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§1. INTRODUCTION

Let A be a finite-dimensional associative algebra with identity over a field K, and let .4 be the category
of finite-dimensional A modules, An important invariant of such an algebra is its Cartan matrix, which is
defined as follows, Let Lj, ..., Lk be a complete collection of irreducible A modules. For each Lj there
exists a unique (up to isomorphism) indecomposable projective A-module Pj that covers Lj; i.e., Hom (Pj,
Lj) # 0. Let cij = (Pi: LJ-) be the number of occurrences of Lj in the Jordan—Holder series of Pj. The inte-
gral matrix C = fegj i, L, j =1, . . ., k, is called the Cartan matrix of A (or 4).

In certain cases C is a symmetric, positive-definite matrix and, moreover, can be represented in the
form C = Dt - D, where D is some other integral matrix (not necessarily square).

This fact is ordinarily a reflection of some duality principle; to wit, the equality C = Dt * D means that
there exists a class of modules My, . . ., M, such that each Pj has a composition series with factors isomor-
phic to Mj, and for any i, j the number of occurrences of M; in the series for Pji is equal to the number of oc-
currences of 1i in the Jordan—Holder series for Mj. Thus, it can be said that the modules Mj occupy an in-
termediate position between the projective modules Pj and the simple modules Lj; they are their "mean geo~-
metric."

The elucidation of the reason why C = Dt . D and the intrinsic (in terms of .4) characterization of the
modules M are highly interesting problems, approaches to which are absolutely unclear at present,

At present two classes of categories 4 are known for which the Cartan matrix C has this property.

Case 1. Let char K=p >0, and let A = KG be the group algebra of some finite group G, so that 4 is
the category of finite-dimensional G modules over K, LetV,, ..., Vi be a complete collection of irreducible
representations of G over the field C of complex numbers, and let M, . . ., M; be the A modules obtained by
their reduction to characteristic p (see [L]).

If L, ..., Lkare acomplete collection of irreducible A modules (i.e., irreducible representations of
G over K) and D is the matrix with entries djj = (Mi: Lj), then C = Dt + D (for more details see [1, §§82, 831).

Case 2. let g be a semisimple complex Lie algebra, § the Lie algebra over a closed field of charac-
teristic p > 0 obtained by the reduction of g, and 4 = 0/ () a bounded universal enveloping algebra of 3.
Finite-dimensional A modules were studied by Humphreys {2], who constructed a collection of A modules
M;, .. ., M7 that occupy an "intermediate position" between projective and simple modules as described above
and proved that the Cartan matrix of the category of A modules can be represented in the form C = Dt. D,

The purpose of this article is to construct a category of ¢ modules having the same property for each
semisimple Lie algebra g over C. Simple objects of this category can be indexed by the elements of the Weyl
group W of g (to w € W corresponds a simple module Ly and a projective module Pw). In addition, to each
w € W corresponds some g module My (the so-called Verma module; see [3, 4, 5, 81). I we now set C = | ey,
where ¢, = (Pw: Ly, and D = | dy, |, Where dy, o = ( My 1 Ly ) then C = pt « D. In addition, 4 has other good
properties (D is unipotent and all objects of .4 have a finite cohomological dimension).

Note also that a detailed study of the relatively simple "finite-dimensional" category A makes it possi-
ble to obtain certain information about the structure of submodules of Verma modules, which is a difficult and
interesting problem,
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We would like to dedicate our article to J. Dixmier, who accomplished a great deal in the study of the
structure of enveloping algebras for Lie algebras. His papers and book [5] were most responsible for crys-
tallizing this branch of mathematics into a separate and important direction.

We are also greatly indebted to J. Humphreys [2], who significantly instigated our paper.

§2. SOME NOTATION
¢ is a complex semisimple Lie algebra, and § is a Cartan subalgebra of .
A is the root system of ¢ with respect to §; Z is the set of simple roots; A, is the set of positive roots;

and p=—§—- 2 T

YEAS

#,, and n_are the subalgebras of g,spanned by the root vectors corresponding to the roots in A, (resp.

-4y,
U (g).and U (n,) are enveloping algebras of g and 1, respectively, and Z (g) is the center of U (g).

