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Analytic continuation of representations
and estimates of automorphic forms

By Joseph Bernstein and Andre Reznikov

0. Introduction

0.1. Analytic vectors and their analytic continuation. Let G be a Lie

group and (π,G, V ) a continuous representation of G in a topological vector

space V . A vector v ∈ V is called analytic if the function ξv : g 7→ π(g)v is

a real analytic function on G with values in V . This means that there exists

a neighborhood U of G in its complexification G � such that ξv extends to a

holomorphic function on U . In other words, for each element g ∈ U we can

unambiguously define the vector π(g)v as ξv(g), i.e., we can extend the action

of G to a somewhat larger set. In this paper we will show that the possibility

of such an extension sometimes allows one to prove some highly nontrivial

estimates.

Unless otherwise stated, G = SL(2,
�

), so G � = SL(2, � ). We consider a

typical representation ofG, i.e., a representation of the principal series. Namely,

fix λ ∈ � and consider the space � λ of smooth homogeneous functions of degree

λ − 1 on
� 2 \ 0, i.e., � λ = {φ ∈ C∞(

� 2 \ 0) : φ(ax, ay) = |a|λ−1φ(x, y)}; we

denote by (πλ, G, � λ) the natural representation of G in the space � λ.

Restriction to S1 gives an isomorphism � λ ' C∞even(S1), and for basis

vectors of � λ one can take the vectors ek = exp(2ikθ). If λ = it, then (πλ, � λ)

is a unitary representation of G with the invariant norm ||φ||2 = 1
2π

∫
S1 |φ|2dθ.

Consider the vector v = e0 ∈ � λ. We claim that v is an analytic vector and

we want to exhibit a large set of elements g ∈ G � for which the expression π(g)v

makes sense. The vector v is represented by the function (x2 + y2)
λ−1

2 ∈ � λ.

For any a > 0 consider the diagonal matrix ga = diag(a−1, a). Then

ξv(ga) = πλ(ga)v = (a2x2 + a−2y2)
λ−1

2 .

This last expression makes sense as a vector in � λ for any complex a such

that |arg(a)| < π
4 (since in this case Re (a2x2 + a−2y2) > 0). Hence, we see

that the function ξv extends analytically to the subset I = {ga : |arg(a)|
< π

4 } ⊂ SL(2, � ).

The same argument shows that the function ξv extends analytically to

the domain U = SL(2,
�

) · I · K � ⊂ SL(2, � ) (open in the usual topology),
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where K = SO(2,
�

) and K � = SO(2, � ) ' � ∗; thus, for any g ∈ U we

unambiguously define the vector π(g)v.

As g approaches the boundary of U , the vector π(g)v ∈ � λ has very

specific asymptotic behavior that we will use in order to obtain information

about this vector.

0.2. Triple products. Let us describe an application of the principle of

analytic continuation to a problem in the theory of automorphic functions.

Namely, we will show how to apply the principle in order to settle a conjecture

of Peter Sarnak on triple products. As a corollary of our result we will get a

new bound on Fourier coefficients of cusp forms.

Recall the setting. Let � be the upper half-plane with the hyperbolic

metric of constant curvature −1. We consider the natural action of the group

G = SL(2,
�

) on � and identify � with G/K by means of this action.

Fix a lattice Γ ⊂ G and consider the Riemann surface Y = Γ \ � . In

this paper we will discuss both cocompact and noncocompact lattices of finite

covolume. For simplicity of exposition, in most of the paper we will only discuss

the cocompact case. Then in Section 4 we will describe how to overcome the

extra difficulties in case of noncocompact lattices.

The Laplace-Beltrami operator ∆ acts on the space of functions on Y.

When Y is compact it has discrete spectrum; we denote by µ0 < µ1 ≤ . . .

its eigenvalues on Y and by φi the corresponding eigenfunctions. (We assume

that φi are L2 normalized: ||φi|| = 1.) These functions φi are usually called

automorphic functions or Maass forms (see [B]).

To state the problem about triple products, fix one automorphic function,

φ, and consider the function φ2 on Y . Since φ2 is not an eigenfunction, it is

not an automorphic function. Since φ2 ∈ L2(Y ), we may consider its spectral

decomposition in the basis {φi}:

φ2 =
∑

ciφi.

Here the coefficients are given by the triple product integrals: ci = 〈φ2, φi〉 =∫
X φ · φ · φidx. Later we will explain why these triple products are of interest

and how they are related to the theory of Rankin-Selberg L-functions (see also

[S], which was our starting point).

Claim. The coefficients ci decay exponentially as exp(−π
2

√
µi).

More precisely, let us introduce new parameters λi such that µi =
1−λ2

i
4

(the meaning of this parametrization will become clear in subsection 0.3).

Introduce new (normalized) coefficients bi = |ci|2 exp(π2 |λi|). The main result

of the paper is the proof of the following theorem which settles a conjecture of

P. Sarnak (see [S]):
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Theorem. There exists a constant C > 0 such that
∑

|λi|≤T
bi ≤ C · (lnT )3 as T →∞ .

Corollary. There exists a constant C > 0 such that
∣∣∣∣
∫

X
φ2 · φidx

∣∣∣∣ ≤ C(lnµi)
3
2 · exp(−π

2

√
µi).

Remarks. 1. The bound in the theorem is essentially sharp. Namely,

our method gives the following lower bound on the average:
∑∞

i=1 bie
−ε|λi| ≥

c| ln ε|.
For a single triple product we cannot do better than the bound in the

corollary.

For congruence subgroups we can speculate about the true “size” of these

triple products. It is known (see 0.6) that in certain cases the ci are equal (up to

an explicit factor) to the value of the triple Garrett L-function at 1
2 . For these

L-functions, the Lindelöf conjecture predicts bi ¿ |λi|−2+ε. This is consistent

with our bound together with the Weyl law: the number of eigenfunctions with

|λi| ≤ T is proportional to T 2.

2. We will prove similar results for nonuniform lattices (see §4).

3. This type of question has been considered before. The first result on ex-

ponential decay of the coefficients ci for a holomorphic cusp form φ was proven

by A. Good ([G]) for the general (i.e., nonarithmetic) nonuniform lattices Γ

thanks to a special feature of holomorphic Poincaré series. Recently, M. Jutila

([J]) extended these results to the nonholomorphic case (Maass forms), but

only for the group SL(2, � ), using Kuznetsov’s formula and nontrivial arith-

metic information (Weil’s bounds on Kloosterman’s sums and deep results of

Iwaniec). In particular, all these methods work only for nonuniform lattices.

In [S], P. Sarnak introduced a new method to estimate the triple products

based on analytic continuation of certain matrix coefficients of the function

φ; this method works for uniform lattices as well. Being partly based on the

theory of spherical harmonics, it led to a weaker bound (by a power of T ).

Our method, in addition to the analytic continuation, uses more sophis-

ticated representation theory, in particular, an idea of G-invariant norms on

representations and gives the optimal result (possibly, up to a power of loga-

rithm).

4. Our method gives a more general result than Theorem 0.2. We can

obtain similar logarithmic bounds for any polynomial expression in any finite

number of automorphic functions φk instead of φ2, as above.
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5. One can ask the same question about growth of triple products for

polynomial expressions in automorphic functions of nonzero weight. In this

case the decay is also exponential with the same exponent as in Claim 0.2, but

the bound in the analogue of Theorem 0.2 is a power of T and not logarithmic

as above.

