(Fqn/Fq)we have Tr(σ (x)) = Tr(x) and Norm(σ (x)) = Norm(x).d) Given x ∈ Fqn , consider the linear map given by multiplication by x:
mx : Fqn → Fqn , mx(y) = xy . Prove that TrFqn /Fq (x) = Tr(mx) and thatNorm(x) = det(mx).
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3 Characters of finite fields

3.1 The general theoryLet G be an abstract group. A character of G is a group homomorphism χ : G → C×.The set of characters of G form a group Ĝ = {χ : G → C×} which is called the dual
group. The operations are given by

(χ1 · χ2)(x) = χ1(x)χ2(x) and χ−1(x) = χ(x)−1(= χ(x) := χ(x),
and the unit element is defined by χ0(x) = 1.If G is a topological group, we tactically assume that χ is continuous.If G is a finite group of order n, then 1 = χ(1) = χ(gn) = χ(g)n, for every χ ∈ Ĝ .Hence, the values are in µn = {ζ ∈ C : ζn = 1} = {en(a) : a ∈ Z/nZ}.
Example 1. ep ∈ F̂p .We want to prove the following
Theorem 3.1. Let G be a finite abelian group, then Ĝ ∼= G .

We break the proof into a few lemmas.
Lemma 3.2. Let Cn be a cyclic group of order n with a generator g (written mul-
tiplicatively). For each a ∈ Z/nZ, we have that χa ∈ Ĝ , where χa is given by
χa(g t) = en(at). Moreover, the map X : Z/nZ → Ĝ defined by a 7Ï χa is an isomor-
phism.

In particular, Ĉn = Cn.

Proof. It is obvious that χa ∈ Ĝ . Also, it is clear that X is injective. So, it remains toshow that for every χ ∈ Ĝ there exists a ∈ Z/nZ with χ = χa.Since we must have χ(g) ∈ µn, we have that χ(g) = en(a) = χa(n) for some
a ∈ Z/nZ. But as Cn is cyclic, we get that χ = χa.
Remark 3. The isomorphism in the lemma is not canonical, as it depends on thegenerator of Cn, and there is no canonical generator. For example, we proved that
F×
p is cyclic using a counting argument, but there is no canonical generator.For example, is 2 a generator of F×

p infinitely often? This is open. The Artinconjecture says that if a ∈ Z is not a square or −1, then it generates F×
p infinitelyoften (we say that a is primitive root modulo p).

• Hooley proved that GRH implies the Artin conjecture (using exponentials sums...)
• Ram Murty showed that there exists infinitely many a-s for whihc the Artinconjecture holds true.
• Heath-Brown showed that the set of primes for which the conjecture is nottrue has at most two elements. So 2, 3 or 5 are primitive roots infinitely often.
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• There is no number that is known to be primitive infinitely often.
Lemma 3.3. Let G = G1 × G2 be a direct product of abelian groups. Then Ĝ ∼=
Ĝ1 × Ĝ2.
Proof. Let ψ : Ĝ1 × Ĝ2 → Ĝ be given by χ := ψ(χ1, χ2)(g1, g2) = χ1(g1)χ2(g2). Then,readily we see that χ is a character. Moreover, if we write χ1(g1) = χ(g1, 1) and
χ2(g2) = χ(1, g2), then the inverse of ψ is given by Φ(χ) = (χ1, χ2).
Remark 4. Here the isomorphism is canonical.
Proof of Theorem 3.1. By the structure theorem of finite abelian groups G =∏i Gi,where Gi are cyclic groups. So, by the lemmas

Ĝ ∼=∏
i

Ĝi
∼=∏

i

Gi = G,

as needed.
Corollary 3.4. The map g 7Ï (χ 7Ï χ(g)) induces an isomorphism ̂̂G ∼= G .The next key property that we need is orthogonality. Recall that we denote by χ0the trivial character.
Theorem 3.5 (Orthogonality relations). Let G be a finite abelian group. Then

1
|G|

∑
g∈G

χ(g) = {1, χ = χ00, χ ̸= χ01
|Ĝ|

∑
χ∈Ĝ

χ(g) = {1, g = 10, g ̸= 1.
Proof. By the corollary, the two orthogonality relations are equivalent. Hence, wewill prove only the first. Put X = ∑

g∈G χ(g). If χ = χ0, then χ(g) = 1 for all g , andhence X = |G|, as needed. If χ ̸= χ0, then there exists h ∈ G such that χ(h) ̸= 1. So,
χ(h)X =∑

g∈G

χ(hg) = ∑
g ′∈G

χ(g ′) = X.

This implies that X = 0.
Exercise 3.1. Deduce from the orthogonality relation the following more generalorthogonality relations

1
|G|

∑
g∈G

χ1(g)χ̄2(g) = {1, χ1 = χ20, χ1 ̸= χ21
|Ĝ|

∑
χ∈Ĝ

χ(g1)χ(g−12 ) = {1, g1 = g20, g1 ̸= g2.
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3.2 Additive characters of finite fieldsIt is easy to give a satisfactory description of the additive characters of a finite field.Let Fq , q = pn be a finite field. First, we construct one non-trivial character:
ψ : Fq → C, ψ(x) = ep(TrFq /Fp (x)).

Proposition 3.6. If ψ is any nontrivial character of Fq , then the map that sends
a ∈ Fq to ψa ∈ F̂q given by ψa(x) = ψ(ax) = ep(TrFq /Fp (ax)) is an isomorphism.

Proof. It is obvious that a 7Ï ψa is an isomorphism. Since Fq ∼= F̂q , it only remainsto show that it is injective. And indeed, if a ̸= 0, and if x ∈ Fq is such that ψ(x) ̸= 1,then ψa(a−1x) ̸= 1, so ψa ̸= ψ0 = id, as needed.
3.3 Multiplicative charactersLet us start by denoting by χ0 ∈ F̂×

q the principal character: χ0(x) = 1 for all x ∈ F×
q .For any other χ ∈ F̂×

q , we say that the order of χ is d if min(k ≥ 1 : χk = χ0) = d.Since F×
q is cyclic, d | q − 1 and there is a character χ of order q − 1 so that allother characters are powers of χ. Abstractly, if g ∈ F×

q is a primitive element, then
χ(ga) = eq−1(a), is a character of order q − 1.However, as we have no canonical generator for F×

q , we do not have a uniformway to construct the principal character.We first start with pulling up characters via the norm map:
Lemma 3.7. Let χ ∈ F̂×

q be a character of order d, the x 7Ï χ(NormFqn ,Fq (x)) is a
character of F×

qn of order d.

Proof. The first part follows from the multiplicativity of the norm map, and thesecond part from the surjectivity of the norm map.It is convenient to extend the definition of multiplicative characters to all of Fq bysetting:
χ(0) = {0, χ ̸= χ01, χ = χ0.

3.4 Exercises1. Deduce from the orthogonality relation the following more general orthogo-nality relations
1

|G|
∑
g∈G

χ1(g)χ̄2(g) = {1, χ1 = χ20, χ1 ̸= χ21
|Ĝ|

∑
χ∈Ĝ

χ(g1)χ(g−12 ) = {1, g1 = g20, g1 ̸= g2.
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2. Let Fq be a finite field with q elements, d | q − 1, and x ∈ Fq . Prove that∑
χd=χ0

χ(x) = #{y ∈ Fq : yd = x}.

