
IMRN International Mathematics Research Notices
2002, No. 40

Sobolev Norms of Automorphic Functionals

Joseph Bernstein and Andre Reznikov

1 Introduction

1.1 Motivation

It is well known that Frobenius reciprocity is one of the central tools in the representa-

tion theory. In this paper, we discuss Frobenius reciprocity in the theory of automorphic

functions. This Frobenius reciprocity was discovered by Gel’fand, Fomin, and Piatetski-

Shapiro in the 1960s as the basis of their interpretation of the classical theory of auto-

morphic functions in terms of the representation theory (eventually, of adelic groups,

see [7, 8, 9]). Later, Ol’shanski gave a more transparent proof of it (see [14]). However,

in the subsequent rapid development of the theory of automorphic functions, Frobenius

reciprocity was barely noticeable. We believe that this is due to the incompleteness of

the above-mentioned results.

In this paper, we prove a general theorem (see Theorem 1.1), which we view as

a quantitative version of Frobenius reciprocity. We then illustrate it by looking into the

example of SL(2, R). We think that these methods will play a more prominent role in the

theory of automorphic functions.

1.2 Geometric functionals on representations

We consider a general problem. Suppose that we are given a representation (π, G, V) of

a locally compact group G in a topological complex vector space V and a morphism of

representations ν : V → C(X), where X is someG-space and C(X) the space of continuous

functions on X. Then each point x ∈ X defines a continuous functional Ix on V by Ix(v) =

ν(v)(x). We would like to establish some bounds on the norm of the functional Ix. In
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order to do so we want to choose a norm on V which is at our disposal. Different norms

could provide different information.

More precisely, suppose we are given a norm N on V (we always assume that

the representation π is continuous with respect to this norm). We would like to give an

a priori estimate of the norm ‖I‖N of the functional I with respect to N, where ‖I‖N :=

supv∈V |I(v)|/N(v).

Of course, for this, we have to know something about the morphism ν.

Assume that X is a homogeneous G-space. We also assume that the image of V

lies inside the space L2(X, µX) of L2-functions with respect to some G-invariant measure

µX on X. Then the scalar product in L2(X, µX) defines an invariant Hermitian form P on V .

We propose to bound ‖I‖N in terms of the norm N and the Hermitian form P. It

turns out that when the normN is obtained from a Hermitian formQ on V , we can some-

times give a reasonable bound for ‖I‖N. Namely, we claim that ‖I‖N can be estimated in

terms of the relative trace tr(P | Q) of Hermitian forms P and Q.

More precisely, let V be a separable topological vector space, H(V) the space of

continuous Hermitian forms on V , and H(V)+ ⊂ H(V) the subset of nonnegative Hermit-

ian forms. To any pair of forms P, Q ∈ H+(V), where Q is positive definite, we assign a

number tr(P | Q), the relative trace of P with respect to Q, which takes values in R+ ∪∞
(see Appendix A).

For example, if P ≤ cQ we can represent the form P by a bounded selfadjoint

operator A in the Hilbert space completion H of the space V with respect to the form Q.

In this case, we will have tr(P | Q) = trA.

The number tr(P | Q) can often be effectively computed. It turns out that we can

give tight estimates of the norm ‖I‖N in terms of this number.

Namely, we will prove the following general result.

Theorem 1.1. The following estimate holds ‖Ix‖2
N ≤ C · tr(P | Q), where C = C(x) is an

effectively computable constant.

If X is compact, this estimate is tight, that is, ‖Ix‖2
N ≥ c · tr(P | Q), where c > 0 is

an effectively computable constant. �

The theorem above follows from the following relation between relative traces

and functionals Ix.

Proposition 1.2. The following relation holds tr(P | Q) =
∫

X
‖Ix‖2

NdµX. �

1.3 Automorphic functionals

Theorem 1.1 could be applied in the automorphic setting where it gives a quantitative

version of Frobenius reciprocity.
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Let G be a Lie group and Γ ⊂ G a lattice, that is, a discrete subgroup such that

the quotient space X = Γ \ G has finite volume with respect to an invariant measure µX.

In order to simplify the formulas, we always normalize the measure µX so that the total

volume µX(X) equals 1.

For simplicity of exposition, we assume that the quotient space X is compact

(see Section 3.3 for a discussion of general lattices).

It is well known (see [8]) that for compact X, the space L2(X) decomposes into

a direct sum of irreducible (unitary) representations of G. These representations are

called automorphic representations.

Let (π, L) be such a representation in a Hilbert space L and ν : L → L2(X) the

corresponding isometric embedding. Let V ⊂ L be the space of smooth vectors of π (i.e.,

v ∈ L such that ξv(g) = π(g)v is a smooth function from G to L). It is well known that V is

dense in L and that νmaps V into the space C∞ (X) of smooth functions on X (see [14]). It

is easy to see that we have the following isomorphismMorG(L, L2(X)) �MorG(V, C∞ (X)).
The last space can be described using the following result (see [8, 14]).

Frobenius reciprocity. MorG(V, C∞ (X)) �MorΓ (V, C). �

Namely, to every G-morphism ν : V → C∞ (Γ \ G) corresponds a Γ-invariant

functional I on the space V given by I(v) = ν(v)(e) (here e is the identity in G). Given I,

we can recover ν as ν(v)(g) = I(π(g)v).