The main interest in triple products and their bounds stems from their

relation to the theory of automorphic L-functions. We will discuss this relation

in 0.6. We also show in 0.7 that Theorem 0.2 implies a new bound on the

Fourier coefficients of automorphic functions in the case of nonuniform lattices.

0.3. Automorphic representations. To explain our method, we first recall

the relation of automorphic functions to automorphic representations of G.

For a given lattice Γ in G we denote by X the quotient space X = Γ \G.

The group G acts on X, hence, on the space of functions on X. We can identify

� with G/K. Then the Riemann surface Y = Γ \ � is identified with X/K.

This induces an isometric embedding L2(Y ) ⊂ L2(X), the image consisting of

all K-invariant functions.

For any eigenfunction φ of the Laplace operator ∆ on Y we consider the

closed G-invariant subspace Lφ ⊂ L2(X) generated by φ under the G-action.

It is known that (π, L) = (πφ, Lφ) is an irreducible unitary representation of

G (see [G6]).

Conversely, fix an irreducible unitary representation (π, L) of the group

G and a K-fixed unit vector v0 ∈ L. Then any G-morphism ν : L → L2(X)

defines an eigenfunction φ = ν(v0) of ∆ on Y ; if ν is an isometric embedding,

then ||φ|| = 1. Thus, the eigenfunctions φ correspond to the tuples (π, L, v0, ν).

Usually it is more convenient to work with smooth vectors. Let V =

L∞ be the subspace of smooth vectors in L. Then ν gives a morphism

ν : V → (L2(X))∞ ⊂ C∞(X). If X is compact, then MorG(L,L2(X)) '
MorG(V,C∞(X)). Thus, the eigenfunctions correspond to the tuples

(π, V, v0, ν : V → C∞(X)).

All irreducible unitary representations of G with K-fixed vector are clas-

sified: these are representations of the principal and complementary series and

the trivial representation. For simplicity, consider representations of the prin-

cipal series only. In this case the representation (π, V ) in the space of smooth

vectors is isomorphic to the representation (πλ, � λ) for some λ = it (see 0.1).

The eigenvalue of the corresponding automorphic function equals µ = 1−λ2

4 .

0.4. The method. We describe here the idea behind the proof of Theorem

0.2.

Let Li ⊂ L2(X) be the space corresponding to the automorphic function

φi as above (see 0.3). Let pri : L2(X) → Li be the orthogonal projection.
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Since the function φ2 is K-invariant and there is at most one K-fixed vector

in each irreducible representation of SL(2,
�

), we have pri(φ
2) = ciφi.

Since the G-action commutes with the multiplication of functions on X,

pri((π(g)φ)2) = pri(π(g)(φ2)) = ciπi(g)φi .

By the principle of analytic continuation, the same identity holds for the

complex points g ∈ U (see 0.1). Since all the spaces Li are orthogonal, we get

the following basic relation for the complex points g:

(0.4.1) ||(π(g)φ)2||2 =
∑

i

|ci|2||πi(g)φi||2 .

Here || · || = || · ||L2 denotes the L2-norm in L2(X).

It is important that in (0.4.1) we deal with complex points g and for such g

the operators π(g) are nonunitary. As a result, relation (0.4.1) gives nontrivial

information.

Now, consider the behavior of the function (π(g)φ)2 near the boundary

of U . Take ε > 0 and an element gε ∈ U which is approximately at the

distance ε from the boundary of U . For example, set gε = diag(a−1
ε , aε) for

aε = exp((π4 − ε)i).
With shorthand notation, vε = π(gε)e0 and φε = ν(vε), formula (0.4.1)

becomes

(0.4.2) ||φ2
ε||2 =

∑
|ci|2||φi,ε||2 .

Our goal is to give an upper bound on the left-hand side of (0.4.2) and a

lower bound of each of the ||φi,ε||2 as i→∞ and ε→ 0. The latter problem is

simpler since it is invariantly defined in terms of representation theory; thus it

can be computed in any model of the representation πi (e.g., in � λi). A direct

computation gives

||φi,ε||2 ≥ c · exp((
π

2
− ε)|λi|) for some c > 0.

On the other hand, we will prove the bound ‖φ2
ε‖ ¿ |ln ε|3. These two

bounds easily imply Theorem 0.2 (see 2.3).

The last bound follows from the bound |φε(x)| ≤ C| ln ε| which holds

pointwise on X and which we consider to be our main achievement in this

paper. Its proof is based on the use of invariant norms which we now explain.

0.5. Invariant norms. The most difficult part of the proof is that of the

pointwise bound |φε| ≤ C| ln ε|. Note that the L2-norm of φε is of order | ln ε| 12 ;

hence, the pointwise bound only differs from it by a power of logarithm.

In order to obtain such a bound, we use invariant (non-Hermitian!) norms

on the representation π. Namely, as we have explained, any automorphic
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function gives rise to an embedding ν : � λ → C∞(X). We consider the

supremum norm Nsup on � λ induced by ν:

Nsup(v) = sup
x∈X
|ν(v)(x)|.

For a discussion of Lp-norms on X see Appendix A.

From the Sobolev restriction theorem on X (for more details see Appendix

B), it follows that Nsup is bounded by some Sobolev norm S = Sk on the space

� λ. Hence, the main properties of the norm Nsup are: it is G-invariant and

Nsup ≤ S.

We will show that there exists a maximal norm SG on the space � λ satis-

fying these two conditions. This norm is defined in terms of the representation

πλ only and it is independent of the automorphic form picture.

We then use the model � λ of πλ in order to prove the bound SG(vε) ≤
C| ln ε|. The proof uses the standard method of dyadic decomposition from

harmonic analysis; it is based on the observation that, in � λ, the vector vε is

represented by a function which is roughly homogeneous.

As a result we get a pointwise bound

(0.5) sup |φε| = Nsup(vε) ≤ SG(vε) ≤ C| ln ε| as ε→ 0.

Remark. A new feature of our method, which seems to be absent in the

classical approaches to automorphic forms, is the essential use of representation

theory.

First of all, in order to study the automorphic function φ that lives on the

space Y , we pass to a bigger space, X, and work directly with the representa-

tion (π,G, V ) ⊂ C∞(X) which corresponds to φ.

In some classical approaches, the space V is actually also present, albeit

very implicitly. And when present, it appears only as a collection of vectors

π(h)φ created from the automorphic function φ by operators π(h) correspond-

ing to various functions (or distributions) h on G. Though, in principle, one

can show that such functions exhaust V , in most cases it is very difficult to

work with such an implicit description.

In this paper we directly use the space V in order to prove Theorem 0.2.

For example, the central technical result is the pointwise bound of the function

u = φε ∈ V . This bound is proven in Section 5 by means of dyadic decom-

position. The idea of the method is to break the function u into the sum of

“pieces” ui ∈ V which we can move to a better position (for more detail see

§§5.2).

We describe these ui using the explicit model � λ of V . We do not know

how to realize the ui’s in the form π(h)φ. So we do not see how to prove this

crucial estimate without using the space V as a whole.
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0.6. Relation to L-functions. The main interest in triple products and

their bounds stems from their relation to the theory of automorphic L-func-

tions. A particular case of these triple products is the scalar product of φ2 with

the Eisenstein series E(s). This is the original example of Rankin and Selberg

of the L-function associated to two cusp forms (see [B]). Namely, L(φ⊗φ, s) =

g(s)〈φ2, E(s)〉, where g(s) is an explicit factor.

