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Abstract Let G be a real reductive group. As follows from Plancherel formula
for G, proved by Harish-Chandra, only tempered representations of G contribute
to the decomposition of the regular representation in L2(G). We give a simple
direct proof of this result, based on Gelfand-Kostyuchenko method. We also prove
similar results for representations, which appear in the decomposition of L2(X),
where X is a homogeneous G-space of polynomial growth. (See precise definition
in 3.5). Important examples of such space X are semisimple symmetric spaces and
quotient of G by arithmetic subgroups.

0. INTRODUCTION

0.1. Let G be a real reductive group. Consider the decomposition of the regular
representation of G x G in the space H = L? (G, “G) into a direct integral of
irreducible representations
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H=wa du@(w), where

G

G is the set of equivalence classes of irreducible unitary representations cw,
H = w ®w*and Ma is the Plancherel measure. This decomposition was expli-
citly described by Harish-Chandra. In particular, he found out that only some
of the irreducible representations w € G’, which he calls tempered, contribute
to this decompositioil. In other words, the Plancherel measure ug is supported
on a subset Gtemp C G of tempered representations.

This is not surprising, since, by definition, tempered representations are those,
whose matrix coefficients lie “close” to L2(G). So it is natural to try to find
a direct proof of this fact, without detailed study of the Plancherel measure.
In this paper we give a simple proof of this result and explain the geometry
behind it.

In a later paper we plan to show, that in some cases using this result one can
relatively easily find explicit formulas for Plancherel measure BE -

0.2. We will consider a more general situation. Let G be a locally compact
group, I' C G a closed subgroup, X = G/I". We assume for simplicity that X
has a G-invariant measure My and consider the natural representation of G in
the space H = L? X, py ). By the general theorem of Gelfand-Raikov, we can
decompose H into a direct integral

- (™) H=IHZ du,
z

of irreducible repiesentations. We want to understand, which irreducible repre-
sentations H, can contribute to such a decomposition.

We will prove some results under very mild assumptions about G; but we
are interested mostly in the case, where G is a real, p-adic or adelic Lie group.
The following two examples give the most interesting applications.

Example 1. Let G be a real reductive group, 0 : G = G an involutive automor-
phism, T" an open subgroup in its fixed point subgroup G°. The space X =G/ T’
is called a semisimple symmetric space. The decomposition of L (X, uX) was
described in detail by Oshima and his coauthors (see [()sMa] and subsequent
papers). In the diagonal case G = I' x T, this reduces to Harish-Chandra’s re-
sults.
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Example 2. Let G be a real reductive group, I' C G an arithmetic subgroup.
This case was analysed in detail by Laglands (see [Lan]).

Let S(X) be the space of smooth, compactly supported functions on X
(the Schwartz space of X). First of all, we prove that the decomposition
H={ Hz duz defines on S(X) the system of projections a,z SX) —>Hz,
which are nonzero for almost all z € Z. Hence, a unitary representation (p, V)
can contribute to the decomposition (*) only if there exists a nonzero G-mor-
phism a, S~ V. ’

It is convenient to move to a dual picture. Namely, each G-morphism
o, @ S(X) > V defines an adjoint G-morphism B, : Ve - C% (X), where
V= is the Garding space of V. In terms of morphism «, : S(X) > H, and

B, : Hz" - C ¥ (X) the decomposition (*) can be written in an explicit form

(**) ¢=f 9, dity,
Z

where ¢ € S(X), ¢, =B,2,($) €EC” (X).

For any representation (p, V) we call a morphism $: V"> C% (X) a V-
form on X. Simple Fronenius reciprocity shows that V-forms on X = G/I" cor-
respond to I'-invariant functionals on ¥ *. Thus we get the following

Algebraic necessary condition. An irreducible representation (p, V) can
contribute to the decomposition (*) only if there exists a nonzero V-form on
X, ie., if Hom.(V >, €) < 0. Moreover, each contribution of V to (*) gives
aVform f: V>=>CT(X) and (¥) can be written in terms of such forms as

It is intuitively clear, that not all V-forms §: V = - C * (X) can contribute
to (**), but only “tempered” ones, for which the image S(V =) lies “close”
to L2(X) . In other words, we can eliminate some forms from consideration,
using restrictions on the growth of functions in their image. In order to do this
we need some scale function » : X — IRT, which would control the growth.
For real, p-adic and adelic Lie groups, there is usually a natural scale function
r: G—>R*Y (for example, if G C GL (n, R), we can define it by r(g) = log
max(H g\l g1 “ ), see details in 4.2). It gives us the scale function on X by
r(x) = inf r(g) [ X =gx, for some fixed point X, cX.

