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Closed three-dimensional Riemannian spaces with curvature that is constant in all directions are considered. 
It is shown that the topological structure of any such space uniquely determines the sign of its curvaturex 
and also restrictions on its size. Let R be the radius of curvature and D the diameter of the space, i.e., the 
distance between its most widely separated points. Then for%> 0 one finds D > 0.326R, and for x< 0 
apparently D > 1.1281R I; f o r x =  0, the value of D is arbitrary. Further, Einstein's equations and 
astronomical data indicate that the modulus of the present-day radius of curvature of the Universe satisfies 
IR 1 >0.5(c/H,)z0.9~ 102' cm, where c is the velocity of light, and Ho is the Hubble constant. Therefore, if 
observations show that the diameter of the Universe is Do<1028 cm, this will mean that as a whole our 
Universe is flat (jy= 0). A model of a flat world is proposed which is closed in the form of a three- 
dimensional torus; all of its parameters (size, rate of expansion, mean matter density, etc.) are expressed in 
terms of atomic constants and a universal time. In this model, the present-day diameter of the Universe is 
Do = 0.102(c/Ho)--2X lo2' cm, which does not contradict observational data. 

PACS numbers: 98.80. - k 

5 1. INTRODUCTION dimensional s p a c e s  of constant curva ture  gives 18 

The a i m  of the  p resen t  p a p e r  is to establ ish s o m e  con- 
nections between local and global p roper t i es  of the 
Universe. The  problem is analyzed on t h e  b a s i s  of 
Einstein's genera l  theory of relativity i n  the  f rame-  
work of locally isotropic  and homogeneous cosmologi- 
cal  models. I t  is well known that the  exceptional iso- 
t ropy of the  cosmic  microwave background enables one 
in  conjunction with the "generalized Copernican princi- 
ple" (i.e., a terrestrial observer  is not distinguished) 
t o  introduce a universal  t i m e  and three-dimensional 
space  orthogonal t o  i t ,  th i s  space having at any t i m e  
constant curvature i n  a l l   direction^.'-^ We r e c a l l  that  
i n  accordance with Schur 's  theorem local  isotropy en-  
t a i l s  local  homogeneity, namely, if at every  point of a 
Riemannian manifold the curvature h a s  the  s a m e  
value in a l l  direct ions,  then it a l s o  h a s  a constant 
value as one moves from point to point. 

In  the construction of cosmological models  based on 
three-dimensional  spaces of constant curvature,  physi- 
c i s t s  usually employ t h r e e  degenerate  types of space: 
Euclidean space  E3, ~ o b a c h e v s k i ;  space  L3, and the  
s p h e r e  9.'-4 But the  genera l  classification of th ree-  

topologically different types of space  with curva ture  
k =O and a n  infinite number of topological types with 
k = -1 and k = + 1 (Ref. 5). Al l  three-dimensional  s p a c e s  
with k = + 1 are closed and orientable; among t h e  flat 
three-dimensional  s p a c e s  there  are t e n  types* which are 
closed ( s ix  are orientable')) and eight types which are 
open (four of them orientable); the s p a c e s  with k = - 1  
contain a n  infinite number of c losed types and a n  infinite 
number of orientable types. 

The  s p a c e s  of the  types E3, L ~ ,  and S3 are distin- 
guished in this complete set by the  fact  that  they are the 
only ones that  are topologically s imply connected. 
Therefore ,  it is only in  them that  each  celest ia l  object 
can  be observed only in one direct ion at a part icular  
s tage  of expansion of the  world.') 

The  multiply connected s p a c e s  of constant curva ture  
can be obtained formally by specifying in li?, L3, and s3 
cer ta in  nonclosed manifolds (fundamental regions)  whose 
boundaries are identified (or "glued") in accordance 
with definite laws ( see  Refs. 2 and 9; the  p rec i se  formu- 
lations can  be found in Appendix A). Then  each  light 
source  can  be joined t o  a n  observer  by s e v e r a l  geodesics 
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ra ther  than one, i.e., it will be observed simultaneously 
in several  different directions. 

