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HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS OF JACOBI TYPE

JOSEPH BERNSTEIN, DMITRY GOUREVITCH, AND SIDDHARTHA SAHI

Abstract. Motivated by the theory of hypergeometric orthogonal polynomials, we consider quasi-

orthogonal polynomial families, i.e. those that are orthogonal with respect to a non-degenerate
bilinear form defined by a linear functional, and in which the ratio of successive coefficients is given
by a rational function f(u, s) which is polynomial in u. We call this a family of Jacobi type.

Our main result is that there are precisely five families of Jacobi type. These are the classical

families of Jacobi, Laguerre and Bessel polynomials, and two more one parameter families E
(c)
n , F

(c)
n .

The last two families can be expressed through Lommel polynomials, and they are orthogonal with
respect to a positive measure on R for c > 0 and c > −1 respectively. Each of the five families can be
obtained as a suitable specialization of some hypergeometric series.

1. Introduction

1.1. Orthogonal Polynomials. Let P = (P0, P1, ..., Pn....) be a family of polynomials in C[z],
where Pi is a monic polynomial of degree i.

We say that the family P is quasi-orthogonal if there exists a linear functional M : C[z] → C

such that the matrix Qij = M(Pi · Pj) is a diagonal invertible matrix. In other words this means
that Qij = 0 if i 6= j and Qij 6= 0 if i = j.

The functional M is usually called a moment functional. It is easily seen that the moment func-
tional M completely determines a quasi-orthogonal family P. Conversely, the moment functional is
uniquely determined by the family P, and the normalization M(1) = 1.

We say that the family P is orthogonal if all polynomials Pi are defined over R and there exists
a moment functional M defined over R such that all the diagonal entries Qii are real and strictly
positive. It is known that in this case the moment functional M is defined by integration with some
positive measure µ on R that has an infinite support, and P is the standard family of orthogonal
polynomials defined by this measure (see e.g. [Chi78, Ch. II] or [Ism09, Ch. 2]).

There are many classical (quasi) orthogonal families of polynomials. These families play an im-
portant role in many areas of Mathematics, Physics and Engineering (see §1.2 below).

The characteristic property of these classical families is that they can be described in terms of
hypergeometric functions. There is a general idea to axiomatize the notion of a hypergeometric
(quasi)orthogonal family and try to classify all such families. One such attempt is presented by
Askey-Wilson scheme (see §1.2 below). We will see that this scheme misses some natural families.
The difficulty is that the notion of a hypergeometric family is not easy to define formally, so it is
difficult to axiomatize.

In this paper we propose an axiomatic description and classification of some class of hypergeometric
(quasi)orthogonal families of polynomials that we call the families of Jacobi type.
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Let us write our polynomials explicitly in terms of their coefficients Pn =
∑

c(n, k)zk. We extend
the domain of definition of the coefficients c(n, k) to Z2 by setting c(n, k) = 0 outside of the range
0 ≤ k ≤ n. Roughly speaking, we say that the family P of polynomials is of rational type if there
exists a rational function f(u, s) such that c(n, k + 1) ≡ f(n, k)c(n, k). In this case our polynomials
are (up to constants) hypergeometric functions of the variable z (with some parameters). We will say
that the family P of polynomials is of Jacobi type if it is of rational type, and f depends polynomially
on the first variable u. Since the function f can have poles we need to be more careful.

Definition 1.1. Let P be a family of monic polynomials. We say that this family is of Jacobi type
if it is quasi-orthogonal and there exist relatively prime polynomials N(u, s) and D(s) such that

(1) c(n, k + 1)D(k) ≡ c(n, k)N(n, k).

Remark. A priori the polynomials N and D could have a finite number of common zeroes. This
would mean that we do not have conditions on a finite number of coefficients c(n, k). However, in
Lemma 3.1 below we show that the polynomials N and D determine the Jacobi type family uniquely.

To formulate our main result, let us recall the definition of the hypergeometric series

(2) pFq(a; b; z) =
∑

k≥0

(a1)k · · · (ap)k
(b1)k · · · (bq)kk!

zk, (c)k := c(c+ 1) · · · (c+ k − 1).

and note that if we set a1 = −n then the infinite series (2) truncates to give a polynomial of degree
≤ n. If the n-th coefficient of this polynomial is not 0 then we can divide by it to obtain a monic
polynomial of degree n. It turns out that all the Jacobi type families can be obtained in this manner.

Theorem A. There are precisely five polynomial families of Jacobi type. Each can be obtained as
above from the indicated hypergeometric series, and is orthogonal for the indicated parameter range:

(1) Jacobi: 2F1(−n, n+ a; b; z); a > b− 1, a > 0, b > 0
(2) Bessel: 2F0(−n, n + a; ; z); a > 0
(3) Laguerre: 1F1(−n; b; z); b > 0

(4) E
(c)
n : 4F1(−n,−n− c+ 1, n+ c, n+ 1; 1/2; z); c > 0

(5) F
(c)
n : 4F1(−n,−n − c+ 1, n+ c+ 1, n+ 2; 3/2; z); c > −1

The Jacobi, Bessel, and Laguerre families are, of course, classical. It turns out that E
(c)
n and F

(c)
n

can be expressed through the Lommel polynomials h
(c)
n ([Wat44, §9.6], [Ism09, §6.5]), as follows

(3) E(c)
n (−z2) =

(−1)n

22nc2n
h
(c)
2n , zF (c)

n (−z2) =
(−1)n

22n+1c2n+1

h
(c)
2n+1.

We recall that the Lommel polynomials h
(c)
n satisfy the following remarkably simple recursion:

(4) h
(c)
n+1 = 2(c+ n)zh(c)

n − h
(c)
n−1.

However, being alternately even and odd, they have many vanishing coefficients, and thus they are

not a Jacobi type family. In this respect the h
(c)
n are similar to the Hermite polynomials, which are

not of Jacobi type, but which can be obtained as in (3) from two Laguerre families.
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1.2. Background, related results, future directions. The theory of orthogonal polynomials on
the real line is a classical subject with applications to many areas of mathematics. We refer the reader
to [Wat44, WW21] for the classical theory and to [Ism09, KWKS10, KLS10, AAR99, GR04, Gro78]
for more recent developments.

