
We s,,mmarize the above results. Every metrized Lie algebra {G, B} can be decomposed 
into a direct sum of indecomposable nondegenerate mutually orthogonal ideals (i). This de- 
composition is unique up to isomorphism. The choice of decomposition is completely deter- 
mined by the center Z(G) of the Lie algebra G. If the hypotheses of Proposition 3 hold then 
decomposition (i) is unique. 

4. We indicate here a method for constructing an infinite series of new indecomposable 
metrized Lie algebras starting from a fixed indecomposable metrized Lie algebra {G, B}. 

If ~ is a connected Lie group, its Lie algebra G is metrizable if and only if there 
exists on G a biinvariant nondegenerate symmetric bilinear form. It is proved in [2] for 
such Lie groups ~ that the tangent bundle T(~) is also a Lie group admitting a form with 
analogous properties. Thus given any metrized Lie algebra {G, B} we can associate a new 

~ metrized Lie algebra {T(G), BT}. 

THEOREM 5. If dim G > i, then the metrized Lie algebra {T(G), B T} is decomposable if 
and only if the original metrized Lie algebra {G, B} is decomposable. 

COROLLARY. If dim G > 1 and {G, B} is indecomposable, then for any natural number n 
the metrizable Lie algebra Tn(G) = T(Tn-I(G)) is also indecomposable. 

If G is simple then Tn(G) is an example of an indecomposable metrizable Lie algebra 
with a nontrivial Levi-Mal'tsev decomposition. 

The author thanks D. V. Alekseevskii for a discussion of the results and for his in- 
terest in this work. 
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i. The description of the algebraic vector bundles over projective space pn has at- 
tracted the attention of many specialists in algebraic geometry (see [1-3]). Recently, in- 
terest in this problem has increased even more in connection with the remarkable papers of 
Atiyah and Ward [4] and Belavin and Zakharov [5], in which the connection of bundles over 
CP 3 with gauge fields on the four-dimensional sphere is described. In the present note it 
is shown how the classification of bundles over pn reduces to a problem of linear algebra, 
viz., to the classification of finite-dimensional graded representations of the exterior 
(Grassman) algebra on (n + i) variables. There are special cases of such a reduction in 
Barth [2] and Drinfel'd and Manin [3]. Independently obtained, Beilinson [6] is close to 
our result. We want to express profound gra>itude to Yu. I. Manin, whose report on [3] stim- 
ulated our interest in these questions. 

2. Let E be an (n + l)-dimensional linear space over an algebraically closed field 
k, A be the exterior algebra on the space E. We introduce a grading on A, by setting deg 
~ = --i for ~ ~o By a A-module we shall mean a finitely generated graded A-module; nota- 
tion F = ~Fj. Let ~ be the class of free A-modules; we shall call A-modules V, V' ~ - 

equivalent , if F~ P= F'@ pt for some P,P'~. 

3. Let P be the projective space corresponding to E. We shall construct, for each A- 
module V, a complex L(V) of vector bundles over P. Namely, we set Lj=F_j® @ (f), where ~ (f) 
is the j-th power of the Hopf bundle; by definition, a section of the bundle Lj is a homo- 
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geneous functionf($) of degree of homogeneity with values in V_j. We define the differential 

d: Lj ÷ Lj+I, by setting df(~) = ~(f($)). 

If ~ ~ E, ~=~0, then the fiber Lg(V) of complex L(V), corresponding to the point ~ P, 

FIJ coincides with the complex vector spaces L~ (F)= ( .... F0~ V_~ .... ). We call the A-module 
V faithful if Hi(L~(V)) = 0 for i~=0 for all 0#=$~Eo In this case H°(L(V)) is a vector 
bundle over P; its fiber at the point ~ coincides with H°(L~(V)). We denote this bundle by 
¢(v). 

THEOREM I. Any algebraic vector bundle over P has the form ~(V) for some faithful A- 
module V. Here ~(F)~(F ') if and only if V and V' are ~ -equivalent° 

Remarks. i) The map V~+ • I~) (for exact A-modules V) commutes with tensor products, 
taking symmetric and exterior powers, and passage to the dual module. 

2) Let 0 ÷ V ÷ P ÷ V' ÷ 0 be an exact sequence of A-modules, where ~ ,  V is a faith- 
ful module° Let W be the A-module obtained from V' by the grading shift: Wj = Vj+~o' Then 
W is a faithful A-module and ¢(FO= ¢(F)® @(~). 

3) Let to, o, ~n be a basis in E,0~= ~0.~-~ ~ A. It is easy to verify that each A- 
module V can be represented in the form ~ : V ~ @ P, where P ~ ~, ~ F ° = 0, to ~-equivalent 
modules V correspond isomorphic modules V °. Hence vector bundles over P are classified by 
faithful modules over the algebra A/(~). 

3. To formulate a more precise result we need the machinery of derived categories (see 
[7]). Let Coh be the category of coherent sheaves on P, C b(Coh) be the category of bounded 
complexes of objects of Coh and Db(Coh) be the derived category. 

Let ~(A) be the category of A-modules. Considering, for each F~(A), L(V) as a com- 
plex of sheaves on P, we get a functor L: ~ (A)-~ ~ (Coh)o By LD we denote the composite func- 
tor ~((A)-J~(C0h)-~f)~(Coh)~ It is easy to verify that for F ~  the complex L(V) is acyclic, 
so that L~(~)~ 0. Hence the functor L D factors through some functor L~: ~(A)/~-~O~(Coh), 
where ~ (A)/~ is the quotient category of ~ (A) by the family of morphisms, factoring through' 
objects P~S~ (see [7, 8]). 