Here the sum runs over all characters of order dividing d.
4 Example of general exponential sums

We keep the notation that Fq is a finite field, ψ, χ denoting arbitrary additive andmultiplicative characters, respectively, and ψ0, χ0 are the principal (aka trivial) char-acters.
4.1 Gauss SumsWe generalize the Gauss sums appeared before:

g(χ, ψ) = ∑
x∈Fq

χ(x)ψ(x).
If one of the characters are principal, we readily compute the sum:

g(χ0, ψ) = 0, ψ ̸= ψ0
g(χ, ψ0) = 0, χ ̸= χ0
g(χ0, ψ0) = q.

Assume q is odd, and χ = χ2 is the unique character of order 2, and for ψ ̸= ψ0. ByExercise 3.2, χ2(x) = #{y2 = x} − 1.
g(χ2, ψ) = ∑

x∈Fq

(∑
y2=x 1 − 1)ψ(x) =∑

y
ψ(y2) −

∑
x
ψ(x) =∑

y
ψ(y2).

Thus, if also q = p, we retrieve the classical Gauss sum, introduced before.We now fix a nontrivial character ψ so that ψa(x) := ψ(ax), a ∈ Fq are all theadditive characters. Then
g(χ, ψa) =∑

x
χ(x)ψ(ax) = χ(a−1)∑

x
χ(x)ψ(x) = χ(a)g(χ, ψ). (5)

Theorem 4.1. If χ ̸= χ0 and ψ ̸= ψ0, |g(χ, ψ)| = q1/2.
Proof. Let g = g(χ, ψ). Then

|g |2 =∑
x

∑
y
χ(x)ψ(x)χ(y)ψ(y).
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As χ ̸= χ0, we have that χ(0) = 0, hence we may restrict the sum to nonzero y-s andwe get
|g |2 =∑

x

∑
y ̸=0 χ(xy−1)ψ(x − y) =∑

u

∑
y ̸=0 χ(u)ψ(y(u − 1))

=∑
u
χ(u)∑

y ̸=0 ψ(y(u − 1)) = q −
∑
u
χ(u) = q,

as needed.Let pause to note the remarkable property of Gauss sums: They are algebraicintegers of modulus exactly q1/2. Moreover, for any embedding σ : Q(g) → C, the
|σ (g)| = |g(σχ, σψ)| = q1/2.
Definition 4.2. Let q be prime number and m ∈ Z an integer. A q-Weil number of
weight m is an algebraic integer α such that for any embedding σ : Q(α) → C wehave |σ (α)| = qm/2.So Gauss sums are Weil numbers of weight 1 and roots of unity of weight 0.
4.2 Jacobi SumsLet χ, λ be multiplicative characters. The Jacobi sum associated to them is

J(χ, λ) = ∑
x+y=1 χ(x)λ(y)

They appear in counting solutions, for example:
Proposition 4.3. Let Np be the number of solutions to X2 + Y 2 = 1 in Fp , p > 2.
Then

Np = p −
(

−1
p

)
.

Proof. Let χ2 be the character of order 2, aka the Legendre symbol. We have
Np = ∑

a+b=1(1 + χ2(a))(1 + χ2(b)) = p + J(χ2, χ2).
So the proof follows from the following lemma.
Lemma 4.4. For any non-prinicipal χ , we have that J(χ, χ−1) = −χ(−1).
Proof. Since χ(0) = 0, we get that J(χ, χ−1) = ∑

x ̸=1 χ( x1−x ) = ∑
z ̸=−1 χ(z) = −χ(−1),where we applied the change of variables z = x/(1−x) that maps Fq−{1} to Fq−{−1}(note that x = z/(z + 1) if z ̸= −1).We may express Jacobi sums via Gauss sums:
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Theorem 4.5. Let χ, λ be non-principal with χλ non-principal. Then, for any ψ ̸= ψ0,
we have

J(χ, λ) = g(χ, ψ)g(λ, ψ)
g(χλ, ψ) .

Proof. Since χ(0) = λ(0) = 0, we have
J(χ, λ)g(χλ, ψ) = ∑

x ̸=0,1
∑
y ̸=0 χ(xy)λ(y(1 − x)ψ(y).

The assignment u = xy and v = y(1−x), so (u, v), gives a bijection of the pairs (x, y)as in the sum, and the pairs (u, v) with uv ̸= 0 and u + v ̸= 0 (indeed the invertibleassignment is y = u + v and x = u
u+v ). Hence,

J(χ, λ)g(χλ, ψ) = ∑
u,v∈F×

q
u+v ̸=0

χ(u)λ(v)ψ(u + v)
= ∑

u,v∈Fq
u+v ̸=0

χ(u)λ(v)ψ(u + v)
= g(χ, ψ)g(λ, ψ) −

∑
u∈Fq

χ(u)λ(−u) = g(χ, ψ)g(λ, ψ)
where the last equality follows from the orthogonality relations since χ ̸= λ.
Corollary 4.6. J(χ, λ) is a q-Weil number of weight 1.

Theorem 4.7. (Fermat) Let p ≡ 1(4) be a prime. Then there exists a, b ∈ Z such
that p = a2 + b2.
Proof. Since 4 | p − 1, there exists a character χ of order 4. Let J = J(χ, χ2). Then
|J|2 = p. On the other hand, J = a+bi, as the values of χ and χ2 are in {±1,±i}. so
|J|2 = a2 + b2.
5 Salié sums

One generalization of Kloosterman sums is
K(ψ, η) = ∑

x∈F×
q

ψ(x)η(x−1),
where ψ, η are additive characters. A related, but easier, sum is the Salié sum

T(ψ, η) = ∑
x∈F×

q

χ2(x)ψ(x)η(x−1),
where ψ, η are additive characters and χ2 is multiplicative character of order 2.
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Theorem 5.1. Assume ψ, η ̸= ψ0. Then

T(ψ, η) = g(χ2, ψ) ∑
y2=4aψ(y),

where a ∈ F×
q is such that η = ψa.

Proof. The idea is to study the variation of the function
φ(b) = T(ψb, η) =∑

x ̸=0 χ2(x)ψ(bx + ax−1), b ∈ F×
q .

By the orthogonality relations (Fourier transform)
φ(b) =∑

χ
φ̂(χ)χ(b),

where
φ̂(χ) = 1

q − 1∑
b ̸=0 φ(b)χ̄(b).

We compute the Fourier coefficients:
φ̂(χ) = 1

q − 1∑
b ̸=0 χ̄(b)∑

x ̸=0 χ2(x)ψ(bx + ax−1) = 1
q − 1∑

x ̸=0 χ2(x)ψ(ax−1)∑
b ̸=0 χ̄(b)ψ(bx).

Applying (5), we get that the right-hand sum equals χ(x)g(χ̄, ψ), so
φ̂(χ) = g(χ̄, ψ)

q − 1 ∑
x∈F×

q

χ2(x)χ(x)ψ(ax−1) = g(χ̄, ψ)g(χ2χ̄, ψa)
q − 1 = g(χ̄, ψ)g(χ2χ̄, ψ)χ2(a)χ(a)

q − 1
By Exercise 5.2, we get that g(χ̄, ψ)g(χ2χ̄, ψ) = χ(4)g(χ̄2, ψ)g(χ2, ψ) if χ ̸= χ2, χ0. If
χ = χ2, χ0, then g(χ̄, ψ)g(χ2χ̄, ψ) = 0. Plugging this in, we get

φ̂(χ) = χ2(a)χ(4)g(χ2, ψ)g(χ̄2, ψ)
q − 1 .

Thus,
T(ψ, η) = φ(1) =∑

χ
φ̂(χ) = χ2(a)g(χ2, ψ)

q − 1 ∑
χ
χ(4a)g(χ̄2, ψ).