It is instructive to compare our result with that of Bochner [Boc29], who classified second order
differential operators with polynomial eigenfunctions. The classic Sturm-Liouville theorem provides
sufficient conditions for such eigenfunctions to constitute an orthogonal family, and in Bochner’s
case this yields the Jacobi, Laguerre, Bessel, and Hermite polynomials. Note however that the
eigenfunction condition is a very strong requirement, which has the immediate effect of restricting
the set of possible families to lie in a three dimensional parameter space, and which makes the
classification problem quite a bit easier [Ism09]. In contrast, the classification result in Theorem A
is obtained in the infinite dimensional parameter space corresponding to the coefficients of f(u, s)
in C(s)[u]. Thus it is remarkable that there are only two additional families in this general setting,
both of which are hypergeometric orthogonal polynomials.

There are other ways of obtaining orthogonal families from hypergeometric functions and from
their q-analogs, the basic hypergeometric functions rφs. The well-known Askey scheme [KLS10] is a
hierarchical organization of some 44 families which arise in this manner. Most of these families can
be obtained by limiting procedures applied to the Askey-Wilson polynomial, which is a 4φ3 family
that depends on four parameters a, b, c, d in addition to q. Ismail [Ism09] describes a generalization
of Bochner’s theorem to second order q-difference operators and shows orthogonal families arising in
this way are limits of Askey-Wilson polynomials. More recently Verde-Star [V-S21] has shown that
almost all of the families in the Askey scheme belong to a class of families characterized by three
recursive sequences. Still more recently, Koornwinder [Koo22] has obtained abstract characterization
theorems for the Askey scheme within the Verde-Star class.

Just as in the Bochner setting, the assumptions of Ismail and Verde-Star immediately restrict
the possible families to lie in a finite dimensional parameter space – 6 dimensions for Ismail and
11 dimensions for Verde-Star. It seems to us however that one can hope for a classification of
hypergeometric and q-hypergeometric orthogonal families in a much greater generality, and we plan
to return to this question in subsequent work.

We note also that the Askey-Wilson polynomials and their various limits can be understood in
terms of a certain representation of a double affine Hecke algebra (DAHA) of rank 1 [Sah99, Sah00].
Thus one may ask whether the new polynomials can be understood in terms of a generalization of the
DAHA theory – either a more general DAHA or a more general representation of the same DAHA.

1.3. Structure of the paper and ideas of the proofs. Our proof of Theorem A is purely alge-
braic. The main point of our argument is that starting with a rational family P we construct some
algebraic object - a module M - that encodes this family. This module has much more structure
than the family P, so it is much easier to analyze.

More precisely, consider the field K = C(u, s) of bivariate rational functions. Denote by A the
subalgebra of EndC(K) generated by multiplication operators and the shift operators S± : s 7→
s±1, U± : u 7→ u±1. Starting with a family P , defined by a rational function f ∈ K, we construct
an A-module M(f). The condition that the family P is quasi-orthogonal can be written as 3-term
relation. This gives very strong restrictions on the module M(f).

For example, the first major result is that this module is one dimensional over the field K. After
this we use a general classification of one dimensional modules to fix the shape of this module.
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In §2 we give some necessary preliminaries, including a classification result of one-dimensional
A-modules from [Ore30] (see Theorem 2.3 below), and Favard’s theorem, which states that a family
of monic polynomials is quasi-orthogonal if and only if there exist sequences α0(n) and α−1(n) of
complex numbers such that

(5) zPn = Pn+1 + α0(n)Pn + α−1(n)Pn−1 for all n ≥ 1;

In §3 we construct a one-dimensional A-module from the coefficient function c(n, k). First we
express the α0(n) and α−1(n) through f , implying that they are rational functions of n. Then we
consider the space of all C-valued functions on Z2 as a module over C[u, s], and extend scalars to
obtain a vector space over the field of rational functions K = C(u, s). This vector space has a natural
structure of an module A-module. Then we consider the submodule M generated by the image of
c(n, k), that we denote by w. By (5), it is spanned by w and U−1w, since Uw is linearly dependent
on w,U−1w, and S−1w, but S−1w = (S−1f)w by the construction of w. Thus dimK M ≤ 2, but in
Theorem 3.3 below we show that dimK M = 1.

To prove this theorem we write Uw as the span Uw = γU−1w + δw, and apply the shift operator
S. Using the relation US = SU we obtain that SUw can be expressed as two different linear
combinations of w and U−1w. This shows that w and U−1w are linearly dependent, and thus each
of them spans M .

In §4 we use the explicit realization from Theorem 2.3 to almost classify all pairs M, v, where M
is a one-dimensional A-module, and v is a vector satisfying a three-term relation. Namely, we realize
v as a function

Φ = exp(cu+ ds)g(s, u)
∏

Γ(kiu+ lis+ ci),

where g ∈ K = C(u, s), satisfying

(6) S−1Φ = UΦ + α0Φ + α−1U
−1Φ,

For every i, Φ has an infinite family of poles in the lines kiu + lis + ci = n for n ∈ Z≥0. Any of the
poles of one of the terms in (6) has to be a pole of at least one other term. Thus for a = kiu+ lis+ ci
we obtain that two of the functions S−1a, Ua, a, U−1a coincide, and thus ki, li ∈ {−1, 0, 1}. Further
analyzing the poles we obtain that there exist polynomials p, q, w ∈ C[t] and g ∈ C[u, s] such that

(7) f = SΦ/Φ =
q(u+ s)p(s− u)Sg

w(s)g

In the rest of the section we use elementary algebraic considerations to deduce from (6) strong
restrictions on p, q, and w (see Theorem 4.3 and Corollary 4.8).

In §5 we prove Theorem A. For this purpose we show that the condition that f depends polyno-
mially on u implies that in (7) we can assume that g = 1. Then we use Corollary 4.8 to classify all
possible w, p, and q. Finally, we use hypergeometric functions to construct an example for each case,
completing the proof of Theorem A. In §5.1 we explicitly compute the coefficients αi in the 3-term
relation for each of the cases.

