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The present work consists of two parts. In the first part we study the ring of
regular differential operators on the base affine space of a complex semisimple
group. By the base affine space of a group we mean the quotient space 4 =N ,\G
of the group G by a maximal unipotent subgroup N... Experience in representa-
tion theory suggests that for many problems in representation theory the solu-
tion results from a careful stndy of the base affine space. In particular, the structure
of the ring of regular differential operators on 4 seems to be closely connected

with the representations of the real forms of the group G. In addition to the

connections with representation theory, the study of this ring yields an instructive
and rather advanced example for the study of the rings of regular differential
operators on algebraic varieties, an area in which not much is known so far.
- We approach the study of the differential operators on 4 by establishing a
connection between the regular functions on the group G and the regular dif-
ferential operators on the base affine space 4. We would also like to draw the
reader’s attention to Conjecture II, where the notion of the generalized Segal—
Bargmann space for a representation of a compact Lie group is infroduced.
The second part of the work is formally independent of the first and is devoted
to the algebraic study of modules over the Lie algebra g of the group G. We
restrict ourselves to a category of g-modules, which is closely connected with
the theory of highest weight. We shall call this category of g-modules the category
0. The category O contains in a natural way every finite-dimensional representa-
tion of the Lieal gebra g. The fundamental result of this part lies in constructing a
resolution for finite-dimensional g-modules. The simplest objects of the category O
are the modules M, and it seems important that the resolution consists of modules
which are direct sums of these simplest modules. The description of the modules
occuiting in the composition series of the modules M, which is given in the
Appendix, is also useful. Unfortunately, the complete stracture of these com-
position series is not known to us yet.
‘We think that the methods developed in the second part of this paper may turn
out to be useful in the further study of questions considered in the first part.
The fundamental content of this work is concentrated in Theorem 6.3 and
Conjectures 1 and II in the first part and Theorems 8.12 and 10.1 in the second.
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-§ 1. Notations and preliminaries

g is a semisimple Lie algebra of rank r over C, § is a Cartan subalgebra of g.
4 denotes the root system of g corresponding to h, with a fixed ordering, A,
and 4_ the system of the positive and negative roots, respectively, X the set of

simple roots, and g:—;: ?E%’ 7- £, €4 is the root vector corresponding to the root
y€4. Here we have y([E?:E_,]):?..

1, is the subalgebra of g spanned by the vectors E,, yed,, while n_ is the
subalgebra of g spanned by E,, yed_. b=hen,. U(g), U(n,), U(n.) are the
universal enveloping algebras of g, n,, n_, respectively: Z(g) is the centre of
U(g).

b* is the dual space of §.

G is a complex semisimple Lie group with Lic algebra g; H, N,, N_and B
are the subgroups of G corresponding to the subalgebras b, n,, n_ and b, re-
spectively. 7

A=N,\G is the base affine space of the group G.

Additional notations, used in Part 2.

Z., is the set of non-negative integers. _

b denotes the real linedr subspace of §* spanned by all roots y€ 4.

{,) is the scalar product in h* constructed with the help of the Killing form
of the algebra g; ||+ [ is the corresponding norm in ba-

bz is the lattice in b} consisting of those y €h* for which 200 v)/{v, y) € Z for
all ycA.
: KE{XEI)*Ixm%'nmea,naEZJ,}; Kch?

X1Z= Xy means that x,—x, € K (g4, x2€H).

W is the Weyl group of the algebra g, o,€ W is the reflexion corresponding
to the root y€4, ie. o,x=x—2{ ¥){(3, ¥>"*y. We note that g,0=0—a for
®EZ,

X1~ Xz for x1, x2 € b* means that there exists an element w € W such that X1=WXs.

I(w) is the length of the element w¢ W, ie. the smallest possible number of
factors in a decomposition W0y ¢ Gy, €L

W® = {weWw) = i}
&,={x €bx [{x, ¥)=0}; the connected components of haN(U &) are called the
ved

Weyl chambers; C is the closure of the Weyl chamber C; C* is the Weyl chamber
containing ¢. The group W acts on the set of Weyl chambers simply transitively.
Two Weyl chambers C, and C, are called neighbouring if dim (C,N Cy)=dim B} —1.
In this case there exisis a unique element ye4, such that 0,Cy=C; and the
hyperplane &, separates C; and Cp;

D =RNC*.
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An element y € by is called regular if (x, y) =0 for all €A,
Let M be a )-module, y¢bh* Put -

M® = {feM|xf = j(x)-f for all xeh};
P(M) = {yeb*|M® 5 O},

Let M be a g-module and 0=M,CM,c...C M, =M its Jordan—Hdlder com-
position series, L,=M;/M;_, are simple g-modules. The collection of the modules
L,, with multiplicity, is called the Jordan—Ho6lder decomposition of M and is

denoted by JH(M).
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- PART1I

DIFFERENTIAL OPERATORS

§ 2. Introduction

Let G be a connected complex semisimple Lie group of rank », B a Borel sub-
group, N, the unipotent radical of B, HC B the Cartan subgroup of B. The
quotient space 4=N,\G plays a fundamental r6le in representation theory; it

is called the base affine space of the group G.
The aim of this part is to study the ring % (A4) of regular differential operators

on A.
First of all we study the possible connections between the space of regular

differential operators on 4 and the space £(G) of regular functions on G. More

precisely, Conjecture I claims the possibility of embedding £(G) into @ (4)

(operation f~F); here D (4)==U B)R & (G), where U(D) is the universal envelop-
s

‘ing algebra of the Lie algebra ) of the group H. In this pari we prove a result

(Theorem 6.6) weaker than Conjecture J, namely we construct an isomorphism

between the L-modules LR &(G) and L & 2(4), where L is the quotient field
C _

U(n
of the ring U(H).

-Further on we construct a scalar product in:the ving &(A) of regular functions
on 4 which is invariant under the action of the maximal compact subgroup
K G. The completion of the space & (4) by this scalar product consists of analytic
functions on the complex manifold 4. This space Is a generalization of the Segal-—
Bargmann space. Conjecture IT states that an operator adjoint to a differential
operator i$ again a differential operator, hence the ring P (A4) is selfadjoint with
respect to the introduced scalar product. It has to be noted that the introduced
involution in @(4) does not preserve the order of a differential operator. For
instance, in the case of the group of matrices of order h, the adjoint to the simplest
operator of order zero will be an operator of order A —1.

§ 3. Regular differential operators

In this section the rings of regular differential operators on G and A are in-
troduced. We shall consider G and 4 as algebraic varieties over C. The projec-
tion 7: G4 is a morphism of algebraic varieties. The rings of regular functions
on G and 4 will be denoted by & (G) and & (4), respectively. Let n*: E(G)—~&(A)
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be the embedding induced by the mapping . The-image n*&(A) consists of
exactly those functions which are constant on the left cosets of the subgroup N.
" The variety A is non-singular and quasi-affine. More precisely, let

A=Spec max £(4)

be the affine algebraic variety corresponding to &(4). Then there is a natural
isomorphism between 4 and a dense open subset of 4. :

Let us define in the space &(G) the left and right representations L¢ and R¢ of
the group G by the usual formulas

LEN @) = flgr '), (R ) (g) = flegn, 8 8.€G.

It is a common property of both of these representations that every element
F€&(G) is contained in some finite-dimensional invariant subspace.

The group G acts naturally on the space 4 (right translations). In addition
one can also define the left-hand action of the Cartan subgroup on 4 by associating
to each element h¢ H the transformation x--hx. The clement Ax€d4 is well
defined because H normalizes N. '

Let us define in the space &(4) the representations L* of the group H and R4
of the group G by means of the formulas

L)) = fx), (RIf) (%) =f(xg); x€4, he H, geG.
Obviously, LE¢zn* = n*L# and Rfn* = n*R{.

By differentiating R4 we obtain for each X¢€g an operator Rg:&(4A)~&(A).
These operators determine a representation of g that extends to a representation
of U(g); here the operator corresponding to an element X¢ U(g) will also be
denoted by R4, We define the similar representations R§ and L§ of the algebra
U(g) in #£(G) and the representation L of the algebra U(g) in &6(4).

Definition 3.1. Let X be a quasi-affine variety and &(X) be the ring of regular
functions on X, A linear mapping D: & (X)-~&(X) is called a regular differential
operator of order =k (k=0) on X if it satisfles the condition

[l Loy D111 = 0 3.1)

for any fi, /e s Sirr €€ (X). In (3.1) f; denotes the operator of multiplica-
tion by f;.

The differential operators on X form a ring which will be denoted by Z(X).

Remark. The definition given here coincides with that of a differential operator
on an arbitrary algebraic variety given in [1].

It is easy to see that a differential operator of order zero is an operator of

. multiplication by a function f€& (X).
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Any vector field over X determines a differential operator of order =1 on X.
It can be verified that on composing an operator of order =k with an operator of
order =/ we obtain a differential operator of order =k, moreover the com-
mutator of two such operators is of order =k-+/—1.

We shall use the following properties of differential operators (see (.

Lemma 3.2. 1. If YC X is a dense open subset (In the Zariski topology) of a
quasi-affine var iety X, than every regular differential operator can be restricted to
Y. More precisely, there exists a unigue differential operator D":&(Y)-~&(Y)
whose restriction to &(X)<~ &(Y) coincides with D.

2. Let X be a non-singular variety and Z,, ..., Z, be a system of vector fields
over X which defines a basis in the tangent space ai each point x € X. Then every
differential operator D on X has a unigue representation in the form

D= Say,  (NZPZE... Zn,

where i; are non-negative integers, a;, ..; areregular functions only a finite number
of which are different from zero.

For any element X¢ U(g) the operators RS and L§ are differential operators
on G, moreover Lf, Y U(h) and R4 are differential operators on 4. The de-
scription of th&'ring of differential operators on G yields the foIlowmg pro-
position,

Pr oposztzon 3.3. The mappmg
8:4(G) ® Ulg) -~ 2(G)

given by the formula
$Sfi®X) = Z fiL%,

is an-isomorphism of left £{G)-modules.

The proof of Proposition 3.3. follows easily from Lemma 3.2.

In what follows the clement 3~ (D) £(GHRU (g) will be called the standard
Jorm of D e Z(G).

Now let us turn to the study of the ting 2(4). In this ring we can define a
representation of the group G. Indeed, we put

DV = RIDRM1, g€ G, DED(A).
Similarly, we put

"D = LEDLA:, he H, De(4).

‘We notice that the variety 4 is smooth, but it is not an affine variety and there
- may exist differential operators on 4 which cannot be expressed by operators of
“- . the first order. (See e.g. Example 2.)
- We shall say that a differential operator D’ on G is a lifting of the operator
- Don d,if

D'n*f = n*Df, feé(d).
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Theorem 3.4. [2). Ever): differential operator on A can be lifted to G.
In order to prove this theorem we need the following lemma.

Lemma 3.5. Let 0=n(e)c d. There exists a mapping n:2(A)—~U(g)/n, U(g)
such that for all D¢ D(A) and all fc &(A)

(R% f) ©) = (Df)(0) (3.2)
Jor every element X cU(g) belonging to the coset n(D).

Proof. 1t is .easy to see that if XE n, then R%f(0)=0 for all f€ &(4). There-
fore the validity of the equality (3.2) does not depend on the choice of the element
X in a n, U(g)-coset.

