DIFFERENTIAL OPERATORS ON A CUBIC CONE

I. N. Bernstein, I. M. Gel'fand, and S. I. Gel'fand

Consider in the space \mathbf{C}^{3} with the coordinates x_{1}, x_{2}, x_{3} the surface X defined by the equation $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=0$. We prove the following theorem:

THEOREM 1. Let $D(X)$ be the ring of regular differential operators on X, and D_{a} the ring of germs at the point 0 of analytic operators on X. Then
1°. the rings $D(X)$ and D_{a} are not Noetherian;
2°. for any natural number k the rings $D(X)$ and D_{a} are not generated by the subspaces $D_{k}\left(D_{a k}\right.$, respectively) of operators of order not exceeding k. In particular, the rings $D(X)$ and D_{a} are not finitely generated.

Theorem 1 answers questions raised in Malgrange's survey article [1]. The ring $D(X)$ has an interesting structure (see Proposition 1).

We denote by $E(X)$ the ring of regular functions on $X\left(E(X)=\mathrm{C}\left[x_{1}, x_{2}, x_{3}\right] /\left[x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right]\right)$ and by $D(X)$ the ring of regular differential operators on X. By D_{k} we denote the space of operators of order not exceeding k. Setting $a_{\lambda}(f)(x)=f(\lambda x)$ and $b_{\lambda}(\mathscr{D})(f)=a_{\lambda}\left(D a_{\lambda-1}(f)\right)$ for $\lambda \in \mathbf{C}^{*}$ we define an action of the group C^{*} in the spaces $E(X)$ and $D(X)$. It is clear that $E(X)=\underset{i=0}{\infty} E^{i}(X)$, where $E^{i}(X)$ is the finite-dimensional space of homogenous functions of degree i on X. We call an operator $\mathscr{D} \in D(X)$ homogenous of degree $i(i \in \mathbf{Z})$ if $b_{\lambda}(\mathscr{D})=\lambda^{i} \mathscr{D}$ for all $\lambda \in \mathbf{C}^{*}$ (equivalent definition: $\mathscr{D}\left(E^{n}(X)\right) \subset E^{n+i}(X)$ for all n). We denote by D^{i} the space of all such operators and set $D_{k}^{i}=D^{i} \cap D_{k}$.

LEMMA 1. a) $D_{k}=\stackrel{\infty}{\oplus} \underset{i=-\infty}{\infty} D_{k}^{i}$; b) $D(X)=\underset{i=-\infty}{\oplus} D^{i}$.
PROOF. a) Let $\mathscr{D} \in D_{k}$. We define the operator $\mathscr{D}^{(i)}$ in $E(X)$ as follows: if $f=E^{n}(X)$, then $\mathscr{D}^{(i)} f=(\mathscr{D} f)^{(n+i)}$ (that is, the component of degree of homogeneity $n+i$ of the function $\mathscr{D} f$).

It is easy to verify that $\mathscr{D}^{(i)} \in D_{k}$ and therefore $\mathscr{D}^{(i)} \in D_{k}^{i}$. Since any operator of order not exceeding k is defined by its values on the space $\oplus_{j=0}^{h} E^{j}(X)$, it follows that $\mathscr{D}^{(i)}$ is not equal to 0 for finite i. Clearly $\mathscr{D}=\Sigma \mathscr{D}^{(i)}$.
b) This statement follows directly from a):

We set $I=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+x_{3} \frac{\partial}{\partial x_{3}}$.
PROPOSITION 1 .
$1^{\circ} . D^{i}=0$ for $i<0$.
2°. D^{0} is generated by the elements $1, I, I^{2}, \ldots$
$3^{\circ} . D_{k}^{1} /\left(D_{k-1}^{1}+I D_{k-1}^{1}\right)=C^{3}(k=0,1,2, \ldots)$.
We derive Theorem 1 from Proposition 1.
It is easy to verify that $D_{k} \cdot D_{l} \subset D_{k+1}$ and $D^{i} \cdot D^{j} \subset D^{i+j}$. Moreover, if $\mathscr{D} \in D^{i}$, then $[I, \mathscr{D}]=I \mathscr{D}-\mathscr{D} I=i \mathscr{D}$.