In §6 we investigate the two new families E
(c)
n and F

(c)
n , express them through Lommel polynomials,

and find the discrete measures on the real line with respect to which they are orthogonal. We also
give the 4th order differential equations that they satisfy.

In Appendix A we prove some technical lemmas from §3.



HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS OF JACOBI TYPE 5

2. Preliminaries

2.1. Favard’s theorem. Let {Pn}
∞
n=0 be a family of monic polynomials.

Theorem 2.1 (see e.g.[Chi78, §4]).

(i) The family {Pn} is quasi-orthogonal if and only if there exist (unique) sequences α0(n) and
α−1(n) of complex numbers, and c0 ∈ C such that

(8) zPn = Pn+1 + α0(n)Pn + α−1(n)Pn−1 ∀n ∈ Z≥1; P0 = 1, and P1 = z + c0,

and α−1(n) 6= 0 for all n ∈ Z≥1.
(ii) The family {Pn} is orthogonal if and only if:

it is quasi-orthogonal, all the coefficients of all the polynomials Pn are real numbers, and for all
n ∈ Z≥1 we have α0(n), α−1(n) ∈ R, and α−1(n) > 0.

2.2. One-dimensional A-modules. Recall the notation K = C(u, s) and A := the subalgebra of
EndC(K) generated by K and the shift operators U±1 : u 7→ u ± 1; S±1 : s 7→ s ± 1. The S±1, U±1

act on K by (U±1g)(u, s) := g(u± 1, s) and (S±1g)(u, s) := g(u, s± 1). We say that an A-module is
one-dimensional if it is one-dimensional as a vector space over K.

For every one-dimensional module M and every non-zero vector v ∈ M there exist unique f, h ∈ K
such that Sv = fv and Uv = hv. It is easy to see that

(9) Uf/f = Sh/h

and that if we replace v by gv for some non-zero g ∈ K, the pair (f, h) will change to (fSg/g, hUg/g).
We will call such pairs equivalent. Conversely, it is easy to see that every pair (f, h) ∈ K× × K×

satisfying (9) defines a one-dimensional A-module. The set of isomorphism classes of one-dimensional
A-modules forms a group under tensor product. This corresponds to elementwise products of pairs
(f, h). This group was computed in [Ore30]. To formulate this result, note that the field of mero-
morphic functions in u, s has a natural A-module structure.

Definition 2.2. A meromorphic function η in two variables u, s is of γ type if it is a product of the
form

(10) exp(au+ bs)

n
∏

i=1

Γ(kiu+ lis+ ci), a, b, ci ∈ C, (ki, li) coprime in Z
2,

where ℜci ∈ [0, 1) ∀i, and if (ki, li) = (−kj ,−lj) then ci 6= 1− cj.

It is easy to see that for every η of γ type, the space Kη spanned by it is invariant under U±1 and
S±1, and thus is an A-module.

Theorem 2.3 ([Ore30], see also [Sab05, Proposition 1.7]). The correspondence η 7→ Kη is an
isomorphism between the group of functions of γ type and the group of isomorphism classes of 1-
dimensional A-modules.

Remark 2.4. The formulations of the theorem in [Ore30] and in [Sab05, Proposition 1.7] are slightly
different from ours. For example, in [Sab05, Proposition 1.7] negative powers of Γ(kiu+ lis+ ci) are
allowed. On the other hand, [Sab05, Proposition 1.7] reduces the set of allowed pairs (ki, li) to include
exactly one of {(k, l), (−k,−l)} for any coprime (k, l) ∈ Z2. The equivalence of the two formulations
follows from the Euler’s reflection formula:

(11) Γ(x)Γ(1− x) =
π

sin(πx)
=

2πi

1− exp(−2πix)
exp(−iπx) = φ(x) exp(−iπx),
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where φ is a periodic function with period 1. Thus multiplication by φ(ku+ ls+ c) exp(−iπc) defines
an isomorphism between 〈Γ(ku+ ls+ c)−1)〉 and 〈Γ(−ku− ls+ 1− c) exp(iπku+ iπks)〉.

3. From hypergeometric polynomials to 1-dimensional A-modules

Let Pn(z) =
∑

c(n, k)zk be a family of polynomials of Jacobi type. In particular, there exist
relatively prime polynomials N(u, s) and D(s) such that

(12) c(n, k + 1)D(k) ≡ c(n, k)N(n, k) ∀n, k ∈ Z

Recall that we extend the domain of definition of the coefficients c(n, k) to Z2 by setting c(n, k) = 0
outside of the range 0 ≤ k ≤ n. A central role in this paper is played by the rational function

(13) f(u, s) :=
N(u, s)

D(s)

Lemma 3.1 (Appendix A). (i) There exist polynomials x ∈ C[u, s] and y ∈ C[s] such that
N(u, s) = (u− s)x(u, s), D(s) = (s+ 1)y(s), and y(k) 6= 0 for any k ∈ Z≥0.

(ii) For all n ≥ k ≥ 0 we have c(n, k) 6= 0, and for all n > k ≥ 0 we have N(n, k) 6= 0.

(iii) For every n ≥ k ≥ 0 we have c(n, k) =
∏n−1

i=k f(n, i)−1.

We postpone the proof of this technical lemma to Appendix A.
By Favard’s theorem (Theorem 2.1 above), there exist (unique) sequences {α0(n)}

∞
n=1 and

{α−1(n)}
∞
n=1 of complex numbers such that α−1(n) 6= 0 for all n ∈ Z≥1 and

(14) zPn = Pn+1 + α0(n)Pn + α−1(n)Pn−1 ∀n ∈ Z≥1

Lemma 3.2. The functions αi(n) are rational functions. Moreover, we have

(15) α0(n) = f(n, n− 1)−1 − f(n+ 1, n)−1

and

(16) α−1(n) = f(n, n− 2)−1f(n, n− 1)−1 − f(n+ 1, n− 1)−1f(n+ 1, n)−1−

− f(n, n− 1)−2 + f(n, n− 1)−1f(n+ 1, n)−1

Proof. Looking at the coefficient of zn in (14) we have

c(n, n− 1) = c(n + 1, n) + α0(n)

Thus we have

(17) α0(n) =
c(n, n− 1)− c(n+ 1, n)

c(n, n)
= f(n, n− 1)−1 − f(n+ 1, n)−1 ∈ C(n)

From the coefficient of zn−1 we have c(n, n− 2) = c(n+1, n− 1)+α0(n)c(n, n− 1)+α−1(n). This
implies (16). �

Let L be the C[u, s]-module of all C-valued functions on Z2, with the action given by restriction
of any polynomial in C[u, s] to Z

2, by substitution of n for u and k for s. Let N be the extension of
scalars N := L⊗C[u,s] C(u, s).

