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Abstract

We characterize the range of the cosine transform on real Grassmannians in terms of the

decomposition under the action of the special orthogonal group SOðnÞ: We also give a
geometric interpretation of this image in terms of valuations. In addition, we discuss the non-

Archimedean analogues.

r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Grassmannians; Cosine transform; Radon transform

0. Introduction

The main results of this paper are Theorems 1.2, 1.3, and 2.1 below. In Section 1
we study the image of the cosine transform. The investigations of this problem were
started by Matheron in 1974 [16]. It was investigated further by Goodey and Howard
[6,7], and Goodey et al. [8]. For more details on the previous results see Section 1 of
this paper. Theorem 1.2 describes the image of the cosine transform (defined in
Section 1) acting from the space of functions on the Grassmannian of real j-
dimensional subspaces in Rn to the space of functions on the Grassmannian of real i-
dimensional subspaces. The description is given in terms of K-types, namely in terms
of the decomposition into irreducible subspaces under the action of the special
orthogonal group SOðnÞ: In Theorem 1.3 we consider separately the case i ¼ j; this
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case is especially important since the study of other cases is reduced to this one using
the results on the Radon transform due to Gelfand et al. [5] (see also [10]). It turns
out that the cosine transform in this case can be interpreted as an intertwining
operator of GLðn;RÞ-modules. This key observation allows us to use the
representation theory of reductive groups. We prove that this intertwining operator
has an irreducible image. This step uses connection of the cosine transform with the
theory of valuations on convex sets (discussed in Section 1) and earlier results of one
of the authors about representation theoretical properties of valuations [1,2]. Once
we have this irreducibility result the description of the K-type structure is a direct
consequence of the results of Howe and Lee [13].
In Section 2 we discuss an analogue of the cosine transform over non-

Archimedean local fields.
The cosine transform appears naturally in convex, integral, and stochastic

geometry (see [6–9,11,16,17,20]). For the basic notions of the representation theory
we refer to [24].

Remark. (a) The results of this paper were applied further to the theory of
valuations in [3].
(b) Recently, we have found a more general result about the cosine type transform

of more general form (where the kernel jcosðE;FÞj is replaced by jcosðE;FÞja; aAC;
the notation is explained in Section 1). This will be discussed elsewhere.

1. Range of the cosine transform

First let us recall some notation. We will denote by Grk;n the Grassmannian of real

k-dimensional subspaces in the real n-dimensional space Rn: Let us fix a Euclidean
structure on Rn: Let EAGri;n; FAGrj;n: Assume that ipj: Let us call by cosine of the

angle between E and F the following number:

jcosðE;FÞj :¼ voliðPrF ðAÞÞ
voliðAÞ ;

where A is any subset of E of non-zero volume, PrF denotes the orthogonal
projection onto F ; and voli is the i-dimensional measure induced by the Euclidean
structure. (Note that this definition does not depend on the choice of a subset ACE).
In the case iXj we define the cosine of the angle between them as cosine of the angle
between their orthogonal complements:

jcosðE;FÞj :¼ jcosðE>;F>Þj:

(It is easy to see that if i ¼ j both definitions are equivalent.)
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Let us call by sine of the angle between E and F the cosine between E and the
orthogonal complement of F :

jsinðE;FÞj :¼ jcosðE;F>Þj:

The following properties are well known (and rather trivial):

jcosðE;FÞj ¼ jcosðF ;EÞj ¼ jcosðE>;F>Þj;

jsinðE;FÞj ¼ jsinðF ;EÞj ¼ jsinðE>;F>Þj;

0pjcosðE;FÞj; jsinðE;FÞjp1:

For any 1pi; jpn � 1 one defines the cosine transform

Tj;i : CðGri;nÞ-CðGrj;nÞ

as follows:

ðTj;if ÞðEÞ :¼
Z

Gri;n

jcosðE;FÞjf ðFÞ dF ;

where the integration is with respect to the Haar measure on the Grassmannian.