According to Theorem 1.1, we have estimates on automorphic functionals Ix,

x ∈ X, in terms of relative traces. Namely, given a morphism ν : V → L2(X), which defines

an invariant Hermitian form P = ‖ ·‖2 on V , and given a positive definite Hermitian form

Q on V such that the representation π is continuous with respect to the corresponding

norm N, we have the following estimates on the norm of corresponding functionals Ix:

(1) for any point x ∈ X, we have an estimate ‖Ix‖2
N ≤ C · tr(P | Q), where C = C(x)

is an effectively computable constant;

(2) if Γ is cocompact, then tr(P | Q) is comparable to ‖Ix‖2
N, that is, there exist

constants C, c > 0 such that c · tr(P | Q) ≤ ‖Ix‖2
N ≤ C · tr(P | Q).

In order to make these estimates useful, we have to choose a Hermitian form Q

(it is not a simple task for general G and V , but see [3] in this regard). We analyze,

in some detail, the most simple (but interesting for automorphic functions) example of

G = SL(2, R). We also compare ourmethodwith othermethods of bounding automorphic

functions.

A careful reader would notice that Sobolev norms appearing in the title are not

essential to the paper. This is due to the evolution of the authors’ understanding during

the (long) process of rewriting the paper.
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2 Automorphic functions on SL(2, R)

Here we implement our strategy forG = SL(2, R). We make this section self-contained in

order to make the paper more accessible (hence some overlap with the previous section).

2.1 Setting

Let H be the upper half plane with the hyperbolic metric of constant curvature −1. The

group G = SL(2, R) acts on H by isometries.

We fix a discrete group Γ ⊂ G. Consider the Riemann surface Y = Γ \H; we assume

that Y is compact. Denote by D the Laplace-Beltrami operator acting in the space of

functions on Y. We denote by 0 = µ0 < µ1 ≤ µ2 ≤ · · · its eigenvalues on Y and by φi

the corresponding eigenfunctions; we normalize these eigenfunction so that ‖φ‖L2 = 1,

where the L2-structure is defined by a G-invariant measure µY on H normalized by the

condition µY(Y) = 1. The study of eigenfunctions φ and corresponding eigenvalues is

important in many areas of representation theory, number theory, and geometry.

Here, we present a new approach to the study of eigenfunctions φ based on the

version of Frobenius reciprocity formulated in Section 1.3.

2.2 Automorphic representations

Consider themaximal compact subgroup K = SO(2, R) ⊂ SL(2, R); we will identifyHwith

G/K.

We denote by X the compact quotient X = Γ \ G. The group G acts on X and

hence on the space of functions on X. We identify the Riemann surface Y = Γ \ H with

X/K and consider G-invariant measure µX on X normalized by the condition µX(X) = 1.

This induces the embedding L2(Y, µY) ⊂ L2(X, µX), the image consists of all K-invariant

functions. For any eigenfunctionφ of the Laplace operator on Y, we can consider a closed

G-invariant subspace Lφ ⊂ L2(X) generated by φ under the action of G. It is known that

(π, L) = (πφ, Lφ) is an irreducible unitary representation of G (see [8]).

Conversely, suppose that we fixed an irreducible unitary representation (π, L) of

the group G and a K-fixed unit vector v0 ∈ L. Then any G-morphism ν : L → L2(X) defines

an eigenfunction φ = ν(v0) of the Laplace operator on Y; this function is normalized if ν

is an isometric embedding.

Thus eigenfunctions φ correspond to the tuples (π, L, v0, ν).

All irreducible unitary representations of G with a K-fixed vector are classified:

these are representations of principal and complementary series and the trivial repre-

sentation. For simplicity, we consider only representations of principal series (these

correspond to eigenfunctions as in Section 2.1 with the eigenvalue µ ≥ 1/4).
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Such a representation (π, L) can be realized as follows. Fix a purely imaginary

number λ and consider the natural representation πλ of the group G in the space Lλ

of (even) homogeneous functions on R
2 \ 0 of degree λ − 1. Thus vectors in Lλ are just

even locally L2-functions f on R
2 \ 0 satisfying f(ax, ay) = |a|λ−1f(x, y) for all a ∈ R. The

representation π is induced by the natural action of G on (x, y).

Note that such a function is determined by its values on the unit circle S1; hence

we may identify the space Lλ with the space L2(S1)even of even functions on S1. The

G-invariant scalar product in Lλ is given by P(f, g) = (1/2π)
∫

S1 fḡ dθ.

The K-fixed vector v0 corresponds to the constant function 1 on S1.

The eigenfunction φ of the Laplace operator, which corresponds to a represen-

tation (πλ, Lλ), will have the eigenvalue µ = (1− λ2)/4.

Thus, we see that eigenfunctions φ on the Riemann surface Y with the given

eigenvalue µ correspond to G-morphisms νφ : Lλ → L2(X) (namely, φ = νφ(v0)). Nor-

malization ‖φ‖ = 1 means that ν preserves the scalar product.

Let Vλ ⊂ Lλ be the subspace of smooth vectors (in the realization described

above, Vλ consists of smooth functions on R
2 \ 0).

As we have seen, MorG(Lλ, L2(X)) �MorG(Vλ, C∞ (X)) and we have the Frobenius
reciprocity MorG(Vλ, C∞ (X)) �MorΓ (Vλ, C) as in Section 1.3.

Thus, eigenfunctionsφ of the Laplace operator on Ywith eigenvalueµ correspond

to Γ-invariant functionals I on the space Vλ.

2.3 Sobolev class of automorphic functionals

For principal series representations of SL(2, R), we can identify Vλ with the space

C∞ (S1)even and consider I as a distribution on S1. This functional is continuous, that

is, it is continuous with respect to some seminorms. Then we can ask the following

natural question.

