MODELS OF REPRESENTATIONS OF COMPACT

LIE GROUPS

I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand

1. Let U be a compact Lie group. A representation σ of the group U will be called a model if every irreducible representation π of the group U enters into σ exactly one time. The theory of highest weight provides one method to construct such models. Namely, σ can be realized in the space of analytic functions on the fundamental affine space of the group U, i.e., on the factor space G / N of the complex cover G of the group U by the maximal unipotent subgroup $N \subset G$. The defect of this construction is that we must require that our functions be analytic. On the other hand, for the simplest group $\operatorname{SO}(3)$ there is another classical realization of a model in the space of all square-integrable functions on the two-dimensional sphere. In this note we introduce an analogous construction of a model for an arbitrary compact Lie group. Our model will be realized in a space of vector functions on the compact symmetric space of maximum rank corresponding to the group U .
2. Let U be a connected compact Lie group, let T be the maximal torus in U, and let Λ be the lattice of characters of T. We shall fix a Cartan involution, i.e., an anti-automorphism $\theta: U \rightarrow U$ such that $\theta^{2}=1$ and $\theta(t)=t$ for all $t \in T$. Let us set $K=\left\{u \in U \mid \theta(u)=u^{-1}\right\}$. We shall call K the involutive subgroup in U; this subgroup is determined by the group U uniquely up to an inner automorphism of U. An important role will be played by the group $S=T \cap K$. It is easy to check that S consists of all elements of order two in T, so that S is a finite commutative group of order 2^{r}, where r is the rank of U .

Example. If $\mathrm{U}=\mathrm{U}(\mathrm{n})$ and θ is a transposition, then $\mathrm{K}=O(\mathrm{n})$ and S is the group of diagonal matrices with the numbers ± 1 on the main diagonal.
3. Let τ be a finite-dimensional representation of the group K. Our goal is to study how the representation $\operatorname{Ind}_{\mathrm{K}}^{\mathrm{U}}(\tau)$ of the group U , induced by the representation τ of the subgroup K , breaks up into irreducible components. Let $C \subset \Lambda$ be the set of all highest weight irreducible representations of U (with respect to some ordering).

PROPOSITION 1. Let π be an irreducible representation of U with highest weight λ : $T \rightarrow C^{*}$. Then \dagger

$$
\begin{equation*}
\left(\operatorname{Ind}_{K}^{U}(\tau), \pi\right)_{U} \leqslant\left(\left.\tau\right|_{\mathrm{S}},\left.\lambda\right|_{\mathrm{S}}\right)_{S} . \tag{*}
\end{equation*}
$$

COROLLARY. If $\left.\tau\right|_{\mathrm{S}}$ has spectrum of multiplicity one (i.e., decomposes into a direct sum of pairwise inequivalent irreducible representations), then $\operatorname{Ind}_{\mathrm{K}}^{\mathrm{U}}(\tau)$ also has spectrum of multiplicity one.
4. In what follows we shall study the conditions under which equality holds in formula (*).

PROPOSITION 2. a) For every representation τ of the group K we can find $\mu \in C$ such that for every irreducible representation π of the group U with highest weight $\lambda \in \mu+C$, equality holds in formula (*).
b) If $\tau=1$ is the identity representation of K , then equality holds in formula (*). In other words, an irreducible representation π of the group U enters into $\operatorname{Ind}{ }_{K}^{U}(1)$ if and only if its highest weight λ is even, i.e., $\lambda \in 2 \Lambda$.
$\dagger\left(\rho_{1}, \rho_{2}\right)_{\mathrm{G}}$ denotes the number of times the irreducible representation ρ_{2} of the group G occurs in the representation ρ_{1}.

Moscow State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 9, No. 4, pp. 61-62, October-December, 1975. Original article submitted March 27, 1975.

[^0]5. We shall describe those representations τ for which equality always holds in formula (*).

Let G be the complexification of U, let $H \subset G$ be the complexification of T, and let α be a root of G with respect to H . We choose a homomorphism $\varphi_{\alpha}: \operatorname{SL}(2, \mathrm{C}) \rightarrow \mathrm{G}$ so that the image under φ_{α} lies in the standard three-dimensional subgroup of G corresponding to the root α, and moreover, φ_{α} (diag $\left.\left(a, a^{-1}\right)\right) \subset$ H and $\varphi_{\alpha}(\mathrm{SO}(2)) \subset \mathrm{K}$. Let $\psi_{\alpha}: \mathrm{SO}(2) \rightarrow \mathrm{K}$ be the restriction of φ_{α}.

We note that the group $\mathrm{SO}(2)$ is isomorphic to the circle, and so its irreducible representations are one-dimensional and are defined by a single integer, the degree of the representation.

Definition. A representation τ of the group K will be called fine if, for every root α, the representation $\tau \cdot \psi \alpha$ of the group $\operatorname{SO}(2)$ decomposes into a direct sum of one-dimensional representations of degrees 0,1 , and -1 .