THEOREM 2. The functor L~: ,7{(A)/~-~ D~(Coh) is an equivalence of categories. 

Remarks. i) Let ./W be the complete subcategory of ~(A)/~, consisting of these modules 
V, such that Hi(L(V)) = 0 for ~:#0. Then it follows from Theorem 2 that the functor V ~ 
H °(L(V)) defines an equivalence of the category ~W with the category Coh. ~ence it is easy 
to derive Theorem io 

2) The equivalence L D defines on ~(A)/~ a structure of triangulated eategory. Tnis 
structure is characterized by the condition that for any exact sequence 0 ÷ V' ÷ V ÷ V" ÷ 0 
in ~.~{ (A) the morphisms V' ÷ V ÷ V" are included in a triangle in ~{ (A)/~, while in this way 
one gets all pairs of morphisms contained in triangles. In particular, if F ~ ~, then V" = 
T(V), where T is the translation functor. 

3) Let k be the trivial A-module of degree 0, V be a faithful A-moduleo Then I{{(P,~(~$)= 
Hom~)/~ (~, ~F). For ~=# 0 this group is equal to Ext~(~)(~, ~]~ 

4. We shall explain the scheme of the proof of Theorem 2. Let X = E ~, S = ~ (X) be the 
syrmnetric algebra on the space X with its ordinary grading N = @ S7, ~ (S) be the category of 

~>~0 

graded finitely generated S-modules. We denote by cb(s) and cb(A) the categories of bounded 
complexes of objects from ~ (~) and ~ (A), while in the case ~ (A) it will be assumed that 
the differential ~ in the complex satisfies the condition #$ =--%~ for ~ ~_ E. 

We construct a function F: cb(A) ÷ cb(s). A complex (V, #) ~ O~(A) will be considered 
as a bigraded space ¥ = @ ~, where i is the number of the module in the complex, j is the 
grading in ~ (A); analogously for complexes (V~, ~)~ O~(N). The differentials ~ and d have bi- 
degree (i~ 0) o We set f(¥)= ~= S®¥ (tensor product over k). We define the differential 
d in W by the formula ~(~®~) = E~®~q-~®#~, where {xi}, {~i} are dual bases in X andE~ 

we define the bidegree in W as foll~ws: if ~ ~ N~, ~ ~ ~ then ~ (9 ~ ~ ~F~$-~. 

Let Db(A). and Db(s) be the derived categories corresponding to cb(A) and cb(s). 

THEOREM 3. The functor f: O~(A)-~£~(S) extends to a functor ~: D~(A)-~D~(S); the func- 
tor F D is an equivalence of triangulated categories. 
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To prove Theorem 3 it is necessary to consider the adjoint functor G: C (S)- ¢(A). It is 
defined as follows : G (W) = ¥ = Hom~(A, W);: a (~ = --~xi~(~i~ + ~ (v (~)); ~ (A~) ~ W~ -~. Although the 
image G(cb(s)) does not lie in cb(A), G allows one to define a functor GD:Db($)~D~(A). Using 
the Koszul complex, it is easy to verify that the functor GD is inverse to the function FD. 

5. Let ~r,~ be the full subcategories in Db(S) and Db(A), generated by the complexes, 
consisting of finite-dimensional (respectively free) modules. It is easy to verify that 
F~ (~r) = ~, so that F D defines an equivalence of categories Db(A)/$ ~ Db(S)/~ (the quotient 
categories in the sense of Verdier [7]). 

Using Serre's theorem, describing the category Coh in terms of ~(S) (see [9]), it is 
easy to get that the category Db(Coh) is equivalent with D~(S)/~ r. Thus, from Theorem 3 fol- 
lows 

THEOREM 4. The categories Db(Coh) and Db(A)/~ are equivalent. 

6. Proposition. The natural imbedding J6(A)-~D~(A) defines an equivalence of categor- 
ies ~ (A)/~ -- Db(A)/~. 

The proposition follows from the fact that free A-modules are projective and injective. 
Theorem 2 follows from this proposition and Theorem 4. 

7. Theorems 1-4 are true for any field k; Theorems 3 and 4 are true if k is replaced 
by an arbitrary basis Z, E by a locally .free sheaf of~z-modules , P by a projective spectrum 
of sheaves of algebras S = S(X), where X= E*. 
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COHERENT SHEAVES ON pn AND PROBLEMS OF LINEAR ALGEBRA 

A. A. Beilinson UDC 513.015.7 

The goal of this note is to generalize the results of Horrocks and Barth [i], and Drin- 
fel'd and Manin [2] to the case of projective space of any dimension n. In particular, for 
any coherent sheaf L on pn there will be constructed a "two-sided resolution" which is unique 
up to homotopy (a qomplex K" with H°(K ") = L, Hi(K ") = 0 for ~0), the i-th term of which is 
isomorphic with ~H~+J(P~,L(--j))® ~) (generalized "monads" of Barth). The precise formula- 

tion of the result uses the derived categories of Verdier [3]. 

i. Let C be a triangulated category. Weshall say that a family of its objects{Xi} 
generates C, if the smallest full triangulated subcategory containing them is equivalent with 

C. 

LEMMA i. Let C and D be triangulated categories, F: C ÷ D be an exact functor, {Xi} 
be a family of objects of C. Let us assume that {X i} generates C, {F(Xi)} generates D, and 
forany pair Xi, Xj from the family F: Hom'(Xi, Xj) ÷ Hom'(F(Xi), F(Xj)) is an isomorphism. 

Then F is an equivalence of categories. 

2. Let A" be a graded algebra. Notation: A'[i] is the free one-dimensional graded 
A'-module with distinguished generator of degree i; M[o,n](A') is the full subcategory of 
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