Question. What is the L2-Sobolev class of the functional I? In other words, for which

real s is the functional I continuous with respect to the L2-Sobolev norm Ns and how

can we estimate the norm ‖I‖Ns
?

We discuss the relevant definition of L2-Sobolev norms Ns in Appendix B.

This is a question about the regularity of the functional I in the scale of Sobolev

spaces. More precisely, denote by Ws = Ws(π) the completion of the space V with re-

spect to the Sobolev norm Ns. These Sobolev spaces Ws form a decreasing family of

representations of G; the intersectionW∞ = ∩Ws coincides with the space V of smooth

vectors in the representation π, while the union W−∞ = ∪Ws can be interpreted as the

space of distribution vectors in the representation π.
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Note that the dual space of Ws is naturally isomorphic to the Sobolev space

W−s(Ṽ) of the contragradient representation (π̃, Ṽ) (in the case of SL(2, R)we can identify

π̃ with π). Hence, we can consider the automorphic functional I as a distribution vector

in the representation π̃, and the question above is a question to which Sobolev spaces

Ws(π̃) this vector belongs.

In fact we can also ask the same question about the regularity of the functional

I with respect to other classes of spaces, for example, Lp-Sobolev spaces, Besov spaces,

Hölder spaces, and so on.

Several recent papers deal with this question for different regularity classes, see

[18] for Hölder spaces and [6] for Lp Sobolev spaces.

The main point of this paper is that in the case of L2 Sobolev norms we can get

a very simple answer, which is a special case of Theorem 1.1.

Theorem 2.1. Let Γ ⊂ G be a cocompact discrete subgroup, (π, V) an irreducible au-

tomorphic representation, and I the corresponding automorphic functional. Then s-

Sobolev norm of the functional I is bounded if and only if s > 1/2. �

In fact, our method shows that this is true for all infinite dimensional automor-

phic representations of G and the corresponding functionals I.

We can restate Theorem 2.1 as a bound on automorphic functions (for a cocom-

pact subgroup). Let ‖φ‖∞ = supx∈X |φ(x)| be the supremum norm on C(X). We introduce

the normN∞ on the space Vλ byN∞ (v) = ‖ν(v)‖∞ for v ∈ Vλ. Then Theorem 2.1 amounts

to the bound

N∞ ≤ CNs, (2.1)

on the space Vλ.

In practice, Theorem 1.1 gives more and we prove, in fact, that the functional I

is bounded in an appropriate Besov norm. Namely, let Bµ be the Besov type norm on Vλ

introduced in Section 4.2 (it is equivalent to the Besov B
1/2

2,1 norm; see [2] for a definition

of Besov norms). We have then the following proposition.

Proposition 2.2. Let Vλ be an automorphic representation for a cocompact discrete sub-

group Γ . There exists a constant C depending only on Γ such that

N∞ (v) ≤ CBµ(v), (2.2)

for all smooth vectors v ∈ Vλ. �
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In Theorem 2.1, we assume that the spaceX = Γ \G is compact. In fact, we show in

Section 3.2 that the upper bound holds for arbitrary X. We will also obtain some partial

lower bound results in the case of nonuniform lattices Γ .

We would like to emphasize that the standard techniques from the Sobolev re-

striction theory imply only that ‖I‖2
Ns
is finite for s > 1 (this follows from the theory

for elliptic operators in [19] applied to the 3-dimensional manifold X described in Sec-

tion 2.2). Hence, Theorem 2.1 goes beyond the usual Sobolev type restriction theorems.

This indicates that Theorem 2.1 is not a local statement but has its origin in the global

geometry of X.

2.4 Applications

We discuss now some applications.

2.4.1 Fourier coefficients of the functional I. Let (πλ, Vλ) be a principal series repre-

sentation of SL(2, R), µ = (1 − λ2)/4. The automorphic functional I described in Sec-

tion 2.2 is a continuous functional on C∞ (S1)even. For any such functional we can define

its Fourier coefficients an = I(en), where en = einθ, n is even. In terms of these coef-

ficients Theorem 2.1 means that the sum
∑

|an|2(n2 + 1)−s is convergent if and only if

s > 1/2. However, from Proposition 2.2, we obtain the following stronger result.

Corollary 2.3. There exists an effectively computable constantA, independent of µ, such

that

∑
|n|≤N

∣∣an

∣∣2 ≤ A · N, for N >
√

µ. (2.3)
�

This estimate is sharp. It is not difficult to show, using the same method, that for a

cocompact subgroup, there exist effectively computable constants γ > 1 and a > 0,

independent of µ, such that

∑
|n|≤N

∣∣an

∣∣2 ≥ a · N, for N > γ
√

µ. (2.4)

2.4.2 Bounds on automorphic functions. The coefficients an above are easily inter-

preted in terms of automorphic functions. Consider the nth K-finite vector φ
(n)

λ in the

automorphic representationVλ as a function onX. The coefficient an is equal to the value

of φ
(n)

λ at the point e ∈ X = Γ \ G. Hence, bounds on coefficients an could be viewed as

a part of a general question asking for bounds on automorphic functions. Recently,
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this question drew a lot of attention in connection with applications to analytic theory

of automorphic L-functions (see [17]). Classical approaches to the problem of bound-

ing automorphic functions (with respect to the eigenvalue or the weight) are based on

Hardy-Hecke method (see Remark 2.5) or on bounds on eigenfunctions of elliptic oper-

ators (see [19]). However, these methods are not able, to the best of our knowledge, to

recover Theorem 2.1.