For any natural number k we set $J_{k}=\sum_{n \geqslant 0} I^{n} D_{k}^{1}+\sum_{i \geqslant 2} D^{i}$ and $A_{k}=D^{0}+J_{k}$. It follows from Proposition 1 and the formulae above that J_{k} is a two-sided ideal in the ring $D(X)$, and that A_{k} is a subring of $D(X)$.

If $l>k$, then $J_{l} \stackrel{\ni}{\neq} J_{k}$. From this it follows that the ring $D(X)$ is not Noetherian. Since $A_{l} \stackrel{\supset}{\neq} A_{k} \supset D_{k}$ for $l>k$, the ring $D(X)$ is not generated by the subspace D_{k}.

Consider the ring D_{a} of germs at 0 of analytic differential operators on X.
The group C^{*} acts in this ring. Every element can be expanded in a convergent series $\mathscr{D}=\sum_{i==-\infty}^{\infty} \mathscr{D}^{(i)}$, where $\mathscr{D}^{(i)} \in D_{a}$ is a homogenous operator of degree i, and the order of $\mathscr{D}^{(i)}$ does not exceed that of \mathscr{D} (specifically, $\mathscr{D}^{(i)}=\frac{1}{2 \pi i} \int b_{\lambda}(\mathscr{D}) \lambda^{-i-i} d \lambda$, where the integral is taken over the unit circle in in the λ-plane).

If $f \in E^{n}(X)$, then $\mathscr{D}^{(i)} f$ is a homogenous analytic function of degree of homogeneity $n+i$; hence $\mathscr{D}^{(i)} f \in E^{n+i}(X)$. Therefore we may assume that $\mathscr{D}^{(i)} \in D^{i} \subset D(X)$ (it is clear that if $\mathscr{D}^{(i)} f=0$ for all $f \in E(X)$, then $\mathscr{D}^{(i)}=0$). It follows from Proposition 1 that every operator $\mathscr{D} \in D_{a}$ can be expanded in a series $\mathscr{D}=\sum_{i=0}^{\infty} \mathscr{D}^{(i)}$, where $\mathscr{D}^{(i)} \in D^{i}$.

Let $J_{a k}=\left\{\mathscr{D} \in D_{a} \mid \mathscr{D}^{(i)} \in J_{k}\right.$ for all $\left.i\right\}$, and let $A_{a k}=D^{0}+J_{a k}$. Then $J_{a k}$ is a two-sided ideal in the ring D_{a}, and $A_{a k}$ is a subring of D_{a}. Since $J_{a l} \stackrel{\supset}{\neq} J_{a k}$ and $A_{a l} \stackrel{\supset}{\neq} A_{a k} \supset D_{a k}$ for $l>k$, it follows that D_{a} is not Noetherian and is not generated by a subspace $D_{a k}$, where k is any natural number. Theorem 1 is now proved.

PROOF OF PROPOSITION 1. Consider the non-singular algebraic manifold $X_{0}=X \backslash 0$.

LEMMA 2. a) The embedding of X_{0} in X induces an isomorphism $E(X) \rightarrow E\left(X_{0}\right)$ of rings of regular functions on X and X_{0}.
b) The embedding of X_{0} in X induces an isomorphism $D(X) \rightarrow D\left(X_{0}\right)$ of regular differential operator rings.

PROOF. a) follows from the fact that X is a normal manifold and that codim $\{0\}$ in X is greater than 1. Since X is an affine manifold, a) implies b).

Denote by \mathscr{D}_{h}^{i} the sheaf of germs of the differential operators \mathscr{D}^{D} on X_{0} of order not exceeding k that satisfy the condition $[I, \mathscr{Z}]=i \mathscr{D}$. Then $D_{k}^{i}=\Gamma\left(X_{0}, \quad \mathscr{D}_{k}^{i}\right)$.

Consider the projective manifold $\bar{X}=X_{0} / \mathrm{C}^{*}$. It is known that \bar{X} is an elliptic curve. By π we denote the natural projection $\pi: X_{0} \rightarrow \bar{X}$.

Consider the sheaves $\Delta_{k}^{i}=\pi_{*}\left(\mathscr{D}_{k}^{i}\right)$ on the manifold \bar{X}. It is clear that $\Gamma\left(\bar{X}, \Delta_{k}^{i}\right)=\Gamma\left(X_{0}, \mathscr{D}_{k}^{i}\right)=D_{k}^{i}$.

