DIFFERENTIAL OPERATORS ON A CUBIC CONE

I. N. Bernstein, 1. M. Gel’fand, and S. I. Gel’fand

Consider in the space C?® with the coordinates x,, x,, x; the surface X
defined by the equation x} + x3 + x3 = 0. We prove the following
theorem:

THEOREM 1. Let D(X) be the ring of regular differential operators
on X, and D, the ring of germs at the point 0 of analytic operators on X.
Then

1°. the rings D(X) and D, are not Noetherian;

2°. for any natural number k the rings D(X) and D, are not generated
by the subspaces D, (D,., respectively) of operators of order not exceed-
ing k. In particular, the rings D(X) and D, are not finitely generated.

Theorem 1 answers questions raised in Malgrange’s survey article [1].
The ring D(X) has an interesting structure (see Proposition 1).

We denote by E(X) the ring of regular functions on
X(EX) = Clxy, x,, x31/[x3 + x3 + x31) and by D(X) the ring of regular
differential operators on X. By D, we denote the space of operators of
order not exceeding k. Setting a, (f)(x) = f(Ax) and
by (D)) = ay(Day_, (f)) for x € C* we define an action of the group C*

in the spaces E(X) and D(X). It is clear that E(X) = é)Ei(X), where

Ei(X) is the finite-dimensional space of homogenous functions of degree i
on X. We call an operator & € D(X) homogenous of degree i (i € Z) if
(D) = A2 for all A € C* (equivalent definition: & (E"(X)) C E"*(X)
for all n). We denote by D' the space of all such operators and set
D, = D' n D,.

LEMMA 1. a) D, =i§§mp;;; b) D(X) =,@: D',

1=

PROOF. a) Let & € D,. We define the operator 29 in E(X) as
follows: if f = E"(X), then g(df = (Ff)("+¥ (that is, the component of
degree of homogeneity n + i of the function Zf ).

It is easy to verify that & € D, and therefore ZH e D,’;. Since any
operator of order not exceeding k is defined by its values on the space

k .
@ E’(X), it follows that Z is not equal to O for finite i. Clearly & = S F®,
j=0
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b) This statement follows directly from a):

We set [ = x, 2 i 0
ax,

PROPOSITION 1.

1°.D'=0fori < 0.

2°. D° is generated by the elements 1,1 1%, ...

3. D /Dy +ID,_)=C* (k=0,1,2,...)

We derive Theorem 1 from Proposition 1.

It is easy to verify that D, - D, C D,,, and D'-D/ c D**/. Moreover,
if & € D', then [I, 9| = ID — P = iD. '

For any natural number & we set J, = n;() I"D; + EZDI and

A, = D°® + J,. It follows from Proposition 1 and the formulae above that
J, is a two-sided ideal in the ring D(X), and that A, is a subring of D(X).

If I > k, then J, ;De Ji. From this it follows that the ring D(X) is not

Noetherian. Since A4, ;De A, D D, for l > k, the ring D(X) is not
generated by the subspace D,.
Consider the ring D, of germs at 0 of analytic differential operators on X.
The group C* acts in this ring. Every element can be expanded in a

convergent series & = », (), where 2 € D, is a homogenous operator

i=—o0

of degree i, and the order of Z® does not exceed that of & (specifically,

gL

= S by(D)A-1- dh, where the integral is taken over the unit circle in
T
in the A-plane).

If fe E*(X), then I f is a homogenous analytic function of degree of
homogeneity n + i; hence 2 f e E"*!(X). Therefore we may assume that
P e D! ¢ D(X) (it is clear that if & f = 0 for all f € E(X), then
D® = (). It follows from Proposition 1 that every operator & € D, can
be expanded in a series & = D) 2, where M€ DF,

i=0
Let J,p, = {D €D, | 2D ¢J, for all i}, and let A,, = D° + J,,. Then
Jo. is a two-sided ideal in the ring D,, and A,, is a subring of D,. Since

D D
Jag £ Ja and Ay . Ay D Dy, for 1 > k, it follows that D, is not
Noetherian and is not generated by a subspace D,,, where k is any natural

number. Theorem 1 is now proved.
PROOF OF PROPOSITION 1. Consider the non-singular algebraic
manifold X, = X'\ 0.
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LEMMA 2. a) The embedding of X, in X induces an isomorphism
E(X) » E(X,) of rings of regular functions on X and X,.

b) The embedding of X, in X induces an isomorphism D(X) - D(X,)
of regular differential operator rings.

PROOF. a) follows from the fact that X is a normal manifold and that
codim {0} in X is greater than 1. Since X is an affine manifold, a) implies
b).