As a corollary to Proposition 2.2, we obtain the following result on the supremum

norm of the function φ
(n)

λ .

Corollary 2.4. There exists an explicit constant C, depending only on Γ , such that for all

n and µ = (1− λ2)/4,

∥∥∥φ
(n)

λ

∥∥∥∞ ≤




C · (1+ µ)1/4, if |n| ≤ |λ|,

C · |n|1/2, if |n| > |λ|.
(2.5)

�

Remark 2.5. (1) From the proof of Corollaries 2.3 and 2.4, it follows that the constants

in (2.3) and (2.5) are expressible in terms of the diameter of X. It is also easy to see

that Corollaries 2.3 and 2.4 hold for the representations of complementary and discrete

series as well.

(2) We would like to compare the bound in Corollary 2.4 with other bounds on

eigenfunctions.

For n fixed (e.g., n = 0), the bound in Corollary 2.4 is the standard bound from

the theory of elliptic operators (see [19]). It could be improved by logµ for a negatively

curved manifold (see [1]).

For a fixed λ, the function φ
(n)

λ on the 3-dimensional manifold X is an eigenfunc-

tion of some elliptic operator (we denote it by ∆). This yields the bound ‖φ(n)λ (x)‖∞ 

|n|(dimX−1)/2 = |n|1 as in [19]. Such a bound holds for a general Riemannian manifold. It

also could be deduced from the theory of special functions via Hardy-Hecke method (see

(3) below and [11, 13, 16]). However, φ(n)λ is also an eigenfunction of another differential

operator coming from the SO(2) action and commuting with ∆. This allows us to “reduce

dimensions” and to obtain the better bound ‖φ(n)λ ‖∞ 
 |n|1/2.

For λ and n both changing with the same rate (i.e., λ = R · n) one can use sym-
plectic reduction (in a fashion similar to [21]) to obtain the bound similar to the one in

Corollary 2.4, ‖φ(n)λ ‖∞ 
 |n|1/2, for a fixed R.

However, for a general vector in the representation Vλ, we do not see how the

above methods can reproduce our bounds in Proposition 2.2 since the latter gives a

bound for all smooth vectors in Vλ simultaneously, with the explicit dependence on the

parameter λ.
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(3) Hardy-Hecke method. The standard method for estimating the asymptotic

behavior of coefficients an is the method which should be attributed to Hardy (but

customarily called Hecke’s method, see [10]). It is based on a geometric interpretation

of the functional I and its Fourier coefficients an. Namely, consider another realization

of the representation πλ of SL(2, R) in the space Eλ of all eigenfunctions of the Laplace-

Beltrami operator on H with the eigenvalue µ = (1− λ2)/4.

In this realization, the basis of K-finite vectors consists of “spherical” harmonics

Fλ
n(θ, r) = einθfλ

n(r), where (θ, r) are the polar coordinates in H and fλ
n(r) are essentially

equal to the hypergeometric function (see [11]).

A function F(θ, r) ∈ Eλ admits a decomposition into Fourier series, F(θ, r) =∑
n cnFλ

n(θ, r).

It is not difficult to see that the functional I on Vλ, when interpreted as a gener-

alized vector in Eλ, is given by the function φ considered as a function on H (see [15] for

this approach). In particular, this function is bounded.

As Hardy-Hecke method shows, every bounded function F ∈ Eλ has Fourier co-

efficients cn such that the sum
∑

|cn|2(n2 + 1)−s converges for s > 1 (see [11, 13, 16]).

The proof is based on a detailed knowledge of the behavior of hypergeometric functions;

as a result, it is very difficult to see that this sum converges for s > 1/2. This in fact is

true (for any bounded function F ∈ Eλ) and could be proven using a combination of a

version of Hardy-Hecke method and representation theory arguments. This would give

an alternative proof of the upper bound in Theorem 2.1. We also note that in the higher

rank case, this method does not work due to the limited information available about

spherical functions.

(4) We would like to know whether the bound in Corollary 2.4 is sharp (i.e.,

whether there exist infinitely many an which do not satisfy |an| ≤ c · |n|1/2−ε, for any

fixed ε > 0). We suspect that it might be sharp. This would mean that these Fourier

coefficients an are fundamentally different from the usual Fourier coefficients un of

cusp forms (these are associated to a unipotent subgroupN ofG and not to K as an). For

un, it is proven that |un| 
 |n|1/3+ε (see [5]) regardless of the arithmeticity assumption

on Γ , and we can even suspect that |un| 
 nε (the Ramanujan conjecture, see [16]). The

reason for this discrepancy (if it exists)might be the existence of unipotent elements in Γ .

3 Relative traces and automorphic functionals

In this section, we prove Theorem 1.1. We use the notion of relative trace of two Her-

mitian forms on a topological vector space. We formulate properties of relative traces

and relate them to values of Hermitian forms on automorphic functionals. We will then

deduce from this our theorem.
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3.1 Relative traces

Let V be a separable topological vector space, H(V) the space of continuous Hermitian

forms on V , and H(V)+ ⊂ H(V) the subset of nonnegative Hermitian forms. In Appen-

dix A, we define for any pair of forms P, Q ∈ H+(V), where Q is positively definite, a

number tr(P | Q), the relative trace of P with respect to Q, taking values in R+ ∪ ∞.
In Appendix A, we prove the following proposition.