Now let Xy, ..., Xy be a basis in hdn_. Then the vector fields R form a
basis in the tangent space at each point of a certain affine neighbourhotod V oof
the point 0€ 4. According to Lemma 3.2, in this neighbourhood V the operator
D can be expressed in the form

'D = Zai1ig...fN(R£1)il. et (‘RﬁN)iN'
Put _ _
) X"-——" Zaij.l'g...l'N(O)X;-l"' X]I\,FNEU(Q)-
It is easy to see that the image # (D) of the element X in U(g)/n .. U(q) satisfies the

condition of the lemma. .
Note that the element (D) is uniquely determined by the equality (3.2) (see

[2. '
Let 7:U(g)~~U(g) be an anti-automorphism such that 7(X)=—X for X¢g.

Obviously, t(n. U(g))=U(g)n,, so t determines an isomorphism
72 U(@)/n, U@~ U@/U@n,.. |
Definition 3.6. Let DeP(A4). Define a function o,(g) on G with values in

U(g)/U({g)n,. by the formula
op(g) = (D).

One can verify [2, § 8] that ¢,(g) is a regular function on G, i.e.
ap(g) €E(G) QU @)U (g, .

Now we are ready to complete the proof of the theorem. Let D€ @ (4) and
consider an arbitrary element ¢}, € £(G)® U(g) which is sent into o,(g) by the

natural projection
E(G)RU(9)~#(RUW/U (G, .

| D= $(0h(2)) € 2(G).
We shall show that D’ is a lifting of D to G, i.e. that
(D' f)(g) = (n*Df)(g), fE&(A), g€G (3.3)

Put
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(3.3) can be rewritten in the form
(RS D' RS-an* REF) (@) = (" DARI) @),
It is easy to see that RfD’RgG_l is a regular differential operator on G and that
‘9“1(R3GD’ Rf_l) is projected into o, under the natural mapping
F@HRUW@~E(GHRU/Un, .

- Therefore (replacing D by D?and f by R;f f) it suffices to prove that (D’ n*f)(e)=
=(n"Df)(e).
Let X=0p(e) € U(g). Clearly, then (LS f)(e)=(D’'f)(e) for £€ &(G). Moreover,
the image of t7'(X) in U(g)/n, U(g) is equal to n(D), hence
(@*Df) (&) = (DF) (0) = (RF1xf) (0) = (RE-2x7*f) (e), fEE(A).

Therefore, the required eguality is implied by the following lemma.

Lemma 3.7. If Y cU(y), f€&(G) then
(LEf) (@ = (RES) (o).

Proaf. If Y€g then the lemma follows from the definitions of LS and RS,
Assume now that the lemma is valid for ¥;, Y, €U(g). Then we have

(RY, v, F)@) = (RE,RY, 1) (€) = (LéxyRY, 1) (@) = (RS, LSy, F) (e) =
= (Liep Lo )€ = Ly, v 1) (@)

(Here we use the fact:that L and R, commute for any ¥, ¥’ € U(g).) Hence
we have the lemma for ¥= ¥, - ¥,, and the proof is complete.

Proposition 3.8. Let us denote by I, the left ideal in the ring 9(G) spanned
by the operators L§, Xen, .

1) Let D& (G). Then D gives tise to a differential operator on A (i.e.
D(&(A))c &(A)) if and only if

(L, Dlel, for Xen,.

2) D €2 (G) gives rise to the zero operator on A if and only if DT, .

‘The proof of this proposition is rather simple and is left to the reader.

We shall now describe how these conditions can be expressed in terms of the
standard form of the operator D. We remark that

1) D¢l if and only if
I YD) e&(D)RU (g)n, .

2) If371D) = 3 i@ X;€8(G)QU(g) and X¢€gthen
$7'(LE, D) = L0 X+ 3 /i)LX, X}
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Corollary 3.9, Let D9 (A4). Then it has a unique lifting D’ such that
$HD)EE(DRUH D).

Definition 3.10. 1) The element SHDYes(G)QU (@ n_)is called the standard
Jorm of the operator D €2 (4) and will be denoted by s(D).

'2) The lowest term s, (D) of an operator D €D(4) is defined as the ele-
merit of &(G) ® U(h) which is equal to the projection of s(D) under the decomposi-
tion

. Uhdn.) = UHon Uhon.)

Definition 3.11. Let us denote by Wu the subring of 2 (A) consisting of the

operators
L, XcU(y).

§ 4. Conjecture I; examples

Conjecture 1. There exists a mapping &(G)~D(A4), f— F with the Jollowing

. properties.

1) J=f for fe&(d)c & (G).
2) The mapping f—f commutes With the representations R, and L,.
3) The mapping £(G)®@ Wu—2 (4) given by the formula

2hHRZi~ 3 /17, fie8(®), Z,cWu

Is an isomorphism of Wu-modules.

4) Let so(H)=r1.0 X,. Then f=2f;» X,(—0) (here ¢ €h* is half-sum of the
positive roots; X; ¢ U(h) is considered as 4 polynomial function on h*).

A weakened version of Conjecture 1 is

Conjecture 1. D(A) is a free Wu-module.

We remark that the mapping f-f (if it exists) is not uniquely determined by -
the properties 7)-—4). We assume however that there exists a “natural” mapping
S--f. The following examples will perhaps illuminate to the reader what we
have in mind. .

We shall now present several examples illustrating the notions and facts ex-
pounded above,

Example 1. G=SL(2, C) is the group of 2X2 matrices of determinant 1, We .

choose as N, @ the subgroup of all matrices of the form

(o 3)
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< 1In this case A=N,\G can be identified with the punctured complex plane i.e.
; A=C{(0, 0)}, while the mapping ©:G-~4 is of the form
|

Let

| 00 1 0 01
| £~ (7 o 7=(p_3) B (o o)

be a basis of g, Then

Uy Uy 7
; &= [21 22]"'(21332)-
i .

f_ ¢ ., 0 9
' Ly =~ 0z, “a 0z,

' 0 d
G - . —— T ——— ———
LE* T A 3”1 “ 3“2 ’

J d Jd )

Lf = 2yt zy e — gy Ao — g e,
N 9z,  Ou;

The algebra of regular functions €(GQ) is (G)=C(uy,

Uy, 23, 22)/(14122—‘”221 —~1}
and &(A)c:&(G) consists of the functions fe & (G) wh

ich satisfy

d i
—Lg+f: % 5%'4‘?25“;‘]“;' = 0.

The ring Wuc 9(4) coincides with the ring of polynomials of the single generator

¢ 7,

4, 9 _Z
Lj =z Py +- 2z o
Now we show how to construct the m
representation of SL(2, C). We denote by
- that the restriction of R% to this subspace
each n€Z we denote by &%,

- Tor which I f=nf
Lemma 4.1, 1) F(A=P &Y.

Ton .
- 2) Let dim T=]+1. Then dim Er=I+1 for n=-] =142, ..., 1-2,1 and
Er=0 for the remaining values of n. Those n for which &7#0 are weights of T.
3) &% is invariant under R® and the restriction of RS to &Y is equivalent to T,

g 4). & consists of vectors of highest weight with respect to 1.6 (ie. LS =0 for
IFEEY and X, ).

apping f—7f. Let T be an irreducible
& the largesi subspace of &(G) such
is a multiple of T Furthermore, for
the subspace of &y consisting of all functions JE€EE,

Che proof of this lemma follows ¢
ns of SL(2, C). _

suffices to construct the mappin
assume that the restriction of .6

asily from simiple properties of the representa-

g /~f on each space &t separately. We
to the smallest invariant subspace of &(f)
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containing f is equivalent to T. Let us put f;=(Lg )'f. Then obviously f;¢ &5,
and in particular f;=0 for i>—;~ ({—n). In accordance with property 2 of the
mapping f—f (see Conjecture I), we shall look for the operator f in the form

3(i—n)
f= 7 fills Yoy : “.1)
where o, € Wu. . '

Let us assume now that the right-hand side of (4.1) defines an operator on A.
Applying the relations _ :
[E., E'] = EXY i(H—~i+41)
we find easily that the elements «; € Wu satisfy the equations

O(i_]_-l—i(H'—'I'—]— 1)05,; = (),

Therefore, putting %(!-—n)::p we obtain

_ ol -
0 = (“l)p“'];—!(Hmpﬁ*l)-... ~(H—-Da,.

Consequently, we have the operator fif we determine o,. It is clear that prop-
erty 2) requires o, € C. Moreover, so(f)=f®, and H(g)=1. Therefore, to assure
the validity of property 1) we have to take '

o, = (p) 2
Then all statements 1)—4) of Conjecture I will be valid.

Example 2. Let G=SL(3, C) and N be the subgroup of upper triangular ma-
trices with units on the diagonal. :

Let T; be the i-th fundamental representation of G, i=1, 2. Both representa-
tions T; are three-dimensional and the spaces &, (see Bxample 1) are of dimen-
sion 9. Here é"’TI consists of the linear combiﬁations of the matrix elements g;;,
1=, j=3 of the matrix g €G, and &y, consists of the linear combinations of
the second order minors of g. Let us construct the mapping /'~ f for f¢ &y . Put
fi= gntoagmtsgs, i=1,2,3. Then for arbitrary oy, o, ¢z the elements
Jfiform a subspace of &, such that the restriction of R® to this subspace is equivalent
to Ty. Here f; is a vector of highest weight, that is f;=/;. Let us now give for-
mulas for f; and f;. Let E,; (i#j), Ey—Es, and Eyy—Ey; be the basis in g.
We put

Ly, = Ey, L§,.x,=Z;.

These operators act on the functions £, as follows
Eijﬁc = “”5jkﬁ,
Zijﬁc = (5jk — S

where &;; is the Kronecker symbol.
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Let us consider in 2(G) the following operators:
f 3= J
fa = fzzsz "fsEsz
Fi = fiZu@wt Dt By (Zag+ 1)+ faBaa Bt B3 Z10)-

It is casy to verify that the operatoss fi, Jas f belong to 9(4) (e fild )<
£(4)) and the mapping fi—Ji satisfies all conditions of Conjecture 1. Thus the
mapping £ has been constructed for f€ &,

We also remark that the operator fiis an operator of the second order on A
which cannot be expressed in term of first order operators on A.

The mapping f— f for feéy, can be constructed in the same way.
In Examples 1 and 7 we were dealing with representations T for which all
weight subspaces Were one-dimensional. It is a more difficult task to consiruct
the operation f —f in the case when these subspaces are not one-dimensional.
Now let us sec a simple example of that kind.

Example 3. Let 08 put, as in Example 2, G=SL(3,C) and T be the adjoint
representation of G in its Lie algebra 6. Let f be a vector of highest weight with
- respect 10 L% in &;. We shall introduce the following notations

f13 $fa fas = Enfa fla = ""Eszf;
hyo = “‘Ezlme hgs = “Eazﬁzsa
le = ‘“Em Bos» fgz = *‘-Eszz hys» f31 = Esafm-

Then the restriction of L to the subspace gpanned by f,; and hy; is equivalent

|  to T. Here By and g generate a two-dimensional weight subspace of T. We

define the operation f~ #in the following way

2. 2. L1 4,
By = P [212223”1"3”212 —3 223]"”123 ["'212423‘1““3'212”"‘5'223]4"

+frobn (32 + DS By (32 + D+ /s (3Eg1 Eset+ _Esl)-
- PR 4 .5 1. 2 2
hoa = Mo {“‘ Zyo Lo ™3 Zyaty 223} + kaa-[zmzzs -3 Zyat 3 223] -

—fioFm (3Z25+2) +f: " 32+ 1) L (3Bu B+ 2E5).-

_. We remark that in the subspace spanned by By, and fiyg, there is, UD to mulii-
~ plication, only oneé operator of first order namely fie— fipq; Other operators in

" .. this space arc of order 2.