The widespread neglect of the analysis of multiply 
connected spaces a s  cosmological models is purely 
traditional. The data of extragalactic astronomy a r e  
compatible with the hypothesisg that the s ame  quasars ,  
galaxies, and clusters  of galaxies exist on the sky in the 
form of tens of images ("ghosts") which have not yet been 
identified because of purely observational difficulties. 
However, i t  is t rue  that analysis of the observations 
show that the Universe is  not small: the minimal identi- 
fication parameter  of the Universe (the distance to  the 
nearest "ghost") sat isf ies 1,> 0.003 (c/H,), and the 
maximal identification parameter  (the distance to the 
most distant "original") Lo 2 0.1 (c/H0) (see Ref. 9). 
Here,  c is  the velocity of light, H, i s  the contemporary 
value of the expansion ra te  of the Universe (the Hubble 
constant), and c/H0 = 1.85 X lo2* cm.  (Ho/50 km/sec- 
Mpc)-l is the Hubble radius,  which i s  approximately 
equal to the distance that light has t raversed  since the 
singularity to our epoch. 

It must be emphasized that a l l  "glued" spaces except 
one (the elliptical E l 3  = s3/{il)) a r e  globally noniso- 
tropic, since the perpendiculars t o  the boundaries of 
the fundamental regions define distinguished directions. 
This does not contradict observations; for the homo- 
geneity of space in conjunction with the isotropic 
(Friedmann!) nature of i t s  expansion ensures  both com- 
plete isotropy of the microwave background and s ta -  
tistical isotropy of the distribution of clusters  of 
galaxies on the sky.'.' 

However, global anisotropy of the Universe can in- 
fluence the spectrum of primoridial density perturba- 
tions. In "glued" universe, the spectrum of large- 
sca le ,  x - 1, perturbations must be anisotropic and 
discrete,  and in some directions modes with x 7  I must 
be altogether absent. This  interesting aspect of the 
problem was noted by Zel'dovichlo and analyzed from 
different points of view by Sokolov and ~tarobinskii ."  
Unfortunately, i t  has not yet been possible to improve 
the bounds on the parameters 2 and L a s  compared with 
Ref. 9. 

The limits 1,5 0.003c/~, and Lo 2 0.lc/H0 were ob- 
tained in Ref. 9 on the basis of purely astronomical 
considerations, namely, an  analysis of the distribution 
on the sky of "unique" clusters  of galaxies. Below, one 
of these bounds i s  improved, and we show that if our 
Universe i s  not flat then Lo 2 c/H,. This is due to two 
circumstances. On the one hand, mathematical methods 
have shown (Appendix A )  that closed spaces of constant 
nonzero curvature have diameter D which is of the order 
of o r  greater  than their  radius of curvature 1. (We 
recall  that R i s  an imaginary number fo r  k =  -1; D is 
the distance between the most widely separated points 
of the space, D =  L.) On the other hand, analysis of 
observational data shows (Appendix B) that the r e a l  Uni- 
ve r se  is characterized by [ R , I  ~ O o 5 ~ c / H O .  I t  follows 
that if k#O, then Lo=  Do2  c/H,. 

Thus, only a flat closed space of nontrivial topological 
s tructure (for example, a three-dimensional torus)  can 

have a diameter appreciably l e s s  than c/H,- loz8 cm. 
In  683 and 4, we present "aesthetic" arguments for  our 
Universe's being constructed in this way. In 64, we then 
construct a model of the Universe that i s  closed in the 
form of a three-dimensional torus; the total number of 
nucleons in it is  equal t o  the reciprocal  of the square of 
the gravitational "fine structure constant." I ts  con- 
temporary diameter i s  Do = 0.102 (c/Ho). This model does 
not contradict observations. It i s  interesting that it does 
not contain constants specific to cosmology; for  a l l  of 
them-the s ize  of the Universe, the Hubble parameter ,  
the mean matter  density in the Universe, and s o  forth- 
can be expressed in t e rms  of the universal t ime and 
atomic constants. 

52. BOUNDS ON THE VOLUME AND DIAMETER OF 
SPACES OF NONZERO CURVATURE 

Let p3 a n d X 3  be complete three-dimensional spaces 
of constant positive and negative curvature, R be their 
rad ius  of curvature, and V  and D  their  volume and 
diameter. The spaces P3 admit complete classifica- 
t i ~ n . ~  This makes it possible to obtain the inequalities 
( see  Appendix A) 

where 

It i s  important to emphasize that among the spaces 
of positive curvature there a r e  topological types whose 
volume is  arbi trari ly smal l  compared with R3 whereas 
their  diameter i s  always of order  R. 