We say that the homogeneous space X has polynomial growth if it satisfies
the following geometric condition:

Fix a compact neighborhood B of the identity in . Then there exist

constants d>=0, C>0 such that for every R>0 the ball

B(R) ={x € X| r(x) <R} can be covered with <C(1 + R)® B-balls of
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the form Bx, x € X.

The greatest lower bound of numbers d in this definition we will call the

rank of X (notation rk(X)).
We will see that in examples 1, 2 above, the space X has polynomial growth
and its rank is the rank which is usually associated with the cormresponding si-
tuation.

Our main result is the following

Analytic necessary condition. Suppose X has polynomial growth. Then a
form f§: V" - C~(X) can contribute to the decomposition (**) above only
if for each d > rk(X).

(*¥**) BENL +r(x)~ %% lies in L*(X) foreach t(EV™

Following Harish-Chandra, we call a form : V = C * (X) X-tempered if
the condition (***) holds for some d > 0. Then we can reformulate our result
as follows:

In a decomposition (**) ¢ = f ¢, du,, the Plancherel measure p, s sup-
ported on the subset Ztemp of points z € Z which correspond to X-tempered
forms B,

Note, that it is quite possible, that a given representation ¥ has many forms,
some of them X-tempered, some of them not. This means that the notion of
an X-terhpered representation is not well defined. Of course, in a multiplicity
free case (like the one studied by Harish-Chandra) one can talk about X-tempered

representations instead of X-tempered forms.

0.3. Let us consider two typical examples.

" Example 1. G = SL(2, R), T' = SO(2), X = G/T", the hyperbolic plane. In this
case, r(x) is the hyperbolic distance to the unique I'-invariant point X, - We
will see that X has polynomial growth and rk(X) = 1.

The algebraic necessary condition tells us that an irreducible unitary represen-
tation (p, V) can contribute to the decomposition of L? (X) only if it has a
I-invariant vector £, i.e. if it is spherical. Each spherical V has one V-form
B: VT —=>C~(X) and it is completely characterized by the function ¢ = BV (EV).
It is known that unitary spherical representations V are parametrized by one
parameter s € [0, 1] U i R*. The corresponding spherical function Y, (x) grows
like exp[(Re(s) — 1/2) r(x)]. Since the area of the ball B(R) of radius R grows
like exp(R), we see that for Re(s) >0 the integral

/ | Y, 0 [P0 +rex )™ duy
X
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diverges for any d, ie. the cormresponding forms are not tempered. Thus, the
analytic necessary condition shows that only representations with s €7 R (i.e.
representations of the principle series) contribute to the spectral decomposition
of L?(X).

Example 2. G = SL2, R), T = SL(2, Z), X = G/T. The space X has poly-
nomial growth, rk(X) = 1. In this case we have both a discrete and a continuous
spectrum. About the discrete spectrum our results tell nothing. But in the con-
tinuous spectrum they immediately illiminate all Eisenstein series £(s) for which
parameter s does not lie on the unitary axis.

0.4. Our proofs are based on the Gelfand-Kostyuchenko method. The idea of
the method is very simpie. Suppose we have a direct integral (*) H = [H, duz
representing a given Hilbert space H. This means that each vector n € H is
represented by a function z —~ n, € Hz. However, this function is defined up to
a change on a subset of measure 0, i.e. at each particular point z € Z it is not de-
fined. In applications, the Hilbert space H usually has some additional structure.
Namely one can choose some natural dense subspace S C H of “test functions”,
endowed with its own topology. Gelfand and Kostyuchenko proved that under
very mild assumptions on S one can choose a family of continuous morphisms
o 5> H,, such that for each ¢ €S the section z =« (¢) represents ¢ €H,
This gives a more explicit presentation of decomposition (¥).

The simplest example of this is the Fourier transform

FELY(R)~>fELX(R), givenby AE) = Jf(x)e™ dx.

This formula is well-defined for each & if f belongs to a subspace
S = C:' (R) C LZ(IR). But for a generic f € 1? (IR) it does not make sense and
f(z) is not defined for each particular .