Denote by % the sheaf of germs of the differential operators % on
X, of order not exceeding k that satisfy the condition [/, 4] = i%. Then
D) = T'(Xe, 2}).

Consider the projective manifold X = X,/C*. It is known that X is an
elliptic curve. By = we denote the natural projection n: X, - X.

Consider the sheaves Al = n, (2;) on the manifold X. It is clear that
(X, Aﬁi) = I'(X,, 9%) = Dj.

By % we denote the sheaf of functions on X, that are homogenous of
degree 1, and we set £ = n,(¥%); £ is a sheaf on X.

The following facts are easy to verify:

1°. £ and A}; are sheaves of modules over the sheaf of rings Og.

2°. £ is an invertible sheaf; I' (X, &£)-=C3.
3° A}, = A)® i this isomorphism being consistent with the natural
embeddings A} - Al for I > k.
4°. Set o, = Ay/A%_,. Then o, = S*¥(s,) (where S* is the k-th
symmetric power of the sheaf).
5°. By N we denote a subsheaf in Z9, whose sections on every
neighbourhood are defined as { fx)I }, where f(x) is a function of degree
of homogeneity 0. Then the sheaf N = n*(ﬁ) on X is a subsheaf of AY.
We regard N as a subsheaf of o, = A}/AY.
6°. The map 1+ [ defines the isomorphism of sheaves Ox > N.
7°. Set & = 0, /N. Then ¢ is an invertible sheaf naturally isomorphic
to the tangent sheaf to X.
The tangent sheaf on an elliptic curve X is known to be isomorphic to
Ox . We fix a certain non-zero global section k& of 7.
LEMMA 3. For every n > 0 there exists an exact sequence V, of
sheaves on X
0N % g, 5k @0, —0.
Here the diagram
0—N" -0, —>H Q0,.,—0

(1) | | !

0— N" >0, —>H Qon —0,
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where every vertical homomorphism is obtained by multiplying I € (X, N)
by the section, commutes. _
PR OO F. Construct the maps ¢ and ¢ in a neighbourhood U C X. Let

I be a global generating element of the sheaf N, and let X be a local
section over U of the sheaf o; which becomes k € I'(X, s ) under the
map o; > 4.

Since the sequence 0 - N - o, » & - 0 is exact, it follows that the
restriction of o, to U is a free sheaf over Ox with the generators / and k.
Then o, = S"(0,) is a free sheaf on U with the generators k' I""*
(i=0,1, ..., n). We define the maps ¢ and ¢ by the formulae:
o™y = I, (kI = ik ® (k' I").

It is easy to verify that the sequence (V,) is exact. It is also clear that
¢ does not depend on the choice of k. Let us prove that ¢ does not
depend on the choice of k. In fact, let k be another section of the sheaf
o, on U. Then k=% + fI, where f € T'(U, Ox),

Y EM = (X CEIA M) =k @ X - F T -
j=0 3
=i(k® (k+ Iy~ 1",

So the exact sequence (V,) is defined globally.
It follows from the construction of the homomorphisms ¢ and ¢ that
the diagram (1) is commutative. This proves Lemma 3.

We are interested in the spaces H°(X, o,) = I‘()?, o) and H'(X, oy).

LEMMA 4. dim H°(X, 0,) = L.

PR OO F. Every first-order operator Z can be split uniquely into a
sum 2 = + 2, where f is the operator of multiplication by the
function f = (1) and 2’ = & — f is differentiation in the ring of
functions. From this it follows that A% = ¢, @ AY. Since T'(X, AY) = C,
we need only show that I'(X, AJ) is two-dimensional.

Let & € DY. Then @--f + 9’', where f = % (1), and where f and &
have the degree of homogeneity 0; in particular, f € C.

Let us prove that %’= ¢l where ¢ € C. Set f) =D'zy, f3= D'z,
f3 = Z'z,. Then f{ € E'(X) and we can extend them to linear functions

3 ’ inci i g = 0 + 9 + _8_
f; on C°. The operator &’ coincides with & = f; 5 I 5%, I xq

Therefore 2 (x3 + x3 + x3) = 3(f,x? + fox2 + faxi) = c(x3 + x3 + x3),
where ¢ € Clx,, x,, x3] (here equality is considered in the ring

Clx,, x,, x3]). Since f,, f,, 5 are linear functions, we have ¢ € C and
fi = cx;, that is, g’ = cl.~
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So we have shown that every operator & € DY is of the form
D =c¢, + cl, where ¢;, ¢ € C. The lemma is now proved.