3 Gelfand 33
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§ 5. The generalized Segal—Bargmaunn spaces

In this section we shall consider a generalization of Bargmann’s construction
[3] of representations of the group SU(2). ' _

Let K be a maximal compact subgroup of the group G, f be its Lie algebra,
and t:q—g be the corresponding Cartan involution. We assume that X is chosen
so that i(n.)=n_. Let T}, 1=i=r be the representations of G corresponding
to the fundamental highest weights of g. Let f; be a vector of highest weight in
T,. We define a function H,(g) on G by the formula

| Hi(g) = TVl
where || - [|; is a K-invariant norm on T} such that || £;),=1. Clearly, H;(ng)=H(g)
for n€N, , hence H; can also be considered as a function on 4. Let u(t) be a
positive, rapidly decreasing function defined for £=0. Let g, (1=/=r) be positive
numbers. We define the weight function o(x) on 4 by the formula

e(x) = “(2 Qth(x))o
Definition 5.1. The Segal—Bargmann space of the group G is defined as the
completion of & (4) with respect to the scalar product

{8 = Af f®)z(xe(x) o,

where o denotes the G-invariant measure on 4.
It is obvious that this scalar product in &(4) is invariant under’ RE, k€K

Conjecture IL. There exists a Function u(t) such that for any D ¢ 9D (d) we have
D*ecD(A); here D* denotes the adjoint operator of D with respect to {, }.

Let us consider the simplest case G=SL(2, 'C.), K=S8U(2). In this case 4
js the plane C? without the point (0, 0), and &(4) is the space of polynomials
of two variables z;, z,. The scalar product is introduced in &(4) by the formula

{f; g} = [ee0mt+12i") £ dz, dzy dZ, ds.

Now the ring 9 (4) is generated by the operators z; and £~ , i=1,2. Tt is

. .
easy to verify that [9%-] =gz, and therefore
_ i

0
A -1 _-_
(“i) e 321 .

This shows that Conjecture I is true in the present case.

The above construction for SU(2) was suggested by Bargmann [3].

Using the examples given in § 4 we can show that Conjecture I1 is also valid
for G=SL(3, C). As u(t) we take the decreasing positive solution of the equation

d%u du
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« It seems that for G=SL(n, C) the function #(¢) has to satisfy the equation

n—1

d
Ty (ut" O+ (- 1)'u == 0.

A more precise version of Conjecture II is the following

Conjecture 1. Let g—g* be the anti-automorphism of G corresponding to the
anti-involution (—1i):g—+¢g. The numbers g, can be chosen in such a way that

for any? function f€&(G) the equality (f)*=( f *') is satisfied. Here f*(g)=f(g%).

§ 6. The mapping =,

In this section we shall give a construction which yields a weaker version of
Conjecture I. More precisely, for every function €& (G) a collection of regular
differential operators on A will be constructed. In addition to this, we shall show
that all differential operators on 4 can be obtained in this way. In the construc-
tion we apply an operation n, which maps functions on G into functions on 4
and which, we believe, is of 1ndepcndent interest. This operation is an algebraic
analogue of the averaging operation over a subgroup (which is unipotent
in the present case). It is remarkable that =, transfers the operation of mulfi-
plication by a function f(g) into an “almost” differential operator on 4. The exact
formulation of these facts is given in Theorems 6.3 and 6.5.

Lemima and Definition 6.1. There exists a unigue mapping 7.8 (G)—~&(4)
such that

1) m RS = Rim, and wif = Lin
for all g€G, he H,
' 2) m e = ¢ for all pe&(A).

- Proof. First we prove that =, f is uniquely determined by the conditions 1)
nd 2). It'is enough to consider the case when f lies in a subspace V irreducible
and invariant with respect to L%; further we can assume that f is a weight func-
n of we:ghj:};g with respect to the restriction of L% to H. If y is a highest weight
he given irreducible representation, then f€Im =¥, ie. f=n*¢, hence in view
) » *f -

me now that x is not a highest weight. Let us denote by f; a vector of
st weight in 7 and by g, the corresponding highest weight. Then, under
on of RS, fand f, are transformed by the same irreducible representation
From 1) and the fact that every irreducible representation of G' occurs
only once (see[2]) it follows that =, .f and =, f, belong to the same sub-
rreducible and invariant with respect to R%. But then the weights of
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=z, fand n, f, with respect to L% coincide (see [2]). From 1) it follows that the weight
of m, fis equal to y and the weight of x, f; is equal to y,y. Since =, fo70 we
have 7, f=0. |

From this proof we immediately obtain a construction for =, . Indeed, if f
is a weight vector, not of highest weight, lying in a subspace, irreducible and
invariant under LY, then we put =, f=0. On the other hand, if f is a vector of
highest weight then f==*¢ and we put z, f=¢. The lemma is proved.

Let us denote for each y €4 the operator LG by E It follows from the con-
struction of =, that = (E =0 for all fe& (G) and yead_

By means of the mapping =, one can construct dlﬂ"erentlal operato1s on A in

the following way.

Definition 6.2. Let f€&(G). We define a,ﬁ operator f in the space #(4) by the
formula f(p)=n, (/- 7*p), ¢ €E(A).

Theorem 6.3. There exists a non-zero element Z € Wu such that Zf is a regular
differential operator on A.

Proof. A differential operator D on G is called a chain if it can be expressed
in the form E E EY , 7,€4,. The weight of this chain is defined to be
Vit Yot .o+ Vs EI)"‘ Let us denote by & the set of all chains D such that Df=0
and by E,ch* the set of all their weights. Obviously, & and Z,-are finite sets.
For any function ¢ € &(A) and any chain D we have D(fr*p)=Df- "¢, since
E,z*p=0 for y€A4,. Therefore, if D¢E then D(fn*¢)=0. Let us denote by
- U the subspace of &(G) consisting of all functions # such that Du=0 for*any

chain D¢ E.

Lemma 6.4. There exist a regular differential operator T on G and an element
Z ¢ Wy such that Tu=Zn*=, U for all ucU.

The theorem is an immediate consequence of this lemma, since for any function
@ €8 (A) we have f+n* @ €U, and so

T(fr*9) = Zn*n,(f-n*¢) = 7*Zf(p),

ie. Tofon*=n*oZof. It follows from this equality that the differential operator
To f preserves & (A)< & (G), or in other words, that Z f is a differential operator
on A.

Proof of the lemma. Let H,, ..., H, denote a basis in [y, The elements of Wu
are polynomials of H,, ..., H, and, as above, we may consider them as polyno-
mial functions on h* Let A be the Laplace operator of the second order on G
(constructed by means of the Killing form). Then there exists an element P € Wu
such that for any vector ¢ €£(d4) the equality Ap=Pg is satisfied, or equiva-
lently, A@=P(x,)+ @, where x, is the weight of the vector ¢.

36




ight
) we

it f
and
i of

>on-

4 in
the
wlar

ssed

be
20
sets.
ince

any

hernt

tion

ator
ator

U S

Let B be the restriction of the Killing form of the algebra g to b, and Q(x)
the dual quadratic form on b*. It follows from resulis of Harish—Chandra [4]
that P()=0(+0)—Q(g), where ¢ is half-sum of the positive roots.

For an arbitrary weight 8 we denote by P, and Z, the elements of Wu corre-

sponding to the polynomial functions
Py(x) = P(x+B)

Z() = 6B x+)—<B: B)

respectively ((,) denotes the scalar product in b* corresponding to the quadratic
form Q). Let T=]J] (P,—A), Z=]] Zy, where § runs through B0}
] B

We shall show that for all €U the equality Tu=Zn*n, u is satisfied.

Clearly, it suffices to verify this equality when u is a weight vector lying in a
subspace V which is irreducible and invariant under L% Let u, be a vector of
highest weight in ¥, x and x, be the weights of u and u,, respectively, with re-
spect to . It follows from the uniqueness of the vector of highest weight that
uy=cDu where D is an appropriate chain and c€C, and therefore x-x €5,.

and

Case 1, y4%,. The restriction of A to ¥V is multiplication by P(ye). There-

fore - .
(Py—Au = (Py(0) - P(x))u = (P(+P— PQu)u = 0,

if B= o= €Bg\{0}.-Thus Tu=0, and since w, =0 in this case, we have Tu=

=Zn*n, u=0.
Case 2, x#xo. Then
(Py— A = (P(to -+ — P = (Qo++0)— Qko+Q)u =
== (20 + 0 B +<B, B)u = Zy(to)u,
hence
Tu= (n(Ps— A))u = nZ;(x)u = Zu = Zn*m,u.

The proof of the lemma and of Theorem 6.3 is complete.
It can be shown that the order of the operator Zf is equal to card F,~—1, ie.

the order of Z’,

Theorem 6.5. Every regular differential operator D on A can be writien in
the form D= 3Z; f;, where Z;cWu and f; € £(G).

Proof. Let D’ be a lifting of D to G ,(Theorem' 3.4). By means of simple trans-
formations D’ can be transformed to the form

D = szﬁ*l"ZAkEyk‘l“ZEa,Bu

where 4, and B, are differential operators on G, Z;¢ Wu, Fi€E(G), v€Edy,
5,: EA —_ ‘ ’
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Since E, n*¢p =0 and 7, Ej f =0, we have
Dy = m,n*Dy = n,D'n*p = 3 Zim (fiw* o) = 2 Z;/(0),

which proves theorem 6.5.
Tet I, be the quotient field of the ring Wu. Then the operation f- 7 extends
to a mapping Q: L® E(—~L @ P(4). Here 2 commutes with the actions of

Wu

R and L
Theorem 6.6. Q is an isomorphism of L-modules L® &(G) and L R D(A).
wu
Proof. Tt follows from Theorem 6.5 that Q.is a suxrjection.
In Theorem 6.3 we constructed for every function f€ & (G) an operator Z,€ Wu
such that Z - Ffea(A). :

Lemma 6.7.
. so(Zsf) = ®Z,+ 2 fi®Z;,
where deg Z;<deg Z,.

Proof. The lifting of the operator Z,- 7 bas the form T'o f, where T==[J(Pz—A)
#
(see the proof of Theorem 6.3). It follows from [4] that

A=P+ 3 ¢,E_E, ccC.
YEA,
Consequently

Pﬂ"‘A :Zﬁ'— . C}, *__),E-y.
7€A+

Let K=card (£,\{0}). It is easy to show by induction on K that -
= %IZﬁJrZ e Hy Xo X,
7

where ¢, €C,and H,, X;and ¥, are products of suitably chosen operators #; ¢ Wu,
EL,, veA,, and E,, y€A,, respectively. We also have deg H,+deg X;=K
for all 4, and deg H ,;:K if X,=1. Moreover, Z;= [[Z,. From this it follows

that the operator Tof is of the form f-Z,+ Z’ffH#XﬂIﬂ“ where f, €&(G),
H,, X, and Y, satisfy the same conditions as H,, X,, ¥;. Therefore, 5,(Z, 5
(see Deﬁmtlon 3 10) is of the form s5,(Z - H=f® Z,+ 2 [i® Z;, where deg Z, =K,
deg Z,< K. The lemma is proved.

Let us now consider the element D= Z,® f,€#(G), where Z; GL Z,#0,
and the f; are linearly independent. We shall show that Q(D)=0. Let us multiply
D by an element Z € Wu such that ZD=: 3 Z,® f;, where Z; € W, and Z; is divisible
by Z, . Let I=max deg Z;. Then Q(ZD)€%(4) and by Lemma 6.7

55(QEZD)) = S H®Zi+ 3 f®Z],

where deg Z} </. This implics that s,(2(ZD))#0, consequently 2(D)#0.
We have now proved that € is an injection and therefore an isomorphisim.
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PART i1

THE RESOLUTION OF A FINITE-DIMENSIONAL g-MODULE

§ 7. Intreduction

Let g be, as above, a complex semisimple Lie algebra. Let ¥ be a finite-dimen-
sional irreducible g-module. The cohomology groups H Hn_, V) play an im-
portant r6le in the theory of representations (see [5] and [6]). They have the follow-
ing properties expressed in Bott’s theorem [5]. Let W be the Weyl group of the
algebra g. Then dim H’(n_, V)=card WO, where WP ={wecW:l{w)=i} and
I(w) is the length of the element w ¢ W.