Proposition 3.1. (1) Linearity. The functional tr(P | Q) is linear in P. It is monotonely

increasing with respect to P and monotonely decreasing with respect to Q.

(2) Strong additivity. Let Pz ∈ H+(V) be a family of forms parametrized by points

of a measure space Z. We assume that this family is measurable, that is, for any v ∈ V

the function z �→ Pz(v) is measurable. Fix a measure µ on Z and define a Hermitian form

P on V by P(v) =
∫

Pz(v)dµ. We assume that all these integrals converge and define a

continuous Hermitian form P on V .

Then the relative trace tr(Pz | Q) is a measurable function with respect to the

measure µ and
∫

Z
tr(Pz | Q)dµ = tr(P | Q).

(3)Normalization. Let l be any continuous functional on V . Consider a Hermitian

form Pl on V defined by Pl(v) = |l(v)|2. LetN be the norm induced byQ. Then tr(Pl | Q) =

‖l‖2
N. �

3.2 Proof of Proposition 1.2

We have an isometric embedding ν : V → L2(X), which induces the form P on V . For any

point x ∈ X and a vector v ∈ V , we have Ix(v) = ν(v)(x). The form P on V is given as an

integral over X

P(v) = ‖v‖2
=

∫
X

∣∣ν(v)(x)∣∣2dµX =

∫
X

∣∣Ix(v)
∣∣2dµX =

∫
X

PIx
(v)dµX. (3.1)

Hence P =
∫

X
PIx

dµX. Using properties (1) and (3) from Proposition 3.1, we get

tr(P | Q) = tr

( ∫
X

PIx
dµX | Q

)
=

∫
X

tr
(
PIx

| Q
)
dµX =

∫
X

∥∥Ix

∥∥2

N
dµX. (3.2)

This proves Proposition 1.2.

Proof of Theorem 1.1. We claim that under the assumption on the homogeneity of X

for any two points x, y ∈ X, N-norms of the corresponding functionals Ix and Iy are

comparable.
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Namely, for g ∈ G denote by d(g) = dQ(g) the continuity constant of the operator

π(g) with respect to the form Q, that is, d(g) = ‖π(g)‖2
N is the minimal constant d such

that Q(π(g)v) ≤ dQ(v) for all v ∈ V .

It is clear that if x, y ∈ X and y = g(x), then ‖Ix‖2
N ≤ d(g)‖Iy‖2

N. Thus, if we set

d(x, y) = min{d(g) | g(x) = y}, we have the inequalities

d(x, y)−1
∥∥Ix

∥∥2

N
≤

∥∥Iy

∥∥2

N
≤ d(y, x)

∥∥Ix

∥∥2

N
. (3.3)

Integrating these inequalities over the variable y ∈ Xwith measure µX and using

the fact that
∫
‖Iy‖2

NdµX = tr(P | Q), we get the following upper and lower bounds for

‖Ix‖2
N.

The upper bound is ‖Ix‖2
N ≤ C(x) tr(P | Q), where C(x) = (

∫
d(x, y)−1dµX)

−1.

If we fix some d ∈ R+ and consider the closed “ball” B(x, d) = {y ∈ X | d(x, y) ≤ d},

then the constantC(x) canbe estimated fromabove.Namely,wehaveC(x)≤d/µX(B(x, d))

(recall that we have normalized the measure so that µX(X) = 1).

In particular, if d exceeds the “radius” of X, that is, if B(x, d) = X, then C(x) ≤ d.

However, we can get sometimes a better bound taking smaller values for d (e.g., for

noncompact X).

The lower bound is ‖Ix‖2
N ≥ c(x) tr(P | Q), where c(x) = (

∫
d(y, x)dµX)

−1.

For noncompact X this integral is usually divergent and we get a trivial bound

c(x) = 0.

If X is compact, we get the bound c(x) ≥ d(X)−1, where d(X) is the “diameter” of

X, d(X) = max{d(x, y) | x, y ∈ X}.

This finishes the proof of Theorem 1.1. �

3.3 Remarks

(1) In fact, the above arguments prove a slightly more general result.

Let G be a locally compact group and X a homogeneous space of G. Suppose that

we are given a smooth representation (π, V) of the group G and a morphism ν : V → C(X)

of representations of the group G.

Fix a norm N on V such that π is continuous with respect to N and fix a point

x ∈ X. We would like to estimate the norm ‖I‖N of the functional I = Ix with respect to

the norm N.

We assume that the norm N corresponds to a Hermitian form Q on V .

Suppose that we are able to find a nonnegative Hermitian form P on V (not nec-

essarily G-invariant), and a measure µ on X with compact support of total volume 1
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satisfying the inequality

∫
X

∣∣ν(v)∣∣2dµ ≤ P(v) ∀ vectors v ∈ V. (3.4)

Then there exists a constant C such that ‖I‖2
N ≤ C · tr(P | Q).

Similarly, suppose that we have an estimate

∫
X

∣∣ν(v)∣∣2dµ ≥ P(v) ∀ vectors v ∈ V. (3.5)

Then there exists a constant c > 0 such that ‖I‖2
N ≥ c · tr(P | Q).

(2) In some cases, we can use the above arguments to give some lower bounds

for a noncocompact subgroup Γ . Namely, choose a ball B ⊂ G and an (infinite) sequence

of points {xi} ∈ G such that ∪iB · xi covers X = Γ \ G. Denote by Bi the image of the ball

B · xi ⊂ X. If any point in X is covered by an a priori bounded number k of balls from a

covering family {Bi}, then we have the following lower and upper bounds:

c · tr(P | Q) ≤
∑

i

∥∥Ixi

∥∥2

N
· µX

(
Bi

)
≤ C · tr(P | Q), (3.6)

where C, c > 0 depend on B and k.