Opening the inner sum and using orthogonality,
T(ψ, η) = χ2(a)g(χ2, ψ)

q − 1 ψ(x)∑
x ̸=0
∑
χ
χ(4ax−2) = χ2(a)g(χ2, ψ)

q − 1 ∑
x=4a2

ψ(x).
Finally, we may remove the factor χ2(a), because if it equals −1, then the inner sumis 0.Since y2 = 4a has either 0 or 2 solution, T(ψ, η) is a sum of at most two q-Weilnumbers of weight 1, hence:
Corollary 5.2. |T(ψ, η)| ≤ 2√p.
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5.1 Exercises1. Prove that if p ≡ 3(4), then q ̸= a2 + b2.
2. Let q be odd prime power. Let χ2 be the character of order 2, and χ, ψ char-acters so that χ ̸= χ0, χ2 and ψ ̸= ψ0. Prove

g(χ2, ψ)g(χ2, ψ) = χ(4)g(χ, ψ)g(χχ2, ψ).
6 Equations over finite fields

Given a field F , we write
An(F ) = {(x1, . . . , xn) : xi ∈ F} = Fn

for the affine n-space over F . It is a vector space over F .On An+1 ∖ {0} define an equivalence relation
(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐Ñ ∃λ ∈ F×∀i : xi = λyi.

We denote the equivalence classes by [x0 : · · · : xn], and we define the n-projectivespace over F to be
Pn(F ) = (An+1(F ) ∖ {0})/ ∼= {[x0 : · · · : xn] : xi ∈ F}.

We call points [x] = [x0 : · · · : xn] with x0 ̸= 0 finite points, and those with x0 = 0points at infinity.
Lemma 6.1. There is a bijection between the finite points and An(F ) and the points
at infinity and Pn−1(F ).
Proof. Indeed, every finite point is equivalent to exactly one point of the form [1 : x1 :
· · · : xn], hence the bijection with An(F ) is trivial. Similarly, if [0 : x1 : · · · : xn] ∈ Pn(F ),then not all xi are zero, and hence it defines a point on Pn−1(F ), and this is obviouslya bijection.We usually abbreviate and write the above lemma as

Pn(F ) = An(F )∐Pn−1(F ).
If F is finite, we readily compute the sizes of the affine and projective spaces:

Proposition 6.2. #An(Fq) = qn and #Pn(Fq) = qn + · · · + 1 = qn+1−1
q−1 .
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For a vector of nonnegative integers i = (i1, . . . , in) we write |i| =∑n
j=1 ij , and givena vector X = (X1, . . . , Xn) of elements of a ring, we write Xi = Xi11 · · ·Xin
n . Given

f (X) = f (X1, . . . , Xn) = ∑
|i|≤d

aiXi

with ai ∈ Fq , and degree ≤ d, we are interested in
Nf = #{x ∈ An(Fq) : f (x) = 0}.The equation f (X) = 0 defines a hypersurface in An.In the projective setting, we are given a homogenous polynomial of degree d

F (X0, . . . , Xn) = ∑
|i|=d aiX

i, ai ∈ Fq.

Now the value F (x) is not well-defined for x ∈ Pn(F ), but the solutions to F = 0 in
Pn are well-defined. We are interested in

N∗
F = #{[x] ∈ Pn(Fq) : F (x) = 0},and we say that F = 0 defines a hypersurface in Pn.

6.1 Crude boundsLet f (X) = f (X1, . . . , Xn) ∈ Fq [X] be a nonzero polynomial of degree d.
Proposition 6.3. Nf ≤ dqn−1.
Proof. If d = 0, then Nf = 0 and we are done. If d = 1, then f = 0 defines atranslation of a linear subspace of codimension 1, so Nf = qn−1. If n = 1, then f isunivariate, hence Nf ≤ d.We proceed by double induction on n, d.Case 1: Assume there exists a ∈ Fq such that (X1−a) | f . Then, f (X) = (X1−a)g(X),with deg g = d − 1. So by induction

Nf ≤ qn−1 +Ng ≤ qn−1 + (d − 1)qn−1 = dqn−1.Case 2: For any a ∈ Fq , ga(X2, . . . , Xn) = f (a,X2, . . . , Xn) is nonzero and of degree
≤ d. So by induction,

Nf ≤ qmax
a

(N(ga)) ≤ qdqn−2 = dqn−1,
as needed for the proof.Given f (X1, . . . , Xn) of degree d, we homogenize it:

f∗(X0, . . . , Xn) = Xd0 f (X1/X0, . . . , Xn/X0).So f∗ is a degree-d form.
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Lemma 6.4. Nf ≤ N∗
f∗ ≤ Nf + dqn−2(1 − q−1).

Proof. Let F (X1, . . . , Xn) = f∗(0, X1, . . . , Xn). Then, F is a nonzero form of degree d,and
N∗
f∗ = Nf +N∗

F .It remains to show that N∗
F ≤ dqn−2(1 − q−1). And indeed, N∗

F = NF /(q − 1) ≤
dqn−1/(q − 1), by Lemma 6.3.We try to understand the statistics of Nf . For this, we write

Ωd = {f ∈ Fq [X1, . . . , Xn] : deg f ≤ d}.

Since there are ωd := (n+d
d
)-many i = (i1, . . . , in) with |i| = d, we get that

#Ωd = qωd .

Theorem 6.5. Let f be uniform in Ωd , then

E(Nf ) = qn−1.
Proof. By direct computation and the fact that given an x ∈ Fnq , the condition f (x) = 0is linear in the coefficients of f .
Exercise 6.1. For f uniform in Ωd , we have that Var(Nf ) = qn−1 − qn−2.These two exercises may be expressed that typically

Nf = qn−1 +O(q n−12 ),
that is, we have square root cancelation.We proceed into some cases where such an estimate can be achieved.
6.2 Quadratic hypersurfacesAssume q is odd. A quadratic form over Fq is a form of degree 2 and is given byequation

Q(X) = Q(X1, . . . , Xn) = ∑
1≤i,j≤n

aijXiXj

with aij = aji ∈ Fq . In other words,
Q(X) = XTAX,

with A = (aij) a symmetric matrix. Define
detQ = detA.

Two quadratic forms are equivalent, written as Q1 ∼ Q2, if there is a nonsingularmatrix M such that Q1(X) = Q2(MX), or equivalently, A1 = MTA2M . Hence, if
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Q1 ∼ Q2, we have detQ1 = detQ2m2, with m ∈ F×
q . For d ∈ F×

q , we use the Legendre
symbol: For d ∈ F×

q , we use the Legendre symbol (dq) = {+1, d = □

−1, otherwise. So,
Q1 ∼ Q2 implies that (detQ1

q
) = (detQ2

q
).We say that Q represent a ∈ F×

q , if there exists x ∈ Fnq such that Q(x) = a. We saythat Q represents zero if in addition x ̸= 0.
Lemma 6.6. Suppose Q represents a ∈ F×

q . Then Q(X) ∼ aX21 + P(X2, . . . , Xn), for
some quadratic form P over Fq .

Proof. Exercise.
Corollary 6.7. Every Q is equivalent to a diagonal quadratic form.

Lemma 6.8. If a nonsingular quadratic form Q represents 0, then it represents
any a ∈ F×

q .