M. Harris and S. Kudla ([HK]) discovered that such triple products are

related to the special value at s = 1
2 of L(φ⊗φ⊗φi, s). This gives further reason

for the study of such triple products, at least when φ and φi are holomorphic

cusp forms for a congruence subgroup of a division algebra.

0.7. Bounds on Fourier coefficients of cusp forms. As we mentioned

above, our result implies certain bounds for the Rankin-Selberg L-functions

on the critical line. This, in turn, has implication for the classical problem of

obtaining bounds of the Fourier coefficients of cusp forms.

Recall the setting (see [Se], [G], [S]). Let Γ be a nonuniform lattice in

SL(2,
�

), which can be nonarithmetic (the standard example of a nonuniform

lattice is Γ = SL(2, � )).

Let
(

1 1
0 1

)
be a generator of its unipotent subgroup. Let φ be a cusp form

with eigenvalue µ = 1−λ2

4 . We have then the following Fourier decomposition

(see [B]):

φ(x+ iy) =
∑

n 6=0

any
1
2Kλ

2
(2π|n|y)e2πinx ,

where Kλ
2

is the K-Bessel function.

In order to study the coefficients an, Rankin and Selberg introduced the

series L(s) =
∑

n>0
|an|2
ns , the Rankin-Selberg L-function (we assume that φ is

real valued; hence, an = a−n). The significance of this Dirichlet series is that

it has an integral representation and as a result a spectral interpretation (as

well as an analytic continuation!) which we will use.

Let E(s) be the Eisenstein series associated to the cusp at ∞. The series

E(s) is unitary for Re(s) = 1/2 and

L(s) =
2πsΓ(s)

Γ(s/2)2Γ(s/2 + it)Γ(s/2− it)〈φ
2, E(s)〉 ;

hence, our method gives an upper bound for L(s). Namely, taking into ac-

count the asymptotic behavior of the Γ-function we obtain, for example, the

following:

Corollary 1.
∫ T+1
T |L(1

2 + iτ)|dτ ¿ T (lnT )
3
2 .

The Lindelöf conjecture for L(s) is stronger: it asserts a bound

|L(1
2 + iT )| ¿ T ε.
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Corollary 1 implies, in turn, a bound on the coefficients an themselves via

standard methods of analytic number theory (for details, see [G], [P]):

Corollary 2. |an| ¿ n
1
3

+ε for any ε > 0.

Remarks. 1. The bound |an| ≤ cn
1
2 is due to Hecke and follows from the

fact that the function φ is bounded (sometimes this is called the standard or

convexity bound).

The Peterson-Ramanujan Conjecture is the assertion that |an| ¿ nε for

the congruence subgroups.

The best-known bound for the congruence subgroups is n
5
28

+ε due to

Bump-Duke-Hoffstein-Iwaniec ([B-I]).

For nonarithmetic subgroups, however, there was no improvement over

the Hecke bound before [S] appeared. It was even suspected that the Hecke

bound might be of true order for nonarithmetic subgroups.

Recently for the general lattice, Sarnak [S] gave the first improvement

over the Hecke bound (he treated SL(2, � ), while the SL(2,
�

)-case was done

in [P]). Sarnak also suggested that the Peterson-Ramanujan Conjecture might

be true in this general setting. It was his idea to use the analytic continuation

which led us to think about the problem.

2. The main point of Corollary 2 is that it holds without any assumption

on the arithmeticity of Γ.

We would like to add that, even theoretically, the triple product method

cannot give the Peterson-Ramanujan Conjecture; indeed, even Lindelöf’s con-

jecture for L(s) above implies only that |an| ¿ n
1
4

+ε.

The results of this paper where announced in [BR].

Acknowledgments. We would like to thank Peter Sarnak for turning our

attention to the problem, for fruitful discussions and for initiating our coopera-

tion. We would also like to thank Stephen Semmes for enlightening discussions.

We would like to thank the Binational Science Foundation. Most of the

work on this paper was done in a framework of a joint project with P. Sarnak

supported by BSF grant No. 94-00312/2.

The second author would like to thank several institutions for providing

him with a (temporary) roof while this work was done.

1. Analytic continuation of representations

1.1. Let G be a Lie group, (π,G, V ) its representation and v an analytic

vector in V . Then we can find a left G-invariant domain U ⊂ G � containing

G such that the function ξv : G → V given by g 7→ π(g)v has an extension
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to U as a univalued holomorphic function. For the elements g ∈ U we define

the vector π(g)v to be the value of the extended function of ξv at g.

One should be careful with the choice of U since the vector π(g)v depends

on this choice. However, having fixed U , we see that the action of G on v can

be unambiguously extended to this somewhat larger set U ⊃ G. We will see

that in many situations there is a natural choice of U which works for many

vectors v.

It is clear that with an appropriate choice of domains of definition the

extended operators π(g) have the usual properties:

(i) π(gh) = π(g)π(h); π(g−1) = π(g)−1;

(ii) If ν : (π, V ) → (τ, L) is a morphism of representations, then τ(g) ◦ ν =

ν ◦ π(g);

(iii) If (ω, V ⊗ L) is the tensor product of representations (π, V ) and (τ, L),

then ω(g) = π(g) ⊗ τ(g). If (π∗, V ∗) is the dual representation, then

π∗(g) = π(g)∗.

(iv) If (π̄, V̄ ) is the complex conjugate representation, then π(g) = π̄(ḡ). In

particular, given a G-invariant positive definite scalar product on V we

formally get π(g)+ = π(ḡ)−1.

1.2. Geometry of the domain U for SL(2,
�

). (See also Appendix C.) We

consider representations of the principal series of the group G = SL(2,
�

).

Namely, for any λ ∈ � we consider the representation (πλ, G, � λ); see 0.1.

In such a realization, the K-fixed vector is the function v(x, y) = (x2 +

y2)
λ−1

2 . For convenience, we denote x2 + y2 by Q(x, y) and will view it as a

quadratic form on � 2. Then the action of G on v is given by

(1.2) (π(g)v)(x, y) = (g(Q)(x, y))(λ−1)/2 .

Let U be the open subset of G � consisting of matrices g such that the

quadratic form g(Q) on
� 2 has a positive definite real part. Since the function

z 7→ z(λ−1)/2 is a well-defined holomorphic function in the right half-plane

Re z > 0, we see that formula (1.2) makes sense for all g ∈ U .

This gives us a holomorphic function on U with values in � λ. We will

see that U is connected, so this function is the holomorphic extension of the

function ξv to the domain U . We will also show that for most λ the domain U

is the maximal domain of holomorphicity for the function ξv.

Observe that U is left G-invariant and right K � -invariant, where K � =

SO(2, � ) ' � ∗ ⊂ SL(2, � ). Let us identify G � /K � with the variety Q of

unimodular quadratic forms on � 2 via g 7→ g(Q). By definition, U is the

preimage of the open subdomain Q+ ⊂ Q consisting of all quadratic forms

whose real part is positive definite.
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For every λ we have constructed a holomorphic G-equivariant function v :

Q+ → � λ such that R 7→ vR = R(λ−1)/2, R ∈ Q+. The analytic continuation

π(g)v is given by π(g)v = vg(Q).

Remarks. 1. Note that all K-finite matrix coefficients 〈π(g)e0, en〉 have

an analytic extension to a much larger domain: {diag(z, z−1) : |arg(z)| < π
2 }.