The problem of classifying the s p a c e s M 3  has not yet 
been solved (see Refs. 5 and 12); it i s  not even known 
whether it has a solution. As is shown in Appendix A, 
the existence of bounds on the volume and diameter of 
fi follows from Ref. 13, which re la tes  to a quite differ- 
ent field of mathematics. Thus, 

By means of very crude arguments, one can find that 
certainly c; > and c, > 1.3 x lo-'. In reality, the 
hypothesis 

for  which arguments a r e  given in the Appendix, is 
certainly true. The rigorous proof of the hypothesis 
(3) i s  a nontrivial problem. We note that in the two- 
dimensional case [see (A.2) and (A.6)] 

We have attempted to  "guess" the actual form of the 
fl space processing the smallest  possible diameter 
[see Appendix (A.6)]. Apparently, i t  is a centrally sym- 
metr ic ,  "almost regular" 24-hedron of negative curva- 
t u r e  whose faces a r e  identified in accordance with a 
definite law. According to numerical calculations, the 
diameter  of this space i s  D =  1.13 (R I and the volume 
V= 5 I R  r. The required space can be selected by means 
of a computer from the class of "almost regtlar" poly- 
hedrons capable of "paving" the Lobachevskii plane L ~ .  
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Thus, in all probability, before. 

in accordance with the hypothesis (3). 

53. TOPOLOGY "DICTATES" CURVATURE 

As is shown in Appendix B, the Einstein equations and 
data of extragalactic astronomy lead to the following 
bound on the present-day radius of curvature of the 
Universe: 

(H, is the Hubble constant), and probably 

(Ro\  > (cIH,)  - 1.8. loZB cm . (11,/50 kmlsec. Mpc ) - I .  (4b) 

On the other hand, it follows from Ref. 9 that the ob- 
servational data do not rule out the possibility that the 
present-day diameter of the Universe is  Do-~.l(c/H,). 
An example of such a universe will be described below 
in 04. 

Comparison of the expressions (4) with (1) and (3) 
makes the following clear. If observations of extra- 
galactic sources show that the diameter of the Universe 
is significantly less than the Hubble radius c / H , -  10'' 
cm, this will mean that our space is  described on the 
average by a flat model. For it follows from (4) that the 
radius of curvature of the observable Universe is  of the 
order or greater than the Hubble radius, and by virtue 
of (1) and (3) the diameter of a space of nonzero curva- 
ture is  of the order of or greater than i ts  radius of 
curvature. Therefore, the only way of obtaining a 
small  universe is to "glue i t  together" out of a flat 
Euclidean space. 

It is here appropriate to emphasize that no refinements 
of the current observational values of the expansion rate 
H,, the critical parameter a,, the deceleration param- 
e ter  go, etc., can establish that the mean curvature of 
the Universe i s  strictly zero; they can only improve the 
inequality I R ,  I > 0.5(c/H0). The basic possibility of 
establishing the fact R =.o is due to the circumstance 
that among closed spaces only the flat space does not 
enforce a connection between the dimensions and the cur- 
vature. 

In Appendix A ,  we prove a more general assertion: 
The topological structure of any closed three-dimen- 
sional manifold uniquely determines the sign of its 
curvature. In other words, topology is capable of "dic- 
tating" zero (and nonzero) mean curvature of the physi- 
cal space. 

Speaking figuratively, one cannot "sprinkle" into a . 
closed flat world a little matter so  a s  to make its curva- 
ture  "slightly positive"; for this would lead to an abrupt 
change in the topological properties of the Universe (in 
this hypothetical experiment, we a r e  considering 
"sprinkling" matter into unit volume of a space expand- 
ing with given velocity). In contrast, adding a small 
amount of matter to a space of positive or negative 
curvature would not lead to "catastrophic consequences"; 
the radius of curvature would change smoothly and the 
topological properties of the space would remain a s  

Thus, from the topological point of view the closed 
flat model is distinguished. 