Proof. Since equivalent quadratics represent the same elements, we may assumethat Q(X) = ∑
i aiX2

i , ai ̸= 0. Let 0 ̸= x ∈ Fnq be such that Q(x) = 0. W.l.o.g., wemay assume x1 ̸= 0. Let y1 = x1(1 + t) and yi = xi(1 − t), i = 2, . . . , n. Then,
Q(y) = ∑

i aix2
i + t2∑i aix2

i + 4a1x1t − 2t∑i aix2
i = 4a1x1t . So when we vary t , weget all elements in Fq .Let Q(X) be a nonsingular quadratic form in n ≥ 3 variables. By Chevalley-Warning Theorem, Q represents 0, hence it represents 1. SoQ(X) ∼ X21+P(X2, . . . , Xn).We conclude that there exists a nonzero solution x ∈ Fnp to x21 = P(x2, . . . , xn). If

x1 ̸= 0, then P represents −1. If x1 = 0, then P represents 0, hence −1. So,
Q(X) ∼ X21 − X22 + R(X3, . . . , Xn) ∼ X1X2 + R(X3, . . . , Xn)for some nonsingular quadratic form R in n − 2 variables.We shall use the above elementary consideration to estimate

NQ = #{x ∈ Fnq : Q(x) = 0}.

In fact, we give an exact formula:
Theorem 6.9. Let Q(X) ∈ Fq [X1, . . . , Xn] be a nonsingular quadratic form, n ≥ 1,
and write ∆ = detQ. Then

NQ = {qn−1, 2 ∤ n
qn−1 + (q − 1)q n−22 ((−1)n/2∆

q
)
, 2 | n.

Proof. We prove the statement by induction on n. If n = 1, then NQ = 1, as needed.If n = 2, then Q = aX21 + bX22 = a(X21 + b/aX22), for nonzero a, b. Moreover,(−∆
q
) = (−ab

q
). If (−ab= ) − 1, then we only have the trivial solution. So NQ = 1, asneeded. If (−ab= )1, then there are 1 + 2(q − 1) = 2q − 1, solutions, as needed.

26



For the induction step, assume n ≥ 3. We may assume w.l.o.g. that Q = X1X2 +
R(X3, . . . , Xn), with R nonsingular quadratic form. There are 2q−1 pairs (x1, x2) with
x1x2, hence the number of x counted by NQ with R = 0 is (2q − 1)NR.Likewise, given x3, . . . , xn such that R ̸= 0, there exist q − 1 choices of (x1, x2)such that x1x2 = −R(x3, . . . , xn), hence this contributes to the count in NQ exactly(q − 1)(qn−2 − NR). So

NQ = qn−1 − qn−2 + qNR. (6)By induction,
NR = {qn−3, 2 ∤ n

qn−3 + (q − 1)q n−42 ((−1)n/2∆
q
)
, 2 | n.Plugging this in (6), immediately gives the assertion.

6.3 Diagonal hypersurfacesGiven any polynomial f ∈ Fq [X1, . . . , Xn], by orthogonality of characters, we have
Nf = 1

q
∑
a∈Fq

∑
x∈Fnq

ψ(af (x)), (7)
where ψ ̸= ψ0 is a non-principal character. We (7) to give a formula for a diagonalhypersurface of degree d.
Theorem 6.10. Assume d | q − 1, f (X) = a1Xd1 + · · · + anXd

n , with nonzero ai ∈ Fq ,
i = 1, . . . , n. Then

Nf = qn−1 + (1 − q−1) ∑
χ1,...,χn

∏
i

χ̄i(ai)g(χi, ψ), (8)
where the sum runs over multiplicative characters χ1, . . . , χn of Fq satisfying χi ̸=
χ0, ∏i χi ̸= χ0 and χdi = χ0 (for all i = 1, . . . , n) and g(χ, ψ) is the Gauss sum. In
particular,

|Nf − qn−1| ≤ A(d)(1 − q−1)qn/2,
where A(d) is the number of b = (b1, . . . , bn) ∈ Zn with 0 < bi < d and b1+· · ·+bn ≡0 mod d.

Proof. Applying (6), we get that
qNf = ∑

a∈Fq

∑
x∈Fnq

ψ(a∑
i

aixdi ) = ∑
a∈Fq

∑
x∈Fnq

n∏
i=1 ψ(aaixdi ) = ∑

a∈Fq

n∏
i=1
∑
xi∈Fq

ψ(aaixdi )
= qn +∑

a ̸=0
∏
i

∑
xi∈Fq

ψ(aaixdi )

27



Using∑χd=χ0 χ(y) = #{x : y = xd}, we may rewrite the inner sums in the right-handside as ∑
xi∈Fq

ψ(aaixdi ) = ∑
yi∈Fq

ψ(aaiyi) ∑
χdi =χ0

χi(yi).
Since a ̸= 0 in these sums, we may change order of summation and make thechange of variables yi 7Ï yi/(aai), to get∑

xi∈Fq

ψ(aaixdi ) = ∑
χdi =χ0

χ̄i(aai) ∑
yi∈Fq

ψ(yi)χi(yi) = ∑
χdi =χ0

χ̄i(aai)g(χi, ψ).
Collecting everything together, we get

qNf − qn = ∑
χ1,...χn
χdi =χ0

∏
χ̄i(ai)g(χi, ψ)∑

a ̸=0
∏
i

χ̄i(a).
If χ1 · · · χn ̸= χ0, then∑a ̸=0∏i χ̄i(a) = 0 by orthogonality. Otherwise,∑a ̸=0∏i χ̄i(a) =
q − 1. If χi = χ0, then g(χi, ψ) = 0, hence we may remove these terms from thesums. This finishes the proof of the formula for Nf .The second part follows immediately from the formula, after noting that errorterm is a sum of A(d) q-Weil numbers of weight n.
Exercise 6.2. Prove by induction on n that A(d) = d−1

d [(d − 1)n − (−1)n−1] < (d − 1)n,and deduce
|Nf − qn| < (1 − q−1)(d − 1)nqn/2,for diagonal form f of degree d and n variables.Next, we want to study the dependence of the number of solutions on the field ofcoordinates. For an integer ν ≥ 1, let
Nf (ν) = #{x ∈ Fqν : f (x) = 0}.

(Here, as before, f =∑n
i=1 aiXd

i , d | q − 1, and ai ∈ F×
q .)Since d | q − 1, then multiplicative characters of order d of Fqν are exactly

χν := χ ◦ NormFqν /Fq ,as χ runs over characters of order d of Fq . Since ai ∈ Fq , Norm(Fqν /Fq (ai) = aνi , so
χ̄ν(ai) = (χ̄(ai))ν Moreover,

ψν = ψ ◦ TrFqν /Fqis a non-principal additive character of Fqν . Let gν(χ, ψ) = g(χν, ψν).We will provebelow the Hasse-Davenport relations that shows that −gν = (−g)ν . Plugging all ofthese into (8) gives
Nf (ν) = qν(n−1) + (−1)(ν−1)n(1 − q−ν) ∑

χ1,...,χn
(∏

χ̄ig(χi, ψ))ν, (9)
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where the sum is over non-principal multiplicative characters χ1, . . . , χn of Fq with
χdi = χ0 and ∏i χi = χ0. Thus,

Nf (ν) =∑
i

ανi −
∑
j

βνj ,

where αi and βj are q-Weil numbers of various weights.In 1949, Weil conjectured that such formula always exists for the counting function
Nf (ν), associated to any f ∈ Fq [X1, . . . , Xn]. We will return to this later on.
6.4 The Hasse-Davenport relationsLet χ be a multiplicative character if Fq and ψ an additive character. As before,for an extension Fqν/Fq we write χν = χ ◦ NormFqν /Fq and ψν = ψ ◦ TrFqν /Fq for theassociated characters of Fqν . Let g = g(χ, ψ) and gν = g(χν, ψν). Our goal is to provethat −gν = (−g)ν .For a polynomial,

f (X) = Xd − c1Xd−1 + · · · + (−1)dcd ∈ Fq [X]we define λ(f ) = χ(cd)ψ(c1) and λ(1) = 1.
Lemma 6.11. For any f , g ∈ Fq [X] we have λ(fg) = λ(f )λ(g).
Proof. Obvious.
Lemma 6.12. Let α ∈ Fqν and let f be the minimal polynomial of α over Fq , and
put d = deg f . Then

λ(f )ν/d = χν(α)ψν(α).
Proof. We have

f (X) = Xd − c1Xd−1 + · · · + (−1)dcd = d∏
i=1 (X − αqi ).