Recall the notation K = C(u, s) and A := the subalgebra of EndC(K) generated by K and the
shift operators U±1 : u 7→ u±1; S±1 : s 7→ s±1. The S±1, U±1 act on K and on L by (U±1g)(u, s) :=
g(u± 1, s) and (S±1g)(u, s) := g(u, s± 1). Let S±1, U±1 act on N by S±1(l⊗ g) := S±1l⊗ S±1g and
U±1(l ⊗ g) := U±1l ⊗ U±1g. This defines a structure of an A-module on N .
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Let w denote the image of the function c(n, k) in N and let M be the A-submodule of N generated
by w.

Theorem 3.3. dimK M = 1.

We will use the following technical lemma, whose proof is postponed to Appendix A.

Lemma 3.4 (Appendix A). We have w 6= 0 and Sw = fw.

Proof of Theorem 3.3. By the previous lemma, w is an eigenvector of S. Thus the three-term relation
(14) implies that the module M is spanned by w and U−1w. Indeed, from Sw = fw we have
S−1w = (S−1f)−1w. Looking at the coefficient of zk in (14) we have

(18) (S−1f)−1c(n, k) = (S−1c)(n, k) = Uc(n, k) + α0(n)c(n, k) + α−1U
−1c(n, k)

for every n ≥ 1. This also trivially holds for every n ≤ −2. Thus, if we multiply both sides of the
equality by n(n+1), it will hold for all n. Therefore, in the A-module M ⊂ N = L⊗C[u,s]K we have

(19) (S−1f)−1w = S−1w = Uw + α0w + α−1U
−1w

Thus Uw is linearly dependent on w,U−1w, and thus w,U−1w span M , and dimK M ≤ 2. Suppose
by way of contradiction that dimK M = 2. Let v := U−1w. Since dimK M = 2, v and Uv span M
and are linearly independent. From (19) we have

(20) U2v = −α−1v + δUv,

where δ = S−1f−1 − α0 ∈ K. Since U and S commute, Sv = SU−1w = U−1Sw = U−1(fw) =
(U−1f)U−1w = (U−1f)v. In other words Sv = βv, where β = U−1f ∈ K. Applying S to (20) and
using US = SU we have

(21) SU2v = S(−α−1v) + S(δUv) = −S(α−1)βv + S(δ)U(βv) = −S(α−1)βv + S(δ)U(β)U(v)

We also have

(22) SU2v = U2(Sv) = U2(βv) = U2βU2v = −U2(β)α−1v + U2(β)δUv

Thus

(23) −S(α−1)βv + S(δ)U(β)U(v) = −U2(β)α−1v + U2(β)δUv

Since v, Uv are linearly independent, comparing their coefficients we have

(24) −S(α−1)β = −U2(β)α−1 and S(δ)U(β) = U2(β)δ

The first equation implies

(25) U2(β)/β = S(α−1)/α−1 = 1,

Thus β does not depend on u, and since β = U−1f neither does f . However, this contradicts
Lemma 3.1, that says that f has the term u− s. �

Corollary 3.5. There exists a (unique) rational function h ∈ C(u, s) such that for all n, k ∈ Z we
have h(n, n)f(n+ 1, n) = 1 and

(26) c(n + 1, k) = h(n, k)c(n, k).
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Proof. Since dimK M = 1, there exists a (unique) rational function h ∈ C(u, s) such that Sw = hw.
Then we have

fShw = SUw = USw = hUfw,

thus fSh = hUf . By Lemma 3.1 we have for every n ≥ k ≥ 0

(27)
c(n+ 1, k)

c(n, k)
= f(n+1, n)−1

n−1
∏

i=k

f(n, i)

f(n+ 1, i)
= f(n+1, n)−1

n−1
∏

i=k

h(n, i)

h(n, i+ 1)
=

h(n, k)

h(n, n)f(n+ 1, n)

By definition of N = L ⊗C[u,s] K, the equality Uw = hw implies that there exists r 6= 0 ∈ C[u, s]
such that (26) holds for every n, k ∈ Z with r(n, k) 6= 0. Combining this with (27) we get that for
every n > deg r we have h(n, n)f(n + 1, n) = 1. Thus h(n, n)f(n + 1, n) = 1 for all n ∈ Z. This
also implies h(n, n + 1)f(n, n) = 1, and thus h(n, n + 1) = ∞. Thus (26) holds for k = n + 1 (since
c(n, n) = 1 and c(n, n+ 1) = 0). It also holds trivially for k > n+ 1 and for k < 0. Thus (26) holds
for all n ≥ 0 and all k ∈ Z. For n < −1 it also holds trivially. For n = −1 and k > 0 it also holds
trivially. For k = 0 we have 1 = c(0, 0) = ∞ · 0 = h(−1, 0)c(−1, 0), that is (26) also holds. �

4. Classification of pointed 1-dimensional A-modules satisfying the 3-term

relation

Let Φ(u, s) be a meromorphic function of the form gφ, where φ is of γ type and g ∈ C(u, s). Then
SΦ = fΦ for some f ∈ C(u, s). Suppose also that Φ satisfies the 3-term recurrence relation (19):

(28) S−1Φ = UΦ + α0Φ + α−1U
−1Φ,

where α0, α−1 ∈ C(u) with α−1 6= 0. By Theorem 3.3, Φ generates a one-dimensional A-module.
Thus UΦ = hΦ for some h ∈ C(u, s). This h necessarily satisfies

(29) Uf/f = Sh/h

Since SΦ = fΦ, we have S−1Φ = S−1(f)−1Φ, and (28) is equivalent to

(30) S−1(f)−1 = h + α0 + α−1/U
−1(h),

We are looking for the space of joint solutions of (29) and (30).