54. ON THE AESTHETIC PREFERENCE FOR THE 
MODEL OF A FLAT CLOSED UNIVERSE 

Models of a flat Universe a r e  distinguished not only 
from the point of view of topology but also aesthetically. 
The point is that contemporary observational bounds on 
the density parameter 52, which determines the curva- 
ture  of the Universe, a r e  not impressive: 0.02< no< 5. 
However, they lead to  the conclusion that at the epoch 
of element synthesis, when the temperature of the 
Universe was 1 0 1 0 0 ~ ,  

Here. z2 = 3 x log is  the red shift corresponding to T* 
= 101OO~.  Would it not be more natural to have the con- 
dition Q * = l ,  i.e., a strictly flat Universe, rather than 
a condition of the type SZ* = 1-lo-'? It is interesting to 
note that for la*- 1 12 lo-' s t a r s  could not form in the 
Universe and, therefore, life would not have arisen (see 
Refs. 14 and 15) . . . . 

Another aesthetic consideration is the circumstance 
that it is only in a flat Universe with zero  cosmological 
constant A that the expansion rate H(t) of space is un- 
iquely determined by the mean matter density p(t) and 
is not a free parameter. It is therefore only in the flat 
model of the Universe that Einstein's original idea of 
a unique connection between the properties of space and 
matter is realized. "From the standpoint of epistomol- 
ogy it is more satisfying to have the mechanical proper- 
t ies  of space completely determined by matter ," wrote 
Einstein and continued " . . . this is  the case only in a 
space-bounded ~ n i v e r s e . " ' ~  

Although both of Einstein's theses now appear very 
debatable, we wish to draw attention to  a model in which 
they are satisfied. 

We a r e  attracted to a model of the Universe consisting 
of a flat space and closed in the form of a regular three- 
torus. (We recall  that such a torus is obtained from the 
Euclidean space by specifying a s  fundamental region 
a cube in which the opposite faces a r e  identified. The 
corresponding manifold is flat, closed, orientable, and 
globally homogeneous.) I ts  diameter is 

where V is the volume of space. Denoting by No the 
total number of elementary particles (nucleons) in the 
Universe, by m, the mass of one nucleon, and by p(t) 
the mean matter density at the time t ,  we obtain for 
the diameter of the Universe 

The number No can be regarded a s  a new universal con- 
stant. However, it is  more attractive to regard No, not 
a s  an independent quantity, but a s  a function of the other 
universal constants. For example, a sensible estimate 
for  the dimensions of the Universe can be obtained by 
equating No to the reciprocal of the square of the "gra- 
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vitational fine structure constant": 

Substituting (6) in (5) and remembering that in a flat 
world the density varies in accordance with the la$) 
(Refs. 1 and 2) 

p( t )  =1/6nGt2, 

we find 

o r ,  in the Planck system of units R = c  = G  = 1, 

At the contemporary epoch, we find from (7) 
2 1 

D ( t o - - -  i3.10gyears) =0.102(-5) ( H" )'" -2.10" m. 
3 Ho Ho 50 km/sec. Mpc 

This value for the diameter of the Universe does not (8) 

contradict the data of extragalactic astronomy and is  in 
principle observationally verifiable (see Ref. 9). We 
emphasize that in accordance with (8) al l  celestial 
sources having red shift z > 0.102 a r e  "ghosts" of 
nearer objects. 

The proposed model of the Universe does not contain 
constants specific to cosmology; a l l  of them-the 
diameter of the Universe, the Hubble constant, the 
mean matter density, etc., -can be expressed in terms 
of the universal time and the atomic constants. Using 
(5) and (61, we readily find from the relation D(t,) =ct ,  
one further interesting parameter, namely, the time of 
complete causal connection of the Universe: 

[t.]= (3"'n/4) N?, t.= l.5.lOf5 sec. (9 

The estimate (9) corresponds to a red shift z,z 45, i.e., 
causal connection was established long before the epoch 
of galaxy separation, which was at 2, - 5-10. 

Finally, to avoid misunderstandings, we emphasize 
the following. The above model of the Universe is un- 
doubtedly a varient of the Large Number Hypothesis, 
but it also differs radically from Dirac's hypothe~is . '~"~ 
Dirac's theory, which postulates a variable gravitation- 
a l  constant G ,  is an alternative to Einstein's general 
theory of relativity. The model proposed above is  en- 
tirely constructed on the basis of the Friedmann solu- 
tion of the Einstein equations. 

APPENDIX A 

Diameter and volume of threedimensional spaces of 
constant curvature 

1. Introductory remarks.  As usual, we shall define 
a closed space as  a compact Riemannian manifold with- 
out edge; the diameter of such a space is  defined a s  the 
maximal distance between i ts  points. Below, we shall 
consider complete three-dimensional spaces X of con- 
stant curvature k. We take k = l ,  0, -1 (i.e., the radius 
of curvature R is 1 or a). 