Observe a curious phenomenon: each matrix coefficient of the function π(g)e0

is holomorphic in this larger domain, but the function itself admits analytic

continuation to U only.

For groups of higher rank the situation is much more intriguing and we

hope to return to it elsewhere.

2. The same proof can be applied to any K-finite vector v ∈ � λ; it shows

that for every such vector the function ξv = π(g)v has an extension to the

same domain U ⊂ SL(2, � ).

2. Triple products. Proof of Theorem 0.2

Recall (see 0.2 and 0.4) that we fix an automorphic function φ and consider

the function φ2 ∈ L2(Y ) ⊂ L2(X). Let {φi} be the orthonormal eigenbasis

of the space L2(Y ), ∆φi =
1−λ2

i
4 φi. We set ci = 〈φ2, φi〉 , bi = |ci|2 exp(π2 |λi|).

Let Li ⊂ L2(X) be the subspace corresponding to φi. We denote by

pri : L2(X) → Li the orthogonal projection and by L⊥ the orthogonal com-

plement to the sum of all subspaces Li in L2(X).

2.1. Proof of (0.4.1). Observe that the Plancherel formula gives us (0.4.1)

with an additional term on the right-hand side. The term is equal to

||π(g)(ψ)||2, where ψ is the orthogonal projection of the function φ2 onto L⊥.

Since L⊥ does not have K-invariant vectors, ψ = 0.

2.2. Estimates of ‖φε‖. Choose a family of elements gε tending to the

boundary of U . Consider the corresponding vectors vε = π(gε)v ∈ � λ, vi,ε =

π(gε)vi ∈ � λi and the corresponding functions φε, φi,ε on X. Observe that all

our formulas are given not in terms of the element gε (see 0.4) but in terms of

the corresponding quadratic form Qε = gε(Q) ∈ Q+ (see 1.2). So it is easier

for us to describe the forms Qε without specifying elements gε.

In our method, the quadratic forms Qε lying within the same G-orbit lead

to the same estimates; in particular, we can take the diagonal elements gε
described in 0.4. Computationally, however, it is easier to work with another

system of quadratic forms, namely with the formsQε(x, y) = a(x−iεy)(εx+iy),

where i =
√
−1 and a > 0 is a (bounded as ε → 0) normalization constant

which makes detQε = 1.
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We will see in Appendix C that, modulo the G-action, the forms R ∈
Q+ depend only on one parameter, so the specific choice of the family Qε is

inconsequential.

We can rewrite formula (0.4.2) as

(2.1) ||φ2
ε||2 =

∑
|ci|2||φi,ε||2 .

Proposition. Let (π,G,L) be an irreducible unitary representation of

SL(2,
�

) and v ∈ L a unit K-fixed vector. Consider gε and vε = π(gε)v as

above. Then

(1) ||vε||2 ≤ C| ln(ε)| as ε→ 0.

(2) There exists c > 0 such that if π ' πλ is a representation of the principal

series, then ||vε||2 > c exp((π2 − 6ε)|λ|) for any λ and ε < 0.1.

(3) Fix an isometric G-equivariant embedding ν : L → L2(X) and set φε =

ν(vε) ∈ C∞(X). Then supx∈X |φε(x)| ≤ C| ln ε| as ε→ 0.

2.3. Proof of Theorem 0.2. From Proposition 2.2 it follows immediately

that we have:

sup
x∈X
|φε(x)| ≤ C| ln ε| and ||φε||2 = ||vε||2 ≤ C| ln(ε)|.

Therefore, ||φ2
ε||2 ≤ ||φε||2 · sup |φε|2 ≤ C| ln(ε)|3. Hence, formula (2.1)

implies

C| ln(ε)|3 ≥ ||φ2
ε||2 =

∑

i

|ci|2||φi,ε||2 ≥
∑

i

|ci|2e(π
2
−6ε)|λi| =

∑

i

bie
−6ε|λi|.

Set ε = 1/T and collect the terms with |λi| ≤ T , and the desired bound results.

3. Invariant norms and estimates of automorphic functions

In this section we prove the upper bound (3) from Proposition 2.

3.1. Let (π,G,L) be a unitary representation and ν : L → L2(X) a con-

tinuous G-equivariant morphism. Then ν maps the subspace of smooth vectors

V = L∞ ⊂ L into C∞(X). Given a vector v ∈ V , we would like to describe

an effective method for obtaining a pointwise bound for the function φ = ν(v).

In other words, consider the supremum norm Nsup on V defined in 0.5. We

would like to find bounds for Nsup in terms of π.

Observe that the L2-norm of φ is bounded by ‖ν‖ · ‖v‖, where ‖ν‖ is the

operator norm. So let us assume that ||ν|| ≤ 1.
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First, we will describe some weak bounds of Nsup in terms of Sobolev

norms on V ; these bounds easily follow from the Sobolev restriction lemma.

Then we will improve these bounds using the G-invariance of Nsup.

For convenience we recall the notion of Sobolev norms.

3.2. Sobolev norms. Let (π, V ) be a smooth representation of a Lie group

G and || · || be a G-invariant Hermitian norm on V . For every nonnegative

integer k define the Sobolev norm Sk on V as follows. Fix a basis X1, . . . , Xn

of the Lie algebra � = Lie(G) and define the norm Sk by Sk(v)2 =
∑ ||Xαv||2,

where the sum runs over all monomials Xα = Xi1Xi2 · · ·Xil of degree ≤ k.

Remarks. 1. If we start with an arbitrary norm || · || on V , we get another

system of norms, also called Sobolev norms. If the norm || · || is Hermitian,

then all Sobolev norms are also Hermitian ones.

Our definition depends on the choice of basis Xi but different choices lead

to equivalent norms.

2. Since the norm || · || is G-invariant, the representation (π, V ) is contin-

uous with respect to the norm Sk for any k, with continuity constants inde-

pendent of the representation π. Namely, for every g ∈ G we have Sk(π(g)v) ≤
||g||kadSk(v), where || · ||ad is the norm in the adjoint representation of G.

3. One can actually define Sobolev norm Ss for every s ∈ �
as follows.

The operator ∆ = −∑X2
i : V → V is an essentially self-adjoint operator on

V . We can define the Sobolev norm Ss on V to be Ss(v) = ||(∆ + 1)s/2v||.

Example. Let (π, V = � λ) be the unitary representation of the principal

series of G = SL(2,
�

) and || · || the standard invariant Hermitian norm; V can

be identified with C∞even(S1) and ek = ek(θ) = e2ikθ, k ∈ � , is a basis consisting

of K-finite vectors. For a smooth vector v we define its Fourier coefficients as

ak = 〈v, ek〉.
It is easy to check that in this realization the Sobolev norm Ss is the norm

induced by the quadratic form Qs(v) =
∑

n |an|2(1+µ+2n2)s (here we started

with any basis of � orthonormal with respect to the standard scalar product).

3.3. Sobolev estimate. Let (π,G,L) be a unitary representation of G =

SL(2,
�

) and V ⊂ L the subspace of smooth vectors. Suppose that X = Γ\G
is compact. Then any morphism of G-modules ν : V → C∞(X) defines the

supremum norm Nsup on V .

Lemma 3.1. Suppose that ||ν|| ≤ 1 with respect to the L2-norm. Then

Nsup ≤ CS2, where the constant C only depends on the geometry of X.