Theorem 4.1. Suppose that UΦ = hΦ, SΦ = fΦ, and Φ 6= 0 satisfies (28). Then there exists
g ∈ C[u, s] and p, q, w ∈ C[t] and σ ∈ C(u) such that

(31) f =
q(u+ s)p(s− u)Sg

w(s)g
, h =

σ(u)q(u+ s)Ug

p(s− u− 1)g
,

and g has no common factors with w(s), q(u+ s), p(s− u).

To prove the theorem will us the following proposition.

Proposition 4.2. Let a ∈ C(u)[s] be an irreducible monic non-constant polynomial in s with coeffi-
cients in C(u). If SkU la = a and (k, l) 6= (0, 0) then l 6= 0 and a = s− (k/l)u+ c with c ∈ C.

Proof. First of all l 6= 0 since otherwise Ska = a, thus a ∈ C(u), and since a is monic a = 1.
Let d := gcd(k, l), k′ := k/d, l′ := l/d. Let m,n be such that mk′ + nl′ = 1. Now, perform a linear

change of variables: x := l′s−k′u, y := ms+nu. Under this change, the shift operator in y becomes
Sk′U l′ .
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The condition SkU la = a implies that a is invariant to shifts y 7→ y + d. Thus a depends only on
x. Thus a is a polynomial in the expression ls− ku with complex coefficients. To be monic in s and
irreducible it must be s− (k/l)u+ c. �

Proof of Theorem 4.1. By definition, we can present our Φ in the form

Φ = exp(cu+ ds)g(s, u)
∏

Γ(kiu+ lis+ ci),

with ki, li ∈ Z and (ki, li) coprime for every i, ℜci ∈ [0, 1) and if (ki, li) = (−kj , lj) then ci 6= 1− cj .
Now, fix i and look at all the poles of Φ along the lines of the form kiu + lis + ci + n = 0 with

n ∈ Z.
Assume first g = 1. Then these lines will be exactly those with n ≥ 0. For S−1Φ these will be the

lines with n ≥ li, for UΦ it will be n ≥ −li, and for U−1Φ we have n ≥ li.
We see that unless (ki, li) ∈ {(±1,±1), (±1, 0), (0,±1)}, one of those lines “sticks out”, and cannot

be covered by the other 3 terms in the 3-term relation (28). Since α−1 6= 0, this line is not a pole of
UΦ or of U−1Φ.

Now, if g 6= 1, and g has a term that can cancel exactly the top line of exp(cu+ds)
∏

Γ(kiu+lis+ci)
then we can get rid of this term by replacing ci by ci ± 1 (relaxing the condition ℜci ∈ [0, 1)).

Thus we see that in any case (ki, li) ∈ {(±1,±1), (±1, 0), (0,±1)}. This form of Φ gives the desired
form of f , except that p, q, w and g are allowed to be rational functions. From (29) we obtain that
h has the desired form as well.

Let γ, β1, β0, β−1 ∈ C[u] be polynomials that have no overall common factor and satisfy

(32) σ = β1/γ, α0 = β0/γ, α−1/U
−1σ = β−1/γ.

By (31), equation (30) becomes

(33) γ(u)w(s− 1)S−1(g) =

β1(u)q(u+ s)q(u+ s− 1)Ug + β0(u)q(s+ u− 1)p(s− u− 1)g + β−1(u)p(s− u)p(s− u− 1)U−1g,

Further analyzing the poles let us show that the rational functions p, q, w and g are polynomials.
Suppose first, by way of contradiction that g is not a polynomial.

Let a be an irreducible factor of the denominator of g. Then it is also a factor in the denominator
of S−1f−1. Thus at least one of the terms in the right-hand side of (33) has a in denominator. Thus
S−1a = U ib, where i ∈ {−1, 0, 1} and b is another term in the denominator of g. Then S−1b is also
a factor in the denominator of S−1f−1. Since the number of factors is finite, continuing in this way
we obtain that S−kU la = a, where k, l ∈ Z and k > 0. Thus, by Proposition 4.2, a = d(ls+ ku+ c)
for some c, d ∈ C. Without loss of generality we assume d = 1, and that among all the factors of
the form ls + ku + e with the same k, l, a has minimal ℜe. As we said, S−1a ∈ {Ub, b, U−1b}. If
S−1a = b then b = Sa = a− k, which contradicts the choice of a. If S−1a = Ub then b = a− l − k,
and thus l ≤ −k < 0, thus the RHS of (33) also has b or U−1b in the denominator of one of the
terms. Thus S−1a′ ∈ {b, U−1b} for some a′. But then a′ ∈ {a− k, a− k + l}. Since −k,−k + l < 0,
this contradicts the choice of a.

Now, if w is not a polynomial then Φ has a term of the form Γ(s + c). Then S−1Φ has a pole
along the line s + c = 1, while the other terms in (28) do not have such a pole, which is again a
contradiction. In the same way we show that p and q are polynomials as well. �

Theorem 4.3. Let p, q, w, γ, βi be polynomials in one variable, and g ∈ C[u, s] such that (33) holds,
and not all βi are identically 0. Then one of the following holds:
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(a) deg p, deg q ≤ 1
(b) deg p = degw = 0 and w = p.
(c) deg q = degw = 0 and w = q.
(d) deg p = deg q = degw = 2.

Proof. Without loss of generality assume that p, q, w are monic. Denote d1 := deg p, d2 := deg q, d3 :=
degw. Substituting s = ku in (33) and taking the leading coefficient in u we get the relation

(34) c1(k − 1)2d1 + c2(k − 1)d1(k + 1)d2 + c3(k + 1)2d2 + c4k
d3 = 0

with ci ∈ C and cj 6= 0 for some j. This is since g,Sg,Ug, and U−1g have the same leading term. In
this equation some ci may vanish even if the corresponding βi or γ do not vanish.