It is well known5 that among all  the spaces X the 
simply connected manifolds U a r e  the sphere S3 (for 
k = 1), the Euclidean space E3 (for k = 0), and the 
~obachevskir  space L3 (for k =-1). Any space X can 

be obtained a s  the factor space u / r ,  where r is a 
discrete group of motions of the space U that does not 
possess fixed points (see Ref. 5, 12.4). 

A connected subset Y of the manifold U containing 
a l l  points of U that cannot be carried into one another 
by the action of r is called a fundamental region of the 
space X. Every point x on the manifold U can be as -  
sociated with the "canonical" fundamental region Y,(x), 
which consists of points y such that p ( x , y )  ~ p ( x , y y )  for 
a l l  y in I?. 

2 .  Topology "dictates" curvature. In this section, we 
shall show that the topology of a closed space X uniquely 
determines the sign of its curvature k. 

If k = 1, then r is a finite group, since the space S3 
is closed. If k=O, then r contains a commutative sub- 
group with three independent elements, since it follows 
from ~ ieberbach ' s  theorem (see Refs. 5, 83.2) that r 
contains shifts in three independent directions. If k =-I ,  
the group I? is infinite, but any commutative subgroup in 
r has not more than two independent elements. It follows 
from this that the six-dimensional groyp G ( L ~ )  of all 
orientable motions of the Lobachevskii space L3 is iso- 
morphic to the Lorentz group, i.e., to the group 
SL(2 ,  C) /{&I}. In this group, for any element y not 
equal to the identity all  the elements which commute 
with it form a subgroup of dimension 2, i.e., any com- 
mutative discrete subgroup in G ( L ~ )  has not more than 
two independent elements. 

Thus, the structure of the group r is different for the 
cases k = 1, 0, -1. Since the group r is determined by 
the topology of the space X (I' is  simply the fundamental 
group of X), the topological structure of X i s  also dif- . 
ferent for  k = 1,0, -1. In other words, the topology of 
the closed space X uniquely determines the sign of i t s  
curvature. 

3. The s ize  of two-dimensional spaces. Below, for 
methodological purposes, we choose the two-dimension- 
a l  case. Let x2 be a two-dimensional closed Riemannian 
space of constant curvature k. If x2 i s  orientable, then 
by the Gauss-Bonnet theoremz0 

where V is the area  of the manifold, and g is the genus 
of the manifold, i.e., the number of handles. Hence, 
for k # 0 we find 

For a nonorientable manifold x2 there always exists 
a two-sheeted orientable covering XZ (SO that to  every 
point in x2 there correspond two points in p). There- 
fore,  in this case 

Now let D be the diameter of the manifold x2. Then a 
disk B, of radius D contains a fundamental region for 
x 2 ,  SO that 

For k = 1, we have V(B,) =2a( l -  cosD), whence 
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For k = -1, we have V(B,) =2n(coshD - I) ,  whence 

Note that the bound (A.3) is precise (D =n/2 for the pro- 
jective plane), while (A.4) is certainly an underestima- 
tion. The point is that the fundamental regions for X2 
when k = -1 a re  not disks but 2p-gons with P 2 3 and sum 
of the i n t e r ~ l  angles equal to  2n.21 These figures on the 
Lobachevskii plane L' recall s t a r s ,  and have long 
"rays." The diameter of such 2p-gons is minimal in the 
cases when they a r e  regular. It is readily seen that in 
such a case the diameter is 

whence 

We emphasize that the difference between the estimates 
(A.4) and (A.6) is due solely to the "rays." 

4. Diameter of three-dimensional spaces of positive 
curvature. The Gauss-Bonnet theorem has a generaliza- 
tion only for spaces of even dimension.22 Therefore, 
the estimate of the diameter of three-dimensional mani- 
folds is not trivial. For k = + 1, the situation is facilita- 
ted by the circumstance that in this case the spaces X 
have a complete classification (see Ref. 5, 97.5). 

We realize X a s  s 3 / r ,  where r is a finite group of 
motions of S3. If x and y a re  points of S3, the X dis- 
tance between them is p,(x, y)  =min p3(x, yy), where the 
minimum is taken over a l l  elements y of the group r ,  
and p3 denotes the distance on the sphere S3. 