The fundamental result of this part is Theorem 10.1 which improves on Bott’s
theorem. _

For any y €h* we denote by M, the U(g)-module generated by a vector of
highest weight y—¢ (the exact definition is given below). In Theorem 10.1 we

construct a resolution

0« Vi Cypan Cp+oe Cy < O

of the g-module ¥ such that
Ci == @ was

we Wi .

where y— ¢ is the highest weight of ¥. Bott’s theorem follows from Theorem 10.1

since M, is a free U (n_)-module with one generator. -

In this part we shall make a systematic use of a certain category of g-modules
which we call category O (see [12]). § 8 is devoted to the exposition of the properties
of category O. '

In § 9 several results concerning the cohomologies of Lie algebras are presented.
In particular, in this section a purely algebraic proof of Bott’s theorem is given

which, it seems to us, is simpler than the proofs presented in [5] and [6]. This

proof has several points of contact with Kostant’s proof [6], but it does not make
any use of the Hermitian structure. The observant reader will notice that the
resolution constructed in the proof of Bott’s theorem is dual to a part of the
de Rham resolution well-known from the . theory of formal differential forms.
In the Appendix we describe the modules occurring in the Jordan—Holder
decomposition of the modules M, . The study of the structure of the modules
M, was initiated in Verma’s work [7]. We remark that the works [7], [8] and {9]
contain everything we know about the modules M,. All these facts are also
contained in Theorems 8.7, 8.8, 8.12 and 10.1 of the present work.
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§ 8. The category O

Definition 8.1. Category O is the full subcategory of the category of left U (9)-
modules consisting of all modules M such that

1) M is a finitely generated U (8)-module,

2). M can be made h-diagonal, i.c. there exists a basis in M consisting of weight
vectors,

3) M is U(n,)-finite, i.e. for any JE€M the space U(u,.)f is finite-dimensional,

Definition 8.2. Let y €h*. We denote by J, the left ideal in U(g) generated by
the elements E,, y€4, and H—y(H)+gq(H), Heh. Let us put M, =U(g)/7,.
We shall denote by Jy the image of 1 €U(g) in M,.

For the sake of convenience we formulate the elementary properties of the
category O and the modules M, in. Propositions 8.3, 8.5, 8.6. These proposi-
tions are simple consequences of Harish-Chandra’s theorem about Laplace
operators (see [4]). '

Proposition 8.3. 1) The category O is closed under taking submodules, factor
modules and finite direct sums.

2) Let M€O. Then all the spaces MM W €D* are finite-dimensional and
M= @ MW, Inaddition to this P(M) is contained in a finite union of sets y,— X,

W ED* .

b AL '

3) Bvery element M ¢ O has a finite Jordan—H#élder composition series,

4) M, is a free U(n_)-module with Jy as a generator.

5) M,€0.

6) In M, there exists a maximal proper submodule. The corresponding ir-
reducible factor module will be denoted by Z,. :

7) Bvery irreducible module in the category O is of the form L,, y€h*.

We denote by Z(g) the centre of the algebra U(g) and by @ the set of all homo-
morphisms $:7(g) —~C.

Definition 8.4. Let M be an arbitrary g-module. To each element JE€M which
is an eigenvector with respect to all the operators z € Z(g) we can assign a homo-
morphism §,¢® such that zf=9,(z)- fforall z¢Z (g). The set of all such homo-
morphisms 9 will be denoted by @ (M).

Proposition 8.5. 1 ) ©(M,) consists of a single element which we shall denote
by 8,. :
2) 19x1=8x2 if and only if x, ~ xs.

Proposition 8.6. Let M ¢O. Then

1) ©(M) is finite.

2) For any $€6 we put I,==Ker CZ(g). Let MP={fecM|I? f=0}. Then
M stabilizes for large values of #. The obtained submodule of M will be dénoted
by M,.
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3) OMy) = {9).

9 M= @ M,
‘. - 8€6(M)

5) The mapping M -~ My is an exact functor in O.
Now we shall pass on to the study of the modules M,. The following . two

theorems give a complete description of the homomorphisms between modules
M,.
-{ X

Theorem 8.7 [T]. Let y, Y ED*. Then either
1) Hotnyey (M, M) = 0.

or
) 2) Homye (M, My) == C, and every non-trivial homomorphism My~ M, is an
infection, '
Theorem 8.8, Let ¥, e,

then _
HOH’IU(B) (MX’ M,;,) = C

if and only if there exists o sequence of Foots yy, ..., v, € 4., satisfying the Jollowing
condition (A) for the pair (x, ).
Condition (A).

1} 3= Oy Ty ooe s Oy W,

2) Put yo =1, y, = Tyt e Oy W Then 3, — Xi=ny;, where n is a non-negq-
TGS Tep,

Anparticular Homu(ﬁ)(Mx, My)#0 only if jgm'l,b and yz=i.

Theorem 8.8 was formulated in [7] as a conjecture; a proof of the sufficiency
- of condition (4) was also given there. A complete proof of Theorem 8.8 was
~given in [9),
- The structure of the submodules of the modules M, is most interesting when
€D. We shall study this case in more detail. For this purpose we introduce the
following partial ordering in the Weyl group W.

Definition 8.9, If Wi, Wa €W and.ue 4., then Wy —2s w, means that Wy=o0, W, and
(w3 =I(wy)+1. (Sometimes we shall omit the symbol y above the arrow.) We
ut w<w’ if there exists a sequence wy, wy, ..., w, of elements of W such that

W""W]_"*Wg“"" res —ka“*w,.

heorem 8.8'. Ler y¢D, Wi, Wa €W, Then Homv(g)(Mwlx, M, )=C if and
if wy=w,. '

n what folloWs all modules My, wEW, veD will be considered as sub-
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Theorem 8.8 is an immediate consequence of Theorem 8.8 and the following
lemmas.

Lemma 8.10, Let y €D, p€4, wEW. Then wy—o,wy=ny, where n€Z, n0,
while n=0 if and only if | (o, w)y=I(w).

Lemma 811, Let weW and y€4 be such that 1(o,w)<I(w). Then w=o,w.

The proofs of these lemmas will be presented in § 11.

The complete structure of the submodules of the modules M, is not yet known.
Some information is contained in the following theorem.

Theorem 8.12. Let r, x €h*. Then L, €JH(My) if and only if there exists a
sequence V1, Vs ---» Yk €A+ satisfying condition (4) for the pair (¥, ) (see Theo-
rem 8.8).

Since we shall need this theorem in §10, we shall give the proof in the
Appendix. '

Corollary. Let x €D. Then the Jordan—Holder decomposition of the module
M,,, consists of the modules L., where w'=w (possibly counted with multi-
plicities). L,,, occurs in this decomposition exactly once. The example in [9]
shows that the modules M, may contain submodules M which are not generated
by submodules M, M.

In fact, even the following proposition can be proved.
Proposition 8.13. Let g=sI (4, C). Consider the module M, corresponding to
a weight ¥ €D. Then M, contains a submodule M such that

M= 2 M.

MM

This statement is equivalent to the fact that the number of elements in JH (M) is
greater than the number of elements of W.

§ 9. Cohomology of Lie algebras

In this section we shall recall a number of results concerning the cohomology
of Lie algebras: Moreover, Bott’s theorem will also be proved here.
Let a be an arbitrary complex Lie algebra and M an o-module. The cxact

“sequence of a-modules

O < M — Cy =2 G <2 ©9.4)

where each module C; is free over U(a) is called a free resolution of M.
Let N be another a-module. Consider the complex

0— Hom (Co, N)-> Hom (Cy, N)—=...
and put '
Ext!(M, N) = Kerd,,/Imd;.
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* Let t:U(a)-~U(a) be the anti—automorpilism defined by the formula (X)=
= — X for X €a. We denote by N°the right U(a)-module whose underlying space
coincides with that of N and on which the action of U(a) is defined by the for-
mula f« X=t(X)f for feN, XcU(x).
Now consider the complex
0+—N*QCy - N'®C, ~
and put * - ’
Tor;(N*, M) = Kerd/[Imdj,,.
The foliowing standard facts hold (see [10]).
1) The groups Tor, (N%, M) and Ext’ (M, N) are independent of the choice
of the resolution (9.1).

R 2) Let a be a finite-dimensional Lie algebra and M, N be finite-dimensional
© » a-modules. Then

a) [Bxt! (M, N)J* = Tor;(N*, 'M),

where N*=Homg (N, C) is a right a-module ([10] Chapter X1, §3, Proposi-
tion 3.3),

b) Tory (N*, M) = Tor; (M, (N)¥).

([10], Chapter VI, § 1). :

The cohomology group of a with coefficients in M is defined by the formula
H'(a, M)=EBxt' (C, M), where C is the trivial one-dimensional a-module.

The computation of the cohomology groups is done by means of the standard
v+;olution ¥(a) of the module C, which is defined in the following way.

“We put

= U(@®@A*(a), k=0,1, ..
¢

hen we define a homomorphism d,:C,—~C,_, of a-modules by means of the

k
GXQX; A ANX) = X (DX XQX A AL A AX)
i=1

+ 3 DM EXRQUX, XIAXALLALA LA AL AX.

1 =i<j=k
e X€U(a), X;€a and fhe symbol = means that the corresponding element
be omitied. Furthermore, we define &:Cy—C by the formula s{(X)=(the
ant part of X), X ¢ U(a).
was shown in [10], Chapter XIII, § 7, the sequence

dy

0« C -, 2,

olution of the a-module C,
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Subsequently we shall need a generalization of the resolution V{(a) for the case

of relative cohomology.
Let a be a complex Lie algebra and p a subalgebra. The adjoint action of ¥

in a yields a representation § of the algebra p in the linear space a/p. The cor-
responding representations of p in the linear spaces A*(a/p) will be denoted by

the same symbol 8. ‘
Let us consider for each k, k=0, 1,2, ..., the module

Dy, = U(a) L(r(%)/l"‘(ﬂhv)-

We define the operators dk:Dk—>Dk_1 in the following way. Let X, ..., X be
elements of a/p. Let ¥y, Yp, ..., ¥x€a be arbitrary representatives for Xi, ..., Xi»

respectively, and put
k
dk(X®X1A”.AXk) = i%'_ (—‘1)'+1(XH®X1/\AX{A../\X&)"{_

+ 3 (DR, IAXA AN LA AN LA XD,

1=i<j=k
Here X € U(n), and Y is the image of the element Y ca in af/p. It is easy to verify
that the operator d is well defined, i.e. independent of the choice of the representa-

tives Y.

In addition to this, we introduce the augmentation g:Dy—~C by putting
£(X® 1)=(the constant part of X ). Thus we have constructed a sequence Va, p)
of U(a)-modules

0*——"C*‘LD0+£LD1+"“....

Direct computation shows that this sequence is a complex, i.e. dy..14=0, edy==0.
We shall call this complex ¥(a, p) the relative chain complex of the algebra a

with respect to the subalgebra p. Clearly, V{(a, 0)=V{(a).

Theorem 9.1. The complex V{(a,p) is exact.

Proof. Our proof will be similar to the proof of exactness of the standard

complex ¥ (a), given in [10].
We define a filtration in ¥{a, p) by writing 4 ¢ DY if A €D, can be written in

the form ,
A= 2¢ XYORXPA... A X9,

where .
e €C, XPeU(o), X €afp and degd = l—k.