So Tr(α) = ∑ν−1
i=0 αqi = ν

d (∑d−1
i=0 αqi ) = ν

dc1, and similarly, Norm(α) = ∏ν−1
i=0 αqi =(∏d−1

i=0 αqi)ν/d = cν/dd . So, λ(f )ν/d = χ(cd)ν/dψ(c1)ν/d = χ(cν/dd )ψ( νdc1) = χν(cd)ψν(c1).We apply the lemma to rewrite gν : Let fα be the minimal polynomial of α ∈ Fqν ,then deg f | ν, so by the lemma we have
gν = ∑

α∈Fqν
λ(fα)ν/ deg fα .

There is a d-to-1 correspondence between elements of degree d and irreduciblepolynomials of degree d, hence
gν =∑

d|ν

∑
degP=d dλ(P)ν/d, (10)
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where P denotes irreducible monic polynomial.We add a piece of notation: let M ⊆ Fq [X] be the subset of monic polynomials,and Md = {f ∈ M : deg f = d}.
Theorem 6.13 (Hasse-Davenport relation). Let χ ̸= χ0 be a multiplicative charac-
ter and ψ ̸= ψ0 an additive character, and ν ≥ 1 an integer. The g(χν, ψν) =(−1)ν−1g(χ, ψ).
Proof. Expand (1 − λ(P)udegP)−1 as a geometric series im uand applying unique fac-torization in Fq [X], we have

∏
P

(1 − λ(P)udegP)−1 = ∑
f∈M

λ(f )udeg f = ∞∑
d=0

∑
f∈Md

λ(f )ud
We compute the coefficient of ud . For d = 1, the coefficient is 1. For d = 1, thecoefficient is ∑a∈Fq λ(X − a) =∑aχ(a)ψ(a) = g(χ, ψ). For d > 1, the coefficient is∑

f∈Md

λ(f ) = qd−2 ∑
c1,cd∈Fq

χ(cd)ψ(c1) = 0.
Hence, ∏

P

(1 − λ(P)udegP)−1 = 1 + g(χ, ψ)u.
Now we apply logarithmic derivative and multiplication by u to both sides. Theleft-hand side transformsin to∑

P

degP · λ(P)udegP1 − λ(P)udegP =∑d
∑

degP=d d
∞∑
r=1 λ(P)rur degP

= ∞∑
ν=1 u

ν
∑
d|ν

∑
degP=d dλ(P)ν/d =∑

ν≥1 gνu
ν,

where the last equility follows from (10). The right-hand side transforms to
gu1 + gu =∑

ν≥1 (−1)ν−1gνuν.
Comparing the coefficients, finishes the proof.
6.5 The Zeta function of a hypersurfaceLet F ∈ Fq [X0, . . . , Xn] be a form of degree d. For any ν, let

N∗
F (ν) = #{[x] ∈ Pn(Fqν ) : F (x) = 0}.
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We define the zeta function to be
ZF (u) = exp(∑

ν≥1
N∗
F (ν)
ν uν

)
. (11)

We view it as a formal power series with rational coefficients, that is, ZF (u) ∈ Q[[u]],or as a complex function that is analytic in the disc {|u| ≤ q−n}.
Example 2. Let us consider PnFq (e.g., take F = Xn+1 ∈ Fq [X0, . . . , Xn+1]). Then,
ZPnFq = exp(∑

ν≥1
∑n

i=0 qiν
ν uν

) = n∏
i=0 exp(∑

ν≥1
(qiu)ν
ν

) = 1(1 − u)(1 − qu) · · · (1 − qnu) .In particular, ZPnFq is a rational function.
Example 3. We compute the zeta function of F (X0, X1, X2) = X30 +x31 +X32 = 0 in P2

Fq .We have
N∗
F (ν) = NF (ν) − 1

qν − 1 ,

where NF (ν) = {x ∈ F3
q : F (x) = 0} is the number of affine solutions. By (9),

NF (ν) = q2ν + (−1)ν−1(1 − q−ν)(g(χ, ψ)3ν + g(χ2, ψ)3ν),where χ ̸= χ0 is a character of order 3 and ψ ̸= ψ0. Combining the these equationstogether yields
N∗
F (ν) = qν + 1 + (−1)ν−1(g(χ, ψ)3ν + g(χ2, ψ)3ν)

qν .

Since exp(−
∑
ν≥1

(−q−1g(χ, ψ)3u)ν
ν

) = 1 + q−1g(χ, ψ)3u
and similarly, for χ2, we have

ZF (u) = (1 + q−1g(χ, ψ)3u)(1 + q−1g(χ2, ψ)3u)(1 − u)(1 − qu) .

As χ2 = χ̄ , we have,
g(χ, ψ)g(χ2, ψ) = g(χ, ψ)g(χ̄, ψ) = g(χ, ψ)χ(−1)g(χ̄, ψ̄) = χ(−1)g(χ, ψ)g(χ, ψ) = χ(−1)q.Note that, as χ is of order 3, it follows that χ(−1) = χ((−1)3) = χ3(−1) = 1. ApplyingTheorem 4.5 (g(χ, ψ)2 = πg(χ2, ψ), π = J(χ, χ)) we get

g(χ, ψ)3 = J(χ, χ)g(χ, ψ)g(χ2, ψ) = πq.Similarly, g(χ2, ψ) = π̄q . To conclude, we get that
ZF (u) = (1 + πu)(1 + π̄u)(1 − u)(1 − qu) ∈ Q(u)

where π is a q-Weil number.
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The Zeta function is a priori in Q((u)), and we saw two examples in which the Zetafunction is in fact rational in Q(u). Moreover, in these examples, the zeros and polesof the zeta functions were q-Weil numbers.This is an incident of a very general theme. Given a nonzero form F ∈ Fq [X0, X1, X2]of degree degF = d which is non-singular over any algebraic extension of Fq , Weil(1948) proved that
ZF (u) = P(T)(1 − T)(1 − qu) ,where p(T) ∈ Z[T] of degree (d− 1)(d− 2) = 2g , g is the genus of the curve definedby F = 0. Furthermore, he proved that the roots of P are q-Weil numbers of weight

−1, i.e. P =∏2g
i=1(1 − πiu) and |πi| = q1/2.The last statement is called The Riemann Hypothesis for Curves. To see theanalogy with the classical Riemann Hypothesis, change variables to s with u = q−s.Then

ζF (s) = ZF (q−s) = (1 − q−s)−1(1 − q1−s)−1P(q−s).So ζF has a simple pole at s = 1, and the roots of ζ are on the critical line ℜ(s) = 1/2if and only if the roots of ZF (u) are q-Weil numbers of weight −1.For higher dimensions, namely nonzero forms F ∈ Fq [X0, . . . , Xn], Dwork (1959)proved that
ZF (u) = ∏

i(1 − αiu)∏
j(1 − βju) , αi, βj ∈ C. (12)

The fact that the constant term is 1 is easy, just note that ZF (0) = 1 by its definition.
Lemma 6.14. Assume ZF (u) has the form as in (12). Then

N∗
F (ν) =∑

j

βνj −
∑
i

ανj .