By $\tilde{\mathscr{L}}$ we denote the sheaf of functions on X_{0} that are homogenous of degree 1 , and we set $\mathscr{L}=\pi_{*}(\widetilde{\mathscr{L}}) ; \mathscr{L}$ is a sheaf on \bar{X}.

The following facts are easy to verify:
$1^{\circ} . \mathscr{L}$ and Δ_{k}^{i} are sheaves of modules over the sheaf of rings $O_{\bar{X}}$.
$2^{\circ} . \mathscr{L}$ is an invertible sheaf; $\Gamma(\bar{X}, \mathscr{L})=\mathrm{C}^{3}$.
$3^{\circ} \Delta_{k}^{i}=\Delta_{k}^{0} \otimes \mathscr{L}^{i}$, this isomorphism being consistent with the natural embeddings $\Delta_{k}^{i} \rightarrow \Delta_{l}^{i}$ for $l>k$.
4°. Set $\sigma_{k}=\Delta_{k}^{0} / \Delta_{k-1}^{0}$. Then $\sigma_{k}=S^{k}\left(\sigma_{1}\right)$ (where S^{k} is the k-th symmetric power of the sheaf).
5°. By \widetilde{N} we denote a subsheaf in \mathscr{D}_{1}^{0}, whose sections on every neighbourhood are defined as $\{f(x) I\}$, where $f(x)$ is a function of degree of homogeneity 0 . Then the sheaf $N=\pi_{*}(\tilde{N})$ on \bar{X} is a subsheaf of Δ_{1}^{0}. We regard N as a subsheaf of $\sigma_{1}=\Delta_{1}^{0} / \Delta_{0}^{0}$.
6°. The map $1 \mapsto I$ defines the isomorphism of sheaves $O_{\bar{X}} \xrightarrow{\sim} N$.
7°. Set $\mathscr{K}=\sigma_{1} / N$. Then \mathscr{K} is an invertible sheaf naturally isomorphic to the tangent sheaf to \bar{X}.

The tangent sheaf on an elliptic curve \bar{X} is known to be isomorphic to $O_{\bar{X}}$. We fix a certain non-zero global section k of $\mathscr{U K}$.

LEMMA 3. For every $n>0$ there exists an exact sequence V_{n} of sheaves on \bar{X}

$$
0 \rightarrow N^{n} \xrightarrow{\varphi} \sigma_{n} \xrightarrow{\psi} \mathscr{A} \otimes \sigma_{n-1} \rightarrow 0 .
$$

Here the diagram

$$
\begin{align*}
0 \rightarrow & N^{n} \rightarrow \sigma_{n} \rightarrow d \mathscr{K} \otimes \sigma_{n-1} \rightarrow 0 \tag{1}\\
& \downarrow \\
& \downarrow \\
0 \rightarrow & \downarrow \\
N^{n+1} \rightarrow & \sigma_{n+1} \rightarrow \mathscr{K} \otimes \sigma_{n} \rightarrow 0
\end{align*}
$$

where every vertical homomorphism is obtained by multiplying $I \in \Gamma(\bar{X}, N)$ by the section, commutes.

PROOF. Construct the maps φ and ψ in a neighbourhood $U \subset \bar{X}$. Let I be a global generating element of the sheaf N, and let \widetilde{k} be a local section over U of the sheaf σ_{1} which becomes $k \in \Gamma(\bar{X}, \tilde{K})$ under the map $\sigma_{1} \rightarrow \ddots \nsim$.

Since the sequence $0 \rightarrow N \rightarrow \sigma_{1} \rightarrow \tilde{K} \rightarrow 0$ is exact, it follows that the restriction of σ_{1} to U is a free sheaf over $O_{\bar{X}}$ with the generators I and \widetilde{k}. Then $\sigma_{n}=S^{n}\left(\sigma_{1}\right)$ is a free sheaf on U with the generators $k^{i} I^{n-i}$ ($i=0,1, \ldots, n$). We define the maps φ and ψ by the formulae: $\varphi\left(I^{n}\right)=I^{n}, \psi\left(\widetilde{k}^{i} I^{n-i}\right)=i k \otimes\left(\widetilde{k^{i-1}} I^{n-i}\right)$.