Lemma 4.4. One of the following holds:

(a) d1, d2 ≤ 1
(b) |d1 − d2| = 1
(c) d1 = d3 = 0, w = p, and β0 = β−1 = 0
(d) d2 = d3 = 0, w = q, and β0 = β1 = 0.

Proof. Replacing k by −k we can assume d1 ≥ d2. If d1 ≥ d2 +2 then the polynomial (k− 1)2d1 has,
among others, monomials of degree d1 and d1 − 1. No term of (k + 1)2d2 can cancel any of these,
and the term kd3 can only cancel one of them. Thus we must have c1 = 0. But then, the polynomial
(k − 1)d1(k + 1)d2 has terms of degrees d1 + d2 and d1 + d2 − 1 and again kd3 can only cancel one of
them. Thus we have c1 = c2 = 0 and thus c3, c4 6= 0. If d2 > 0 then (k + 1)2d2 has at least three
terms, and they cannot be cancelled by c4k

d3 . Thus we must have d2 = d3 = 0. Then looking at the
degree of s in (33), we obtain β1 = β0 = 0. This also implies w = q. �

Lemma 4.5. Suppose that d1, d2 ≥ 1. Then d1 = d2 ∈ {1, 2}.

Proof. Suppose c4 = 0 in (34). Then setting k = ±1 we deduce c1, c3 = 0 and hence c2 = 0 also.
Thus we may assume c4 6= 0. Now setting k = ±1 we get c1, c3 6= 0.

Let β be a root of the quadratic polynomial c1x
2 + c2x+ c3, and let α be a root of the polynomial

(k − 1)d1 − β(k + 1)d2 . Then setting k = α in (34) the sum of the first three terms vanish and we
get c4α

d3 = 0, which implies α = 0 (and d3 ≥ 1). Thus 0 is the only root of (k + 1)d1 − β(k − 1)d2 ,
which means this polynomial is a monomial:

(35) (k − 1)d1 − β(k + 1)d2 = γkd4 for some γ, d4

If d4 = 0 then d1 = d2 = 1, so we may assume d4 > 0. This also implies β = (−1)d1 and
c1 + (−1)d1c2 + c3 = 0.

Now setting k = 0, 1,−1 we get

β = (−1)d1 , γ = (−1)d1+12d2 , γ = (−1)d1+d42d1.

This forces d1 = d2 =: d, and (35) becomes

(36) (k − 1)d − (−1)d(k + 1)d = (−1)d+d42dkd4

The coefficient of k on the left is 2d(−1)d−1 which implies d4 = 1 and 2d = 2d. Thus d ∈ {1, 2}. �

Lemma 4.6. If d1 = d2 = 2 then degw ≤ 2 and β1 + β0 + β−1 = 0.

Proof. Shifting u and s we can assume p(t) = t2+c, q(t) = t2+d for some c, d. Using the substitution
s = ku as before, we see that degw ≤ 2. This means that β1 + β0 + β−1 = 0. �



HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS OF JACOBI TYPE 11

�

From the proof of the last lemma we obtain the following one.

Lemma 4.7. If d1 = d2 = 2 and g = 1 then degw = 2. If moreover w(−1) = 0, and w is monic
then one of the following holds.

(a) w(s) = (s+ 1/2)(s+ 1), p(t) = q(−1 − t)
(b) w(s) = (s+ 1)(s+ 3/2), p(t) = q(−2 − t)

Proof. Shifting u and s we can assume p(t) = t2 + c, q(t) = t2 + d for some c, d. Since degw ≤ 2, the
term of s3 in the RHS of (33) must vanish. But this term is 4(β1 − β−1)u− 2(β1 + 2β0 + β−1). Since
β1 + β0 + β−1 = 0, we obtain that β0 = 2(β1 − β−1)u, and thus β1(2u+ 1) = β−1(2u− 1). Thus we
can assume without loss of generality that β−1 = 2u+ 1 and β1 = 2u− 1. This implies β0 = −4u.

Then the coefficient of s2 in the RHS of (33) is 32u3−8u+2(d−c). This does not vanish identically,
thus w must have degree 2. Then we can assume w is monic and γ(u) = 32u3 − 8u+ 2(c− d).

The coefficient of s in the RHS of (33) is 2(d − c) + 12u − 16u2(c − d) − 48u3. Since this has to
be divisible by γ, we have c = d. In this case w(s − 1) = (s − 1)(s − 1/2), γ = 8u(4u2 − 1). Thus
w(s) = s(s+ 1/2).

Shifting back in s we get the same shift for p and q, while shifting in u we obtain opposite shifts.
Since w(−1) = 0 after the shift, we can shift s either by 1/2 or by 1. If we shift by 1/2 we get case
(a), and if we shift it by 1 we get case (b). �

This lemma, together with Theorem 4.3, implies the following corollary.

Corollary 4.8. Let p, q, w, γ, βi be polynomials in one variable such that (33) holds, and not all βi

are identically 0. Suppose that g = 1, w(−1) = 0, and w is monic. Then one of the following holds.

(a) deg p, deg q ≤ 1
(b) w(s) = (s+ 1/2)(s+ 1), p(t) = q(−1 − t)
(c) w(s) = (s+ 1)(s+ 3/2), p(t) = q(−2 − t)

5. Proof of Theorem A

Lemma 5.1 (Direct computation). Let

(37) Qu(z) :=
(−1)n

∏j

k=1(βk)(n)
∏i

l=1(γl)(n)
· iFj

(

−u γ
β

; z

)

Then SQu = fQu, where

(38) f(u, s) =
s− u

s + 1

∏i

l=1(s+ γl)
∏j

k=1(s+ βk)

Conversely, if f ∈ C(u, s) is a rational function given by the formula (38), and Pn(z) is a monic
polynomial family of rational type given by f , then Pn(z) = Qn(z).
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The 5 hypergeometric polynomial families in Theorem A are Qn(z), with the parameters β and γ
given by the following table.