(3) Consider G = SL(2, R) and a noncocompact lattice Γ ⊂ G. The upper bound

from Theorem 1.1 can be translated into bounds for automorphic functions.

Assume that Γ has a cusp at ∞, that is, Γ has an infinite intersection Γ∞ with
the upper triangular unipotent subgroup. Let z be the standard complex coordinate on

the upper half plane H. Since the function y = Im z on H is invariant with respect to the

group Γ∞ , we can use it with the natural projection G → H to define a parameter y near

the cusp∞ on the space X = Γ\G.

In this case, Theorem 1.1 gives the following estimate for the function φ on X

corresponding to a vector v ∈ V in terms of Sobolev norms Ns:

∣∣φ(x)∣∣ ≤ C(s)y1/2Ns(v), for any s >
1

2
. (3.7)

These bounds hold for an arbitrary representation V ⊂ L2(X). For a cuspidal

representation π, we prove a much better bound,

∣∣φ(x)∣∣ ≤ C(s, t)y1/2−tNs+t(v), for any s >
1

2
, t ≥ 0. (3.8)
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We hope to discuss it in a future paper (see also [5] for a related discussion via

non-Hermitian norms).

4 Norms on representations of SL(2, R)

4.1 Continuous Hermitian norms

In order to effectively use Theorem 1.1, we have to understand the structure of contin-

uous Hermitian norms on unitary representations of a real reductive group. We do not

know how to think about this for general groups. But in the case of the group SL(2, R), we

are able to exhibit a large family of continuous Hermitian norms by elementary means.

Let (π, V) be a smooth representation of the groupG = SL(2, R) equipped with an

invariant positive definite Hermitian form P; we denote by ‖ · ‖ the corresponding norm
on V .

Fix the maximal compact subgroup K = SO(2) ⊂ G. Then for any continuous

Hermitian form H on V , we can construct an equivalent K-invariant Hermitian form Q,

namely,Q is an average ofH over K,Q =
∫

K
k ·H dk. Thus up to equivalence, we can (and

will) always assume our form to be K-invariant.

A K-invariant Hermitian form Q has a nice presentation in terms of its coef-

ficients. Namely, since an irreducible representation of SL(2, R) has K multiplicities 0

or 1, we can choose an orthonormal basis en of V such that en changes according to

the nth character of K. Then the form Q is completely characterized by the coefficients

Q(n) = Q(en), since for a vector v =
∑

anen we have Q(v) =
∑

Q(n)|an|2. As follows

from Appendix A.3 in this case, we have tr(P | Q) =
∑

Q(n)−1.

For the construction below, we need one continuous norm of a finite trace. We

describe its construction.

4.1.1 The formQg,r. Fix the standardK-invariant scalar product on g = sl(2, R) (X, Y �→
trXYt). Let {X1, X2, X3} be an orthonormal basis of g = sl(2, R). For r > 0, we define (the

first Sobolev) K-invariant Hermitian form Qg,r on V by the formula

Qg,r(v) =
∑

i

P
(
Xiv

)
+ r2P(v). (4.1)

We denote by Ng,r the corresponding norm. The form Qg,r is K-invariant.

Wewill see later that the representation (π, V) is continuouswith respect toNg,r.

More precisely, for every g ∈ G, we have ‖π(g)‖Ng,r
≤ ρ(g), where ρ(g) = ‖g‖Ad is the norm

of the adjoint action of gwith respect to the chosen scalar product on g (see Appendix B).

In particular, continuity constants ρ(g) are independent of the representation π.
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Example 4.1. Consider a representation of the principal series (πλ, Vλ). Choose an or-

thonormal basis {en}, n is even, consisting of eigenvectors of K. In the realization above

Vλ � C∞
even(S

1), we have en = einθ, n is even.

The coefficientsQ(n) of the formQg,r are given by the formulaQ(n) = 2µ+r2+n2.

4.1.2 A family of forms. Let (πλ, Vλ) be a representation of the principal series.

Example 4.1 suggests that it is useful to consider a family of K-invariant Hermitian

forms Qt on V = Vλ parametrized by real numbers t, where the form Qt has coefficients

Qt(n) = n2 + t2.

For t > t0 =
√

2µ the form Qt is of the form Qg,r for an appropriate r and hence

all such formsQt are continuouswith the same continuity constants ρ(g) independent of

π and t. We consider only such forms Qt (with t > t0) and the corresponding norms Nt.

We can normalize the forms Qt to have roughly the same trace. Namely, con-

sider the normalized form qt = t−1Qt; it has coefficients qt(n) = t + n2/t and an easy

computation shows that tr(P | qt) is of order 1 (more precisely, for t ≥ 1, we have

1/2 ≤ tr(P | qt) ≤ 2).

We denote by nt the norm corresponding to the form qt. Theorem 1.1 now reads:

there exists an explicit constant C(Γ), depending only on Γ such that for any point x ∈ X

and any vector v ∈ V ,

∣∣Ix(v)
∣∣ ≤ √

2C(Γ) · nt(v). (4.2)

4.2 The infimum norm

We now apply general considerations about infimum of a family of (semi-)norms (see

[5, Appendix A]). Namely, we have the following general lemma applicable to any family

of norms.