§* is the space dual to § ; bz is the integral lattice in §*, consisting of the weights of the finite-dimen-
sional representations of g; and C° C §* is the positive Weyl chamber,

W is the Weyl group of g with respect to §; oy is the reflection corresponding to v € Ay ; and I(w) is the
length of w €W, i.e., the smallest number of factors in the representation w = oa, . . . 04, o; E X.

K{x)} for 1 = b* is Kostant's function, i.e,, the number of representations of x in the form ¥ = Z nLo;
aSAy

ne=Z n,>0;, I'Ch; Iis the set of elements x such that K(x) = 0; for X- ¥ € p*, x < ¢ means that
p—x€T,

JH(M) denotes the collection of simple modules (with multiplicities) occurring in the Jordan—Holder
series of a g module M.

§3. ELEMENTARY PROFERTIES OF THE CATEGORY ©

Definition 1 (the Category ©). The objects of the category ¢ are left g modules M having the following
properties:

1) M is a finitely generated g module;

2) M is p diagonalizable;

3) M is u, finite (i.e., dim¢ U (1,)f <C oo for any f € M).

The morphisms of © are arbitrary g module morphisms,

Important objects of @ are the so-called Verma modules (the modules My; see [3, 4],

Let 1 & b*, We denote by Jy the left ideal in U (g) generated by n, and {H — y (H) - p (H), H & p}, and
we set My = U (g).J,. It is clear that M, & O.

Let us list the basic properties of @ and of Verma modules.

1) @ is an Abelian category with finite direct sums. The space Hom(M, M") is finite-dimensional for any
M, M <= 0.

2) Let M € O, } & p*. We denote by M) C M the subspace of vectors of weight ¥ in M. Then dimc
M) <o, Let P(M) = {y = b*) M =£0}. Then there exists a finite number of weights ¢y, . . ., ¥k such that
P(M) C U @j + (~T)), where T is the semigroup generated by positive roots (for example, P(My)=x—p— D).
In particular, if M = 0, then P(M) contains at least one maximal weight x, i.e., such that P(M) N {x + T} = x.

3) Let us describe all of the simple objects of 0. Let X & b* For a Verma module M, there is a u-
nique simple factor module (see [5]), which we denote by Ly. The modules Ly are pairwise nonisomorphic and
are exhausted by all of the simple objects in O,

4) Let Z (g) be the center of U (g), and let ® be the set of characters of Z (g) (i.e., homomorphisms
Z (g) - C). For each 6 € ® consider the complete subcategory ¢, of ¢, consisting of modules M satisfying the
following condition: Foreach z & Z (g) the module M is annibilated by some power of [z — #{z}]. Then 0 = &
60
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Oy , i.e., each M & Odecomposes into a finite sum A7 = @ M (8), M (0) = O, and for 6; = 0, Hom(M;, M,) = 0
=0
for any 47”1 = 09.7 —‘”z = @Ug-

5) For each X & ) there exists a character 6y such that zf = 6y(2)f for all /<= My, z& Z (g). Therefore,
My & Oy, Each 6 €@ has the form 0y for some ¥ & §*6,, = 8,. = y, = wy, for some w€ W, Let A ()~
S %, 0 = 0y).

6) Using 1), 4), and 5), one can prove that each W < O has finite length (see [5]). Therefore, each
M & ¢ decomposes into the direct sum of indecomposable objects, where the summands are uniquely defined
up to isomorphism and rearrangement (the Krull—Schmidt theorem [1]),

7 Let 0 = 0 and M/ = ©,, Then P (M) ;lgjw{uf' (x —p) — I'}. It suffices to verify this assertion for sim-

ple objects in ©,, for which it follows from 1), 3), and 5).

§4. PROJECTIVE OBJECTS OF ©
THEQOREM 1, Each object in © is a factor object of a projective object.
We shall prove the more precise Theorem 2.

THEOREM 2. Let X € b*, 6 € ©. There exist a module Q = Q (8, y) = Opand a vector q € Q(X) such that
for any J/ & O the mapping Hom(Q, M) — (M(G))(X), defined by ¢ — ¢(q), is an isomorphism.