It is clear that d, (D) DY . Therefore, to prove the theorem, it is enough to

show that for every I the complex
(9] 1)
0« M® — pODE-D <A po/pg-2 A2

is exact. Here M@ =C and MV =0 if /=0. It follows from the Poincaré—Birk-
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hoff—Witt theorem that DP/DU—V=S,_, (a/p)® A*(a/p), where S;_,(a/p) de-
notes the set of all homogeneous elements of degree /—k in the symmetric algebra
of the space a/p. The operator '

4 DY DY DYy DY
is given by the formnla

k
AP (X@ X A...AX) = 3 (D)X AL ALALAX.
i=1

Therefore, the complex Gr V{a, p):
0 C @DP/DY~? < GDP/Df D < ..
i I .

coincides with the Koszul complex (see [10], Chapter VIII, §4) of the space
afp. This means that the complex Gr V(a/p) and also the complex V(a/p) are
exact Theorem 9.1 is proved.

Proposition 9.2. Let p and g be subalgebras of a such that a=pdHq (as a
linear space). Then ¥(a, p)~ ¥ (q) as complexes of U(q)-modules.

Proof. We define a mapping of complexes ¢:¥(q)—~V(a, p) by the formula
_@k(X@XlA ./\ XL) = X®X1/\ /\Xk’

‘where X € U(q), X; €q and X, is the image' of X, in a/p. The theorem of Poincaré—
Birkhoff—Witt implies that ¢ is an isomorphism.

 Remark 1. Proposition 9.2 owes its s:gmﬁcance to the following fact. Assume that

q is a subalgebra of a and that there exists in a a subalgebra p which is comple-

mentary to q. Then the action of the algebra q on ¥(a) can be extended to the

action of the whole algebra a. We remark that this extension depends essenﬂally
~ on the choice of p. :

§ Remark 2. Let A be a complex Lie group, P a Lie subgroup of 4,.a and p
the Lie algebras of 4 and P respectively. Let us consider the de Rham complex
0= {Q"} of formal analytic differential forms at the point e on the space A/P.
-_Mmc precisely, let zy, ..., 2z, be a system of coordinates on the complex mani-
fold 4/P in a neighbourhood of the point e. Then Q% consists of the forms

0= 2 &y, 1. @z N Nz,

ere a; , , (2) are formal power ¥ries of the variables z, ..., z,.

The groupA acts on the space A/P. Of course, it cannot act on the complex £
wever, the Lie algebra a acts on . It is easy fo verify that the complex Q is
al'to the complex V(a, p) constructed above. Therefore the exactness of ¥(a, p)
also a consequence of the exactness of de Rham’s complex £.

n what follows we shall be interested in the case when a=:g is a complex
tisimple Lie algebra, p=b=b@u,. is a Borel subalgebra of g. We shall study
tructure of the members D, of the complex ¥ (g, b).
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Lemma 9.3. Let V be a b-module and let Vé=U(g) ® V. The mapping V—~V8
' (o)

generates an exact functor from the category of b-modules to the category of g-mod-
ules. If in addition V is a one-dimensional module, Ho=y(H)v, E,0=0 for Hch,
YEdy, vEV then VO=M,.,,.

The proof follows easily from the fact that U(g) is a free U(b)-module. The
second statement follows from the definition of M,,,

Lemma 9.3 enables us to present an easy description of the modules D, occuring
in the complex ¥(g, b).

Definition 9.4. Let ¥ be a finite collection of weights (we allow that some of
them coincide). We shall say that the module M is of type ¥ if there exists a filtra-
tion 0=MPcMWc...cMP=M such that MP/yr U-D=af, and the collec-
tion of weights {y;} coincides with ¥.

Lemma 9.5. Let N be a finite-dimensional b-diagonalizable b-module, V(N)=

={@+¢}, where @ runs through all weights of N (with multiplicities). Then the
module U(g) @ N is of type ¥(N).
v

‘The proof is an immediate consequence of Lemma 9.3.

Corollary. The module D, in the complex ¥ (g, b) is of type ¥ (A*(g/0)).

Since the Lie algebra g acts on the complex (g, b), we can distinguish in it
a subcomplex corresponding to the “zero” eigenvalues of the elements of Z (g).
More precisely, let $=3,¢®. We consider the subcomplex Fy(g, b) of ¥(g, b)
consisting of the submodules (D), D, and the module Cy==C. It follows from
Proposition 8.6, §5 that the complex ¥;(g, b) is exact.

Proposition 9.6. Let Wy ={wolw e W®}. Then (D,), is of type ¥,.
First we prove the following lemma.

Lemma 9.1. Let M be a module of type P and $€O. Then the module M,

is of type Wy, where Wy is the collection of all weights Y €Y such that 9,=9.

Proof. Let O0=MPcMPc..cMP=M be a fitration of M for which
MOIM ““”zl’ld’,,,i s Y, €¥. From the exactness of the functor MM, it follows
that the modules M form a filtration of M, and MPIMEV=(M,),. It follows
from Proposition 8.5 that (My )s=M, if 9y, =3 and (M )s=0 if 9528, . This
implies Lemma 9.7. -

It follows from Lemma 9.7 that (Dy), is of type [¥(4*(a/5)}]s. Now we shall
study this set. '

Let & be a subset of 4. Put |#|= 2,1, 7. Since the set of weights of g/b coincides
€

¥ _ :
with A_, the collection of weights of A*(q, b) (with multiplicities) coincides
with the collection of weights of the form ~ || for all $ 4 + such that card =k,
Therefore, '

[Z(A*(@/B)]s = {e—1P]|@ < 4., card ® = k, (o—|B])~g}.
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. For any clement weW we put @,={y€d,jw™'ycd.}. Then card @, =k,
“for w € W® (Lemma 11.1). Thus Proposition 9.6 is a consequence of the following
lemina.
Lemma 9.8. LetwcW, ®CA... Then o—wo=|®| if and only if ©=9,,.
A proof of this lemma is presented in § 11, see also [6].
Now we can formulate the main theorem of this section.

Theorem 9.9. Let V be an irreducible finite-dimensional g-module with highest
weight A, Then there exists an exact sequence of U(g)-modules

0+V<BY «Bl «..«<BY«~0 _

where s=dimn_ and B, is a module of type ¥i(A)y={w(+o)wew®},

Proof. In Proposition 9.6 the required exact sequence of the g-modules BE
_ was constructed for the case V==C (i.e. A=0). In the general case we consider the
exact sequence B,f(% V and put

BY = (BE®V)s,,

Now we prove that the sequence

o 0« V- BY < BY <
satisfies the conditions of the theorem. Its exactness follows from the fact that

M~(M®V), is an exact functor. Now we show that By is of type ().

Lemma 9.10. Let ¥ €H*, V be a ﬁnite~dimen.s'ibnal q-module. Let us denote by
¥ the set {A-+yx} where A runs through all weights of V with the corresponding
multiplicities. Then M,QV is of type V. .

Proof. Let e, ..., e, be a basis in ¥ consisting of weight vectors and 1, 45, ..., 4
be the correspondmg weights, We choose an enumeration of the vectors ¢
such that 4;<4; implies i>/. Let a,=f,® ;€ M, ® V and M®=U(g)(a, ..., a)-
Then 0= _MOCHD . MO,

To prove Lemma 9.10 it will suffice to show that

MOMED = M, .. and MO = M,QV.

. Let @, denote the image of @, in M/ %D, Tt is obvious that &, is a generator
of M®[ME D of weight,y+4—e and E,,=0 for y€4,.. Therefore M®=
=Um_Ya, ..., @). We shall show that M is a free U(n_)-module with gen-
erators a, ..., . Let X,€U(n_), 1=i=k and let p be the largest among the
degrees of X; (with respect to the natural filtration in U(n-)). Then

ZfYtai ZXifx®e;+ Zy:]fx®ej ?"‘0
since the degrees of the elements Y; are less than p and M, is a free U(n_)-module.
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This means that M®/M%D s a free U(n_)-module with the single generator
Gy, ie. MO/MED M, ,, . |
Similar considerations will show that M W =M,® V. This completes the proof

of Lemma 9.10,
It follows from this lemma that BE® ¥ is of type ¥, where W= {1;+we|l,

are the weights of ¥ (with multiplicities), w € W®). Therefore, Theorem 9.9
follows from Lemma 9.7 and the following lemma.

Lemma 9.11. Let V be a finite-dimensional irreducible g-module with highest
weight 1. Then for every w €W there exists exactly one weight u € P(V) such that
pA-wo~A+o. Moreover the weight n has multiplicity one in V..

Proof. Let ucP(V), wy, wa € W be such that wy(u+wo)=1+¢; since wyu is

a weight of ¥, we have wypu=4.

In addition, w,we=g. Therefore w,u=1 and wiwg==g. This implies w,=w™*
and thus #=wi. The last statement of the lemma follows from the fact that the
multiplicity of the weight u in ¥ is equal to the multiplicity of the highest weight 1.

Corollary (Bott’s theorem [5], [6]). Let ¥ be a Jinite-dimensional irreducible

a-module. Then
dim Hi(u_, V) = card ',

Proof. We know that
i(n_, V) = Bxt,_(C, V) = Tory~(F*, C)* = Tor}-(C, (VH*)*.
Let us construct the resolution {BY} for the module Vi=(V")* Then Tor?- (C, ¥;)
will be the homologies of the complex :

4

0 B‘f)ﬁ E;ﬁ ~—Q.

The algebra b acts on this complex in a natural way. In view of Theorem 9.9
we have here that B/*=B}y/n_ B!t is a finite-dimensional space whose weights
with respect to h are equal to w(l+g), w € W, and each of these weights occurs
with multiplicity one. Therefore dim B/t=card W, and every d, is the null-

mapping. The corollary is proved.

§ 10. Construction of the resolution of 2 finite-dimensional g-module

The present section is devoted to the proof of Theorem 10.1, which yields a
sharpening of Theorem 9.9.
Theorem 10.1. Let V be an irreducible Jinite-dimensional g-module wifh highest
weight A. Then there exists an exact sequence of g-modules
d
0P ]~y ¥ 0 ,

where

s =dimn_, Cy = @ Moyiyt0ys
wewi




o

First we shall present an explicit construction of the mappings d; and &, Lei
us put y=A+¢. Then x €D and by Theorem 8.8’ every submodule of the module
M,,, wEW can be considered as a submodule of M,. By Theorem 8.7, any
mapping M, ,—~M, , is a multiple of the canonical imbedding for w,<w,,
hence it can be determined by a complex number Cw,w,+ Lherefore, any mapping
CY ~C}_ can be represented by a complex matrix (Cu,w,)s Wy WD and w, ¢ =D,
Thus in order to construct the mappings 4, it will suffice to define the corre-
sponding matrices (d3),, ).

Definition 10.2. Let us call a quadruple (wy, wy, wy, w,) of elements of W a
square if
Wy = Wy >~ w, and w; - wy > w,
(see Definition 8.9).
It will be convenient to consider the finite directed graph corresponding to

W, whose vertices are the members of W and in which an arc leads from w, to

Wz if wl’*W2.

Lemma 10.3.% Let wy, wo€ W and I(w)—2=I(w,). Then the number of ele-
ments w' €W such that wy~w —~w, is equal to either zero or two.

Lemma 10.4. To each arrow w,—~w, we can assign a number s(wy, w)) =+ 1
in such a way that for every square (w,, Was Wy, W) the product of the numbers
assigned to the four arrows occurring in it is equal to —1.

The proofs of Lemmas 10.3 and 10.4 will be given in §11.
Now we can improve on Theorem 10.1 in the following way.