Lemma 4.2. A nonempty family of seminorms Nu on V has an exact lower bound N =

infu Nu. �

Applying this to the family of norms {nt}, t > t0, we obtain a seminorm n. This

seminorm is a norm since all norms nt are bounded from below by the invariant Her-

mitian norm ‖ · ‖.
Hence, we have

∣∣Ix(v)
∣∣ ≤ √

2C(Γ) · n(v) (4.3)

for any point x ∈ X and all vectors v ∈ V .
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We claim that the norm n is equivalent (with effective constants) to an explicitly

described norm Bµ. We construct now the norm Bµ.

Let V be a unitary representation ofG and V = ⊕l∈ZVl, theK-type decomposition.

Let {Ik}, k = 0, 1, 2, . . . be dyadic segments in Z: Ik = [−2k, 2k]. Suppose that the Casimir

operator ∆ in V has the eigenvalue µ = (1− λ2)/2. We denote by k0 the minimal integer

k such that |λ| lies inside the segment Ik.

We consider the following dyadic decomposition {Jα}, α ∈ N, α ≥ k0 of Z, Z =

∪αJα : Jk0
= Ik0

and Jα = Iα \ Iα−1 for α ≥ k0+1. We denote by h(α) the maximal element

in Jα.

For every index α ≥ k0, consider the space Vα = ⊕l∈Jα
Vl; for a vector v ∈ V , we

denote by prα(v) the projection of v to the space Vα.

Definition 4.3. Let (π, V) be a unitary representation of G where Casimir acts by µ; k0

and prα are as above. Denote by Bµ the norm on V given by

Bµ(v) =
∑

α≥k0

h(α)1/2 ·
∥∥prα(v)∥∥, for any v ∈ V. (4.4)

Remark 4.4. Note that this is not a Hermitian norm. It is easy to see that if we change

k0 to any (nonzero) multiple of it, we obtain an equivalent norm. We can see from the

definition that for a representation Vλ of the principal series, the norm Bµ viewed on

Vλ � C∞ (S1) is an appropriately modified Besov norm B
1/2

2,1 ; see [2] for the definition of

Besov norms.

By an easy computation (see Section 4.2.1), we have the following proposition.

Proposition 4.5. The infimum norm n = infnt on the representation V satisfies the in-

equality

n ≤
√

2 · Bµ. (4.5)
�

In fact, it is not difficult to show that Bµ ≤ 2n, that is, the norms n and Bµ are

equivalent.

Corollary 4.6. There exists a universal effectively computable constant C(Γ) depending

only on Γ such that

∣∣Ix(v)
∣∣ ≤ 2C(Γ) · Bµ(v), (4.6)

for any point x ∈ X and vector v ∈ V . �

This immediately implies Corollaries 2.3 and 2.4.
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4.2.1 Proof of Proposition 4.5. Consider the family of K-invariant forms {qt}, t ≥ t0,

having coefficients qt(n) = t+ n2/t. We will prove that n = infnt ≤
√

2Bµ.

Consider the decomposition {Jα} of Z and the corresponding decomposition V =

⊕αVα of the space V as above. For a vector v ∈ V , we have v =
∑

α vα, vα ∈ Vα.

By the definition of the norm Bµ, we have Bµ(v) =
∑

α Bµ(vα). On the other hand,

for any vector vα ∈ Vα, we have n(vα)
2 = inft qt(vα) ≤ qh(α) (vα) ≤ 2(Bµ(vα))

2. Hence,

n ≤
√

2 · Bµ.

Appendices

A Relative traces

A.1 Construction of relative traces

Let V be a separable topological complex vector space, H(V) the space of continuous

Hermitian forms on V , and H+(V) ⊂ H(V) the subset of nonnegative Hermitian forms.

Let P, Q ∈ H+(V) and Q be positive definite. In this situation, we define a number, the

relative trace tr(P | Q), taking value in R+ ∪ ∞.
First of all, define relative traces for finite dimensional spaces. Let V = W,

dimW < ∞. Then Q, P define homomorphisms Q, P :W → W+ (to the Hermitian dual of

the spaceW), moreover, Q−1 exists (since Q is positive definite). We define the relative

trace by tr(P | Q) = trW(Q−1P).

It is clear from this definition that the relative trace is a continuous function of

Q and P.

From this definition, we can easily deduce a formula for the relative trace.

Namely, if we chose a basis {ei} of the space W orthogonal with respect to the form Q,

then tr(P | Q) =
∑

i P(ei)/Q(ei).

This formula implies that the relative trace is monotone with respect to a sub-

space, that is, if we restrict forms P and Q to a subspace L ⊂ W, then we have tr(PL |

QL) ≤ tr(P | Q).

For an infinite dimensional space V , we define tr(P | Q) as a supremum of relative

traces tr(PW | QW) of restrictions of Q and P to all finite dimensional subspacesW ⊂ V :

tr(P | Q) = supW⊂V tr(PW | QW) (note that the supremum could be infinite).

A.2 Properties of relative traces

Here we prove the properties of the relative traces we listed in Proposition 3.1. Lin-

earity and values on functionals are immediate since these are obviously true for finite

dimensional spaces.



Sobolev Norms 2171

We assume that V is separable, that is, there exists a sequence {Wi} of finite

dimensional subspaces,W1 ⊂ W2 ⊂ · · · such that the closure of
⋃

Wi is equal to V . We

have then the following lemma.