It follows from Theorem 2 that the functor M — Hom(Q, M) is isomorphic to the functor M — (M(G))(X)
and hence, is faithful; i.e., % is projective (in 0). On the other hand, each M & © is generated by a finite num-
ber of vectors fj € (M(ei))(Xi , and by Theorem 2, M is a factor module of the projective module &Q (8;, ;).

Therefore, it suffices to prove Theorem 2,

Proof, Let 1 C U (g) be the left ideal generated by H — y (H), H & b, and (n,)V for sufficiently large N
(N will be chosen later). Let § = U (g)./ and let § < () be the image of 1€ U (3)in Q. It is clear that § & O.

Let us prove that if N is sufficiently large, then for any M = O, the mapping (0, M) — M® (¢ —~ ¢ (§))
is an isomorphism. Since § is a generator of Q, this mapping is an imbedding. Conversely, let f¢€ M(X).
Consider o : U (g) > V.« (X) = Xf. It is clear that «(H —x(H)) =0, H & §. On the other hand, let § = 6y
for some ¢ e p*, Then by virtue of 7), P (M) C Mgw {w (® — 0) — I'}, and hence, for sufficiently large N (not

depending on M or f) (n,)¥ f = 0, Therefore, 2 (8,)Y) = 0; i,e., o defines a mappingd : @ — M,such that
a@ =1

It is now clear that the module Q = §(6), and the projection g of § onto Q satisfy the condition of Theorem
2.

COROLLARY 1, If P & ¢ is an indecomposable projective module, then P has a unique maximal sub-
module P, so that the simple module L = P/P' corresponds to it. We obtain a one-to-one correspondence
P ~— P/P' between indecomposable projective objects and simple objects of O.

We denote the projective module corresponding to the simple module Ly by P,. Itis called the projec-
tive covering of Ly.

This corollary follows from Theorem 1 and Property 6) (see [1], Theorem 54,11).
Proposition 1. Let X €)%, M < 0. Then dim Hom(Py, M) = (M: Ly).

Proof. Let 0 —~ M; — M — M, — 0 be an exact sequence in 0. Since Py is a projective object, the valid-
ity of the proposition for M follows from its validity for M; and M,. Therefore, we can assume that M = Iy is
a simple object. It now follows from Corollary 1 that if x = ¢, then both sides of the equality equal zero, But
if x = ¢, then Hom (Py, Ly) = Hom (Ly, Ly) = C.

Remark, The category ¢ is self-dual, i.e., equivalent to the dual category ¢°. This equivalence is de-
fined by the following functor F. Iet i:g— ¢ be an anti-involution such that i (H) = H, H & ). Theni(r) =1n_.
Let M = © and let M* be the space of linear functionals on M. We define the action of ¢ on M* by (X%) ()=
EG(X))), e M*, f= M, XEg. As F(M) we take the submodule of M* generated by the vectors character-
istic with respect to §. It can be proved that F (M)<0,and that Hom (M;, My) = Hom(F(M,), F(M)). In addi-
tion, F(F(M)) is naturally isomorphic to M, It is clear from the construction that dim(F(M))(X) = dim M(X for
any X € p*. In particular, F(Ly) = Ly, and hence F (0p) = Oy for any 0 € O,
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It is clear that the modules Iy = F(Py) are indecomposable injective objects in ©, and that each inde-
composable injective object in © is isomorphic to one of the Iy.
§5. THE CATEGORY 0O

1t follows from Property 4) in §3 that many properties of O can be studied "locally," i.e., inside the
categories @, for various 6 € ® Each of the 0, is a "finite~-dimensional" category in the following sense:
THEOREM 3. let 6 = 0y for some X € §*, and let P = ?{Vanwxbe a projective object in @, , such that
—— UE
nw > 0 for all w € W, Consider the finite-dimensional algebra A = Hom(P, P), The functor M — Hom(P, M)
defines an equivalence of @, with the category of finite-dimensional right A modules.

The proof follows immediately from [6] (Theorem IL1.3) and the fact that the Pwy, w € W, exhaust all of
the indecomposable projective modules in @,.

