DIFFERENTIAL OPERATORS ON A CUBIC CONE

I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand

Consider in the space C³ with the coordinates x_1 , x_2 , x_3 the surface X defined by the equation $x_1^3 + x_2^3 + x_3^3 = 0$. We prove the following theorem:

THEOREM 1. Let D(X) be the ring of regular differential operators on X, and D_a the ring of germs at the point 0 of analytic operators on X. Then

1°. the rings D(X) and D_a are not Noetherian;

2°. for any natural number k the rings D(X) and D_a are not generated by the subspaces D_k (D_{ak} , respectively) of operators of order not exceeding k. In particular, the rings D(X) and D_a are not finitely generated.

Theorem 1 answers questions raised in Malgrange's survey article [1]. The ring D(X) has an interesting structure (see Proposition 1).

We denote by E(X) the ring of regular functions on $X(E(X) = C[x_1, x_2, x_3]/[x_1^3 + x_2^3 + x_3^3])$ and by D(X) the ring of regular differential operators on X. By D_k we denote the space of operators of order not exceeding k. Setting $a_{\lambda}(f)(x) = f(\lambda x)$ and $b_{\lambda}(\mathcal{D})(f) = a_{\lambda}(Da_{\lambda-1}(f))$ for $\lambda \in C^*$ we define an action of the group C^* in the spaces E(X) and D(X). It is clear that $E(X) = \bigoplus_{i=0}^{\infty} E^i(X)$, where $E^i(X)$ is the finite-dimensional space of homogenous functions of degree *i* on X. We call an operator $\mathcal{D} \in D(X)$ homogenous of degree *i* ($i \in \mathbb{Z}$) if $b_{\lambda}(\mathcal{D}) = \lambda^i \mathcal{D}$ for all $\lambda \in \mathbb{C}^*$ (equivalent definition: $\mathcal{D}(E^n(X)) \subset E^{n+i}(X)$ for all *n*). We denote by D^i the space of all such operators and set $D^i_k = D^i \cap D_k$.

LEMMA 1. a)
$$D_k = \bigoplus_{i=-\infty}^{\infty} D_k^i$$
; b) $D(X) = \bigoplus_{i=-\infty}^{\infty} D^i$.

PROOF. a) Let $\mathcal{D} \in D_k$. We define the operator $\mathcal{D}^{(i)}$ in E(X) as follows: if $f = E^n(X)$, then $\mathcal{D}^{(i)}f = (\mathcal{D}f)^{(n+i)}$ (that is, the component of degree of homogeneity n + i of the function $\mathcal{D}f$).

It is easy to verify that $\mathscr{D}^{(i)} \in D_k$ and therefore $\mathscr{D}^{(i)} \in D_k^i$. Since any operator of order not exceeding k is defined by its values on the space $\bigoplus_{j=0}^{k} E^j(X)$, it follows that $\mathscr{D}^{(i)}$ is not equal to 0 for finite *i*. Clearly $\mathscr{D} = \Sigma \mathscr{D}^{(i)}$.

b) This statement follows directly from a):

We set $I = x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3}$. PROPOSITION 1. 1°. $D^i = 0$ for i < 0. 2°. D^0 is generated by the elements 1, I, I², ... 3°. $D_k^1/(D_{k-1}^1 + ID_{k-1}^1) = C^3$ (k = 0, 1, 2, ...). We derive Theorem 1 from Proposition 1. It is easy to verify that $D_k \cdot D_l \subset D_{k+1}$ and $D^i \cdot D^j \subset D^{i+j}$. Moreover, $\mathfrak{T} \subset D^i$ then $[I - \mathfrak{T}] = I\mathfrak{T}$

if $\mathcal{D} \in D^i$, then $[I, \mathcal{D}] = I\mathcal{D} - \mathcal{D}I = i\mathcal{D}$. For any natural number k we set $J_k = \sum_{n \ge 0} I^n D_k^1 + \sum_{i \ge 2} D^i$ and

 $A_k = D^0 + J_k$. It follows from Proposition 1 and the formulae above that J_k is a two-sided ideal in the ring D(X), and that A_k is a subring of D(X).