Decomposition (*) can be expressed even more explicitly, if we consider
Gelfand triple S C H C St where St isthe Hermitian dual of S, interpreted
as a space of distributions. If we denote by ﬁz :Hz -+ St the morphism, adjoint
to o, then for ¢ €5 the decomposition (*) takes the form

**) ¢ -——/ 8, d“z where ¢z = Bzaz(¢) est.
z

If S, H, H, have compatible structures of modules over some algebra A
(or a group G), then all o, are morphism of A-modules.

Surprisingly, this beautifully simple idea for a long time did not find broad
applications it should have found. (Regarding this fact, it is instructive to compare
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the remarks in [ReSi], v. III, p. 354 and [Si], p. 503).

We first apply this idea to the case H = L2(X, Ky ), S = S(X), described in
0.2. This immediately gives us the algebraic necessary condition on representa-
tions V' which can appear in a decomposition of H. Note, that in slightly dif-
ferent terms it was earlier done in [Ma].

Now suppose we have found another subspace S between S(X) and H,
such that the pair § C H satisfies Gelfand-Kostyuchenko conditions. Then
for almost each z € Z the morphism o, : SX) - H, extends to a continuous
morphism § -~H,.

In other words, let us call a G-morphism o, ¢ S(X) > V S-tempered if it
extends to S D S(X) Then the statement above means that only S-tempered
morphisms can appear in the decomposition (**).

The natural choice for S is the Harish-Chandra Schwartz space € (X) of
X, which is defined as follows. For each d >0, consider the space L2(X, d)=
=L2X, 1+ r)de), where r: X > Rt is the scale function, discussed in
0.2; denote its Garding space by L?(X, d)* and set €(X) = n L*(X, d) =.

It is easy to check that¥¢(X)-tempered morphism o, correspond to X-tem-
pered V-forms BV (see the end of 0.2). Hence, the only thing one should check
is that the pair €(X) C H satisfies the Gelfand-Kostyuchenko condition. The
condition essentially is that the inclusion9(X) - H is a Hilbert-Schmidt mor-
phism or; more precisely, that it can be mapped through a Hilbert Schmidt
morphism L - H for some Hilbert space L. This is the main technical result
of the paper.

In the first draft of the paper I proved this result directly for each of the
examples, mentioned in 0.2. Then 1 realized, that there is a general proof,
which uses only some very general geometric property of the homogeneous
space X = G/I" — namely, that it has polynomial growth. This in turn led me
to a realization, that homogeneous spaces of locally compact groups in general
have very interesting large scale geometry. 1 include some preliminary discussion
of this geometry in section 4, but it is clear to me that this is only the beginning
of the subject. '

0.5. The paper is nrganized as follows:

In section 1 we recall the Gelfand-Kostyuchenko theory and adapt it to re-
presentation theory.

In section 2 we prove an algebraic necessary condition and show how it can
be reformulated in terms of V-forms.

In section 3 we introduce the notion of weights on X (see 3.1) and the notion
of summable weights (3.2). In 3.2 we formulate the central theorem, which
shows that each summable weight gives an analytic necessary condition. We
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prove it in 3.4 using the notion of a standard measure on X, introduced in 3.3.
In 3.5 we reformulate this condition for spaces of polynomial growth. In 3.6
and 3.7 we extend these results to the case of induced representations and to
the case when X has no invariant measure.

In section 4 we consider examples of homogeneous spaces of reductive groups
and analyse their growth. In 4.1 and 4.2 we consider possible large scale structu-
res on G and X. In 4.3 and 4.4 we list examples of interesting homogeneous space
(in 4.3 we deal with groups over local fields, and in 4.4 with groups over adeles).
In 4.5 we discuss relations between algebraic, natural and standard large scales,
and in 4.6 and 4.7 we supply proofs for examples in 4.3 and 4.4.

I would like to thank D. Kazhdan and N. Wallach for stimulating discussions
and P. Sarnak for showing me references [ ReSi], [ Si].

I thank my daughter Miriam for helping me with English grammar.

0.6. Notations

Throughout the paper we use the following notations:

Let f, h be positive functions on a set X. We say that f dominates # (no-
tation f>»h or h <f)if h < Cf for some C > 0. Wesaythat f and A are
comparable (notation f ~ h)if f<h and h <f, ie. if C-lf<h < Cf for
some C > 0. Similarly,if f and & are (positive) measures.