Remark. One should notice that very often in the literature the cosine transform Tj;i

(resp. the Radon transform Rj;i) is denoted by Ti;j (resp. Ri;j), i.e. with permutation

of indexes. We prefer our notation since it is more convenient to write the
composition formulas like Rj;i ¼ Rj;k3Rk;i:

Clearly, the cosine transform commutes with the action of the orthogonal group
OðnÞ; and hence its image is OðnÞ-invariant subspace of functions. Our first main
result (Theorem 1.2) is the description of the image of the cosine transform in terms
of the decomposition of it with respect to the action of SOðnÞ: Since the
representation of SOðnÞ in functions on the Grassmannian is multiplicity free, it is
sufficient to list those irreducible representations of SOðnÞ entering into the image of
the cosine transform. Moreover, it is shown (Theorem 1.3) that for i ¼ j this image
coincides with the image of even translation invariant i-homogeneous continuous
valuations on convex sets under certain natural map (actually this fact is proved first
and then used in the proof of the more explicit result).
Now let us recall standard facts on the representations of the special orthogonal

group SOðnÞ (see e.g. [25]).

Lemma 1.1. The isomorphism classes of irreducible representations of SOðnÞ; n42
are parameterized by their highest weights, namely sequences of integers
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ðm1;m2;y;m½n=2�Þ which satisfy:

(i) if n is odd then m1Xm2X?Xm½n=2�X0:

(ii) if n42 is even then m1Xm2X?Xmn=2�1Xjmn=2j:

Recall also that for n ¼ 2 the representations of SOð2Þ are parameterized by a
single integer m1:We will use the following notation. Let us denote by Lþ the set of

all highest weights of SOðnÞ; and by Lþ
k the set of all highest weights l ¼

ðm1;m2;y;m½n=2�Þ with mi ¼ 0 for i4k and all mi are even.

Let us recall the decomposition of the space of functions on the Grassmannian
Grk;n under the action of SOðnÞ referring for the proofs to [22,23]. Since Grk;n is a

symmetric space, each irreducible representation enters with multiplicity at most
one. The representations which do appear have highest weights precisely from

Lþ
k -Lþ

n�k:

Now let us state our main result.

Theorem 1.2. Let 1pi; jpn � 1: Then the image of the cosine transform

Tj;i :CðGri;nÞ-CðGrj;nÞ consists of irreducible representations of SOðnÞ with highest

weights l ¼ ðm1;y;m½n=2�Þ precisely with the following additional conditions:

(i) lALþ
i -Lþ

n�i-Lþ
j -Lþ

n�j;

(ii) jm2jp2;

Moreover the image of Tj;i is closed in the CN topology.

Note that as a corollary of this theorem we immediately get exactly the same
characterization of the image of the sine transform. Theorem 1.2 was known for a
long time for i ¼ j ¼ 1 (or equivalently for i ¼ j ¼ n � 1), see [20] or [11]. The case
n ¼ 4; i ¼ j ¼ 2 was described completely in [8]; this paper contains also partial
information on the general case.
The main case in the proof of this theorem is i ¼ j: The cosine transform for iaj

can be written as a composition of the Radon transform between different
Grassmannians and the cosine transform for i ¼ j: Thus to deduce the general case
we use the characterization of the image of the Radon transform [5], see also [10]. In
order to treat the case i ¼ j we first interpret the cosine transform as an intertwining
operator between certain representations on the (non-compact) group GLðn;RÞ
induced from maximal parabolic subgroups. Next, we prove that the image of this
operator is an irreducible GLðn;RÞ-module . In order to do it we first show (see
Theorem 1.3) that the image is contained in the subspace corresponding to even
translation invariant valuations (see the definitions below). But the last space is an
irreducible GLðn;RÞ-module by the main result in [2]. Hence it coincides with the
image of the cosine transform. The decomposition of the space of even valuations
with respect to the action of SOðnÞ was described in [2] as an easy corollary of the
irreducibility and the computations due to Howe and Lee [13].
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Now let us describe the construction of the intertwining operator. Let us denote by
L the line bundle over the Grassmannian Gri;n whose fiber over a subspace EAGri;n is

the space of Lebesgue measures on E (which is denoted by j4iE�j). Clearly, L is
GLðn;RÞ-equivariant line bundle over Gri;n: Moreover if we fix the Euclidean
structure on Rn we can identify L with the trivial bundle in a way compatible with the
action of SOðnÞ: Let M denote the line bundle over the Grassmannian Grn�i;n whose

fiber over FAGrn�i;n is the space of Lebesgue measures on the quotient space R
n=F

denoted by j4iðRn=FÞ�j: Let joj denote the line bundle of densities over Grn�i;n: Let
N :¼ M#joj: Define an intertwining operator T from the space of continuous
sections of N to the space of continuous sections of L

T : GðGrn�i;n;NÞ-GðGri;n;LÞ

as follows. For EAGri;n and fAGðGrn�i;n;NÞ set

ðTf ÞðEÞ ¼
Z

FAGrn�i;n

pr�E;F ð f ðFÞÞ;

where prE;F denotes the natural map E-Rn=F and pr�E;F is the induced map

j4iðRn=FÞ�j-j4iE�j: Clearly T is a non-trivial operator commuting with the action
of GLðn;RÞ:

Theorem 1.3. The image of the operator T is an irreducible GLðn;RÞ-module.