We observe that it suffices to check this condition on one root from each orbit of the Weyl group.
THEOREM 1. If τ is a fine representation of the group K, then, for every irreducible representation π of the group U, equality holds in formula (*). This property holds only for fine representations.

THEOREM 2. For every connected compact Lie group U there exists a fine representation τ of the subgroup $K \subset U$ such that $\tau \mid S$ is a regular representation of S.

If τ is the representation mentioned in Theorem 2, then it follows from Theorem 1 that the representation $\operatorname{Ind} \mathrm{K}_{\mathrm{K}}^{U}(\tau)$ is a model for the group U . This representation is realized in the space of sections of a vector bundle over a compact symmetric space U / K of maximal rank. The fiber of this bundle has dimen$\operatorname{sion} 2^{2}$.

We note that, in general, the representation τ in Theorem 2 is not uniquely determined. It can be shown, however, that if the factor-group Z / Z^{0} of the center Z of the group U by the connected component of the identity Z^{0} does not contain elements of order two (for example, if the center Z is connected), then the representation τ in Theorem 2 is uniquely defined.
6. In this section we shall indicate for every classical compact Lie group U a fine representation τ of the subgroup $\mathrm{K} \subset \mathrm{U}$ for which $\operatorname{In} \mathrm{d}_{\mathrm{K}}^{\mathrm{U}}(\tau)$ is a model. We shall denote by ρ_{n} the natural representation of the group $\mathrm{U}(\mathrm{n})$ in the space $\wedge^{*}\left(\mathrm{C}^{n}\right)=\underset{i=0}{n} \wedge^{i}\left(\mathrm{C}^{n}\right)$.
a) $\mathrm{U}=\mathrm{U}(\mathrm{n}), \mathrm{K}=O(\mathrm{n}) ; \tau=\rho_{\mathrm{n}} \mid \mathrm{K}$ is the natural representation of K in the space $\wedge^{*}(\mathrm{Cn})$.
a') $U=\operatorname{SU}(\mathrm{n}), \mathrm{K}=\mathrm{SO}(\mathrm{n})$; the representation τ of the group K is the restriction of the representation ρ_{n} on some $2^{\mathrm{n}-1}$-dimensional subspace $\mathrm{L} \subset \wedge^{*}\left(\mathrm{C}^{\mathrm{n}}\right)$. To construct the space L we consider the operator B: $\wedge^{*}(\mathrm{Cn}) \rightarrow \wedge^{*}\left(\mathrm{C}^{\mathrm{n}}\right)$ such that $\mathrm{B}^{2}=1$ and for every $o \in O(\mathrm{n})$ we have $B \cdot \rho_{n}(o)=\operatorname{det} o \cdot \rho_{n}(o) \cdot B$, and we set $L=$ $\left\{x \in \wedge^{*}\left(\mathrm{C}^{n}\right) \mid B x=x\right\}$ (the operator B is easily constructed from the ordinary operator* (see [3], p. 33)). For odd n we can take $L=\underset{i<n / 2}{\oplus} \wedge^{i}\left(\mathbb{C}^{n}\right)$.
b) $\mathrm{U}=\mathrm{S} O(2 \mathrm{n}+\varepsilon)$, where $\varepsilon=0,1, K=(O(n) \times O(n+\varepsilon)) \cap S O(2 n+\varepsilon)$; the representation τ in the space $\wedge^{*}\left(\mathrm{C}^{\mathrm{n}}\right)$ is defined by the formula $\tau\left(o \times o^{\prime}\right)=\rho_{\mathrm{n}}(o), o \in O(n), o^{\prime} \in O(n+\mathrm{E})$.
c) $\mathrm{U}=\mathrm{U}(\mathrm{n}, \mathrm{H})$ (the unitary quaternion group), $\mathrm{K}=\mathrm{U}(\mathrm{n}) ; \tau=\rho_{\mathrm{n}}$ is the natural representation of K in the space $\wedge^{*}(\mathrm{Cn})$.
7. Detailed proofs of the results stated above, and in particular, a complete construction of the models for the spinor groups and the basic groups of type $G_{2}, F_{4}, E_{6}, E_{8}$ are contained in [1].

Obviously, the construction of the models can be generalized to arbitrary semisimple Lie groups. A different construction of models, connected with the choice of other subgroups, is examined in [2] for the case of the finite Chevalley groups.

Added in Proof. D. P. Zhelobenko has brought to our attention that similar results have been obtained by Yu. B. Dzyadyk; part of these have been published in Dokl. Akad. Nauk SSSR, 220, No. 5, 10191020; No. 6, 1259-1262 (1975).

LITERATURE CITED

1. I. M. Gel'fand, I. N. Bernshtein, and S. I. Gel'fand, "Models of representations of compact Lie groups," Preprint IPM No. 39 (1974).
2. I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, Usp. Matem. Nauk, 29, No. 3, 185-186 (1974).
3. S. Z. Sternberg, Lectures on Differential Geometry, Panther, New York (1964).

[^0]: ©1976 Plenum Publishing Corporation, 227 West 17 th Street, New York, N. Y. 10011 . No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher, A copy of this article is available from the publisher for $\$ 15.00$.