It is easy to verify that the sequence $\left(V_{n}\right)$ is exact. It is also clear that φ does not depend on the choice of \widetilde{k}. Let us prove that ψ does not depend on the choice of \tilde{k}. In fact, let \hat{k} be another section of the sheaf σ_{2} on U. Then $\hat{k}=\tilde{k}+f I$, where $f \in \Gamma\left(U, O_{X}\right)$,

$$
\begin{aligned}
& \psi\left(\hat{k}^{i} I^{n-i}\right)-=\psi\left(\left(\sum_{j=0}^{i} C_{i}^{i} \widetilde{k}^{i-j} f^{j}\right) I^{n-i+-j}\right)=k \otimes \sum_{j} C_{i}^{j}(i-j) \widetilde{k}^{i-j--1} I^{n-i+j} f^{j}= \\
&=i\left(k \otimes(\hat{k}+f I)^{i-1} I^{n-i}\right)
\end{aligned}
$$

So the exact sequence (V_{n}) is defined globally.
It follows from the construction of the homomorphisms φ and ψ that the diagram (1) is commutative. This proves Lemma 3.

We are interested in the spaces $H^{0}\left(\bar{X}, \sigma_{k}\right)=\Gamma\left(\widetilde{X}, \sigma_{k}\right)$ and $H^{1}\left(\bar{X}, \sigma_{k}\right)$.
LEMMA 4. $\operatorname{dim} H^{0}\left(\bar{X}, \sigma_{1}\right)=1$.
PROOF. Every first-order operator \mathscr{D} can be split uniquely into a sum $\mathscr{D}=f+\mathscr{D}^{\prime}$, where f is the operator of multiplication by the function $f=\mathscr{D}(1)$ and $\mathscr{D}^{\prime}=\mathscr{D}-f$ is differentiation in the ring of functions. From this it follows that $\Delta_{1}^{0}=\sigma_{1} \oplus \Delta_{0}^{0}$. Since $\Gamma\left(\bar{X}, \Delta_{0}^{0}\right)=\mathrm{C}$, we need only show that $\Gamma\left(\bar{X}, \Delta_{1}^{0}\right)$ is two-dimensional.

Let $\mathscr{L} \in D_{1}^{0}$. Then $\mathscr{D}=f+\mathscr{D}^{\prime}$, where $f=\mathscr{D}(1)$, and where f and \mathscr{D} have the degree of homogeneity 0 ; in particular, $f \in \mathbf{C}$.

Let us prove that $\mathscr{D}^{\prime}=c I$ where $c \in \mathbf{C}$. Set $f_{1}^{\prime}=\mathscr{D}^{\prime} x_{1}, f_{2}^{\prime}=\mathscr{D}^{\prime} x_{2}$, $f_{3}^{\prime}=\mathscr{D}^{\prime} x_{3}$. Then $f_{i}^{\prime} \in E^{1}(X)$ and we can extend them to linear functions f_{i} on C^{3}. The operator \mathscr{D}^{\prime} coincides with $\overline{\mathscr{D}}=f_{1} \frac{\partial}{\partial x_{1}}+f_{2} \frac{\partial}{\partial x_{2}}+f_{3} \frac{\partial}{\partial x_{3}}$. Therefore $\mathscr{D}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)=3\left(f_{2} x_{1}^{2}+f_{2} x_{2}^{2}+f_{3} x_{3}^{2}\right)=c\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right)$, where $c \in \mathrm{C}\left[x_{1}, x_{2}, x_{3}\right]$ (here equality is considered in the ring $\mathrm{C}\left[x_{1}, x_{2}, x_{3}\right]$). Since f_{1}, f_{2}, f_{3} are linear functions, we have $c \in \mathbf{C}$ and $f_{i}=c x_{i}$, that is, $\mathscr{D}^{\prime}=c I$.

So we have shown that every operator $\mathscr{D} \in D_{1}^{0}$ is of the form $\mathscr{D}=c_{1}+c I$, where $c_{1}, c \in C$. The lemma is now proved.