If l > k, then $J_l \stackrel{\supset}{\neq} J_k$. From this it follows that the ring D(X) is not Noetherian. Since $A_l \stackrel{\supset}{\neq} A_k \supset D_k$ for l > k, the ring D(X) is not generated by the subspace D_k .

Consider the ring D_a of germs at 0 of analytic differential operators on X. The group C* acts in this ring. Every element can be expanded in a convergent series $\mathscr{D} = \sum_{i=-\infty}^{\infty} \mathscr{D}^{(i)}$, where $\mathscr{D}^{(i)} \in D_a$ is a homogenous operator of degree *i*, and the order of $\mathscr{D}^{(i)}$ does not exceed that of \mathscr{D} (specifically, $\mathscr{D}^{(i)} = \frac{1}{2\pi i} \int b_{\lambda}(\mathscr{D}) \lambda^{-i-1} d\lambda$, where the integral is taken over the unit circle in in the λ -plane).

If $f \in E^n(X)$, then $\mathscr{D}^{(i)} f$ is a homogenous analytic function of degree of homogeneity n + i; hence $\mathscr{D}^{(i)} f \in E^{n+i}(X)$. Therefore we may assume that $\mathscr{D}^{(i)} \in D^i \subset D(X)$ (it is clear that if $\mathscr{D}^{(i)}f = 0$ for all $f \in E(X)$, then $\mathscr{D}^{(i)} = 0$). It follows from Proposition 1 that every operator $\mathscr{D} \in D_a$ can

be expanded in a series
$$\mathscr{D} = \sum_{i=0}^{\infty} \mathscr{D}^{(i)}$$
, where $\mathscr{D}^{(i)} \in D^i$.

Let $J_{ak} = \{ \mathscr{D} \in D_a \mid \mathscr{D}^{(i)} \in J_k \text{ for all } i \}$, and let $A_{ak} = D^0 + J_{ak}$. Then J_{ak} is a two-sided ideal in the ring D_a , and A_{ak} is a subring of D_a . Since $J_{al} \stackrel{\supset}{\neq} J_{ak}$ and $A_{al} \stackrel{\supset}{\neq} A_{ak} \supset D_{ak}$ for l > k, it follows that D_a is not Noetherian and is not generated by a subspace D_{ak} , where k is any natural number. Theorem 1 is now proved.

PROOF OF PROPOSITION 1. Consider the non-singular algebraic manifold $X_0 = X \setminus 0$.

LEMMA 2. a) The embedding of X_0 in X induces an isomorphism $E(X) \rightarrow E(X_0)$ of rings of regular functions on X and X_0 .

b) The embedding of X_0 in X induces an isomorphism $D(X) \rightarrow D(X_0)$ of regular differential operator rings.

PROOF. a) follows from the fact that X is a normal manifold and that codim $\{0\}$ in X is greater than 1. Since X is an affine manifold, a) implies b).

Denote by \mathcal{D}_{k}^{i} the sheaf of germs of the differential operators \mathcal{D} on X_{0} of order not exceeding k that satisfy the condition $[I, \mathcal{D}] = i\mathcal{D}$. Then $D_{k}^{i} = \Gamma(X_{0}, \mathcal{D}_{k}^{i})$.

Consider the projective manifold $\overline{X} = X_0/C^*$. It is known that \overline{X} is an elliptic curve. By π we denote the natural projection $\pi: X_0 \to \overline{X}$.

Consider the sheaves $\Delta_k^i = \pi_* (\mathcal{D}_k^i)$ on the manifold \overline{X} . It is clear that $\Gamma(\overline{X}, \Delta_k^i) = \Gamma(X_0, \mathcal{D}_k^i) = D_k^i$.