Proof. As usual, we apply the operator u d log
du to (12) and using the definition (11) andwe get ∑

ν≥1 N
∗
F (ν)uν =∑

i

−αiu1 − αiu
−
∑
j

−βju1 − βju
.

Expanding to geometric series and comparing coefficients finish the proof.
Remark 5. The converse of the lemma is easily seen to be true.Let us end the section with a brief cohomological interpretation of the zeta func-tion.Let V be a non-singular projective hypersurface defined by a form F ∈ Fq [X0, . . . , Xn].Let Ω: V → V be given by Ω([x0, . . . , xn]) = [xq0 , . . . , xqn] be the (n+ 1)-fold Frobeniusoperator. We have [x] ∈ Pn(Fqν ) if and only if Ων([x]) = [x]. So

V (Fqν ) = {[x] ∈ Pn(Fqν ) : F (x) = 0} = V (F̄q)Ων .
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In topology, we have the Lefschetz fixed-point theorem, which counts the number offix points of an operator by means of traces on the induced mapping on the homol-ogy. The analog in arithmetic is the Grothendieck-Lefschetz fixed-point formulastating that for any prime ℓ ̸= p = CharFq , we have
N∗
F (ν) = 2(n−1)∑

i=0 (−1)iTr(Ω∗ν ;H i(V,Qℓ)),
where H i denotes the i-th étale cohomology group, Qℓ the ℓ-adic numbers, and Ω∗the induced mapping on the cohomology group. In face H i = H i(V,Qℓ) is a finitedimensional vector space over Qℓ , with Bi := dimH i the ith Betti number. Thecohomology groups vanish for i > 2 dimV = 2(n− 1). By linear algebra, we deducethat

ZF (u) = 2(n−1)∏
i=0 exp ∞∑

j=1 Tr(Ω∗ν, H i)uνν
 = 2(n−1)∏

i=0 det(I − uΩ∗;H i)(−1)i+1

= P1(u) · · ·P2n−3(u)
P0(u)P2(u) · · ·P2n−2(u) ,where Pi(u) = det(I−uΩ∗;H i) ∈ Q[T] and degPi = Bi. Write Pi(u) =∏j(1−αiju). Thevalues αij are called the characteristic values of the zeta function and they are theeigenvalues of the Frobenius morphism Ω∗. If V is non-singular, most cohomologiesvanish:

Theorem 6.15 (Deligne). Let e = n − 1 = dimV .

1. Pi(u) ∈ Z[u], P0 = 1 − u and P2e = 1 − qeu.

2. (RH) For any 0 ≤ i ≤ 2e the characteristic values αij are q-Weil numbers of
Weight i

3. (Functional equation) Let χ(V ) =∑2ℓ
i=1(−1)iBi and ε = 1 if e is odd and (−1)N

if e is even and N is the multiplicity of the eigenvalue qe/2 of Ω∗ acting on He .
Then

ZF (q−eu−1) = εq
eχ(V )2 uχ(V )ZF (u).

4. ZF (u) = P∗
e(u)(−1)e−1 ∏e

j=0(1 − q ju)−1, where P∗
e = {Pe(u), 2 ∤ e

Pe(u)(1 − q2/eu), 2 | e.We will not prove this theorem here! Grothendieck (1972) has calculated the Bettinumbers:
Be = d − 1

d [(d − 1)n + (−1)n+1] +{0, 2 | e1, 2 | e,where d = degF . Hence, the using the Lemma 6.14 we deduce the following generalresults, which generalizes the diagonal case:
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Corollary 6.16. Assume V = {F = 0} is nonsingular projective hypersurface of
dimension e defined over Fq , then

|#V (Fq) − #Pe(Fq)| ≤ Beqe/2.
6.6 Exercises1. For f uniform in Ωd , we have that Var(Nf ) = qn−1 − qn−2.2. Prove Lemma 6.6.3. Let A(d) = An(d) be the number of b = (b1, . . . , bn) ∈ Zn with 0 < bi < d and

b1 + · · · + bn ≡ 0 mod d. Prove by induction on n that A(d) = d−1
d [(d − 1)n −(−1)n−1] < (d − 1)n, and deduce

|Nf − qn| < (1 − q−1)(d − 1)nqn/2,for diagonal form f of degree d and n variables.
7 Riemann Hypothesis for sums in one variable

In this section, we formulate the Weil estimates for exponential sums in one variableand provide an elementary self-contained proof for hyperelliptic curves Y 2 = f (X).
7.1 StatementsLet Fq be a finite field and let χ and ψ be multiplicative and additive characters of
Fq , respectively. Let f ∈ Fq [X] be a polynomial of degree d. The Weil bounds aregiven by:
Theorem 7.1. Assume that χ is of order e > 1, e | q − 1. Let 1 ≤ m ≤ d be the
number of distinct roots of f in F̄q . Assume further that f ̸= he for any h ∈ Fq [X].
Then ∣∣∣∣∣∣∑a∈Fq

χ(f (a))
∣∣∣∣∣∣ ≤ (m − 1)√q. (13)

Theorem 7.2. Assume that ψ ̸= ψ0, that d < q and that (d, q) = 1. Then∑
a∈Fq

ψ(f (a)) ≤ (d − 1)√q. (14)
Let us introduce the companion sums

S(1)
ν (f ) = ∑

a∈Fqν
χ(NormFqν /Fq (f (a)))

S(2)
ν (f ) = ∑

a∈Fqν
ψ(TrFqν /Fq (f (a)))
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Then we can form the associated zeta functions:
Z (i)
f (u) = exp(∑ S(i)

ν (f )uν
ν

)
, i = 1, 2. (15)

As before, those are rational functions and one may observe the analogy with theRiemann Hypothesis of ordinary zeta functions. More generally, we have:
Theorem 7.3 (Dwork). Let f , g ∈ Fq [X], and χ and ψ be multiplicative and additive
characters of Fq , respectively. Let

Sν = ∑
a∈Fqν

χ(NormFqν /Fq (f (a)))ψ(TrFqν /Fq (g(a))).
Then there exist coprime polynomials P,Q ∈ C[T] with P(0) = Q(0) = 1 such that

Z(u) := exp(∑ Sνuν
ν

) = P(u)
Q(u) .We will not prove Dwork’s theorem in general in the course, but we will provethe special case when g = 0.Recall that the Hasse-Davenport relation is equivalent to

Z(u) = exp( ∞∑
ν=1

gν(χ, ψ)uν
ν

) = 1 + g(χ, ψ)u,
which is a special case of Dwork’s theorem.Another special is for Kloosterman sums: Let K = K(ψ, η) = ∑

x∈F×
p
ψ(x)η(x−1),and consider the companion sums

Kν = ∑
x∈F×

qν

ψ(TrFqν /Fq (x))η(TrFqν /Fq (x−1)).
Also in this case we may compute the zeta function explicitly, similarly:
Exercise 7.1. Prove that Z(u) = exp(∑ν≥1 Kνuν/ν) = 11+Ku+qu2 .
Lemma 7.4. Let f ∈ Fq [X] be a non-constant monic polynomial, and let e | q − 1.
Then, for all ν ≥ 1 we have:#{(x, y) ∈ F2

qν : ye = f (x)} − qν =∑
χ

∑
x∈Fqν

χ(NormFqν /Fq (f (x))),
where χ runs over all multiplicative characters of Fq satisfying χ ̸= χ0 and χe = χ0.
Proof. Using the fact that characters of Fqν of order dividing q − 1 are coming from
Fq via the norm map (Lemma 3.7) and the fact that #{y ∈ Fqν : ye = a} =∑χe=χ0 χ(a)we conclude that#{(x, y) ∈ F2

qν : ye = f (x)} = ∑
x∈Fqν

∑
χe=χ0

χ(NormFqν /Fq (f (x))).
Moving the contribution of the principal character to the left-hand side, finishes theproof.
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7.2 Proof the Riemann Hypothesis on number of points boundIn this section we assume the following proposition, which we will prove later, anddeduce from it the Riemann Hytpothesis from multiplicative characters (13).
Proposition 7.5. Let ν ≥ 1, let f (X) ∈ Fq [X] be a monic and non-constant polynomial
of degree d, and let e | q−1 with (e, d) = 1. Then there exists C = C(d, e) > 0 such
that ∣∣#{(x, y) ∈ F2

qν : ye = f (x)} − qν
∣∣ ≤ Cqν/2.