Moreover if we identify L with the trivial bundle in an SOðnÞ-equivariant way then the

image of T coincides with the image of the cosine transform Ti;i:

Note that the second statement of the theorem easily follows from the definitions.
In order to prove the irreducibility of the image we will need one more construction
which we are going to describe.
Let Kn denote the family of all convex compact subsets in Rn:

Definition 1.4. (1) A function f :Kn-C is called a valuation if for any K1; K2AKn

such that their union is also convex one has

fðK1,K2Þ ¼ fðK1Þ þ fðK2Þ � fðK1-K2Þ:

(2) A valuation f is called continuous if it is continuous with respect the
Hausdorff metric on Kn:
(3) A valuation f is called translation invariant if fðK þ xÞ ¼ fðKÞ for every

xARn and every K :
(4) A valuation f is called even if fð�KÞ ¼ fðKÞ for every KAKn:
(5) A valuation f is called homogeneous of degree k (or k-homogeneous) if for

every KAKn and every scalar lX0 fðl 
 KÞ ¼ lkfðKÞ:
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We refer to further details on valuations to the surveys [18,19]. We will need only
few facts about them.

Lemma 1.5 (Hadwiger [12]). Every translation invariant n-homogeneous continuous

valuation on Kn is proportional to the Lebesgue measure on Rn:

Let us denote by Valevn;i the linear space of translation invariant i-homogeneous

even continuous valuations. It is a Frechet space with respect to the topology of
uniform convergence on compact subsets of Kn:
There is a natural map

g : Valevn;i-GðGri;n;LÞ;

where L is the line bundle defined above. To define it, fix any fAValevn;i: Take any

EAGri;n: Consider the restriction of f to the class of convex compact subsets of E: It
is again translation invariant i-homogeneous continuous valuation on E: Hence by
Lemma 1.5 it is proportional to the Lebesgue measure on E: Hence f defines a
continuous section gðfÞ of L: This map was used in [1,2] in the proof of McMullen’s
conjecture. This map was also independently considered by Klain [15]. Note that this
map turns out to be injective by a theorem of Klain [14]. The main fact on Valevn;i we

use is the following result proved in [2].

Lemma 1.6. For every integer i; 1pipn � 1 the space Valevn;i is an irreducible

GLðn;RnÞ-module. Hence its image in GðGri;n;LÞ is an irreducible submodule.

Proof of Theorem 1.3. By Lemma 1.6 it remains to show that the image of T is
contained in gðValevn;iÞ: Fix any fAGðGrn�i;n;NÞ: Let us define a valuation f as

follows. For every KAKn set

fðKÞ :¼
Z

FAGrn�i;n

f ðprRn=F ðKÞÞ;

where prRn=F :R
n-Rn=F is the canonical map. It is easy to see that fAValevn;i; and

moreover gðfÞ ¼ Tð f Þ: Thus Theorem 1.3 is proved. &

Proof of Theorem 1.2. First consider the case i ¼ j: By Theorem 1.3 and its proof the
image of the cosine transform coincides with the image under the map g of
translation invariant i-homogeneous continuous valuations. The explicit decom-
position of the last space under the action of SOðnÞ was given in [2] (it was heavily
based on [13]). Thus Theorem 1.2 is proved for i ¼ j: Now consider the case iaj:
Clearly we may assume that joi: One has the Radon transform

Rj;i : CðGri;nÞ-CðGrj;nÞ

defined by ðRj;if ÞðHÞ ¼
R

F*H
f ðFÞ dF : &
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The next lemma is well known, but we will present a proof for convenience of the
reader.