We shall use the following well-known facts on the cohomology of
coherent sheaves on an elliptic curve (see [2]).

1°. If & is a coherent sheaf on X, then H'(X, .¥) for i > 2.

2°. dim H°(X, Ox) = dim H' (X, Ox) = 1

3°. If £ is an invertible sheaf on X and dim H°(X, £ ) > 1, then
HY(X, £)=0and H°(X, £') =0 fori < 0.

LEMM A 5. Consider the exact sequence of sheaves

0> N"—>0,>H ® ooy > 0 (Va)-

Then dim H°(X, o,) = |, and the boundary homomorphism
8,: HX, & @ 0,_1) ~ H'(X, N") is an isomorphism.
PROOF. We prove the lemma by induction on n.
Let n = 1. We write out the exact cohomology sequence

-~ @, — P, _ 8
0— HY (X, N) 2 HY(X, o) H° (X, %) —
_ ! — $
— (X, Ny 2 (X, 6) 2 HI (X, %) — 0.

Recall that N and ¢# are isomorphic to Ogx. Hence 3, is an
isomorphism (because dim H°(X, o,) = dim H°(X, N) = 1). This means
that ¢; = 0. Therefore 8, is an isomorphism. Hence ¢} = 0, and y; is an
isomorphism.

Suppose that the lemma has been proved for the sequence V, ; let us
prove it for V,,,. We write out the exact cohomology sequences that
correspond to the sequences V, and V,,,, and connect them according to
diagram (1) (see Lemma 3)

6n
0>HO(N®) —— HO(on) > HO(H S0, ) ——utm —»Hl(cn) -+ H1 (HKgon-) 0
| I | ] | |
' } T on i |

~

Pnat " bpi n
0o B0 (N U 0o ) HO (K ®on) —o HY (NP o B (0, 11t (K @0, - 0.

It is clear that  is an isomorphism. By the inductive hypothesis §,, is
an isomorphism. Since 7§, = §,,,7 # 0, it follows that §,,; # 0. Here
&% ® o, ~ o0,, and by the inductive hypothesis dim H°(X, & ® o0,) = 1.
Therefore 8,,, is an isomorphism. It is now clear that g,,, is an
isomorphism and that dim H°(X, o0,,;) = 1. Lemma 5 is now proved.

Statement 2° of Proposition 1 is a direct consequence of this lemma.
For it follows at once from the exact sequence 0 -~ AS_, - A) - ¢, > 0
that dim D) < dimDS_, + 1 and therefore dim D < »n + 1. Hence D9 is
generated by the elements 1, 7, I%, ... I".

b
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LEMMA 6. 1°. Let i < 0. Then a) H*(X, 0, ® ") = 0;
b) H°(X, al) = 0.

Bearing in mind that H°(X, £%) = 0, it is easy to prove the lemma by
induction over .

Lemma 6 impiies Statement 1° of Proposition 1.

LEMMA 7. Forany n (n =0, 1, ...) we have

1°. (X, 0, ® £) = 0.

2°. We consider the natural map 6: 0,4 @ £ — 0, @ £ (multiplication
by I) and denote by 0' the corresponding cohomology map
0 HYX, 0,4 @ L) HYX, 0, ® £). Then 0 is an embedding, and
H®(X, 0, ® £)/Im 0" is three-dimensional.

3. H' (X, A;) = 0.

4°. dim (DL/(D._, + ID}_,)) = 3.

PR OO F. From the exact sequence of sheaves

0‘+0n_1®$—8>0‘n®$—>%’n®$—>0

we obtain the exact cohomology sequence
0— HY (X, 61y @ L) HY(X, 00 @ L) — HO (X, H" @ L) —
—~H(X,0,4Q%L)—H (X,0, 0 £)—H (X, 4" ® £)— 0.

Since H! (X, AR L)=H! ()—(, L)= 0, we find by induction on »n that
H'X,0,® £)=0®m =0, 1, ...). Here ¢ is an embedding and
H°(X, 0, ® £)/Im® = HY (X, A" @ £)=H" (X, &)= C®.

From the exact cohomology sequence corresponding to the exact
sequence of sheaves

0—>A,11_1-—>A,11—->Gn®x—>0

we find by induction on n that H' (X, A},) = 0 and D}/D}_, = H®
X, 0, ®£) (n =0, 1, ...). Therefore D,/(D:_, + ID._,) = H®
(X, 6, ® £)/Imo' = C3. The lemma is now proved.

This lemma contains Statement 3° of Proposition 1.

N O T E. By the same method as in Lemma 7 we can show that

D, = x,Di" + x,D' + x,D* fori > 1 and for any k.
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