G will denote a locally compact group (with restriction described in 2.1).

K C G is a regular subgroup (2.1), g the real Lie algebra associated with
G (2.1).

BCG isaball 2.1).

I' C G is a closed subgroup, not necessarily discrete, X = G/T" (§2).

By is a Haar measure on X, my —a standard measure on X (3.3).

M _(G) is the algebra of compactly-supported measures on G (2.2).

S(X) is the Schwartz space of X (2.2).

H is a Hilbert-space; usually H = L% (X, My ).

Fora G-module (p, V), V= is its Garding space (2.2); spaces VX pK.=
are also described in 2.2. ‘

For a unitary G-module (p, V), oy, S(X)-»V is a G-morphism and
BV : V= - C(X)™ the corresponding V-form (2.4).

N C X is a net, usually a sparse net (3.2).

w isaweighton X, L =L*(X, wity), S, =L> (3.1).

r is a radial function on G oron X (4.2) Tor Ts rxt-algebraic, natural and
standard large scales (4.2, 4.5).
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1. GELFAND-KOSTYUCHENKO METHOD

1.1. By “topological vector space” we always mean a complex topological
vector space, and a morphism of such spaces is a continuous linear map. All
spaces S which we condiser satisfy the following Hahn-Banach condition:

(HB) Morphisms S — @ separate the points of S.

In particular, all these spaces are Hausdorff.

The dual space S* we will endow with the topology of uniform converge
on bounded subsets of S (see [ReSi],v.I,ch. V, §7).

The Hermitian dual of S (i.e. the complex conjugate of S*) we will denoted
by §*.

Most of the topological vector spaces S which we consider are separable,
i.e. have countable dense subsets.

By “topological algebra” we mean a topological vector space A, endowed
with the structure of an algebra, such that the multiplication (a, b) - ab is
separately continuous in2 and b. An A-module S is defined as a topological
vector space with the structure of an A-module, such that the multiplication
(a, £) > at is separately continuous in a and £.

Similarly, for a topofogical group G, a representation of G (or a G-module)
is a topological vector space V¥V with an action of G such that the multiplica-
tion (g, £) —g¢ is separately continuous in g and §.

1.2. Let Z be a Borel space, p, a measure on Z and z > H a family
of Hilbert spaces, parametrized by the points of Z. Suppose we are given a
family F of section 5 : z n, € Hz which we call measurable. We assume
_ that they have the following properties:

a) A section z+— § € H, lies in F iff for each section 1 € F the function
z+ (¢, ,m,) is measurable.

b) There exists a countable collection of section {n_} in F such that for
every z €Z vectors (n ), spana dense subset of H,.

In such a situation, we define a Hilbert space

H:/ HZ duz
z

(the direct integral of the family Hz) as follows:
The vector 7 in H is a measurable section z 7, for which

||72||2=/ I, |7 duy < oo
V4
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Two such sections define the same vector in H if they differ on a subset of
measure 0.

This definition is discussed in detail in [Dix], ch. 1L

Suppose an algebra A acts on H and on all spaces Hz. We say that these
actions are compatible if for every n € H and every a € A the section a(nz)
represent the vector a(n) € H; similarly for an action of a group. We will use
the following standard facts:

LEMMA. Let .My, ..., M, ... be a sequence of vectors in H represented
by section n, .

a) Suppose the sequence m; converges to a vector n € H, represented by a
section n,. Then one can choose a subsequence n; of ;s such that for almost
all z€Z n,, converges to n, -

b) Suppose that {n,} span a dense subset of H. Then for almost all z €Z n,
span a dense subset of H_ . :

Proof. See [Dix], I, §1, Prop. 5 and 8. -

13. Let H = | Hz duz and S be a separable topological vector space. We
say that a morphism o« : S - H is pointwise defined if there exists a family
of morphisms o, : A H, for all z & Z such that for every £ €S the section
zP 0, (&) represents the vector a(t) €E H.

LEMMA . a) The family of morphisms {az} is essentially unique, i.e., two such
families {az'}, {@, } differ on a subset of measure 0.

b) Suppose S, H and H, are modules over a separable algebra A, o is a
morphism of A-modules and the decomposition H = [ H dp, is compatible
with the action of A. Then all morphisms o, can be chosen to be morphisms
of A-modules. The same also holds for an action of a separable group G.