By $\tilde{\mathcal{Z}}$ we denote the sheaf of functions on X_0 that are homogenous of degree 1, and we set $\mathcal{L} = \pi_*(\tilde{\mathcal{L}})$; \mathcal{L} is a sheaf on \overline{X} .

The following facts are easy to verify:

1°. \mathscr{L} and Δ_k^i are sheaves of modules over the sheaf of rings $O_{\overline{X}}$.

2°. \mathcal{L} is an invertible sheaf; $\Gamma(\overline{X}, \mathcal{L}) = \mathbb{C}^3$.

3° $\Delta_k^i = \Delta_k^0 \otimes \mathcal{L}^i$, this isomorphism being consistent with the natural embeddings $\Delta_k^i \to \Delta_l^i$ for l > k.

4°. Set $\sigma_k = \Delta_k^0 / \Delta_{k-1}^0$. Then $\sigma_k = S^k(\sigma_1)$ (where S^k is the k-th symmetric power of the sheaf).

5°. By \widetilde{N} we denote a subsheaf in \mathscr{D}_1^0 , whose sections on every neighbourhood are defined as $\{f(x)I\}$, where f(x) is a function of degree of homogeneity 0. Then the sheaf $N = \pi_*(\widetilde{N})$ on \overline{X} is a subsheaf of Δ_1^0 . We regard N as a subsheaf of $\sigma_1 = \Delta_1^0 / \Delta_0^0$.

6°. The map $1 \mapsto I$ defines the isomorphism of sheaves $O_{\overline{X}} \xrightarrow{\sim} N$.

7°. Set $\mathscr{K} = \sigma_1 / N$. Then \mathscr{K} is an invertible sheaf naturally isomorphic to the tangent sheaf to \overline{X} .

The tangent sheaf on an elliptic curve \overline{X} is known to be isomorphic to $O_{\overline{X}}$. We fix a certain non-zero global section k of \mathscr{K} .

LEMMA 3. For every n > 0 there exists an exact sequence V_n of sheaves on \overline{X}

$$0 \to N^n \xrightarrow{\varphi} \sigma_n \xrightarrow{\psi} \mathscr{K} \otimes \sigma_{n-1} \to 0$$

Here the diagram

(1)
$$\begin{array}{cccc} 0 \to N^n & \to \sigma_n & \to \mathscr{K} \otimes \sigma_{n-1} \to 0 \\ \downarrow & \downarrow & \downarrow \\ 0 \to N^{n+1} \to \sigma_{n+1} \to \mathscr{K} \otimes \sigma_n & \to 0, \end{array}$$

where every vertical homomorphism is obtained by multiplying $I \in \Gamma(X, N)$ by the section, commutes.

PROOF. Construct the maps φ and ψ in a neighbourhood $U \subset \overline{X}$. Let *I* be a global generating element of the sheaf *N*, and let \widetilde{k} be a local section over *U* of the sheaf σ_1 which becomes $k \in \Gamma(\overline{X}, \mathscr{H})$ under the map $\sigma_1 \to \mathscr{H}$.

Since the sequence $0 \to N \to \sigma_1 \to \mathscr{K} \to 0$ is exact, it follows that the restriction of σ_1 to U is a free sheaf over $O_{\overline{X}}$ with the generators I and \widetilde{k} . Then $\sigma_n = S^n(\sigma_1)$ is a free sheaf on U with the generators $k^i I^{n-i}$ $(i = 0, 1, \ldots, n)$. We define the maps φ and ψ by the formulae: $\varphi(I^n) = I^n, \ \psi(\widetilde{k}^i I^{n-i}) = ik \otimes (\widetilde{k}^{i-1} I^{n-i}).$