Lemma 1.7. Let 1pjoipn: Then

Tj;i ¼ cTj;jRj;i;

here c is a constant depending on n; i; j:

Proof. Fix a subspace EAGrj;n: Let A be any convex compact subset of E of positive

measure. Let f be a continuous function on Gri;n: Then by definition

ðTj;if ÞðEÞ ¼
Z

FAGri;n

voljðPrF ðAÞÞ
voljðAÞ f ðFÞ dF : ð1Þ

Let us fix FAGri;n for a moment. Let B :¼ PrF ðAÞ: By the Cauchy–Kubota formula
(see e.g. [21])

voljðBÞ ¼ c 

Z

HAGrjðFÞ
voljðPrHðBÞÞ dH;

where GrjðFÞ denotes the Grassmannian of j-dimensional subspaces of F ; and c is a

non-zero normalizing constant depending on i; j; and n only. Substituting this into
(1) and using the standard change of integration (normalizing all the Haar measures
to be probability measures) one gets

ðTj;if ÞðEÞ ¼ c

voljðAÞ

Z
FAGri;n

dF 
 f ðFÞ
Z

HCF

dH 
 voljðPrF ðAÞÞ
� �

¼ c

voljðAÞ

Z
HAGrj;n

dH 
 voljðPrHðAÞÞ
Z

F*H

dF 
 f ðFÞ
� �

:

This identity clearly proves the lemma. &

To finish the proof of Theorem 1.2 we need the following fact proved in [5] (see
also [10]).

Proposition 1.8. For joi the Radon transform Rj;i :CðGri;nÞ-CðGrj;nÞ is injective iff

i þ jXn and has a dense image iff i þ jpn:

This proposition, description of the decomposition of the space of functions on the
Grassmannians under the action of SOðnÞ; and the characterization of the image of
the cosine transform for i ¼ j imply the first part of Theorem 1.2.
It remains to prove that the image of Tj;i is closed in CN-topology. We may

assume that joi: By Lemma 1.7 Tj;i ¼ cTj;jRj;i: We will need the following fact due

to Casselman and Wallach [4].

Proposition 1.9. Let G be a real reductive group. Let K be its maximal compact

subgroup. Let x :X-Y be a morphism of two admissible Banach G-modules of finite
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length which has a dense image. Then x induces an epimorphism on the spaces of

smooth vectors.

In our situation we will need the following more precise form of Proposition 1.9.
In fact, it can be proved in a much more general context, but we do not need it and
do not have precise reference.

Lemma 1.10. Let G ¼ GLðn;RÞ: Let K ¼ OðnÞ be the maximal compact subgroup.

Let X and Y be G-modules of continuous sections of some finite-dimensional G-
equivariant vector bundles over the Grassmannians (or any other partial flag

manifolds). Let x :X-Y be a morphism of these G-modules. Then if fAY is a

smooth vector then there exists a smooth vector gAX such that xðgÞ ¼ f and the K-
types entering into the decomposition of g are the same as those of f :

We postpone the proof of this lemma till the end of the section. Now let us
continue the proof of Theorem 1.2. We have given an interpretation of Tj;j as an

intertwining operator of two GLðn;RÞ-modules; they satisfy the conditions of
Proposition 1.10, since they are induced from characters of parabolic subgroups (see
[24]). Hence by Proposition 1.10 there exists a CN-smooth function g on the
Grassmannian Grj;n such that f ¼ Tj;jðgÞ and with the same K-types as f : Next, there

exists an interpretation of the Radon transform as an intertwining operator of some
admissible GLðn;RÞ-modules of finite length (it was given in [5]). Hence Lemma 1.10
implies the statement. &

Proof of Lemma 1.10. Let fAY be as in the statement of Lemma 1.10. By
Proposition 1.9 we can choose a smooth vector hAX such that xðhÞ ¼ f : Then h is
just a smooth section of the corresponding vector bundle over the Grassmannian (or
the partial flags manifold). Let us consider the image g under the orthogonal
projection of h to the closure with respect to the L2-metric of the span in X of those
K-irreducible subspaces which have the same K-types as those entering into the
decomposition of f : Clearly xðgÞ ¼ xðhÞ ¼ f : To finish the proof it remains to show
that g is also a smooth section. Indeed, since the orthogonal projection commutes
with the action of K ; K-smooth vectors go to K-smooth, hence g is K-smooth vector.
But since K acts transitively on the Grassmannians (and in fact on all partial flag
manifolds), every K-smooth section of every K-equivariant bundle must be smooth
in the usual sense. &