Theorem 10.1. With the notation of Theorem 10.1. we define the mapping
d;: Cy~C;s_; by means of the matrix @00 wy WD, WD, ywheore @, =
=s(Wy, Wo) If Wy —~w, and d),, =0 otherwise, Let us denote by ¢ Co—V the natural
surjection. Then the sequence

8 dy

0=y 2 f o <oV (10.1)

is exact.

Progf. Tt follows immediately from Lemmas 10.3 and 10.4 that d;od,,,=0
for i=1, ..., s—1. |

We remark that W= {g,, « € 2}. Therefore, Harish~Chandra’s theorem on
ideals [4] implies-the exactness of the sequence (10.1) at its members V and C,.

Assume now that we have already shown the exactness of the sequence at the
members Cy, ..., C;_;. We shall prove that it is also exact at the member C,,
i.c. that Ker d;=Im d,, . Let us put K=XKer d;. The desired equality d41(Cir)=K
is obviously a consequence of the following three lemmas.

* Lemma 10.3 follows easily from certain unpublished results of D.-N. Verma concerning
the Mobius function on the Wey! group. :
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(We recall that C.y= M,y is a free U(n_)-module.) .

weWwi+l)

Lemma 10.5, Let C be a free Un_.)-module with generators fi, ..., [, and
£:C~K be a homomorphism of Un_)-modules such that ¢ (f) is a weight
vector in K (with respect to b). Then { is a surjection if and only if the induced
mapping {:Cin_ C~Kn_K is surjective,

Lemma 10.6. The mapping

: ai+1:Ci+1/“—C£+1’*K/“—K
is an injection.
Lemma 10.7.
dim¢ Cyya/t_Cyyy = dime Kft_ K < oo,
Proof of Lemmia 10.5. Clearly if { is s_urjectivé then so is {. Conversely, assume
that { is surjective but ¢ is not. Consider the weight vector fin X of weight y
having the following properties:

a) f¢Im{,

b) any vector f* of weight ¥’ =y belongs to Im .

There always exists such a vector f since K¢ O, and therefore for any weight
Y €h* there are finitely many weights ¥'>y such that X" = {0},

Let f be the image of fin K/n_K. Then J= e¢,i( J7). Since n_ K is invariant
under b, b acts on K/n.. K. Therefore we can assume that ¢;0 only for those
indices 7 for which the weight of {( ) is equal to yr. Moreover, g=5— 3 c,{(f)
Is a weight vector lying in n_K, and thus g= g’ E_.g,, where the weight of

7

& is Y+y=y. According to the construction of /> gy€Im¢, and therefore
SJ€Im{. Lemma 10.5 is proved.

Proof of Lemma 10.6, The quotient space Cyyq/n. Ciyq is 2 linear space over
C for which {f, IweWU*} forms a basis.* Since the homomorphism 4, ,
commutes with the action of ) and all of the vectors Sy have different weights

it will suffice to prove that d;,,(f,,)0 for any we Wiy,
The proof of this proposition is divided in a natural way into two steps.

Lemma 10.6a. The irreducible modules occurring in the Jordan—Holder de-
composition of the module K are of the form Ly, I(w)=i.

Proof. For the proof of Lemma 10.6a we shall make use of the exact sequence
_ O+VeBY «BY « .. «BY<0 (10.2)
constructed in §9. It is clear that for all ; '
JHB) = U JH (M,,) = JH(CY).

we W

* Let us recall, that Juwy 18 the generator of M., (see Def. 8.2).
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"Since both of the sequences (10.1) and (10.2) are exact at thejr members with

numbers less than i, we have JH (K)=JH(K}), where K, denbtes‘the kernel of -
the mapping B ~BY ,. As the sequence (10.2) is exact at its member BY, Ky is
equal to the image of BY ,. Therefore

JH(Ky) ¢ JH(BiI:-I) = JH(va),

wewE+1)

-

and thus Lemma 10.6a is implied by the Corollary of Theorem 8.12.

Lemma 10.6b. Let w, €W and the module MEO be given. We assume that
Iw)=I(wy) for any Ly, occurring in JH (M). Let T M, M be a homomorphism
such that =( Jw =0, Then the image of ©( Jwyr) i Min_ M js not 0.

Proof. We shall use induction on the number of elements in JH (M). Let
J€M be an element of maximal weight  and N M be the submodule generated
by /. Then the module N ig isomorphic to a factor module of the module M.
We shall distinguish two cages, '

Case 1. ©( Jw, ) EN. In this case

Ly, © JH(N) < JH(M,).

-y

Therefore (as it follows from Theorem 8.12) y=w, X where w;=w,. On the
other hand '
Ly, ¢ JH(N) c JH(M).

Thus, according to the condition of the lemma w,=w,, i.c. Y=wyx. Since ¥ is
the maximal weight of M, '

T(fuor) $11_ M.

Case 2. «( fwoz)ﬁ{ N. In this case the statement of the lemma for M can be
reduced to the similar statement for the module M/N. Since JI (MINYS JH(M )
we can apply the induction hypothesis. Lemma 10.6b is proved.

To complete the proof of Lemma 10.6 it suffices to apply Lemma 10.6b to the
module M=K, '

Proof of Lemma 10.7. The module X has only a finite number of generators
(asa U (n_)-module). Therefore K =Kfn_K is a finite-dimensional space over C.
Let us choose weight vectors Jis -0, fu €K whose images in K form a basis in K,
Let us consider the free U7 (n_)-module C with # generators g, ..., g, and define

- @ homomorphism™of U/ (n.)-modules 9: C— X by the formula_&(gi) = f;. By virtue

of Lemma 10.5 § is surjective.
Let us consider the exact sequence

OV byt

of U(n_)-modules.




Since CY and C are free U (1_)-modules, this sequence can be augmeénted to a
free resolution '

0 Ve Cf eV <20 p
of the U(n_)-module ¥,
Now, consider the sequence
br.g%, o QRLIN cl,

where, for any U(u_)-module M, M denotes 1 ® M =M/n.M. By definition,
Uln_)

Torj- (C, V) = Ker $/Im 7.

We shall show that § and 7 are equal to 0,
From the exact sequence

DAsCtuk 0
we obtain the exact sequence
D-1sC-E, R,y

-But 7 is an isomorphism, hence =0,
Furthermore, we have the exact sequence

(o NNYq; 8. SN K, —0
and thus the sequence

C2o Y2 By 0,

where K, _,=Ker d,_ 1=Im d;. Applying Lemma 10.6 to the mapping d;:C;~K;._.,
we see that d, is an isomorphism, hence §==0,
‘Thus we have

dim Tor}- (C, ¥) = dim C = dim (K/n_ K).
On the other hand, the Corollary to Theorem 9.9 shows that
dim Tor!™ (C, ¥) = card W = dim (Cin..C).

Lemma 10.7 is proved. .

This also completes the proof of Theorem 10.1’ and Theorem 10.1.

§ 11. Proof of the lemmas

First we shall present several results clarifying the properties of the function

{(w) in more detail (see [11]).

Let us put ¢,=4, Nw(d.).
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| Lemma 11.1.
1) I(w) = card @,,.
2) U v 12 €Dy and pibyy = my for neZ,, then yeo,,
Proof. Statement 1) is proved in [11]. To verify statement 2) it is enough to
prove it separately for 4, and wA_, and it is obvious in both cases.

Proof of Lemma 8.10. Plainly,

) 2 WX, .
wx_a,,wxz_%;z%

Since 'y €by, and the element y is regular,

2wy, v)
"=y AN

We assumeé that #>0 and prove then that o, wy=I(w). By / } of Lemma 1.1,
it suffices to prove that card D, <card (D% W :
a) y¢&,. Indeed, (y, wly) = (wy, 9> > 0, and therefore wolydA_ .
b) y¢ D, . Indeed, ' :
.‘ @M= e ey = —woiped.
c) Let €&, and 0,8€4, . Then a,,éedia?w. In fact,
(o, w)"(5,6) = w o g, 8 = we1c 4.

d) Letded,, 7,0 €A_ . We shall show that § € Qiay w- Assume, on the contrary

that w='e,6¢4,. Then w™l(~0,8) €4, and thus —0,0¢P,,, But 84 (—0,8)=

209 10 247, 8) G
=%,8) ¥, ‘while %, 8 >0. By 2) of Lemma 11.1 this implies y¢ &, and

that contradicts a).

Propositions a)--d) imply that if n>0 then w)y=<I(o,w).
By interchanging w and o,w we obtain that if n-<0 then / (w)=I(o,w). Lemma
8.10 is proved. '

Lemma 11.2. :

1) Let weW, « 3. Then o €D, implies w-2, o, w, and ag D, implies o, w2, w,
2) If o,w-2ow for all e EX, then w=1.

3) There exists q unique element s € W such that §—0,5 for all €.

This lemma follows immediately from the theorems proved in [1 1].

Lemma 11.3. Let w,, W €W, y€d, and acy, VLR

We put , _
_ TaWy—— W, and o,y —Lw Wy, (11.D)
Then :
Wo~=r 0, Wy, and wy Jels o, Wy, (11.2)
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Conversely, (11.2) implies (11.1)

Wy Wy

Diagram 1 .Diagram 2

Proof. We have to prove that Diagram 1 is equivalent to Diagram 2. Let
y'=0,y. Then y €4, and o,w,=0,wy. Since I(w,)=I(w,), formula (11.2) is
equivalent to /(o,wy)=I/(wy)—1. Let x €D. Then, by Lemma 8.10,-

WeX —O,Wi Y = ny, n>0.
Applying o, to this equality we obtain
OuWoX — Wi X = ny’.

Using Lemima 8,10 again we obtain that I(¢,wy)<I(wy). Therefore, (11.1) im-
plies (11.2).
We can prove similarly that (11.2) implies (11.1).

Proof of Lemma 8.11. The proof will be performed by induct'on on I(w).
If I(o,w) =I(w) —1, then by definition o,w=>w, Since /(w) and I(o,w) are of
different parities, it remains to consider the case in which I(o,w) =/(w) ~3.

Let «€X be a root such that w-g,w. Obviously, a=y and ¢,0,w=0,0,w,
where Y =a,y€4... ‘

Here we have

l(op0o,w) = lo,o,w) = Ho,w)+1 = 1(w)—2 =< I(o,w).
By the induction hypothesis there exists a chain
O'uW“"wl—"'W2—* +We—+0,0,W
and thus also a chain

¥ b Pt .
W_3 2 WO""‘}""WI_ e Wy k I“U'aa-yw (113)

(where w_ =w, w,=0,w and 9,=0), There are two possibilities.
Case 1, o,0,w~0,w. Then there exists a chain

W= w__1—~>—wo—>-w1—> e —>wk->0'a0'1,w-->0‘,,w,

hence W<, w.




e

5@4331‘,2, o,w-»0,0,w. Let i be the largest number such that in the chain (11.3)
=o. Applying Lemma 11.3 several times we obtain that

Foe¥
Gmwk o ffe+ 1 O'YW,

O ¥itl

O Vi
= G Why oy Oy Wy o G, Wy 1.

Go Wiy

But o,w; =w;_;. Hence we obtain a chain

¥ Y1 [ 7,7
. wlh_o_'_*]rp0 e Wy g HI‘O',,,W;.;.I"""‘---"“_‘EL’ Oy W.

Therefore, w<g,w, and Lemma 8.11 is proved.