Lemma A.1. For V separable and {Wi} as above, the following relation holds:

tr(P | Q) = lim
i
tr

(
PWi

| QWi

)
. (A.1)

�

Proof of Proposition 3.1(2). Lemma A.1 and the assumption that all functions tr(Pz,Wi
|

QWi
) aremeasurable imply that the limit of amonotone sequence of positivemeasurable

functions, tr(Pz | Q) = lim tr(Pz,Wi
| QWi

), is a measurable function. We also assumed

that P =
∫

Z
Pz dµ is a continuous Hermitian form, which implies that tr(PW | QW) =∫

Z
tr(Pz,W | Qz,W). This implies that

tr(P | Q) = lim
i
tr

(
PWi

| QWi

)
= lim

i

∫
Z

tr
(
Pz,Wi

| QWi

)
dµ

=

∫
Z

{
lim

i
tr

(
Pz,Wi

| QWi

)}
dµ =

∫
Z

tr
(
Pz | Qz

)
,

(A.2)

since the limit and the integral are interchangeable for a monotone sequence of positive

measurable functions. This finishes the proof of Proposition 3.1. �

Proof of Lemma A.1. Obviously tr(P | Q) ≥ limi tr(PWi
| QWi

). To prove the converse,

we have to show that for any finite dimensional subspace W ⊂ V and any ε > 0, there

exists i such that tr(PW | QW) − ε ≤ tr(PWi
| QWi

). Let {ψα}, α ∈ [0, 1] be a continuous

family of maps {ψα : W → V}. Then tr(PW | QW) = trW(ψ∗
αP | ψ∗

αQ) and it is continuous

in α. By the assumption on separability, the union
⋃

Wi is dense in V . Hence we can

take a perturbation ψ ′ = ψα of ψ = ψ0 as small as we wish such that ψ ′(W) ⊂ Wi for

some i. Continuity of tr in P, Q, ψα and monotonicity with respect to subspaces imply

the lemma. �

A.3 Computation of relative traces

Proposition A.2. Let {ei} be a topological basis of the space V which is orthogonal with

respect to the Hermitian form Q. Then tr(P | Q) =
∑

i P(ei)/Q(ei). �

The proof immediately follows fromLemmaA.1 and from the formula for relative

trace on finite dimensional spaces.
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B Sobolev norms

The purpose of this appendix is to define Sobolev norms in a form appropriate for the

representation theory.

Derived norms. We recall the definition of Sobolev or derived norms. Let G = SL(2, R)

and (π, G, V) be a smooth representation of G. Fix a normN on the space V such that the

representation π is continuous with respect to N. Using derivations, we can produce a

derived norm N ′ = DN on V as follows.

Fix a basis {Xi} of the Lie algebra g = Lie(G) and a positive number r. Then we

define the norm N ′ on V by N ′(v)2 =
∑

N(Xiv)
2 +N(rv)2.

It is easy to check that the representationπ is continuouswith respect to the norm

N ′ with explicit continuity constants, ‖π(g)‖N ′ ≤ C(g)‖π(g)‖N, where C(g) depends on

the choice of the basis Xi but does not depend on π or N.

Different choices of the basis Xi and of the number r lead to equivalent norms.

We are mostly interested in the case when the norm N comes from a positive

definite Hermitian form H on V . In this case, it is easy to check that the norm N ′ also

corresponds to a Hermitian form H ′. The form H ′ depends only on the quadratic form q

on g defined by the basis {Xi} and on the constant r.

Moreover, in this case, we have C(g) ≤ max{1, ‖Ad(g)‖q}. This follows from the

following argument. Consider the vector space E = (g ⊗ V∗) ⊕ V∗ and the morphism

ν : E → V∗ given by ν(x⊗v, y) = x ·v+ ry. The dual morphism ν∗ embeds V into the space

E∗ = (g∗ ⊗ V)⊕ V . Let T be the Hermitian form on E∗ coming from the form q∗ on g∗ and

the form H on V . It is easy to see that the derived norm on V corresponds to a Hermitian

form, which is induced by ν∗ from the Hermitian form T . The form T obviously has the

desired continuity constants and hence the induced norm on V also has these continuity

constants.

Now, let (π, G, V) be a smooth representation equippedwith an invariant positive

definite Hermitian form P. We define Sobolev normsN0, N1, N2, . . . on V by the inductive

formula Ni+1 = DNi, where N0 is the norm corresponding to P.

We can use interpolation of Hermitian norms to extend this family of norms to

a family of norms Ns defined for all real numbers s ≥ 0.

In a more detail, it is shown in [12, Chapter 4, Theorem 1.13] that for any pair

of positive definite Hermitian forms P and Q on V , there is an interpolating family of

forms Qs, 0 ≤ s ≤ 1, such that Q0 = P and Q1 = Q. Moreover, we can also see that

if an operator A : V → V preserves the form P and has a continuity constant C with

respect to Q, then it has a continuity constant Cs with respect to the form Qs [12, The-

orem 1.11].
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Applying this to P and the Hermitian form Q = Qi, which corresponds to Ni, we

obtain a family of Hermitian norms Ns, 0 ≤ s ≤ i, with continuity constants which are

independent of representation π; namely, ‖π(g)‖Ns
≤ C(g)|s| with C(g) described above.

Note that the families of normsNs obtained in such a way using different norms

Ni and Nj, j < i do not coincide for 0 ≤ s ≤ j. For the group SL(2, R), they are equivalent;

for general groups, this might not be true.

In general, although the procedure described above works for any Lie group G,

it is not clear that the norms it produces are useful for estimates. The reason is that it

gives only a 1-parameter family of norms, while we expect that the Sobolev norms are

parametrized by l parameters, where l is the split rank of G (see [3]).
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