2. Non-Archimedean analogue of the cosine transform

In this section we study non-Archimedean analogue of the cosine transform. More
precisely, we study a non-Archimedean analogue of the intertwining operator Ti;i (in

the notation of the previous section). We show that it has an irreducible image.
Now let us introduce the necessary notation. Let F be a non-Archimedean local

field. In this section we will denote by Gri;n the Grassmannian of i-dimensional
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subspaces in F n: Denote by L the line bundle over the Grassmannian Gri;n whose

fiber over a subspace EAGri;n is the space of Lebesgue measures on E (which is

denoted by j4iE�j). Clearly L is GLðn;FÞ-equivariant line bundle over Gri;n: Let M

denote the line bundle over the Grassmannian Grn�i;n whose fiber over HAGrn�i;n is

the space of Lebesgue measures on the quotient space F n=H denoted by

j4iðFn=HÞ�j: Let joj denote the line bundle of densities over Grn�i;n: Let N :¼
M#joj: Define an intertwining operator T from the space of continuous sections of
N to the space of continuous sections of L

T : GðGrn�i;n;NÞ-GðGri;n;LÞ

as follows. For EAGri;n and fAGðGrn�i;n;NÞ set

ðTf ÞðEÞ ¼
Z

HAGrn�i;n

pr�E;Hð f ðHÞÞ;

where prE;H denotes the natural map E-Fn=H and pr�E;H is the induced map

j4iðFn=HÞ�j-j4iE�j: Clearly, T is a non-trivial operator commuting with the
action of GLðn;FÞ: Recall that an irreducible GLðn;FÞ-module is called unramified if
it has a non-zero vector invariant with respect to maximal compact subgroup of
GLðn;FÞ:

Theorem 2.1. The operator T has an irreducible image. Moreover its image is an

unramified GLðn;FÞ-module.

Remark 2.2. It can be shown that the representation of GLðn;FÞ in GðGri;n;LÞ is
irreducible for i ¼ 0; 1; n � 1; n; and for 2pipn � 2 it has length two. This follows
from the results of Zelevinsky [26] (see also the discussion below).

The proof of this theorem is an application of the results of the paper by
Zelevinsky [26]. Let us remind the necessary facts following the notation of [26].
We will denote for brevity the group GLðn;FÞ by Gn: By IrrðGnÞ we will denote the

set of isomorphism classes of irreducible representations of Gn; and by RepðGnÞ we
will denote the set of isomorphism classes of all smooth representations of Gn: Let
a ¼ ðn1;y; nrÞ be an ordered partition of n: Let Ga be the subgroup Gn1 �?� Gnr

of Gn consisting of block-diagonal matrices. Let Pa denote the subgroup of Gn

consisting of block-upper-diagonal matrices. Then Pa is a parabolic subgroup with
the Levi factor isomorphic to Ga: For riARepðGni

Þ; i ¼ 1;y; r; let

r1#?#rrARepðGaÞ be their (exterior) tensor product. This representation can
be extended (trivially) to the representation of Pa: Define

r1 �?� rr :¼ IndGn

Pa
ðr1#?#rrÞ;

where the induction is normalized.
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Let C be the set of equivalence classes of irreducible cuspidal representations of
Gn; n ¼ 1; 2;y : Note that a (one-dimensional) character of F � can be considered as
a cuspidal representation of G1 ¼ F �: Let us call a segment in C any subset of C of

the form D ¼ fr; nr;y; nkr ¼ r0g; where n is the character nðgÞ ¼ jdetðgÞj: We will
write it also as D ¼ ½r; r0�: To each segment D one can associate the irreducible
representation /DS which can be defined as the unique irreducible submodule of

r� nr�?� nkr:
Let D1 ¼ ½r1; r10� and D2 ¼ ½r2; r20� be two segments in C: The segments D1 and D2

are called linked if D1,D2 is also a segment and D1gD2; D2gD1: The segments D1
and D2 are called juxtaposed if they are linked and D1-D2 ¼ |: We say that D1
precedes D2 if they are linked and r2 ¼ nkr1 for k40:
The following theorem is one of the main results of [26] (Theorem 6.1).

Proposition 2.3. (a) Let D1;y;Dr be segments in C: Suppose that for each pair of

indices ioj; Di does not precede Dj: Then the representation /D1S�?�/DrS has a

unique irreducible submodule; denote it by /D1;y;DrS:
(b) The representations /D1;y;DrS and /D0

1;y;D0
sS are isomorphic iff the

sequences /D1S;y;/DrS and /D0
1S;y;/D0

sS are equal up to rearrangement.
(c) Any irreducible representation of Gn is isomorphic to some representation of the

form /D1;y;DrS:

We will also need the following fact [26, Theorem 4.2].

Proposition 2.4. Let D1;y;Dr be segments in C: Then the representation /D1S�
?�/DrS is irreducible iff for all iaj the segments Di and Dj are not linked.