The proof of the lemma easily follows from the Sobolev restriction lemma.

We will present it in Appendix B together with a similar result for noncocom-

pact lattices.
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Remark. In [BR] we showed that the same bound Nsup ¿ Ss holds for any

s > 1/2, which is less trivial since it goes beyond the restriction theorem. For

our present purposes, however, the elementary result of the lemma is enough.

3.4. Invariant (semi -)norms. The bound which we proved in Lemma 3.1

is rather weak. For example, it gives a bound on Nsup(vε) which is a power

of ε−1 (even if we use optimal constant s = 1/2; see Remark 3.3). We are

able to significantly improve this bound using the fact that the norm Nsup is

G-invariant.

Let us state some elementary general result about invariant (semi-)norms.

Let G be an arbitrary group acting on some linear space V .

Claim. For any seminorm N on V there exists a unique seminorm NG on

V satisfying the following conditions:

(1) NG is G-invariant;

(2) NG ≤ N ;

(3) NG is the maximal seminorm satisfying conditions (1) and (2).

We will prove this claim in Appendix A.

The passage from N to NG has the following obvious properties:

(1) If N1 ≤ CN2, then NG
1 ≤ CNG

2 ;

(2) If N is G-invariant, then N = NG.

We apply this general construction to our situation, when the space V

is the smooth part of some unitary representation (π,G,L) of G = SL(2,
�

).

Consider the Sobolev norm S = S2 on V and construct the corresponding

invariant seminorm SG. If ν : L → L2(X) is a morphism of representations,

then ν(V ) ⊂ C∞(X) and we can define the norm Nsup on V as in 0.5. This

norm is G-invariant and Nsup ≤ CS. Hence, Nsup ≤ CSG; in particular,

Nsup(vε) ≤ CSG(vε).

The norm SG, however, is defined in terms of the representation π only.

It does not depend on the embedding ν. In particular, we can estimate the

norm SG(vε) by computations in � λ. The main result in this direction is the

following proposition which implies inequality (3) in Proposition 2.

Proposition. Let (π,G,L) be a unitary irreducible representation and

v ∈ L a unit K-fixed vector. For k ≥ 0, consider the Sobolev norm S = Sk on

the space V of smooth vectors in L and denote by SG its invariant part.

Then there exists a constant C > 0 such that SG(vε) ≤ C| ln(ε)| as ε→ 0.

We will prove this proposition in Section 5.
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4. Noncocompact Γ

4.1. Cuspidal representations. In order to prove the crucial bound,

|φε| ≤ C| ln ε|, we have used the norm Nsup induced by the supremum norm

on X via the embedding ν and the fact that an appropriate Sobolev norm ma-

jorizes it. From this, the proof of the bound and Theorem 0.2 immediately

follow. We will explain now how to find such a Sobolev norm in the case of a

noncocompact lattice Γ.

If X is noncompact, it is not clear why a supremum norm exists on the

space of smooth vectors of π. Actually, there is no such norm for a general

automorphic representation since a general automorphic function does not need

to decay at infinity. However, if π is cuspidal, then its smooth vectors decay at

infinity and the supremum norm is well defined. A simple proposition below

(proven in Appendix B) shows that there is an appropriate Sobolev norm which

majors Nsup in this case as in the cocompact case. This suffices to prove the

bound |φε| ≤ C| ln ε|, hence, the analog of Theorem 0.2.

Proposition. Let (π,G,L) be a unitary representation of the group G =

SL(2,
�

) and ν : L → L2(X) a bounded morphism of representations whose

image lies in the cuspidal part of L2(X). Consider the space V = L∞ of

smooth vectors in L and introduce the norm Nsup on V as in 0.5. Then there

exists a constant C such that Nsup ≤ CS3, where S3 is the third Sobolev norm

on V .

4.2. We state now the version of Theorem 0.2 for a noncocompact lattice Γ

(for notations see [B]). Denote by {αj}j=1,... ,k the set of cusps and by Ej(s) the

corresponding Eisenstein series; let {φi} be the basis for the discrete spectrum

(cusp forms and residual eigenfunctions). Let φ be a cusp form and denote, as

before, bi = |〈φ2, φi〉|2 exp(π2 |λi|) and bj(t) = |〈φ2, Ej(
1
2 + it)〉|2 exp(π2 |t|).

Theorem. There exists a constant C such that
∑

|λi|≤T
bi +

∑

j

∫

|t|≤T
bj(t)dt ≤ C(lnT )3 as T →∞.

5. Some computations in the model � λ

This section is devoted to the proof of Propositions 2 and 3.4. Our proof

is based on explicit computations in the model � λ of the representation π.

Since π is a unitary representation with a K-fixed vector, it is either a

representation of the principal series, or a representation of the complementary

series (or the trivial representation). In 5.1 and 5.2 we consider representations

of the principal series. In 5.5 we treat the complementary series.
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5.1. Proof of statements (1) and (2) of Proposition 2. What we claim in

(1) and (2) is independent of the realization of πλ. We chose the realization of

πλ in � λ. By definition, the element gε is chosen so that vε = π(gε)v is given

by the function Q
λ−1

2
ε , where Qε(x, y) = a(x− iεy)(εx+ iy).

For computations we will use two models of the representation � λ:

Circle model. Realization of � λ as the space of smooth functions on S1,

described in 0.1.

Line model. In this model, to every vector v ∈ � λ we assign the function

u on the line given by u(x) = v(x, 1).

The line model is convenient to describe the action of the Borel subgroup.

Lemma. (1) π(
(

1 b
0 1

)
)u(x) = u(x− b).

(2) π(
(
a 0
0 a−1

)
)u(x) = |a|λ−1u(a−2x).

(3) For λ = it the scalar product in � λ is given, up to a factor, by the stan-

dard L2-product in the space of functions on the line, namely, ||v||2 =
1
π

∫
|u|2dx.

Denote by qε the restriction of the quadratic form Qε on the line {(x, 1)};
i.e., qε(x) = a(x − iε)(εx + i) = a(ε(x2 + 1) + ix(1 − ε2)). Thus, the vector

vε ∈ � λ corresponds to the function uε = q
(λ−1)/2
ε , and we have to estimate

the integral ||vε||2 =
∫
|uε|2dx.

Let m(X) = |q(x)| and a(x) = arg(q(x)) be the modulus and the argument

of the function q. Then for λ = it we have |uε(x)|2 = m(x)−1 exp(2ta(x)).

Proof of (1) in Proposition 2. Since t is fixed, the function exp(2ta(x)) is

uniformly bounded, while the function m(x)−1 is bounded by ε−1 for |x| ≤ ε,

by |1/x| for ε ≤ |x| ≤ ε−1 and by ε−1x−2 for |x| > ε−1, which implies that∫
|uε(x)|2dx ≤ C| ln ε|.

Proof of (2) in Proposition 2. We can assume that t > 0. Clearly, on the

segment [1, 2] we have, uniform in ε < 0.1, bounds |m(x)| < 3 and a(x) >

π/4− 3ε. This implies that ||vε||2 ≥ c exp(π/2− 6ε).