(39)

N Name Not-n γ β
1 Jacobi jb−1,a−b

n n + a b

2 Laguerre l
(b−1)
n ∅ b

3 Bessel BP
(a+1)
n n + a ∅

4 E
(c)
n (1− n− c, n+ 1, n+ c) 1/2

5 F
(c)
n (1− n− c, n+ 2, n+ c+ 1) 3/2

The area of definition is a /∈ Z<0; b /∈ Z≤0; c /∈ Z<0, and in addition for En: c 6= 0 and for jb−1,a−b
n :

b− a /∈ Z>0.

Proof of Theorem A. Let M be the A-module defined by Pn in §3. By Theorem 3.3, it is one-
dimensional. By abuse of notation, we will denote the element of M defined by Pn also as Pn. Let
f, h ∈ C(u, s) be such that SPn = fPn and UPn = hPn. By Theorems 2.3 and 4.1 we have

(40) f =
q(u+ s)p(s− u)Sg

w(s)g
, h =

σ(u)q(u+ s)Ug

p(s− u− 1)g
,

By the assumptions on f in the definition of Jacobi type, g does not depend on u. Thus Ug =
U−1g = g. Without loss of generality, we can assume that Sg has no common factors with w(s), and
thus g has no common factors with w(s − 1). Let us show that g is constant. Suppose by way of
contradiction that g is not constant, and let c be a root of g that is not a root of S−1g. Substitute
s := c into the 3-term relation (33). Then the right-hand side vanishes, while the left-hand side does
not. This is a contradiction, thus g must be constant, and thus we can assume g = 1.

By Corollary 3.5 we have h(u, u)f(u+ 1, u) = 1 for every n, and thus

σ(u)
q(2u)

p(−1)

q(2u+ 1)p(−1)

w(u)
= 1

and

(41) σ(u) =
w(u)

q(2u+ 1)q(2u)

Altogether we obtain

(42) f =
q(u+ s)p(s− u)

w(s)
, h =

w(u)q(u+ s)

q(2u)q(2u+ 1)p(s− u− 1)

The polynomial family Pn is uniquely defined by f , which in turn, by (42), is defined by p, q, and
w. By Lemma 3.1 we have p(0) = 0 and w(−1) = 0. Thus deg p, degw ≥ 1.

Assume first deg p = 1, thus p(t) = t. By Theorem 4.3, in this case deg q ≤ 1.
Case 1. deg q = 1. Since q is monic, we have p(t) = t, q(t) = t + a. From the 3-term relation we

have degw ≤ 2. Since w(−1) = 0, we have either w(s) = s + 1 or w(s) = (s + 1)(s + b) for some
b ∈ C. If w(s) = s+ 1 this is the case of Bessel polynomials, and if w(s) = (s + 1)(s+ b) this is the
case of Jacobi polynomials. In both cases, we see that β and γ given in Table (39) give the same f
that we found, and thus we have Pn(z) = Qn(z), where Qn(z) is defined in (37).

Case 2. deg q = 0, degw > 1. From the 3-term relation in this case degw = 2, and thus
w = (s+ 1)(s+ b). This is the case of Laguerre polynomials.
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Case 3. deg q = 0, degw = 1. Then w(s) = s+ 1, and q = 1. In this case α−1 ≡ 0, and the family
is not of Jacobi type.

Now assume deg p > 1. By Theorem 4.3, in this case deg p = 2, thus p = t(t + 1 − c) for some

c ∈ C. By Lemma 4.7, Pn is either E
(c)
n or F

(c)
n . �

Summarizing the proof, we have the following table

(43)

family w(s) p(t) q(t)
jb−1,a−b
n (s+ 1)(s+ b) t t + a

l
(b−1)
n (s+ 1)(s+ b) t 1

BP
(a+1)
n s + 1 t t + a

E
(c)
n (s+ 1)(s+ 1/2) t(t + 1− c) (t+ 1)(t+ c)

F
(c)
n (s+ 1)(s+ 3/2) t(t + 1− c) (t + 2)(t+ c+ 1)

Remark 5.2. The assumption that α−1 does not vanish on Z>0 was never used in full strength. We
only used that α−1 6≡ 0, and only in two places: in Case 3 in the proof of Theorem A, and the proof
of Theorem 4.1. In the proof of Theorem 4.1 this use can be easily avoided.

Thus, dropping this assumption we obtain only one extra family - the one given by f = s−u
s+1

, as in
Case 3. By the Newton binomial formula this family is Pn(z) = (1 − z)n. This family can also be
obtained from Jacobi polynomials by setting b := −a, and sending a to infinity.

5.1. Further details. Combining Lemma 3.2 with (42) we obtain that the α0 and α−1 for each

family are given by the following table

(44)

family α0 α−1

jb−1,a−b
n

2u2+2au+b(a−1)
(2u+a−1)(2u+a+1)

u(u+a−1)(u+b−1)(u+a−b)
(2u+a)(2u+a−1)2(2u+a−2)

l
(b−1)
n 2u+ b u(u+ b− 1)

BP
(a+1)
n

a−1
(2u+a−1)(2u+a+1)

u(u+a−1)
(2u+a)(2u+a−1)2(2u+a−2)

E
(c)
n − 1

2(2u+c−1)(2u+c+1)
1

16(2u+c)(2u+c−1)2(2u+c−2)

F
(c)
n − 1

2(2u+c)(2u+c+2)
1

16(2u+c+1)(2u+c)2(2u+c−1)

Each family is determined by the functions α0 and α−1 and by the scalar c0 = P1(0). For all the
families except En we have c0 = −α0(0). Equivalently, for these families instead the initial condition
P1 = z + c0 we could have used the condition P−1 = 0, and extend the function α0 to 0. However,

for the family E
(c)
n we have c0 = 1/(4c(c + 1)) 6= 1/(2(c − 1)(c + 1)) = −α0(0). If we set c0 to be

−α0(0), keeping the functions α0 and α−1 of E
(c)
n we obtain the family F

(c−1)
n .
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6. Investigation of the two new families E
(c)
n , F

(c)
n

6.1. Preliminaries on Lommel polynomials. Let us give some preliminaries on Lommel polyno-
mials from [Wat44, §9] and [Ism09, §6.5]. They are defined by the recursive relation

(45) 2z(n+ c)h(c)
n = h

(c)
n+1(z) + h

(c)
n−1(z), h

(c)
−1(z) ≡ 0, h

(c)
0 ≡ 1

Explicitly, we have1

(46) h
(c)
2n (z) = (−1)n

n
∑

k=0

(

n + k

2k

)

(n + c− k)(2k)(−2z)2k,

h
(c)
2n+1(z) = (−1)n

n
∑

k=0

(

n+ k + 1

2k + 1

)

(n+ c− k)(2k+1)(−2z)2k+1

To describe the discrete measure on the real line for which these polynomials are orthogonal we
will need some notation. Let Jv(z) denote the modified Bessel function [Wat44]:

(47) Jv(z) =

∞
∑

n=0

(−1)n(z/2)c+2n

Γ(n+ ν + 1)n!