Now let us introduce few more notation. Let D and D0 be linked segments. Set

D, ¼ D,D0; D- ¼ D-D0:

By definition D, is a segment. D- is a segment iff D and D0 are not juxtaposed;
otherwise D- ¼ |: It was shown in [26, Section 4] that o :¼ /D,S�/D-S is
irreducible (and hence by Proposition 2.3 it is isomorphic to /D,;D-S). (Here the
term D- should be ignored if it is empty.) The next result will be also used [26,
Proposition 4.6].

Proposition 2.5. Suppose D0 precedes D and set p ¼ /DS�/D0S: Then p has a

unique irreducible submodule o0 ¼ /D;D0S: Moreover p=o0Co ¼ /D,S�/D-S:

Let us describe in terms of segments the representation dual to the given one. For
each segment D in C let D� :¼ fr�jrADg; where r� is the representation dual to r:
Clearly D� is also a segment. The next result was proved in [26, Theorem 7.10].
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Proposition 2.6. For each segments D1;y;Dr in C

/D1;y;DrS� ¼ /D�
1;y;D�

rS:

Now let us return to our situation.

Proof of Theorem 2.1. We use the notation of the beginning of this section. Recall
that we study the intertwining operator

T : GðGrn�i;n;NÞ-GðGri;n;LÞ:

For brevity, we will denote by k the number n�1
2
: It is easy to see that the

representation of GLðn;FÞ is isomorphic to D1 � D10; where

D1 ¼ ðk� i; k� ði � 1Þ;y;k� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i times

;

D10 ¼ ð�k;�kþ 1;y; k� iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�i times

:

We see that if i ¼ 1 or n � 1 then the segments D1 and D10 are not linked (since one of
them is contained in the other). Hence by Proposition 2.4 the representation D1 � D10

is irreducible. Hence in the cases i ¼ 1; n � 1 Theorem 2.1 is proved.

Now assume that 2pipn � 2: Then the segments D1 and D10 are linked and D10

precedes D1: Hence by Proposition 2.5 /D1S�/D10S has a unique irreducible
submodule isomorphic to /D1;D10S; and the quotient module is irreducible and
isomorphic to /D,

1 ;D
-
1 S; where

D,
1 ¼ ð�k;�kþ 1;y; k� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�1 times

;

D-
1 ¼ ðk� iÞ:

Now let us describe GðGrn�i;n;NÞ: Since N ¼ M#joj then GðGrn�i;n;NÞ� ¼
GðGrn�i;n;M�Þ: It is easy to see that the representation of GLðn;FÞ in GðGrn�i;n;M�Þ
is equal to /D2S�/D20S; where

D2 ¼ ð�kþ i;�kþ i þ 1;y; kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�i times

;

D20 ¼ ð�kþ 1;�kþ 2;y;�kþ iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i times

:
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Clearly D20 precedes D2: Hence by Proposition 2.5 the unique irreducible submodule
of /D2S�/D20S is isomorphic to /D2;D20S; and the quotient module is
irreducible and isomorphic to /D,

2 ;D
-
2 S; where

D,
2 ¼ ð�kþ 1;�kþ 2;y; kÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�1 times

;

D-
2 ¼ ð�kþ iÞ:

Dualizing and using Proposition 2.6 we get that the GLðn;FÞ-module GðGrn�i;n;NÞ
has a unique irreducible submodule isomorphic to /D,

3 ;D
-
3 S with

D,
3 ¼ ð�k;�kþ 1;y; k� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

n�1 times

;

D-
3 ¼ ðk� iÞ;

and the quotient module is irreducible and is isomorphic to /D3;D30S with

D3 ¼ ð�k;�kþ 1;y; k� iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�i times

¼ D10;

D30 ¼ ðk� i; k� i þ 1;y; k� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i times

¼ D1:

Comparing these computations with computations for GðGri;n;LÞ and using

Proposition 2.3(b) we conclude that the image of any non-zero intertwining operator
from GðGrn�i;n;NÞ to GðGri;n;LÞ must have irreducible image.
It is easy to see that this image is unramified. &
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[12] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin, Göttingen-

Heidelberg, 1957 (in German).

[13] R. Howe, S.T. Lee, Degenerate principal series representations of GLnðCÞ and GLnðRÞ; J. Funct.
Anal. 166 (2) (1999) 244–309.

[14] D.A. Klain, A short proof of Hadwiger’s characterization theorem, Mathematika 42 (2) (1995)

329–339.

[15] D.A. Klain, Even valuations on convex bodies, Trans. Amer. Math. Soc. 352 (1) (2000) 71–93.
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