Proof of Lemmd 9.8. We want to prove that if weW, &4, and g —wo =
=|@|, then @ =0, =4, Nwd_, If w=e, this is obvious. We shall perform the
proof by induction on I(w). Let /(w)=i>0. We choose an a€ZX such that
o, w)y=i—1, i.e. a €P,. Then

Io'oc@| = Oa@— 0, W0 = g— O, W@ —0.
& c 4, implies o ¢ o, P. Therefore, puiting o,w =w’, we have
Q—'w,Q = Q"awwg = IO'a@U{OC}I-

~ We shall show that « € &. Indeed, assume that this is not true. Then o, ®U{a}c
<4, and by the induction hypothesis &,.=0,PU{a}, ic. a¢P,. Accord-
ing to Lemma 11.2. 1 o,w—w, which contradicts the choice of a.

Thus ¢ ¢P. Let us put $=&—{a}. Then g—o,wo=|0,9’| and 0,4, .
By the induction hypothesis &,=0,9’, ie. $=0,8,U{a} It is easy to
verify that o,®,,U{a}=9,. Lemma 9.8 is proved.

~ Proof of Lemma 10.3. We shall prove this by induction ont I(w,). Since /(w))=2,
we can choose an « €2 such that w; ~o,w,. There are two possibilities.

Case 1. wy—a,w,. Let us assign to every chain

Wi~k 2 gy, (11.4)
a chain
O Wy o W 2 0, Wy (11.5)

in the following way. _ :
a) If yy7«, then put 6,=0,y,, d,=0,7,, w’ =0, w. It follows from Lemma 11.3
. that ' : )

Wy e w2 gy,
.'.% . - -
b) If. py==c, then put é,=1y,, dy=0, w=w,. Using Lemma 11.3 again, it is
easy fo see that we have constructed a one-to-one correspondence between the

chains of form (11.4) and the chains of form (11.5). As I(c,w;)<I(w,), we can
apply the induction hypothesis,
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“Case 2. 6, wy—wy. If W2,y then by Lemma 11.3, we have either p,=q
or y,=«. The same lemma shows us that Wi—>0,wy is equivalent to Oy Wy —>w,.
Therefore, either there is no chain of form (11.5) or there exist exactly two chaing

Wy g, Wy —-w, and W1 =0, Wa—~w,. Lemina 10,3 is broved.

Proof of Lemma 10.4. For any element we W we put I(w)={w' cw W =w}.
We shall prove by induction on / (w) that s(w,, We) can be defined for Wi, Wy €1(w)
m such a way that the condition of the lemma be. satisfied for any square

© (W Wy, wy, w,) with wy €f(w). This will imply the statement of Lemma 10.4

since I(s)=Ww (the clement sc W is defined in Lemma 11.2. 3).

Thus assume w € W, We choose an « €2 such that w-g,w. By the induction
hypothesis, the function s(wy, wy) has been defined for w,, wy €1 (e, W),

1) Let

¥
W = WO‘—_%‘“* w1~—-+...—-?—’f—>- Wk,

where y;54« for all /. Then by Lemma 11,3 GuWo >0, Wy ... ~a,w, and W10, W,

for all i, In particular, o, w,c 1 (o, w) for all ;.
2) Let w' € I(w)\J (o,w) and let

_ W= wo—?—‘—-.»w1~'—+...~—2’-‘->wk:-, w’

be an arbitrary chain leading from w to w’, Then p,:2¢ for all i, because other-
wise w'€l(o,w) would hold in'view of 1). In particular, we have W —o,w and
oW € I(a,w). _

3) Let us now define the function s(wy, w,) for ali Arrows wi—L>wy, wy € I(w).
Here we assume that s(wy, w,) has already been defined if wi€{o,w).

Let wy € IW)\JI (o, w). If Wa=0y Wy, then we put s(wy, w)=1. Let Woss 0, W, ,
Then Lemma 11.3.2 implies

g

" \
W1'/ oWy
\ v, /
where a,w,, o, w, €i(a,w). In this case we put

S(wlb Wz) = "““S(wls O'awz)-f'(wza O'a,W2)S(O'aw1, o'aw.‘?-)' (116)

4} Now we prove that the function s defined in this manner satisfies the con-
ditions of Lemma 10.4. For every square 4 '

Wo
Wy T w,
W3




b) wi ¢ I(o,w) and y,=5=~¢, Then p(Ay=—1 in view of formulg (11.6).
©) wi ¢ I(o,w) and Y17, dy2a, Since Wi Ws, We have p,:45,, and therefore
one of the elements y,, 5, must be different from «. Then by Lemma 11.3 Wy—>0,W,,
and thus y,=¢ and dyor, According to Lemma 11.3 we have five squares
! e : Ay = (W1, wg, CuWis OuWy),
Ay = (W, Wa, 0o Wy, 0, W),
A3 = (Wza Wyq, G'awz: a'ocwti)s
A4 = (Wa, Wi, O Wa, Ty W4),
As = (O'“W;L, CuWg, O, Wy, OuWy).
Here p(d)= -1, = L,...,5 in view of a) and b). It is easy to verify that
B o .
pA)- JT p(4)=1, hence P(d)=—1, too.
i=1 Voo :
d) y, =0, & # a, :
By Lemma 11.3, Ws =0, Wy, Wy—0,w, and we have three squares
Ay = (wla Wa, Wy, 0‘¢W3)?
A2'= (Was W4, O'acwas 0‘¢W4),
Ag == (w,, Wy, Oy Wy, 0, W,).
In view of a) and b) we have p(4,) = ~~1,1==1,2, 3, Since p(A)p(4,) =p(d)p(d,),
we also have p(4) = 1.
Thus we have considered all the possibilities for the roots V1> Vas 81, Sy (up

to interchanging Vi With J; and w, with wy). The proof of Lemma 10.4 is com-
plete, ‘

-~ APPENDIX

Let x, ¥ €h*, 9, ..., "Ww€dy. We shall say that the sequence y,, ..., 9, sat-
isfies condition (4) for the pair (e, ¥) if '

i) x=a?k...a},1|,b,
2) Let yo=y and Xi=0y ..o, . Then for all i we have Xi—1—Xy=ny;, where

21, 70
R SR Y
¢ <7£, ?i) *

In the Appendix we are going to prove the following theorem.
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Theorem Al. Let L,€JH(M,). Then there exists a se

quence y,, ..., y, which
satisfies condition (A) for the pair (x, ¥). '

In the proof of Theorem A1l we shall use the following lemma,

Lemma A2. Let y€b* Then
JHM,) = U ¢,L,, ¢, €L,

prox
p=y
where ¢ =L

This lemma follows easily from Propositions 8.5 and 8.6.

Proof of Theorem Al. Let A€bh%. Let us denote by F, an irreducible finite-

dimensional g-module for which A is an extremal weight. We recall that if p ¢ P(F),
then |l =]A]l and fluf=]A] implies g~ A.

Definition A3. Let ych*, A€hy. The pair (y, A) is called admissiblevif there
are no w ¢ W and p € P(F,) such that
) wy < g,

b) w(+u) = x+4,

) w(x+pm~yg-+a.

The meaning of Definition A3 is illuminated by the following proposition,
whose proof we postpone until later.

Proposition A4. Suppose y, W €h*, L¢ bz and the pair (y,2) is admissible.
Furthermore, let L, CTH(My). Then there exists o weight p ¢ P(F,) such that
Lys €TH(M,, ).

Proposition A4 includes all the information about the modules M, and L,

that we need to prove Theorem Al. The subsequent arguments will only concern
the geometric structure of the space bh*,

Lemma AS. 1) There exists a constant ¢1=0 with the folloiving property: if
=Y, 9+ =<Y+85(0, ¥, 91, 9, €YY, then xSl +19:1) > llp — 1.

2) There exists a constant ¢y With the following property: let @ €DL; then one
can find a sequence of weights 0=q,, P1s v Op=0, @, €DY, such that

loi— @il < ¢, and (@, [0, @) < ¢,
where [0, @] is the segment in b* connecting O with ¢, and d( , ) denotes the distance
in b, :
3) Let o, cC*, we W, Then W, ¥) ={@, ¥). If in addition @, W €CY, then
the equality is satisfied Jor w=e only.
4) If Cis an arbitrary Weyl chamber, @, €C and O~ then =1,
3) Let Zny,=cy, where y,, y €A, m €L, Then ¢€Z as well,
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- Proof. 1) It is well-known that (g, oy =0 for all x€X. Therefore there exists

"“'a ¢>0 such that (g, ay>clel for all w¢X. This implies that for any x ¢ K we

have {g, %) =c|x|. Moreover, ¢ — =0 and 9 —%=p—y. Consequently,

e U9+ 19al]) = o, 91— 9) = (o, 0 — ¥} = cllp— .

Therefore we can put ¢; =|lgflc™%

2) It suffices to put ¢,=2d, where d is the diameter of an arbitrary fundamental
domain of the group by in b,
~ 3) Let us write w in the form w=g, ...6, withk=I(w)and put py=ep, ©;=w;Q,
where Wy=0p ... 0, . Then @i~ Ppr1=c;0; Where

o = XKev o) _ Ao, wiltey)
- (o, o) N
It follows from Lemma 11.2.1 that ¢,=0. It is also clear that ¢#0 if ¢ eC.
. Therefore (@, V) —{wo, ¥) = S, (,, ¥). This completes the proof. _
~ 4) It can be shown that C=C* Now let =wgp. According to 3, (o, )=
=, ¥). But llofl=|[yll, hence p=1y. ‘

5) We can assume that ycX. In this case the lemma follows from the fact
that the elements of X form a basis in which every root has integer coordinates,

The proof of Lemma A5 is complete. ,

Let x €b* We shall denote by Y (y) the following proposition:

Y{x). For every Y ch* such that L,eJH (M,),) there exists a sequence
Vis s V€A which satisfies condition (A) for the pair (x, ¥).

Theorem Al says that ¥(x) is valid for all X €b*. We shall prove it in several
steps. For any y €4, we shall denote £, the hyperplane in b orthogonal to 7.

Definition A6, Let ¢3=3c,c,. The elemeni “* is called strongly regular it
d(Re ¢, Z,)=c; for all yed, . :

Step 1, Let X% @ €h* be strongly regular while y— ¢ €hz and Re y, Re ¢ belong
to the same Weyl chamber. Then propositions ¥(y) and Y (¢) are equivalent.

- Step 2. Let ¢, y €b* be strongly regular elements with Xx—@ €b3. In addition
to this, let Re x¢C, Reg €0,C, where C and 0,C (y€4,) are neighbouring
~ Weyl chambers and (Re ¥, ¥)<0. Then ¥ (@) implies Y (). _

Tt is casy to see that Steps 1 and 2 enable us to reduce the proof of Y(y) for a
strongly regular ¥ €h* to the case Re X €CT, Now we are going to prove Y(y)in
this case. Let ¢ b*and L, eJH (My). It follows from Lemma A2 that ¥~y and
x=Y. Thismeans that y =y -+, where x ¢ K. Then @, ) = (% 1) + (¢, %) +2(x, ).
Now

: sy = (x, . Re(y, Ky = (R¢ XL x) =0,
and (x, x) =0. Consequently (%, %) =0, hence y=iy. :

Therefore Steps 1 and 2 prove ¥ (x) for ail the strongly regular weights ¥ €h*,
The general case is reduced to this one by means of the following Step 3.
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Step 3. Let yeb* Then there exists a strongly regular element ¢ €h* such that
Y(¢) implies Y (x). :
Thus the proof of Theorem Al reduces to the proofs of Steps 1, 2, 3 and Proposi-

tion A4.
In the proof of Steps 1, 2, 3 it will be convenient for us to make use of the follow-

ing lemma,

Lemma A7, Let Cy and C, be two Weyl chambers, y,  €B* such that Re y€eC,,
Rey €Cy, x~ and X€H*, p b be chosen so that Re X+A€C, Rey+ucc,.
Suppose that the sequence of roots vy, ..., V€4 satisfies condition (A) for the
pair (x+2A, Y +p). Then it satisfies condition (A) for the pair (x, V) as well.