We shall use the following well-known facts on the cohomology of coherent sheaves on an elliptic curve (see [2]).
1°. If \mathscr{F} is a coherent sheaf on \bar{X}, then $H^{i}(\bar{X}, \mathscr{F})$ for $i \geqslant 2$.
2°. $\operatorname{dim} H^{0}\left(\bar{X}, O_{X}\right)=\operatorname{dim} H^{1}\left(\bar{X}, O_{X}\right)=1$.
3°. If \mathscr{L} is an invertible sheaf on \bar{X} and $\operatorname{dim} H^{0}(\bar{X}, \mathscr{L})>1$, then $H^{1}(\bar{X}, \mathscr{L})=0$ and $H^{0}\left(\bar{X}, \mathscr{L}^{i}\right)=0$ for $i<0$.

LEMMA 5. Consider the exact sequence of sheaves

$$
\begin{equation*}
0 \rightarrow N^{n} \rightarrow \sigma_{n} \rightarrow \hat{\kappa} \kappa \otimes \sigma_{n-1} \rightarrow 0 \tag{n}
\end{equation*}
$$

Then $\operatorname{dim} H^{0}\left(\vec{X}, \sigma_{n}\right)=1$, and the boundary homomorphism $\delta_{n}: H^{0}\left(\bar{X}, \mathscr{K} \mathscr{K} \otimes \sigma_{n-1}\right) \rightarrow H^{1}\left(\bar{X}, N^{n}\right)$ is an isomorphism.

PROOF. We prove the lemma by induction on n.
Let $n=1$. We write out the exact cohomology sequence

$$
\begin{aligned}
0 \rightarrow H^{0}(\bar{X}, N) \xrightarrow{\widetilde{\Phi}_{1}} H^{0}\left(\bar{X}, \sigma_{1}\right) \xrightarrow{\widetilde{\Psi}_{1}} & H^{0}(\bar{X}, \tilde{\mathscr{K}}) \xrightarrow{\delta_{1}} \\
& \rightarrow H^{1}(\bar{X}, N) \xrightarrow{\Phi_{1}^{\prime}} H^{1}\left(\bar{X}, \sigma_{1}\right) \xrightarrow{\Psi_{1}^{\prime}} H^{1}(\bar{X}, \tilde{\mathscr{K}}) \rightarrow 0 .
\end{aligned}
$$

Recall that N and \mathscr{X} are isomorphic to $O_{\bar{X}}$. Hence $\widetilde{\varphi}_{1}$ is an isomorphism (because $\operatorname{dim} H^{0}\left(X, \sigma_{2}\right)=\operatorname{dim} H^{0}(\bar{X}, N)=1$). This means that $\widetilde{\psi_{1}}=0$. Therefore δ_{1} is an isomorphism. Hence $\varphi_{1}^{\prime}=0$, and ψ_{1}^{\prime} is an isomorphism.

Suppose that the lemma has been proved for the sequence V_{n}; let us prove it for V_{n+1}. We write out the exact cohomology sequences that correspond to the sequences V_{n} and V_{n+1}, and connect them according to diagram (1) (see Lemma 3)

It is clear that η is an isomorphism. By the inductive hypothesis δ_{n} is an isomorphism. Since $\eta \delta_{n}=\delta_{n+1} \tau \neq 0$, it follows that $\delta_{n+1} \neq 0$. Here $\mathscr{K} \otimes \sigma_{n} \approx \sigma_{n}$, and by the inductive hypothesis $\operatorname{dim} H^{0}\left(\bar{X}, \mathscr{K} \otimes \sigma_{n}\right)=1$. Therefore δ_{n+1} is an isomorphism. It is now clear that $\widetilde{\varphi}_{n+1}$ is an isomorphism and that $\operatorname{dim} H^{0}\left(\bar{X}, \sigma_{n+1}\right)=1$. Lemma 5 is now proved.

Statement 2° of Proposition 1 is a direct consequence of this lemma. For it follows at once from the exact sequence $0 \rightarrow \Delta_{n-1}^{0} \rightarrow \Delta_{n}^{0} \rightarrow \sigma_{n} \rightarrow 0$ that $\operatorname{dim} D_{n}^{0} \leqslant \operatorname{dim} D_{n-1}^{0}+1$ and therefore $\operatorname{dim} D_{n}^{0} \leqslant n+1$. Hence D_{n}^{0} is generated by the elements $1, I, I^{2}, \ldots, I^{n}$.