We shall regard a point x of the sphere s3 a s  a pair of 
complex numbers (z,w), where lz 12 + bI2 = 1. We as- 
sociate it with a point of the three-dimensional space 
4 % )  =(u, v,t), where u = 2 ~ e ( z , @ ) ,  v=2Im(z,$,t =2(z12 
- 1. Since u2 + #  + t 2  = 1, the point 4%) lies on the two- 
dimensional sphere S2. It is easy to show that 
p z ( ~ x ) , x O , ) ) c  2p3(x, y), where p, is the distance on the 
sphere s2. 

To each unitary 2 x 2 matrix y there corresponds a 
rotation of the sphere S3. It is  readily verified that it 
corresponds to  a rotation 7 of the sphere S2 for which 
T(x(x)) =x(y(x)) for al l  points x. It follows from the 
classification of Wolf5 that one can realize the elements 
of the group I' by unitary matrices and, hence, trans- 
fer their action to the sphere S? Thus, 

As is  shown in 62.6 of Ref. 5, the group I? of rotations 
of S2 conserves either a regular n-gon (inscribed in the 
equatorial circumference of S2) or a regular polyhed- 
ron: tetrahedron, cube, or dodecahedron (inscribed 
in S2). We consider a point a on S2 projected to  the 
center of a face of the polyhedron and a point b coin- 
ciding with one of the vertices of this face; then we 
choose points x and y on S3 such that H. (x) = a  and H. (y) = b 
Then for the diameter D we obtain the estimate 

It is easy t o  show that 

and for the n-gon, tetrahedron, cube, and dodecahedron 
m =2 ,3 ,4 ,5  [respectively, ip2(a, b)-0.785,0.615,0.478, 
0.3261. One can show that for each of these cases the 
diameter D is always greater than ip2(a, b) but may be 
arbitrarily close to this value. Thus, finally 

In contrast to  the diameter D(X), the volume V(X) is 
not bounded below. This follows from the classification 
of the spaces X, in accordance with which the group 
can have an arbitrarily large number of elements. 

5. Diameter of three-dimensional spaces of negative 
curvature. The problem of classifying the spaces X 
for k =-1 has not yet been solved (see Refs. 5 and 12). 
Therefore, to estimate their volume and diameter we 
shall  have recourse to indirect methods. 

Let X be orientable, s o  that I' is contained in the 
six-dimensional group G = G(L3) of orientable motions 
of the ~obachevski i  space L3. We shall represent L3 
a s  the factor space of the group G with the respect of 
the subgroup C consisting of rotations of L~ about a 
point. Then ~ ( X ) = V ( G / ~ ) / V ( C ) ,  where V(X) and V(C), 
a r e  the three-volumes, and v(G/I') is  the six-volume. 
As is shown in Ref. 13, one can choose an open se t  Go 
in the group G such that the se t s  Goy for different ele- 
ments y of r do not intersect. From this there follows 
the inequality V(G/r) > V(G,), i.e., V(X) > v(G,)/v(C). 
In Ref. 13, an estimate for V(Go) was not sought. If we 
make arguments in accordance with the scheme of Ref. 
13 but with numerical constants, we obtain the estimate 
V(X) > 2 x For a nonorientable manifold X, arguing 
a s  in (A.3), we have V(X) > 

The fact that the volume V(X) is  bounded below for 
k = -1 is of fundamental importance, but it is very diffi- 
cult to obtain a bound by the presented method. In the 
two-dimensional case, such a method would lead to  the 
inequality v (x2)  > 2 x lo-' instead of the v(x') 2 2n ob- 
tained in (A.3). It is natural to assume that an estimate 
of the type 

V ( X )  >V(S"/2=nZ, (A. 11) 

which is analogous to (A.2) in the two-dimensional case, 
holds. 

Now let  D be the diameter of the space X. A sphere 
B, of radius D in the ~obachevski i  space L~ contains a 
fundamental region for X, so  that 

Therefore, it follows from the estimate v(X)> lo-' that 
D > 1.3 x lo-'. But if we take the estimate V(X) 2 3, we 
obtain D 2 1.2. 