Let {jν,k}
∞
k=1 denote the increasing sequence of positive zeroes of Jν,k on R. Denote aν,k := j−1

ν,k .

Theorem 6.1 ([Ism09, (6.5.17)]). For every c ∈ R>0 and every n,m ∈ Z≥0 we have

(48)
∞
∑

k=1

a2c−1,k(hn,c(ac−1,k)hm,c(ac−1,k) + hn,c(−ac−1,k)hm,c(−ac−1,k)) =
δm,n

2(n+ c)

6.2. Discrete measure for which E
(c)
n (z) and F

(c)
n (z) form orthogonal families.

Spelling out the definition of En and Fn as hypergeometric functions, we have

(49) E(c)
n (z) =

1

22nc(2n)

n
∑

k=0

(

n + k

2k

)

(n+ c− k)(2k)2
2kzk,

F (c)
n (z) =

1

22nc(2n+1)

n
∑

k=0

(

n+ k + 1

2k + 1

)

(n+ c− k)(2k+1)2
2kzk

Combining (49) and (46) we have for any n ∈ Z≥0:

(50) E(c)
n (−z2) =

(−1)n

22nc(2n)
h
(c)
2n(z), zF (c)

n (−z2) =
(−1)n

22n+1c(2n+1)

h
(c)
2n+1(z).

Theorem 6.1 and (50) imply the following corollary.

Corollary 6.2. For every c ∈ R>0 and every n,m ∈ Z≥0 we have

(51) 4c

∞
∑

k=1

a2c−1,kE
(c)
n (−a2c−1,k)E

(c)
m (−a2c−1,k) =

c

24nc2(2n)(2n+ c)
δm,n

1M. Ismail kindly informed us of a typo in [Ism09, (6.5.8)]: z/2 should be 2z.
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and

(52) 16c2(c+ 1)

∞
∑

k=1

a4c−1,kF
(c)
n (−a2c−1,k)F

(c)
m (−a2c−1,k) =

c+ 1

24n(c+ 1)2(2n)(2n+ 1 + c)
δm,n

The arguments of [Ism09, §6.5] show that (52) continues to hold for every c > −1.

6.3. Differential equations. Being hypergeometric functions of type 4F1, the E
(c)
n and F

(c)
n satisfy

the following 4th order differential equations.

(53) (D(D − 1/2)− z(D − n)(D − n− c+ 1)(D + n+ c)(D + n+ 1))E(c)
n = 0

and

(54) (D(D + 1/2)− z(D − n)(D − n− c+ 1)(D + n+ c+ 1)(D + n+ 2))F (c)
n = 0,

where D = z ∂
∂z

is the Euler operator.

Appendix A. Proof of the rationality of αi and other technical lemmas

Proof of Lemma 3.1. Recall formula (12):

(55) c(n, k + 1)D(k) ≡ c(n, k)N(n, k),

(i) Setting n = 0, k = −1 we obtain D(−1) = 0. Thus we have D(s) = (s + 1)y(s) for some
y ∈ C[s]. Since Pn is monic of degree n, we have c(n, n) = 1 and c(n, n + 1) = 0 for any n ∈ Z≥0.
Thus substituting k = n in (55) we have N(n, n) = 0. Thus the restriction of N to the diagonal
u = s vanishes on Z≥0, and thus vanishes identically. Thus N(u, s) is divisible by u − s, that is
N(u, s) = (u− s)x(u, s) for some x ∈ C[u, s].

It is left to show that y has no zeros in Z≥0. Suppose the contrary, and let k0 ∈ Z≥0 be the largest
integer zero. Let n > k0 ∈ Z≥0 be such that x(n, i) 6= 0 for any 0 ≤ i ≤ k0. Let us show that for any
such n we have c(n, k0) 6= 0. Indeed, for any integer i ∈ [k0, n] we have c(n, i) 6= 0. This follows by
descending induction on i from c(n, n) = 1, D(i+ 1) 6= 0 and (55). Substituting n and k0 into (55)
we obtain N(n, k0) = 0. Since this holds for infinitely many n, we obtain that N(u, k0) ≡ 0, thus
N(u, s) is divisible by s− k0, contradicting being coprime with D(s).

(ii) follows similarly from (55) by descending induction on k, using c(n, n) = 1 and D(k) 6= 0.
(iii) follows from (55) by descending induction on k ∈ [0, n], the base case being c(n, n) = 1. �

Proof of Lemma 3.4. Let us first show that w 6= 0. Equivalently, we have to show that c is not torsion.
In other words, we have to show that the only polynomial p ∈ C[u, s] satisfying p(n, k)c(n, k) = 0
for all n, k ∈ Z2 is p = 0. Fix k0 ∈ Z≥0. Then for any integer n ≥ k0, c(n, k0) 6= 0 and thus if
p(n, k0)c(n, k0) = 0 then p(n, k0) ≡ 0, thus (s− k0)|p. This holds for infinitely many values k0, and
thus p ≡ 0.

Let us now show that Sw = fw. By (55) and Lemma 3.1 we have

(56) (k + 1)y(k)c(n, k + 1) = (k − n)x(n, k)c(n, k)

Thus in the C[u, s]-module L we have the equality (s+ 1)y(s)Sc = (s− u)x(u, s)c, which translates
to the equality (s+ 1)y(s)Sw = (s− u)x(u, s)w in M . This implies Sw = fw. �
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