LEMMA 6. 1°. Let $i<0$. Then a) $H^{0}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}^{i}\right)=0$; b) $H^{0}\left(X, \Delta_{n}^{i}\right)=0$.

Bearing in mind that $H^{0}\left(\bar{X}, \mathscr{L}^{i}\right)=0$, it is easy to prove the lemma by induction over n.

Lemma 6 implies Statement 1° of Proposition 1.
LEMMA 7. For any $n(n=0,1, \ldots)$ we have
$1^{\circ} . H^{1}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right)=0$.
2°. We consider the natural map $\theta: \sigma_{n-1} \otimes \mathscr{L} \rightarrow \sigma_{n} \otimes \mathscr{L}$ (multiplication by I) and denote by θ^{\prime} the corresponding cohomology map $\theta^{\prime}: H^{0}\left(\bar{X}, \sigma_{n-1} \otimes \mathscr{L}\right) \rightarrow H^{0}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right)$. Then θ^{\prime} is an embedding, and $H^{0}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right) / \operatorname{Im} \theta^{\prime}$ is three-dimensional.
$3^{\circ} . H^{1}\left(\bar{X}, \Delta_{n}^{1}\right)=0$.
$4^{\circ} . \operatorname{dim}\left(D_{n}^{1} /\left(D_{n-1}^{1}+I D_{n-1}^{1}\right)\right)=3$.
PROOF. From the exact sequence of sheaves

$$
0 \rightarrow \sigma_{n-1} \otimes \mathscr{L} \xrightarrow{\theta} \sigma_{n} \otimes \mathscr{L} \rightarrow \mathscr{K}^{n} \otimes \mathscr{L} \rightarrow 0
$$

we obtain the exact cohomology sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(\bar{X}, \sigma_{n-1} \otimes \mathscr{L}\right) \xrightarrow{\theta^{\prime}} H^{0}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right) \rightarrow H^{0}\left(\bar{X}, \mathscr{\mathscr { K }} \mathscr{K}^{n} \otimes \mathscr{L}\right) \rightarrow \\
& \rightarrow H^{1}\left(\bar{X}, \sigma_{n-1} \otimes \mathscr{L}\right) \rightarrow H^{1}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right) \rightarrow H^{1}\left(\bar{X}, \tilde{K}^{n} \otimes \mathscr{L}\right) \rightarrow 0 .
\end{aligned}
$$

Since $H^{1}\left(\bar{X}, \mathscr{E}^{n} \otimes \mathscr{L}\right)=H^{1}(\bar{X}, \mathscr{L})=0$, we find by induction on n that $H^{1}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right)=0(n=0,1, \ldots)$. Here θ^{\prime} is an embedding and $H^{0}\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right) / \operatorname{Im} \theta^{\prime}=H^{0}\left(\bar{X}, \mathscr{\mathscr { K } ^ { n }} \otimes \mathscr{L}\right)=H^{0}(\bar{X}, \mathscr{L})=\mathrm{C}^{3}$.

From the exact cohomology sequence corresponding to the exact sequence of sheaves

$$
0 \rightarrow \Delta_{n-1}^{1} \rightarrow \Delta_{n}^{1} \rightarrow \sigma_{n} \otimes \mathscr{L} \rightarrow 0
$$

we find by induction on n that $H^{1}\left(\bar{X}, \Delta_{n}^{\prime}\right)=0$ and $D_{n}^{1} / D_{n-1}^{1}=H^{0}$ $\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right)(n=0,1, \ldots)$. Therefore $D_{n}^{1} /\left(D_{n-1}^{1}+I D_{n-1}^{1}\right)=H^{0}$ $\left(\bar{X}, \sigma_{n} \otimes \mathscr{L}\right) / \operatorname{Im} \theta^{\prime}=\mathbf{C}^{3}$. The lemma is now proved.

This lemma contains Statement 3° of Proposition 1.
NOTE. By the same method as in Lemma 7 we can show that $D_{k}^{i}=x_{1} D_{k}^{i-1}+x_{2} D_{k}^{i-1}+x_{3} D_{k}^{i-1}$ for $i>1$ and for any k.

References

[1] B. Malgrange, Analytic spaces. = Uspekhi Mat. Nauk $27: 1$ (1972), 147-184.
[2] J. Serre, Groupes algébriques et corps de classes, Hermann \& Cie, Paris 1959.