Remark, It can be deduced from the explicit construction of ¥ : 0, — 0} (see the remark in §4) that
there exists an antiautomorphism i: A — A such that i =1,

Iet 0= 0y. If xis a character such that wy —y & b, for all w€ W (i.e,, x is a character in general posi-
tion), then any simple object in @, is projective, and O, is arranged very simply.

When ¥ is a character not in general position, the linkages appear among the various simple objects in
O» . The most complicated and interesting case is when y is a regular integral weight; i.e., ¥ & bzand wx =
xforw€ W, w = e,

THEOREM 4. Let x, X' be two regular integral weights, and let 6 = 6,, 8’ = 6,,. Then ©,and Oy are
equivalent, :

This theorem is proved by the same methods as Theorem 2 in [4] and Theorem E1 in [7]. We shall not
prove it.
§6. THE CARTAN MATRIX AND THE DUALITY THEOREM

Our purpose in this section is to investigate the number of occurrences of the simple modules Ly in
the Jordan—Hbolder series of an indecomposable projective module Py. We shall fix § € ® and operate in-
side one category @, ; i.e., we shall assume that x, ¥ € A(6).

Definition 2, 1) The Cartan matrix € =|l¢, [l 7. ¢ & A (9), is defined by cyy = (Py: Ly).
2) The decomposition matrix D = |idy |, % % < A (0),is defined by d,, = (M,: Ly).

THEOREM 5. 1) Let X, « . ., Xg be an ordering of the weights x € A(6), such that %: < Xi=1>>]. Then
D is an upper triangular matrix with ones on the diagonal,

2) C = bt + D, Inparticular, C is a symmetric matrix,
The proof of 1) is obvieus. To prove 2) we introduce the concept of a p filtration.

Definition 3. Let M = 0. A filtration 0 = M, C M, M. = ... C M, = 1/ is called a p-filtration if
MMy ~ My, for some %: € b*. In this case we denote by (M: My) the number of i such that x; = x. (It fol-
lows from the first part of Theorem 5 that the numbers (M: My) do not depend on the choice of p filtration.)

Proposition 2, 1) Each positive module P = ¢ admits a p filtration,
2) The duality (P, : M,) = dy, = (M,: L) holds,
It is clear that the second part of Theorem 5 follows from this proposition,

Proof of Proposition 2, a) LEMMA 1, Suppose that M admits a p filtration, x is a maximal weight in
P(M), £ € MX), and M' = U (g) f. Then M’ ~ M,.. and M/M' admits a p filtration.

Using induction on the length of a p filtration, we can assume that i/ = M, f<£ M,_,. Then we obtain a
nontrivial mapping of M' into My M-, =~ M,,. Since ¥ =+ o < %, this mapping is an isomorphism, and yk =
X + p. Therefore, M' = My4p and M. 1" ~ M, admits a p filtration,

b) If M = M; D M, admits a p filtration, then each of M;, M, admits a p filtration,
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Again let x be maximal among the weights in P(M). We can assume that M 2 0. Choose 0= f= MY
and set M’ = U (g)f. Then M’ =~ M,..;and M/M ~ M,/M’ ¢ M, admits a p filtration. Induction on the length
of M completes the proof.

¢) For any % = §*the module Q, constructed in the proof of Theorem 2, admitsa p filtration, -

We choose in U (s*) a collection of weight elements x;, . . ., xg with weights A, . . ., Ag so that the im-
ages of xj in U (n,)/U (n,) (&,)" define a basis there and %, < 4, =i >j. Let 0; < O be the submodule gen-
erated lgy (X1€l, . ees XjQ). AIt follows from the Poincaré— Birkhoff—Witt theorem that the Qj form a p filtra-
tion in Q. In particular, (0 : M,)= K (p — y — o), where K is Kostant's function (see §2).

d) Since the Q(x, 9) (see §4) are direct summands of Q, they admit a p filtration, Since any projective
module P & O is a direct summand of some ¢ @ (x;, 6), the first part of Proposition 2 is proved.
1
e) By virtue of Proposition 1, to prove the second part of Proposition 2 it suffices to show that
(P : My) = dim Hom (P, My) 1)

for any projective object P = @,and any » € A(9).