It is easy to verify that the sequence (V_n) is exact. It is also clear that φ does not depend on the choice of \widetilde{k} . Let us prove that ψ does not depend on the choice of \widetilde{k} . In fact, let \hat{k} be another section of the sheaf σ_2 on U. Then $\hat{k} = \widetilde{k} + fI$, where $f \in \Gamma(U, O_X)$,

$$\begin{split} \psi\left(\hat{k}^{i}I^{n-i}\right) &= \psi\left(\left(\sum_{j=0}^{i}C_{i}^{j}\widetilde{k}^{i-j}f^{j}\right)I^{n-i+j}\right) = k \otimes \sum_{j}C_{i}^{j}\left(i-j\right)\widetilde{k}^{i-j-1}I^{n-i+j}f^{j} = \\ &= i\left(k \otimes \left(\hat{k}+fI\right)^{i-1}I^{n-i}\right). \end{split}$$

So the exact sequence (V_n) is defined globally.

It follows from the construction of the homomorphisms φ and ψ that the diagram (1) is commutative. This proves Lemma 3.

We are interested in the spaces $H^0(\overline{X}, \sigma_k) = \Gamma(\widetilde{X}, \sigma_k)$ and $H^1(\overline{X}, \sigma_k)$. LEMMA 4. dim $H^0(\overline{X}, \sigma_1) = 1$.

PROOF. Every first-order operator \mathscr{D} can be split uniquely into a sum $\mathscr{D} = f + \mathscr{D}'$, where f is the operator of multiplication by the function $f = \mathscr{D}(1)$ and $\mathscr{D}' = \mathscr{D} - f$ is differentiation in the ring of functions. From this it follows that $\Delta_1^0 = \sigma_1 \oplus \Delta_0^0$. Since $\Gamma(\overline{X}, \Delta_0^0) = \mathbf{C}$, we need only show that $\Gamma(\overline{X}, \Delta_1^0)$ is two-dimensional.

Let $\mathscr{D} \in D_1^0$. Then $\mathscr{D} = f + \mathscr{D}'$, where $f = \mathscr{D}(1)$, and where f and \mathscr{D} have the degree of homogeneity 0; in particular, $f \in \mathbb{C}$.

Let us prove that $\mathscr{D}' = cI$ where $c \in \mathbb{C}$. Set $f'_1 = \mathscr{D}' x_1$, $f'_2 = \mathscr{D}' x_2$, $f'_3 = \mathscr{D}' x_3$. Then $f'_i \in E^1(X)$ and we can extend them to linear functions f_i on \mathbb{C}^3 . The operator \mathscr{D}' coincides with $\widetilde{\mathscr{D}} = f_1 \frac{\partial}{\partial x_1} + f_2 \frac{\partial}{\partial x_2} + f_3 \frac{\partial}{\partial x_3}$. Therefore $\widetilde{\mathscr{D}}(x_1^3 + x_2^3 + x_3^3) = 3(f_2x_1^2 + f_2x_2^2 + f_3x_3^2) = c(x_1^3 + x_2^3 + x_3^3)$, where $c \in \mathbb{C}[x_1, x_2, x_3]$ (here equality is considered in the ring $\mathbb{C}[x_1, x_2, x_3]$). Since f_1, f_2, f_3 are linear functions, we have $c \in \mathbb{C}$ and $f_i = cx_i$, that is, $\mathscr{D}' = cI$. So we have shown that every operator $\mathcal{D} \in D_1^0$ is of the form $\mathcal{D} = c_1 + cI$, where $c_1, c \in C$. The lemma is now proved.

We shall use the following well-known facts on the cohomology of coherent sheaves on an elliptic curve (see [2]).

1°. If \mathscr{F} is a coherent sheaf on \overline{X} , then $H^i(\overline{X}, \mathscr{F})$ for $i \ge 2$.

2°. dim $H^{0}(\overline{X}, O_X) = \dim H^{1}(\overline{X}, O_X) = 1$.