Note that the estimate of D(X) obtained by circumscrib- 
ing a sphere is crude, since the fundamental region for 
X when k = -1 recalls, a s  in the two-dimensional case,  
a starlike polyhedron rather than a sphere [cf (A.4) and 
(A.6)]. Therefore, even if V(X) for a number of spaces 
is several times smaller than 9, the inequality D(X) > 1 
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for  k =-1 i s  probably always satisfied. 

6. Example of a smoll three-dimensional space of 
negative curvature. In this  section, we describe an  
example of a space that apparently has the smallest  of 
the diameters possible when k =  -1. In constructing th is  
example, we use the circumstance that the canonical 
fundamental region Yo for a space of the smallest  diam- 
e t e r  can be chosen in the form of a fairly regular  poly- 
hedron. At the s ame  t ime,  the complete space L3 must 
be composed of polyhedrons congruent t o  Yo. These 
circumstances impose fairly stringent restr ict ions of 
the form of Yo. 

In the example that we construct, Yo is a centrally 
symmetric 23-hedron with 26 vertices. All the dihedral 
angles of Yo a r e  equal to 2r/3, and a l l  the vert ices of Yo 
a r e  a t  approximately the s ame  distance from the center 
(between 1.015 and 1.128) and the lengths of all edges 
a r e  not grea ter  than th is  distance. Thus, the polyhe- 
dron Yo is fairly close to a sphere of radius I R  1 = 1. The 
space X corresponding to  Yo has  the following param- 
e t e r s  [cf. (A.l l)  and (A.12)]: 

S , > D ( X )  >Po=1.1284.. . ( in fact D ( X ) = P o ) ,  
(A. 13) 

V ( X )  = V ( Y o )  z V  (ED=, )  =n(sh 2-2) ~ 5 .  

We now describe the example. Regular polyhedrons 
a r e  intimately related t o  groups generated by reflec- 
tions. Therefore, we shall construct the space X a s  
follows. We c o y  ider a discrete group of motions of 
the Lobachevskii space L3 generated by reflections. In 
it ,  we choose a subgroup r that acts  on L3 without 
fixed points, and se t  X =  L3/r .  

It is knownz3 that there  exist nine compact hyperbolic 
types of group f' for  which the fundamental regions a r e  
simplexes (tetrahedrons) T ,  the diameter of the space 
~ ~ / f  being equal to the length 2 o f  the maximal edge 
of the simplex T. Therefore,  D(x) = D ( L ~ / ~ )  >D(L3/f)  
=L?'. Using the Bourbaki c la~s i f ica t ion ,2~ we chose from 
the nine types of group l= the one for which 2' i s  mini- 
mal (the lengths of a l l  the edges of the simplexes T for  
each of the nine cases  were calculated on a computer). 

We denote by xl,xz, x,, x, the vert ices of the simplex T 
and by P,, Pz ,P , ,P4  the faces opposite them. The s im-  
plex To with minimal 2 =Po i s  characterized by the c i r -  
cumstance that the dihedral angles between P, and P, 
have the form n/m,,, where m,, =m,, = 2 ,  mlZ =m14 =m,, 
= 3,  m,, =4. At the same t ime,  p(xl, x,) =p(x,, x,) 
=p(x,,x4)= 1.128, p(xl, 3) = P ( , ,  x4)- 1.015, P(%, ~ 3 )  

= 0.769. Thus, Yo= 1.128. 

Thus, the complete space L3 i s  divided up into 
simplexes congruent to To. We denote by Yo the poly- 
hedron composed of a l l  simplexes To containing the 
point x, (there a r e  altogether 48 of them). One can 
show that there  exists  a subgroup ro in r that ac ts  
without fixed points and for  which Yo is a fundamental 
region. On the other hand, any subgroup r in r that 
ac ts  without fixed points has fundamental region Y con- 
taining Yo. Thus,  Yo cannot be decreased. 

The required polyhedron Yo has  24 tetragonal faces, 
each of which consists of two faces of the simplexes 
To; a l l  angles between the faces of Yo a r e  equal to 2n/3. 

Note that i t  is impossible to make a l l  the dihedral angles 
of the fundamental region grea ter  than 2 ~ / 3 ,  since not 
l e s s  than three  dihedral angles must converge on every 
edge when L3 is filled with polyhedrons. This is  a fur-  
t he r  argument fo r  our  examples, describing the smallest  
of the possible spaces of negative curvature. 