Let ¢ (4, 0) = Z ny(y) Po. Then ny = dim Hom (Q(x, 6), Ly) = (Lz/,)(X). In particular, ny(x) = 0, if % + o <€
LEA(8)
P, and nx+p(x) =1. Therefore, since (1) is linear in P, it suffices to verify it for Q = Q(x, g). _
goth sides of the equality are unchanged when Q is replaced by Q Here (@2 : Mz/;) =K @ —x—p) and dim
Hom (@, My) = dim (sz)(X) =K (¥ = x —p); i.e., (1) and Proposition 2 arethereby proved,
§7. COHOMOLOGICAL DIMENSION OF O

In this section we prove that O has finite cohomological dimension and indicate what it equals, ILetus
recall the definition of cohomological dimension.

Let € be an Abelian category and M an object of ¥. By the cohomological dimension dh(M), we mean
the smallest number /, such that there exists a projective resolution of M of length I, i.e., an exact sequence

O M Py Pio .. <P« 0,
where the Pj are projective,

THEOREM 6. Forany M = ¢ dh (M) < 25, where S is the maximum length of an element in the Weyl
group W,

LEMMA 2, Let 0— M,—> M — M, — 0 be an exact sequence. Then:

a) dh (M) = max (dh (M), dh (M,)),

b) dh (M;) =< max (dh (M) + 1, dh (M)).

The lemma is proved by standard homological arguments (see, e.g., [6]).
We shall prove Theorem 6 in three stages.

1. Let x € C% Then dh (M) < I W).

Proof, Consider a p filtration of Pyy. Its factors have the form My'y, w' € W. By virtue of Theorem 5,
only the Mw'y, such that Lyy € JH(Mw'y), occur in this filtration. As follows from [7], in this case either w' =
w, or I{(w') <I(w), and w'x > wx. Using ILemma 1, we obtain an exact sequence

0> M— Py — My, —0,

where M has a p filtration with factors Af,.,, [(w')< I (w). By virtue of the induction assumption and Lemma 2a),
dh(M) =I(w) —1, By Lemma 2b), dh(Mwy) =I(w).

2. dh(Lwy) =28~ I(w).

Proof, We shall use induction up to I{w). For I(w) = S we have Mwyy = Ly, and hence dh(Lwy) =8. For
arbitrary w we have an exact sequence

00— M — My —> Ly — 0,
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where, by virtue of [7] (see [7], Appendix), JH(M') consists of the modules Ly with Z(w') >I(w). Just as be-
fore, by induction we obtain dh(Lwy) =28 —I(w).

3. Since each object has finite length, the theorem follows from Lemma 2a) and the inequality dh(L) =<
28, which is valid for each simple object L & O. '

Remark, It can be shown that if x is a regular infegral highest weight, i.e., a weight such that Ly is
finite-dimensional, then dh(Ly) = 28. More precisely, it can be shown that Extg (L,, L,) is isomorphic to the
cohomology algebra H*(X, C), where X = G/B is the base projective space of a group G with Lie algebra g,
B is the Borel subgroup of G (see [7]). In particular, Ext¥ (L,, L,) = C.
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INTEGRALS OF HIGHER-ORDER STATIONARY KdV
EQUATIONS AND EIGENVALUES OF THE HILL OPERATOR

O. I. Bogoyavlenskii

The aim of this paper is to find explicit formulas connecting two sets of integrals of stationary problems
for higher-order Korteweg—de Vries (KdV) equations, i.e,, the Novikov integrals [1] with the Lax integrals
[2] and the Gel'fand—Dikii integrals [3].

Let us recall [1, 3] that the n-th order stationary KdV equation ("Novikov's equation") is expressed by

n4y
2 ch'Rh' [u] = 07 Cnyp = 1, (1)

k=0
where the functions Rklu, u', u", .. .] can be obtained* by expanding the kernel of the resolvent

*We are using the notations of [3] which are connected with the notations of {1] and [4] by the following for-
mulas:

8Ly (1) 8%ppya (w) .
T b ) — 92K R (]
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