An auxiliary result that we will need is:
Lemma 7.6. Let w1, . . . , wr ∈ C, let A,B > 0, and assume |

∑
wν
i | ≤ ABν for all

ν ≫ 1. Then |wi| ≤ B for all i.

Proof. Consider the complex power series
D(z) =∑

ν≥1
r∑
i=1 w

ν
i zν = r∑

i=1
11 − wiz

.

By hypothesis D converges absolutely in the disc |z| < B−1, so D is analytic there,hence its poles wi are outside the region. That is to say 1/|wi| ≥ 1/B.The rest of the subsection is devoted to the proof of (13).Let χ be multiplicative character of Fq of order e | q − 1, let f ∈ Fq [X] be non-constant of degree d, let 1 ≤ m ≤ d be the number of distinct roots of f in F̄q , andassume f ̸= he . We need to prove the inequality (13).We assume Dwork’s theorem, which in fact gives in our setting1 that
Z(u) = exp(∑

ν≥1
Sν
ν u

ν

) = ∏
1≤j≤m−1(1 − wju),

with wj ∈ C and where Sν = ∑
a∈Fqν χ(NormFqν /Fq (f (a))). Then, by Lemma 6.14, wehave

Sν = −(wν1 + · · · +wν
m−1)so by Lemma 7.4,

Nν − qν = −
∑
χ

(w1(χ)ν + · · · +wm−1(χ)ν),
where the sum runs on characters χe = χ0 and χ ̸= χ0. Assuming Proposition 7.5and Lemma 7.6, we get that |wi(χ)| ≤ q1/2, so |Nν −qν| ≤ (m−1)qν/2, and this finishesthe proof when ν = 1.

1If time permits, we will prove this.
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7.3 The Stephanov methodThe goal now is to prove Proposition 7.5. So we fix f ∈ Fq [X] monic and non-constantof degree d and we fix e | q − 1 with gcd(e, d) = 1. Write
a(f ) = #{(x, y) ∈ F2

q : ye = f (x)} − q

Lemma 7.7. We have a(f ) ≥ −(e − 1) maxε∈F×
q |a(εf )|.

Proof. Fix representatives {ε1 = 1, ε2, . . . , εe} for F×
q /Fe×

q . Let fε = ε−1f so thatdeg fε = d. Let
C∗
ε = {(x, y) ∈ Fq × F×

q : ye = fε(x)}.Then, #C∗
ε = q + a(fε) − Nf , (16)where Nf = #{x ∈ Fq : f (x) = 0} ≤ d. Since, for each x with f (x) ̸= 0, there isunique εi and e values of y such that f (x) = εiye , we get that

e∑
i=1 C

×
εi = e∑

i=1
∑

ye=ε−1
i f (x)

f (x) ̸=0
1 = ∑

x,f (x )̸=0 e = e(q − Nf ).
Plugging in (16) and rearranging, we get that

0 =∑
εi

a(fεi ),
hence a(f ) = a(f1) ≥ −(e − 1) maxi=2,...,n |a(fε)|.In view of the lemma, to prove Proposition 7.5, it suffices to establish an upperbound of the form

Nf ≤ q +O(q1/2), q ≫ 1, (17)where the implied constant depends only on d, e. We assume that gcd(e, d) = 1and e | q − 1. In particular, this implies that the polynomial Y e − f (X) is absolutelyirreducible (we leave it as an exercise).The plan to prove (17) is surprisingly simple, called the polynomial method. Namely,we will construct an auxiliary polynomial A ∈ Fq [X] and a parameter m ≥ 1 suchthat1. A ̸= 0, and2. if (x, y) ∈ Fqν is counted by Nf (that is, ye = f (x)), then (X − x)m | A.This will imply that
Nf ≤ edegA

m .So, the proof would be reduced to bounding degA.Let
g(X) = f (X) q−1

e .
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Lemma 7.8. Let hi(X) = ki0(X)+Xqki1(X)+· · ·+XqKkiK , 0 ≤ i ≤ e−1 be polynomials
with degkij ≤ q

e − d. Suppose that
∑e−1

i=0 hi(X)g(X)i = 0. Then kij = 0 for all i, j .

Proof. A typical summand is of the form
ℓij = g(X)iXqjkij .

It suffices to show that the degree of the non-zero summands are all distinct, becausethen the sum cannot be zero. And indeed,
deg ℓij = qj + id(q − 1)

e + degkij = q
e (ej + id) + degkij − id

e .By the assumption on degkij , we get
deg ℓij ≤ q

e (ej + id) + q
e − d

while since i/e < 1 we get that
deg ℓij > q

e (ej + id) − d.

Hence it suffices to show that for (i, j) ̸= (i′, j ′) we have ej+ id ̸= ej ′ + i′d. And indeed,if ej + id ̸= ej ′ + i′d, then id ≡ i′d mod e, so i ≡ i mod e, as gcd(d, e) = 1 and thus
i = i′, as 0 ≤ i, i′ < e. Thus, also j = j ′.To produce the polynomial A with zeros of high multiplicity, it is natural to usederivatives. However, in positive characteristic there are some a-normalities, comingfrom the fact that f (i)(X) = 0 for all i ≥ p. So the Taylor expansion

f (X + T) = deg f∑
i=0

f (i)(T)
i! Xi,

which holds true in characteristic 0, is not well-defined by derivatives in positivecharacteristic (as f (i) = 0 and i! = 0 for i ≥ p).There is an easy formal fix to that:
Definition 7.9. Let K be a field, and f ∈ K[X] a polynomial. We define the i-th Hasse-Schmidt derivative f [i](T) ∈ Fq [T] of f to be the coefficient of Xi in the equation

f (X + T) =∑
i

f [i](T)Xi. (18)
In particular, f [0](X) = f (X), f [1](X) = f ′(X). If the characteristic of K is p, then wehave f [i](X) = f (i)(X)/i! for all i < p.
Exercise 7.2. Prove that (Xα)[k] = (α

k
)
Xα−k for any integers α, k ≥ 0 and deduce aclose formula for f [k].
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Lemma 7.10. (∏r
i=1 fi)[k] = ∑

k1+···+kr=k
∏r

i=1 f [ki]
i .

Proof. The general case follows from the case r = 2 by induction. So to this endassume r = 2. By linearity, we may assume that fi = Xαi , i = 1, 2. By the Exercise 7.4,the left-hand side equals to (
α1 + α2

k

)
Xα1+α2−k,

and the right-hand side equals to
k∑
i=0
(
α1
i

)(
α2
i − k

)
Xα1+α2−k.

Since (α1+α2
k
) =∑k

i=0 (α1
i
)( α2

i−k
), the proof is done.