APPENDIX B 

Observational bounds on the radius of curvature of the 
universe 

In the isotropic and homogeneous case,  i.e., in a 
space of constant curvature, Einstein's equations reduce 
to  the form 

Here,  xis the Gaussian curvature of space, R is the 
radius of curvature for %+O ( R - ' E % ~ ' ~ )  and a n  arb i -  
t r a r y  sca le  factor for  x = 0 ,  G is the gravitational con- 
stant ,  A is the cosmological constant, p i s  the mean 
density of a l l  forms of matter  in the Universe, and p is 
the averaged pressure  of the matter. Introducing the 
parameters  that a r e  observed in astronomy, 

we transform Eq. (B.2) to the form 

Since the equation of s ta te  of the matter  is contained 
in the r angeO<~<pc? /3 ,  we have l > y > a .  From (B.1) 
and (B.4), we obtain fo r  the radius of curvature 

The data of extragalactic astronomy yield the bounds 
(Refs. 2, 8 ,  and 24-26) 

The left-hand side of the inequality (B.7) follows from 
( ~ . 4 ) .  The upper boundon the right-hand side of (B.7) i s  
obtained in Ref. 8 for  the case of the ~ e m d t r e  model 
in the acceleration stage (go< -0.5) after the "plateau" 
stage. Bearing this in mind, we can obtain from (B.5) 
-(B.7) the following bound on the modulus of the radius 
of curvature of the Universe: 

It is probable that the cosmological te rm vanishes, 
A =0 ,  and the density parameter  sat isf ies no< 2. In 
accordance with (B.5) and (B.6), we then have 

We thank Ya. B. Zel'dovich, D. D. Sokolov, and A. M. 
Finkel'stein for  comments and advice. We a r e  grate- 
ful to A. I. Kopylov for discussing observational bounds 
on the diameter of the Universe, and also to V. L. 
Plakhotnichenko for  calculating the parameters of 
compact hyperbolic worlds on a computer. 
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') There a re  arguments supporting the view that the real 
physical space msut be ~r ien tab le .~ .  

2, In the  ema aft re model with cosmological constant A > 0 
and x> 0, the observation of the same object in two (oppo- 
site)directions i s  possible in the late stages of expansion; 
see, for example, Refs. 2 and 8. 

3, Below, it i s  assumed that the cosmological constant 
vanishes, A = 0, and, in addition, the equation of state of the 
matter is p = 0, i.e., we ignore radiation pressure. We 
recall that in the standard model of a hot Universe the total 
density of the background radiation a t  the contemporary 
epoch i s  pmeo <2X g/cm3, i.e., it i s  much smaller 
than the critical densityp,, w 2 x l ~ - ~ $  g/cm3. Here, pmZo 
includes the density of photons, gravitons, all  types of 
neutrinos, and also all  as  yet unkown particles with zero 
res t  mass that have survived from the superdense phase. 
If, however, mov w 30 eV, then today p,<< E,, /3, i.e., we 
still have pz 0. 
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In the first order of perturbation theory in a 2, a calculation accurate to - eV is made of the hyperfine 
structure of the energy levels of all stationary states with quantum numbers J < 1 and v 1 of the total orbital 
angular momentum and of the vibrational motion, respectively, for mesic molecules of the hydrogen isotopes. 
The solutions to the nonrelativistic problem of the bound states of a system of three particles with Coulomb 
interaction found in the adiabatic representation are chosen as the zeroth approximation. Expressions are 
given for the probability amplitudes of the different values of the total spin of the nuclei and the total spin of 
the p-mesic molecules in the stationary states of the hyperfine structure. Calculations are made of the 
populations of the stationary states of the hyperfine structure of thep -mesic molecules formed in collisions of 
the mesic atomspp, dp, and tp in the parastate or orthostate with the nucleip, d ,  and t .  

PACS numbers: 36.10.Dr, 31.30.G~ 

1. INTRODUCTION retical p red ic t ions  in  Ref.  2 tha t  t h e s e  mesic molecu les  
should have exc i t ed  weakly bound states with  quantum 

Recent  exper iments  o n  the  resonance  format ion of number  J =  1 f o r  the  total o r b i t a l  angu la r  momentum and 

ddp a n d  d t p  mesic molecules1 have conf i rmed  the  theo- quantum number  v = 1 f o r  t h e  v ib ra t iona l  motion a n d  
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