Remark. There is another way to compute the norm ||vε||, based on the

theory of spherical functions. Namely, for every λ ∈ � we consider the spher-

ical function Sλ on G equal to the matrix coefficient of the K-fixed vector

v ∈ � λ, Sλ(g) = 〈π(g)v, v〉. This function is well-known: it is determined by

its restriction to the diagonal subgroup and on this subgroup it is essentially

given by the Legendre function. In particular, this function has an analytic

continuation to some domain which contains all diagonal matrices diag(a−1, a)

with |arg(a)| < π/2.
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We can compute the norm ||π(g)v|| using spherical functions as follows.

For g ∈ U we write ||π(g)v||2 = 〈π(g)v, π(g)v〉 = 〈π(g′g)v, v〉 = Sλ(g′g), where

g′ = ḡ−1 (see 1.1). In particular, if g = diag(a−1, a), where a ∈ � such that

||a|| = 1 and |arg(a)| < π/4, then we have ||π(g)v||2 = Sλ(g2).

5.2. Proof of Proposition 3.4. We work with a fixed λ as ε → 0. Denote

the norm SGk on the space � λ by N . We want to estimate N(vε).

Step 1. The vector vε is realized as the function Qλ−1
ε . Consider this

function in a circle model. We can choose a partition of unit αi on the circle

and replace the function vε with a function αvε, where α is a smooth function

with small support on the circle.

If α is supported far from the x- and the y-axes, then the family of func-

tions αvε is uniformly bounded with respect to the norm Sk, hence, with respect

to the norm N . The case of a function α supported near the x-axis can be

reduced to the case of the y-axis by the change of coordinates (x 7→ y, y 7→ −x).

Thus, it suffices to estimate N(αvε), where α is a smooth function sup-

ported near the y-axis.

Step 2. Let us pass to the line model of the representation � λ. Here one

should be a little careful since the standard Sobolev norm Sk on the space�
of functions on the line does not agree with the Sobolev norm Sk on the

space � λ. However, on the subspace
� ′ of functions supported on the segment

[−2, 2] these two norms are comparable, and so on this subspace we will pass

from one of these norms to another without changing notations.

In the line model our vector αvε is represented by the function uε given by

uε(x) = αaκ(x− iε)κ(εx+ i)κ, where κ = (λ− 1)/2. We see that as ε→ 0 the

structure of the function uε is mainly determined by the factor (x− iε)κ which

is roughly homogeneous in x. We estimate the norm N(uε) using the fact that

the norm N itself is homogeneous with respect to dilations. We will do this

using the, standard in harmonic analysis, method of dyadic decomposition.

Let us describe this method informally for λ = 0.

In this case, the function u = uε on [0, 1] is, more or less, equal to (x −
iε)−1/2. In other words, uε is just a branch of the function x−1/2 slightly

smoothed at the origin.

The only a priori estimate of the norm N we know is N ≤ Sk. However,

one can easily see that the value Sk(u) is too big. What we can do is to break

the segment I = [0, 1] into smaller segments I1 = [1/2, 1], I2 = [1/4, 1/2], . . . , Il
(plus some small segment at the origin) and to break our function u into the

sum of functions ui approximately supported on these segments.

Now let us estimate, separately, the norms N(ui). The operator π(g)

with a suitable diagonal matrix g moves ui into the function u′i with support
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on [1, 2]. This transformation does not affect the norm N , since N is invariant,

but it tremendously decreases the Sobolev norm Sk. This yields a much better

estimate: N(ui) = N(u′i) ≤ Sk(u′i).
To get a better bound, we move the function ui as far to the right as

possible. On the other hand, we cannot move it beyond the point 2 since there

we lose control of the Sobolev norm Sk; this explains, in particular, why we

have to break the function u into pieces: each piece must be scaled differently.

Let us formulate a general statement about functions on the line that sums

up the results one can prove using this method.

5.3. Dyadic decomposition. Let
�

be the space of smooth functions with

compact support on the line. For every t > 0 consider the dilation operator

ht :
� → �

, where ht(f)(x) = f(t−1x).

Suppose on
�

we have a homogeneous norm N of degree r; i.e., N(htf) =

t−rN(f). Assume also that for functions supported on the segment [−2, 2] we

have the estimate N(f) ≤ Sk(f), where Sk is the kth Sobolev norm.

To estimate the values N(uε) for some family of functions uε ∈
�

as ε→ 0,

we assume that the family uε is “roughly homogeneous.” This means that

uε = τεfε ∈
�

, where fε is a family of smooth functions on the line such that

ftε = tκht(fε); i.e., ftε(tx) = tκfε(x) (we say that this family is homogeneous

of degree κ) and τε ∈
�

is a family of truncation multipliers.

Proposition. Let N be a norm homogeneous of degree r on the space�
= C∞c (

�
). Let uε ∈

�
be a family of functions described above. Assume

that :

(1) There exists a constant S = Sf which bounds the Sobolev norm Sk on the

segments [−2,−1] and [1, 2] for all functions fε with 0 < ε < 1 and also

bounds the Sobolev norm Sk of the function f1 on the segment [−2, 2];

(2) The truncation family τε is uniformly bounded in Ckc [−1, 1]; i.e., all these

functions are supported on the segment [−1, 1] and for all ε ≤ 1 all their

derivatives up to order k are bounded by some constant Ctr.

Then N(uε) ≤ CCtrSf (εReκ−r +
∫ 1
ε t

Reκ−r · dt/t).

In other words, N(uε) ¿ 1 if Reκ > r, N(uε) ¿ εReκ−r if Reκ < r and

N(uε)¿ | ln ε| if Reκ = r.

We can apply this proposition to our situation. Namely, consider the

family of functions fε(x) = (x+ iε)κ, where κ = (λ− 1)/2. Identify the space�
= C∞c (

�
) with a subspace in � λ using the line model of � λ (see 5.1). Then

the formulas for the action of the diagonal group on
�

from Lemma 5.1 show

that the G-invariant norm N on � λ considered as a norm on
�

is homogeneous

of degree r = −1/2.
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It is easy to check that the family of functions uε (for some τε) satisfies

the conditions of Proposition 5.3 with κ = (λ− 1)/2. Thus, Reκ = −1/2 and

Proposition 5.3 shows that N(uε) ≤ C| ln ε|, which proves Proposition 3.4.

5.4. Proof of Proposition 5.3. Let us formalize the proof outlined in 5.2.

Technically, it is a little easier to break u into an integral, rather than a sum,

of components. That is what we are going to do.

Fix a smooth function γ ∈ �
equal to 1 on [−1, 1] and supported on

[−2, 2]. Then γuε = uε.

Consider two families of functions in
�

: γt = ht(γ) and δt = t ddtγt.

They have the following properties:

(i) γ1 is supported on [−2, 2]; δ1 is supported on [−2,−1] ∪ [1, 2];

(ii) ht(γ1) = γt, ht(δ1) = δt;

(iii) γ1 − γa =
∫ 1
a δt · dt/t.

Fix an ε ≤ 1 and consider two families of functions in
�

: gt = γtuε and

ct = δtuε. Then we can express uε = g1 as g1 = gε +
∫ 1
ε ct · dt/t. Hence, the

following claim (with Ctr, Sf described in the statement of Proposition 5.3)

implies the bound on the norm N(uε):

Claim. There exists C which only depends on k and such that

(1) N(ct) ≤ CCtrSf t
Reκ−r for all t such that ε ≤ t ≤ 1;

(2) N(gε) ≤ CCtrSfε
Reκ−r.