Proof. Item 2) of condition (A) follows immediately from the fact that the
sign of (¥, y) is constant in a Weyl chamber. In order to verify item /) we put
Xe=0y ...0, Y. Then y~i~y, and Rey, Re X €Cy. By Lemma AS. 4, Re y=
=Re y,. Moreover, y—y, €hf and consequently Im y=1Im y,, i.e. y= Xi-

Proof of Step 1. Lemma AS5. 2 enables us to reduce the proof of Step 1 to
the proof of the following proposition. Let y €h*, A €bz be such that d(Re y, B) =
=2¢,¢p, where E= |J ZE, and ||A]l<c,. Then Y(x+24) implies ¥ (y).

Y€, .

First we show that such a pair (%, 4) is admissible. Indeed, assume that there
exist w € W and u € P(F,) for which wy<y and w(x+wy=x+A. Then by Lemma
AS. 1, '

2y = 20A0 = WA+ gl > ety — wyl.
On the other hand
I —wxll = d(Re 1, &) > 2¢,c,.

Therefore, the pair (, A) is indeed admissible,

Now let L,eJH(M,). Then according to Proposition A4, L, , c¢JH (M4,
for a certain p € P(F,). It follows from Y. (x-+7) that there exists a sequence of
T0O1S 7Py, ..., y4 €4, which satisfies condition (A) for the pair (x4, ¥+ p).
Since {jull<c,, ¥ and W+ lie in the same Weyl chamber. Lemma A7 implies
then that the same sequence y,, ..., Y satisfies condition (A) for the pair (y, )
as well,

Proof of Step 2. Applying Step 1, we can redﬁce the proof to the casé when
- Belo—x < dRe g, 8y A1

€4, \.

- We put A=¢—y and prove that the pair (x, A is admissible. Indeed, suppose
‘we have w € W and u € P(F,) such that

for all

Wx <X w+w > x+a
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wx“l: ¥ implies w#o,. Therefore,

wx~xll > d (Re (p,ay E5) > e Al
b
But then, by Lemma A3, 1,

2020 = ML+ Nl = e hwy — gl = 2]1A).
Thus the pair (x, A) is indeed admissible.

- Now assume L, € JH(M,), W ¢H* Then Ly 2€JH(M,.,,) for some KEP(F).
Y(x+72) implies the existence of g sequence yy, ..., €4, satisfying condition
(A) for the pair (y+4, ¥ +p). To complete the proof of Step 2 we have to con-
struct a sequence of roots which satisfies condition (A) for the pair (x, ¥).

Let w € W be such that YV=wy. Then W+ )=y 4wy Since w2l =)l

we have either Re w™'( +4) €C or Re W +u) €0,C. Let us consider these
two cases separately.

I) Rew (Y + )€ C. We have
w‘1(1,0+,u)~x+ﬂ~a',,(x+)£)

Reo,(x+AecC.

and

b By Lemma A3, 4,
S G D) = W) = gty
I .. Consequently
' X=X =wlu—g,L
Since w™' and o, 1 are weights of F,, we have
P X=X =cy= I my,
' v €4
where n,€ Z. By Lemma AS. 5 c€Z, and in addition

¢ = —-"--——--a—-z(x’ ’P> - O.
O 9
By Lemma A7, the sequence y,, ..., Vs satisfies condition (A) for the pair (o2, ),

hence the sequence 1> 05 Yoy satisfies condition (A) for the pair (y, ¥).
“2) Re Wt W +u) €0,C. Let us put

Xi = O‘I,i...o‘hl,b,
fi == o‘y,"'an('//'f‘ﬂ)'

- Temark that all y, and ¥; are congruent modulo b2. Thus for each i we have
e Yi=<Xi—1 OF x;=>y,_,. If Xi=¥i-y for all i, then the sequence Vis coen Vi
sfies condition (A) for the pair (y, ¥). In the opposite case we denote by

le smallest index such that X;,=2;,~1. We shall show that the sequence of

Y1 e 'Jh-o_p '}’194-1: ey Via )
¢ condition (A) for the pair (. ¥).
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T SR s e i R P




First of all Re %, and Re Xi,—1 lie in the same Weyl chamber. Indeed,

o~ 2—Frp—all < JAI,
' : e~ i, ]l = HAY,
and by Lemma A2, 1,
: MZtg2— Taall < 2e1 1411,

- In addition to this, the real parts of the weights

‘ fio—l and fl’o == O‘yl'.ok"ig—l
as well as of the weights

Xigm1 = o'wo__l...ayli,b and Higm1 = o‘wo_l...a‘n(lﬁ-f-#)

belong to different Weyl chambers. However, on account of condition (A1)
the ball of radius 2¢,[|All about the point Re Xi,-1 intersects exactly two Wey
chambers _ '

Oy, e+ Iy C and Oyy +e- 0y, 0y C.
Therefqre, Re y; and Re Xi,—1 lie in the same Weyl chamber.

By Lemma A7 the Sequence v, ..., v,y satisfies condition (A) for the pair
(,~1, ¥), and the sequence Yigr1s -+e» Yy Satisfies condition (A) for the pair
(0 X 2%i,-1)- In exactly the same way as in case 1) we can show that A=0, K.
Consequently the sequence of roots

Vi VY2 ooos Vigm ks Viga 15 +ev s Pis ?
satisfies condition (A) for the pair (y, ¥).

Proof of Step 3. Let us first consider the case Re y=0. Then the assumption
L,€JH(M,;) and Lemma A2 imply =y, '

Assume now that Re y=0. ‘We can choose a weight A¢ by in such a way that
the following conditions are satisfied.

a) Re y and A belong to the closure & of the same Weyl chamber C.

b) The weight y+1 is strongly regular,

©) Let c=min {lbeflfx € K\ {0}}. Then

M~nRe x| = ne,2e, (A2
for somencZ, . '

- Lemma A8. Let vEP(F,) such that At v~x--A Then and v Re y lie in
the same Weyl chamber and

[v—nRex| = neyf2e,. - (A.3)

Proof. Let wy, wy € W be chosen in such a way that w; C=C* and w, (y+ 1) =
=Wy (x+v). Then w, 1 is the highest weight of the representation ¥, and therefore
wyA~w,v €K, Thus

<Q: wl‘;L) = <Qo W2v>,

62




7

where the equality holds only if w, v=w; 4. On the other hand, by Lemma A2, 3,

Re (@, ws7) = Re o, wyx).
Comparing these inequalities with the equality w; (x+2)=w,(x+v), we obtain
wid=wyv and wyyx=w,y. Now applying the element Wy 'w, to the inequality
(AZ) we obtain the statement of the lemma,
Now we prove that the pair (y,

4) is admissible. Indeed, let w € W and pEP(F)
such that

WX<Xo W+ ~x-4+d wp) = x4+ A
Since wy <y, we have flwy— xll=c,. This implies

W@+ Dy~ @+ Dyl = (14 e,

7 _ w((r+1Dy) < (n+ 1y
Applying Lemma A5, 1 we obtain that

and

(A —mxl + ln—nyl)) = (n+ 1),

with contradicts (A2) and (A3). Consequently, the pair (y, A) is admissible.

Now let L, eJH (My). Then in view of Proposition A4, Ly €JH(M,,,) for

some p€P(F,). Applying Lemma A8 again we find that i and -y lie in the
same Weyl chamber. Let y,, ..., Y €44 be a sequence of roots which satisfies

condition (A) for the pair (¢+2, ¥ +u). Then by Lemma A7 it also satisfies
condition (A) for the pair (y, ).

Proof of Proposition A4. Tet J— M1, U,

-» iy be the weights of the module
Fy (with the corresponding muliiplicities).

Then, as follows from Lemma .10,

i
THM® Fy) = U TH(M, ).

Cdeiiama A9, Let My, M, €O, while JH (M)CJH(M,) and F be g Jinite-dimen-
- sional g-module, Then ' '

JH(M, @ F) JH(M,® F).

The proof follows easily from the fact t
functor.

Now let the pair (y, A) be admissible and L,cJH(M,). Then

hat tensor product by F is an exact

I
JH(L, ® F;) C JH(M, ® F;) = U nay,,).

Therefore, in order to show Ly, CJH(M, w+u)» for some weight u € P(F,) it suffices
to prove that

LyraCJH(L,®F).
Let M be a maximal proper submodule in M, such that L,=M,/M. Then
) Lx®FAH":Mx®FA/M®FR‘

Since Ly, €JH(M,® Fy), it suffices to prove that Ly 1 6JH(M® F,).
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By Lemma A2, . JH(M)c U JH(M,),

oy
p=x
consequently JHM®F)C U ¢, JH(M,BF)).
et
Thus it suffices to show that for any @ €¢bh* with ¢ ~y, ¢ <y and any p€ P(F,),
Ly s 6 TH(M,,.,).

Assume, on the contrary, that L., ,€JH(M,, ). Let p=wy, wec W. Then by
lemma A2,
xti~e+p=wle+wy
x+A<wle+wty).
But w™pu€ P(F,) which contradicts our assumption on admissibility.
This completes the proof of Proposition A4 and thus of Theorem Al.

Theorem A10. Let y, ¥ €9* and yy, ..., ¥ €4, be a sequence of roots satisfying
condition (A). for the pair (x, ). Then Hom (M,, M, )=C.

A proof of Theorem A10 is contained in [8] and [9)].
Theorems 8.8 and 8.10 follow immediately from Theorems Al and A10.

and
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Lie groups and their representations

QUASI-ADMISSIBLE REPRESENTATION
OF p-ADIC GROUPS

G. VAN DIJK

Introduction

The notion of a quasi-admissible representation of a p-adic group is due to
Harish-Chandra. It is closely related to the notion of a quasi-sirople representa-
b tion of a real connected semisimple Lie group. Following some fruitful ideas
| . of Harish~Chandra, we recently made some progress in the theory of “asymptotic
o expansions” as described in [2], Part 1V, without assuming Conjecture III (1), § 1).

Quasi-admissible representations occyr very naturally there. The ideas are worked

out in this note. The main applications of the theory, which we have in mind,

are concerned with the asymptotic expansions of the matrix coefficients of the
representations Of the discrete series of G. They should belong to the p-adic
analogue of the (Schwartz-) space #(G), introduced by Harish-Chandra for

real semisimple Lie groups with finitely many connected components (cf. [1 (c)], § 9).

We do not discuss the applications here. In § 1 we discuss admissible representations

of p-adic groups and derive a few properties, most of which are well known,

§2 is concerned with quasi-admissible representations. The results should

justify the refaticaship to quasi-simple representations of real groups, mentioned

- above. L vvutiaies with a theorem which was inspired by ideas of Jacquet. The

result turr: a1 to be basic for the theory of the “asymptotic expansions”’; which
is described in § 3.

§ 0. Some notations and conventions

Throughout this paper, © will be a p-adic field, i.e. a locally compact field
with a non-trivial discrete valvation, Let us fix an additive Haar measure do
on £. The valuation (or absoluts value) on Q is assumed to be normalized by
requiring d(ww)= o dew (x€02%). Let O denote the ring of integers of Q.

By G we mean a reductive p-adic group, i.e. the group of Q-rational points of
\ connected, reductive, linear algebraic group G defined over €. Then GCGL,(2)
or a suitable 7=0. GL,(£2), being an open subset of a vector space over Q of
imension »? is a locally compact group. Since G is closed in GL, (%), it is also
ocally compact. Moreover G is unimodular. We keep mainly to the notations and
erminology of [2]. o _

For a subset § of a topological space ¥, we shall denote by CI(S) the closure
f Sin V.
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