3°. If \mathcal{L} is an invertible sheaf on \overline{X} and dim $H^0(\overline{X}, \mathcal{L}) > 1$, then $H^1(\overline{X}, \mathcal{L}) = 0$ and $H^0(\overline{X}, \mathcal{L}^i) = 0$ for i < 0.

LEMMA 5. Consider the exact sequence of sheaves

$$0 \to N^n \to \sigma_n \to \mathscr{K} \otimes \sigma_{n-1} \to 0 \tag{V_n}.$$

Then dim $H^{0}(\overline{X}, \sigma_{n}) = 1$, and the boundary homomorphism $\delta_{n}: H^{0}(\overline{X}, \mathscr{K} \otimes \sigma_{n-1}) \to H^{1}(\overline{X}, N^{n})$ is an isomorphism.

PROOF. We prove the lemma by induction on n.

Let n = 1. We write out the exact cohomology sequence

$$\begin{array}{ccc} 0 \to H^{0}\left(\overline{X}, N\right) \xrightarrow{\widetilde{\psi}_{1}} H^{0}\left(\overline{X}, \, \sigma_{1}\right) \xrightarrow{\widetilde{\psi}_{1}} H^{0}\left(\overline{X}, \, \mathscr{K}\right) \xrightarrow{\delta_{1}} \\ & \to H^{1}\left(\overline{X}, \, N\right) \xrightarrow{\psi'_{1}} H^{1}\left(\overline{X}, \, \sigma_{1}\right) \xrightarrow{\psi'_{1}} H^{1}\left(\overline{X}, \, \mathscr{K}\right) \to 0. \end{array}$$

Recall that N and \mathscr{K} are isomorphic to $O_{\overline{X}}$. Hence $\widetilde{\varphi}_1$ is an isomorphism (because dim $H^0(X, \sigma_2) = \dim H^0(\overline{X}, N) = 1$). This means that $\widetilde{\psi}_1 = 0$. Therefore δ_1 is an isomorphism. Hence $\varphi'_1 = 0$, and ψ'_1 is an isomorphism.

Suppose that the lemma has been proved for the sequence V_n ; let us prove it for V_{n+1} . We write out the exact cohomology sequences that correspond to the sequences V_n and V_{n+1} , and connect them according to diagram (1) (see Lemma 3)

It is clear that η is an isomorphism. By the inductive hypothesis δ_n is an isomorphism. Since $\eta \delta_n = \delta_{n+1} \tau \neq 0$, it follows that $\delta_{n+1} \neq 0$. Here $\mathscr{K} \otimes \sigma_n \approx \sigma_n$, and by the inductive hypothesis dim $H^0(\overline{X}, \mathscr{K} \otimes \sigma_n) = 1$. Therefore δ_{n+1} is an isomorphism. It is now clear that $\widetilde{\varphi}_{n+1}$ is an isomorphism and that dim $H^0(\overline{X}, \sigma_{n+1}) = 1$. Lemma 5 is now proved.

Statement 2° of Proposition 1 is a direct consequence of this lemma. For it follows at once from the exact sequence $0 \to \Delta_{n-1}^0 \to \Delta_n^0 \to \sigma_n \to 0$ that dim $D_n^0 \leq \dim D_{n-1}^0 + 1$ and therefore dim $D_n^0 \leq n + 1$. Hence D_n^0 is generated by the elements 1, I, I^2, \ldots, I^n . LEMMA 6. 1°. Let i < 0. Then a) $H^{0}(\overline{X}, \sigma_{n} \otimes \mathcal{L}^{i}) = 0$; b) $H^{0}(X, \Delta_{n}^{i}) = 0$.

Bearing in mind that $H^{0}(\overline{X}, \mathcal{L}^{i}) = 0$, it is easy to prove the lemma by induction over n.

Lemma 6 implies Statement 1° of Proposition 1.