Proof. (1) Set a = t−1. Then we have N(ct) = t−rN(ha(ct)) and ha(ct) =

ha(δt)ha(τε)ha(fε) = δ1ha(τε)faε · tκ. Observe that the function ha(ct) is sup-

ported on [−2,−1]∪ [1, 2], where all the derivatives of δ1ha(τε) up to the order

k are uniformly bounded by CCtr, while the Sk-norm of all functions faε is

bounded by Sf . This implies that N(ha(ct)) ≤ Sk(ha(ct)) ≤ CCtrSf t
Reκ.

Hence, N(ct) ≤ CCtrSf t
Reκ−r.

Claim (2) is similarly proved with the help of the dilation h−1
ε .

5.5. The complementary series. We describe modifications in the proofs

in 5.1 and 5.2 needed to treat the complementary series.

Let (π,G, V ) be a representation of the complementary series. We will

realize it as a representation (πλ, � λ) for some λ such that −1 < λ < 0 (see

formulas in [G5]).

We can use the line model of the space � λ as in 5.1 but with the scalar

product given by ||f ||2 =
∫
|x − x′|−λ−1f(x)f(x′)dxdx′. As in 5.1, we have

to estimate ||uε||2, where uε = (qε)
(λ−1)/2. In this case the main contribution

comes from a neighborhood of 0 and direct computations show that ||uε||2 ≤
C| ln ε|.
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Proof in 5.2 is even easier. Indeed, the invariant norm N on � λ becomes

a homogeneous of degree (λ − 1)/2 norm N on the space
�

of functions on

the line. We have to estimate the value of this norm on a function uε, roughly

homogeneous of degree κ = (λ − 1)/2. Proposition 5.3 implies that N(uε) ≤
C| ln ε|.

Appendix A. Invariant norms

A.1. Fix a complex vector space V . A seminorm on V is a function

N : V → � + such that N(v1 + v2) ≤ N(v1) +N(v2) and N(av) = |a|N(v).

The set N of all seminorms on V is a partially ordered set with respect

to the relation ≤, where N ≤ N ′ whenever N(v) ≤ N ′(v) for all v ∈ V .

Lemma. The partially ordered set (N ,≤) is inductive, i.e., any nonempty

family of seminorms Nu has the exact lower bound N = inf Nu.

Proof. Define N by setting N(v) = inf(
∑
Nui(vi)), where the sum runs

over all finite collections v1, . . . , vk ∈ V and Nu1 , . . . , Nuk ∈ N which satisfy∑
vi = v.

It is easy to check that N is a seminorm bounded by each seminorm Nu.

If M is a seminorm such that M ≤ Nu for all Nu, then, clearly, M ≤ N . The

uniqueness of N is obvious.

Geometrically it is clear that the seminorm N is defined by the unit ball

which is the convex hull of the unit balls of the seminorms Nu.

A.2. Construction of invariant seminorms. Suppose an arbitrary group

G acts on a complex vector space V . Then G acts on the set of seminorms

on V by g(N)(v) = N(g−1v). For every seminorm N on V we define a new

seminorm: NG = inf
g∈G

g(N). From the definition one can immediately deduce

that:

(i) NG is an invariant seminorm.

(ii) If M is any invariant seminorm bounded by N , then M ≤ NG.

Remark. Let us apply this construction to a representation (π,G, V ) of

the unitary principal series of the group G = SL(2,
�

).

For any s ∈ �
, consider the corresponding Sobolev norm Ss and construct

the invariant seminorm SGs . One can easily show that for s < 0 the seminorm

SGs vanishes. For s ≥ 0 the norm Ss is bounded below by an invariant unitary

norm || · ||. This implies that || · || ≤ SGs ; hence, SGs is a norm.

One can show that for all s > 1/2 the norms SGs are equivalent to the

same norm, B. This norm is distinguished by the condition that it is the

maximal G-invariant norm on V (i.e., any G-invariant norm N is bounded by
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CB for some constant C). If we realize V as the space of functions on the

circle (see 0.1), then B becomes equivalent to the Besov norm B
1/2
1,1 (here 1/2

stands for derivative of order 1/2, one 1 stands for the L1-norm and another

1 is the weight index in the Besov norm). This equivalence can be shown by

standard methods of harmonic analysis, like in [A], where similar questions are

discussed.

In particular, this shows that for any cuspidal representation we have a

bound on the supremum norm of the form Nsup ¿ B.

For 0 ≤ s ≤ 1/2 the norms SGs are all distinct. It is interesting to inves-

tigate the nature of these norms. We think that in the circle model they are

close to Besov norms, namely SGs ∼ Bs
q,q with 1/q − s = 1/2.

The embedding ν : V → C∞(X) defines a family of G-invariant norms Np

on the space V corresponding to Lp-norms on X. We can use Proposition 4.1

and the Besov norm B described above to give some bounds for these norms

in terms of the representation (π,G, V ) only.

Namely, consider a representation of the principal series. Realize the space

V in the circle model. Then we have the required bounds at two points:

(i) N2 coincides with the L2-norm on S1, the latter being the Besov norm

B0
2,2.

(ii) N∞ is bounded by the norm B = B
1/2
1,1 .

Using interpolation theory for Banach norms we conclude that for inter-

mediate p, 2 ≤ p ≤ ∞, there exists a bound Np ¿ Bs
q,q , where 1/q + 1/p = 1,

1/q − s = 1/2.

It is interesting to give similar bounds for norms Np for 1 ≤ p < 2.

Appendix B. Estimates using Sobolev norms

B.1. Sobolev inequalities. We start with the standard Sobolev lemma:

Lemma. Let B be the unit ball in
� n. Consider the space V of smooth

functions on B with the L2-norm || · ||, and introduce Sobolev norms Sk on V

as in subsection 3.2, i.e., Sk(f)2 =
∑ ||∂α(f)||2, where the sum runs over all

monomials in partial derivatives ∂α = ∂i1 , . . . , ∂il of order ≤ k. Then for any

k > n/2 there exists a constant C such that |f(0)| ≤ CSk(f) for f ∈ V .

This lemma holds (though its formulation is more cumbersome) for any

Sobolev norm Ss with s > n/2.

In this paper we actually need this lemma only for k ≥ n. In this case the

estimate is elementary and can be proven by induction using direct integration.

From the Sobolev lemma we immediately deduce its version for any Lie

group G. Namely, suppose G is an n-dimensional Lie group. We fix some
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basis Xi of the Lie algebra � of the group G and use it to construct a left-

invariant metric and a left-invariant measure on G. Fix a symmetric compact

neighborhood B of the unit e ∈ G; we will call B the unit ball.

Consider the space V of smooth functions on B, introduce the L2-norm

with respect to the left-invariant measure on G and define Sobolev norms on

V using derivatives Xi ∈ � corresponding to the right G-action.

Corollary. Let k > n/2. Then there exists a constant C such that

|f(e)| ≤ CSk(f), for any f ∈ V .

Though this reformulation seems to be quite trivial, it is in fact rather

strong, since it gives some estimates which are uniform with respect to the left

G-action.

B.2. Sobolev inequalities for homogeneous spaces. Let X = Γ\G be a

homogeneous space. We consider a measure on X induced by a left G-invariant

Haar measure on G and introduce the L2-norm and Sobolev norms in the

space V of smooth functions on X. We would like to describe Sobolev type

inequalities which are uniform on X.

We will call a function w on the space X a weight if it is a positive

measurable function and for every g ∈ G there exists a constant C(g) such

that w(xg) ≤ C(g)w(x) for all x ∈ X; we also assume that the function C(g)

is locally bounded.