Lemma 7.11. ((X − c)α)[k] = (αk)(X − c)α−i.

Proof. By the previous lemma,
((X − c)α)[k] = ∑

k1+···+kα=k
α∏
i=1 (X − c)[ki] = (αk

)(X − c)α−i,

where in the last equality we used that the derivative is non-zero if and only if
ki = 0, 1.
Exercise 7.3. Prove that for any 0 ≤ ℓ ≤ t , a, f ∈ K[X], we have

(a(X)f (X)t)[ℓ] = b(X)f (X)t−ℓ ,
for some b ∈ K[X] with degb = dega + ℓ(deg f − 1).

We now state formally the property that Hasse-Schmidt derivatives detect highorder zeros.
Proposition 7.12. For x ∈ K and f (X) ∈ K[X], we have that f [ℓ](x) = 0 for all0 ≤ ℓ ≤ M − 1 if and only if (X − x)M | f (X).
Proof. Substituting x for T and X − x for X in Definition 18 gives that f [ℓ](x) for all0 ≤ ℓ ≤ M − 1 if and only if (X − x)M | f .
Lemma 7.13. Let ε ∈ [1, e − 1] ∩ Z and a ∈ Fq [X] of degree ε . Let

S = {x ∈ Fq : a(g(x)) = 0 or f (x) = 0}.

Let M ≥ d+1 be an integer such that (M+3)2 ≤ 2q
e . Then there exists nonzero r ∈

Fq [X] which has zero of order ≥ M for every x ∈ S and satisfies deg r ≤ ε
eqM+4dq .
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Proof. We consider r(X) = h(X,Xq), where
h(X, Y ) = f (X)M e−1∑

i=0
K∑
j=0 kij(X)g(X)iY j ,

and degkij ≤ q
e −d with coefficients to be determined, and K = ⌊ εe (M+d+1)⌋ (recallthat g = fq−1e).First, the zeros of f appear with multiplicity ≥ M . Second,
deg r ≤ dM + q

e − d + (e − 1)(q − 1)d
e + ε

eq(M + d + 1)
≤ εMq

e +M2 + qd
e (1/d + (e − 1) + ε + ε/d)

≤ εMq
e + 4dq.

Hence, it remains to show we can choose the kij so that the other x ∈ S will havemultiplicity ≥ M and such that r ̸= 0.We start by computing derivatives: Since g = f q−1
e , by Exercise 7.7, we have

(f (X)M K∑
j=0 kij(X)g(X)i)[ℓ] = f (X)M−ℓkijℓ(X)g(X)i,

where kijℓ(X) has degree degkij + ℓ(d − 1). Hence, by Exercise 7.6, whenever 0 ≤
ℓ < M ≤ q , we have

r[ℓ](X) = f (X)M−ℓ
e−1∑
i=0

K∑
j=0 kijℓ(X)g(X)iXqj . (19)

Fix x with a(g(x)) = 0. By Proposition 7.12, it suffices to prove that r[ℓ](x) = 0,0 ≤ ℓ < M . Let y ∈ Fq be such that a(y) = 0. Then yε = ∑ε−1
t=0 ctyt . Therefore, forany i ≥ 0 we may write

yi = ε−1∑
t=0 ctiy

t.

In particular, we apply this to y = g(x) to get that g(x)i =∑ε−1
t=0 ctig(x)t , and thus, as

xq = x, may plug this in (19), to get
r[ℓ](x) = f (x)M−ℓ

ε−1∑
t=0 g(x)tstℓ ,

where
stℓ(X) = e−1∑

i=0
K∑
j=0 ctikijℓ(X)Xj .
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In particular, if all stℓ are the zero polynomial, but r ̸= 0, we are done.We have
deg stℓ(X) ≤ max

i,j
degkijℓ +K ≤ max

i,j
degkij + ℓ(d − 1) +K ≤ q

e + ℓ(d − 1) +K − 1.
Let B be the total number of coefficients of all the stℓ . Then

B ≤
ε−1∑
t=0

M−1∑
ℓ=0 deg stℓ ≤

ε−1∑
t=0

M−1∑
ℓ=0 (qe + ℓ(d − 1) +K − 1)

= εM(q/e +K − 1) + ε
M−1∑
ℓ=0 ℓ(d − 1) < εM(q/e +K) + M22 (d − 1)ε

≤ εq
e M + ε2

e M(M + d + 1) + M22 (d − 1)ε
≤ εq

e M + εM(d + 1) + εM2(d − 12 + ε
e )

≤ εq
e M + εM(d + 1) + εM2(d + 12 ).

Let C be the total number of coefficients of all kij , then
C ≥ (qe − d)e(K + 1) ≥ qε

e M + qε
e (d + 1) − 2Mdε.

If C > A, then stℓ = 0 defines a homogenous system of linear equations in thecoefficients of kij with more variable than equations, hence it admits a non-trivialsolution. By Lemma 7.8, r ̸= 0 in this case, and we are done.And indeed, as (M + 3)2 ≤ 2q
e , we have that M2 + 6M < 2q/e. Hence M2(d+ 1)/2 +3M(d + 1) < q

e (d + 1) which implies that B < C.
Corollary 7.14. For every M as in the lemma we have #S ≤ deg r

M ≤ ε
eq + 4dq

M .

To conclude the proof of Proposition 7.5, we apply the corollary with M = ⌊
√2q

e −3⌋, so that M ≥ d + 1 if q is sufficiently large, and thus #S ≤ ε
eq + 4e1/2q1/2.Take a(Y ) = Y − 1 so that ε = 1. Then S = {x ∈ Fq : g(x) = 1 or f (x) = 0}. Hence

N ≤ e · #S ≤ q +O(√q).

7.4 Exercises1. Prove that
Z(u) = exp(∑

ν≥1
Kνuν
ν

) = 11 +Ku + qu2 ,
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where Kν =∑x∈F×
qν
ψ(TrFqν /Fq (x))η(TrFqν /Fq (x−1)) and K = K1 is the Kloostermansum.Hint: Mimic the proof of the Hasse-Davenport relation with the character

µ(Xd + a1Xd−1 + · · · + ad) = ψ(a1)η(ad−1/ad) extended to G = {f/g : f , g ∈
M, f (0)g(0) ̸= 0}.

2. Assume a bound of the form |#{(x, y) ∈ F2
qν : yq − y = f (x)} − qν| ≤ Cqν/2, andprove (14). Hint follow similar steps as in the proof of (14).

3. Assume that gcd(e, d) = 1 and e | q − 1 and f (X) ∈ Fq [X] is of degree d. Then
Y e − f (X) is absolutely irreducible (that is to say, Y e − f (X) is irreducible in thering F̄q [Y,X]).

4. Prove that (Xα)[k] = (α
k
)
Xα−k for any integers α, k ≥ 0 and deduce a closeformula for f [k].

5. Open brackets in f1(T+X)f2(T+X) to give an alternative proof to Lemma 7.10.
6. Show that if r(X) = h(X,Xq) ∈ Fq [X], where h(X, Y ) ∈ Fq [X, Y ], then, forany 0 ≤ ℓ < q , we have r[ℓ](X) = h[ℓ]

X (X,Xq), where h[ℓ]
X is the Hasse-Schmidtderivative with respect to X (i.e., as an element of Fq(Y )[X]).Hint: Use that (Xq)[ℓ] = 0 for ℓ < q .

7. Prove that for any 0 ≤ ℓ ≤ t , a, f ∈ K[X], we have
(a(X)f (X)t)[ℓ] = b(X)f (X)t−ℓ ,

for some b ∈ K[X] with degb = dega + ℓ(deg f − 1).
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