LEMMA 7. For any n (n = 0, 1, ...) we have

1°. $H^1(\overline{X}, \sigma_n \otimes \mathcal{L}) = 0.$

2°. We consider the natural map θ : $\sigma_{n-1} \otimes \mathcal{L} \to \sigma_n \otimes \mathcal{L}$ (multiplication by 1) and denote by θ' the corresponding cohomology map

 θ' : $H^{0}(\overline{X}, \sigma_{n-1} \otimes \mathcal{L}) \to H^{0}(\overline{X}, \sigma_{n} \otimes \mathcal{L})$. Then θ' is an embedding, and $H^{0}(\overline{X}, \sigma_{n} \otimes \mathcal{L})/\mathrm{Im} \; \theta'$ is three-dimensional.

$$3^{\circ}$$
. $H^1(\overline{X}, \Delta_n^1) = 0$

4°. dim $(D_n^1/(D_{n-1}^1 + ID_{n-1}^1)) = 3.$

PROOF. From the exact sequence of sheaves

 $0 \to \sigma_{n-1} \, \otimes \, \mathcal{L} \xrightarrow{\theta} \sigma_n \, \otimes \, \mathcal{L} \to \, \mathscr{R}^n \, \otimes \, \mathcal{L} \to \, 0$

we obtain the exact cohomology sequence

$$\begin{array}{ccc} 0 \longrightarrow H^{0}\left(\overline{X}, \ \sigma_{n-1} \otimes \mathcal{L}\right) \xrightarrow{\theta'} H^{0}\left(\overline{X}, \ \sigma_{n} \otimes \mathcal{L}\right) \longrightarrow H^{0}\left(\overline{X}, \ \mathscr{K}^{n} \otimes \mathcal{L}\right) \longrightarrow \\ \longrightarrow H^{1}\left(\overline{X}, \ \sigma_{n-1} \otimes \mathcal{L}\right) \longrightarrow H^{1}\left(\overline{X}, \ \sigma_{n} \otimes \mathcal{L}\right) \longrightarrow H^{1}\left(\overline{X}, \ \mathscr{K}^{n} \otimes \mathcal{L}\right) \longrightarrow 0. \end{array}$$

Since $H^1(\overline{X}, \mathscr{K}^n \otimes \mathscr{L}) = H^1(\overline{X}, \mathscr{L}) = 0$, we find by induction on *n* that $H^1(\overline{X}, \sigma_n \otimes \mathscr{L}) = 0$ (n = 0, 1, ...). Here θ' is an embedding and $H^0(\overline{X}, \sigma_n \otimes \mathscr{L})/\operatorname{Im} \theta' = H^0(\overline{X}, \mathscr{K}^n \otimes \mathscr{L}) = H^0(\overline{X}, \mathscr{L}) = \mathbb{C}^3$.

From the exact cohomology sequence corresponding to the exact sequence of sheaves

$$0 \to \Delta_{n-1}^1 \to \Delta_n^1 \to \sigma_n \otimes \mathscr{L} \to 0$$

we find by induction on *n* that $H^1(\overline{X}, \Delta'_n) = 0$ and $D_n^1/D_{n-1}^1 = H^0$ $(\overline{X}, \sigma_n \otimes \mathcal{L})$ (n = 0, 1, ...). Therefore $D_n^1/(D_{n-1}^1 + ID_{n-1}^1) = H^0$ $(\overline{X}, \sigma_n \otimes \mathcal{L})/\operatorname{Im} \theta' = \mathbb{C}^3$. The lemma is now proved.

This lemma contains Statement 3° of Proposition 1.

NOTE. By the same method as in Lemma 7 we can show that $D_k^i = x_1 D_k^{i-1} + x_2 D_k^{i-1} + x_3 D_k^{i-1}$ for i > 1 and for any k.

References

- [1] B. Malgrange, Analytic spaces.
 - = Uspekhi Mat. Nauk 27 : 1 (1972), 147-184.
- [2] J. Serre, Groupes algébriques et corps de classes, Hermann & Cie, Paris 1959.