Fix a ball B ⊂ G as above. For every point x ∈ X we consider the

map px : B → X given by g 7→ xg. This map induces the morphism of Hilbert

spaces p∗x : L2(X)→ L2(B) and we denote by w(x) the norm of this morphism.

(One can show that w(x)2 is the maximal cardinality of the fibers of the map

px.) It is easy to see that w is a weight on X. It depends on the choice of the

unit ball B but for different balls these functions are comparable.

Now the Sobolev inequality for G (Corollary B.1) immediately implies

Proposition. For k > n/2 there exists a constant C such that for any

f ∈ V and x ∈ X, |f(x)| ≤ Cw(x)Sk(f).

If X is compact, then the weight function w(x) is bounded; thus the

proposition implies Lemma 3.3.

If X is not compact, then in order to get a bound on sup |f(x)| we need

an additional information, e.g., that f is cuspidal.

B.3. Sobolev estimates in the cuspidal case. Let G be a Lie group, Γ ⊂ G
a lattice in G and X = Γ\G. We fix a basis in � = Lie(G) and use it to

construct a left-invariant metric on G and the induced metric on X.

Recall the notion of the cuspidal function on X. A unipotent subgroup

U ⊂ G is cuspidal if U is nontrivial and ΓU = Γ ∩ U is a cocompact subgroup
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in U . Geometrically this means that the left orbits of U in G become compact

when mapped to X; these compact sets are called horocycles.

A smooth function f on X is called cuspidal if the integral of f over any

horocycle vanishes. Important here is the G-invariance of the space of cuspidal

functions on X; in particular, this space is � -invariant.

For every point x ∈ X, define d(x) as the infimum of 1 and the diameters

of all horocycles through x. Roughly speaking, d measures how close point x

is to a cusp.

The following lemma shows that we can improve estimates for a cuspidal

function if we know estimates for its derivatives.

Lemma. Suppose f is a smooth cuspidal function on X such that f and

all its derivatives Xif are bounded by a weight w. Then for some constant C

independent of f , the function f is bounded by a weight w′ = Cwd.

Proof. Let x ∈ X. If d(x) ≥ 0.1, there is nothing to prove. So suppose

d(x) < 0.1; i.e., there exists an horocycle H passing through x and diam(H) ≤
2d(x) < 0.2. By hypothesis, all the derivatives of f at all points of H are

bounded by Cw(x). This means that the gradient of f is bounded by C ′w(x)

at all points of H.

We can assume that the function f is real. Then the condition that its

integral over H vanishes implies that f vanishes at least at one of the points

of H. Combined with the estimate |grad(f)| ≤ C ′w(x) and the fact that

diam(H) ≤ 2d(x) this implies the desired estimate |f(x)| ≤ 2C ′w(x)d(x).

Proof of Proposition 4.1. Let us come back to the case G = SL(2,
�

),

X = Γ\G.

Let f be a cuspidal function on X. It follows from the estimate in B.2 that

f and its derivatives are bounded by Cw(x)S3(f) with the weight w introduced

in B.2. Hence, |f | ≤ Cw(x)d(x)S3(f) by Lemma B.3. In order to finish the

proof, it suffices to show that the function wd is bounded on X. This result

easily follows from the theory of Siegel domains. Let us recall this theory.

Fix a cuspidal unipotent subgroup U , set ΓU = Γ ∩ U and consider the

homogeneous space XU = ΓU\G. Let p : XU → X be the natural projection.

Let A be the Cartan group of G. It is canonically isomorphic to
� ∗; we

define the function h : A→ �
by h(a) = ln(|a|). Using Iwasawa decomposition

we can canonically extend h to a left U -invariant and right K-invariant function

on G. This latter function defines the function h : XU →
�

.

A Siegel domain � T is an open subdomain of XU defined as the preimage

h−1(T,∞). Fix one Siegel domain � = � T and consider the map p : � → X.

It is easy to see that for the unit ball B ⊂ G the domain � ′ = � · B is

contained in another Siegel domain, � T ′ . By the theory of Siegel domains the
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cardinality of the fibers of the map p : � ′ → X is finite and bounded; hence,

the operator p∗ : L2(X) → L2( � ′) is bounded. By the definition of w this

implies that w(p(x)) ≤ Cw(x) for any x ∈ � . Also, obviously, d(p(x)) ≤ d(x)

for any x ∈ � .

By reduction theory the space X can be covered by a compact set and

the union of images of a finite collection of Siegel domains. Hence, in order to

check that the function dw is bounded on X, it suffices to check the bound on

each Siegel domain.

Direct computations on the Siegel domain � T show that for x ∈ � T ⊂ XU

we have d(x) ≤ C exp(−h(x)) and w(x) ≤ C exp(h(x)/2), which shows that

the function dw is bounded on � T .

Appendix C. The geometry of domain U ⊂ SL(2, � )

In the 2-dimensional case there is a convenient way to describe the variety

Q of unimodular quadratic forms; see 1.2. Namely, fix a skew-symmetric form

〈·, ·〉 on � 2. Then for any pair of noncollinear vectors a, b ∈ � 2 set Qa,b(x) =
〈a,x〉〈b,x〉
〈a,b〉 . Note that this form only depends on the images of a and b in 	 1,

i.e., we can define the unimodular quadratic form Qa,b for any pair of distinct

points of 	 1. It is easy to see that this identification defines a natural SL(2, � )-

equivariant isomorphism of algebraic varieties 	 1 × 	 1 \ {diagonal} and Q.

Lemma. (1) Identify � with an open subset of 	 1, z 7→ (z, 1). (In partic-

ular, this realizes � as an open G-invariant subset of 	 1.) Then the morphism

(a, b) 7→ Qa,b identifies the domain � × ¯� with the subdomain Q+ ⊂ Q.

(2) Let I(Q) = {diag(z−1, z) : | arg z| < π
4 } ⊂ G � . Then U = SL(2,

�
) · I ·

SO(2, � ).

Proof. If P is a diagonal unimodular quadratic form on � 2, then it is easy

to see that P ∈ Q+ if and only if P is of the form g(Q) for some g ∈ I. This

shows that I ⊂ U and, hence, G · I ·K � ⊂ U .

In order to prove the opposite inclusion it suffices to show that Q+ =

G · I(Q). Consider any form P ∈ Q+. Since the form ReP is positive definite,

we can find a basis of
� 2 in which the real and imaginary parts of P are simul-

taneously diagonalized. This implies that the orbit G(P ) contains a diagonal

quadratic form P ′. As we saw, P ′ is of the form h(Q) for some h ∈ I. This

proves heading (2).

The form Q corresponds to the point (i,−i) ∈ � × ¯� . Hence, for h ∈ I
the point (hi,−hi) ∈ � × ¯� corresponds to the quadratic form h(Q) which lies

in Q+; thus, the subset I(Q) lies in both � × ¯� and Q+.

Since Q+ and � × ¯� are G-invariant, to show that they coincide, it suffices

to show that each of them is generated by I(Q) under the G-action.
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For Q+ this fact was already proven in heading (2). In order to prove it

for � × ¯� , observe that the only G-invariant of the pair (a, b) ∈ � × ¯� is the

hyperbolic distance d(a, b̄). Since, in I(Q), arbitrary distances can be realized,

I(Q) generates � × ¯� as a G-set.
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