¢) If ofS) is dense in H, then for almostall z € Z ozz(S) is dense in H,

Proof. a) Fix a dense subset {El , 22', ...} is S. Foreach i set
={zE€Z|a) # a; (Ei)} By definition, wu(Z,) = 0. Not set Z, = U z,.

i
Then w(Z,) = 0 and for every z € Z \ Z, we have o ()= ozz'(‘g’i) for all i.
Since both o, and az' are continuous, this implies that for each z EZO a, = a;.
b) Fix dense subset {Sl, - ,Ek, ...} in S and {al, ce .} in 4.
In the same way as in a) we can find a subset Z0 C Z of measure 0 such that
for z & Z, ¢ (ai‘g’].) = a0, (EJ.) for all i j. Since both sides are continuous
in £, we have a, (ais) =aQ, (¢) forall i and all £ € §. Since both sides are
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continuous in &, we have ozz(af) = q- az(‘g’) forall £€S,a €A. Now define

the family of morphisms of 4-modules, o : S>H , by o =« for z ez,
and o =0 for z€ Z,.

¢) Fix a dense subset {£,, ... £ ...} in S and apply lemma 1.2b to {a()).

»

1.4. Let o : S-S be a morphism of topological vector spaces. We say that
a is fine if S is separable and if for each morphism v :S' - H = JH, du, the
composition ye a:S— H is pointwise defined.

If « is a composition of two morphisms o, ,o,, one of which is fine, and
if the space S is separable, then clearly « is fine.

Usually we will deal with the following situation:

H=/ sz“z
zZ

is a Hilbert space and « : S - H is a fine ambedding with a dense image. If one
interpretes S as some Space of test functions, then it is natural to view its Her-
mitian dual S as the corresponding space of distributions and consider the
Gelfand triple S CH C S*. Since a: S - H is pointwise defined, we can choose
a family of projections o :S>H, .

If we denote by 62 the family of adjoint morphisms ﬁz :Hz - S*, then
for ¢ €S we have ¢ = | o, du,, where ¢ =0 (¢) and the equality is
understood to hold in S*. 7

Suppose a group G acts in a compatible way on S, H, Hz and the repre-
sentations of G in H, H are unitary. Then we can choose all o to be mor-
phisms of G-modules. If we define the action of G on ST as (g+)‘1, then
all morphisms ﬁz and the inclusion H €St also will be G-equivariant.

1.5. THEOREM (Gelfand-Kostyuchenko, see [GeKo], [GeVil, ch. 4 or [Ma]).
Let L be a separable Hilbert space and o : L — H a Hilbert-Schmidt mor-
phism, Then o s fine. »

Let us recall the definition of a Hilbert-Schmidt morphism.

DEFINITION. Let « : L - H be a morphism of Hilbert spaces. We say that «
is Hilbert-Schmidt if for every orthonormal basis {Ei} of L the sum

M=) )] <.



ON THE SUPPORT OF PLANCHEREL MEASURE . 673
LEMMA. a) The sum M does not depend on the choice of the basis. We will
denote it by M(o).
b) If o is Hilbert-Schmidt then the adjoint morphism ot ;: H— L is Hilbert-
Schmidt and M(c) = M(at).

Proof. Choose an orthonormal basis { u of H. Then

M@ =) Je@)]|> =) | n)|*=
i ij

=Y | G@pata)|?=)_jatn|? =Ma*)
ij J

which proves both a) and b).
We will use the following

LEMMA. Let {Ei} bean orthonormal basis of L and { n;} a sequence of vectors
in H. Suppose that the sum

M=Z |2 <o
i

Then there exists a unique Hilbert-Sc hmidt operator o> L - H such that o(%;) =
=mn; forall i

Proof. Uniqueness is obvious. To prove existence we define o by
£=Z ¢k o) =Zcm;. Since Z|c,| 2= I €l 2 we have
e |2 = le,| | n )P <T[e;|* - Z|n|> <M]g|*, which shows
that the sum is convergent and that « is bounded. By definition M{(a) =M. =

Proof of the Theorem. It is enough to check that for any decomposition
H=7f H, duz the morphism o ; L — H is pointwise defined. Choose an ortho-

normal basis {§;} of L, set n, = a(¥;) € H and choose some sections z -7,
representing 7,. By definition

M<“>=Zunit|2=2f||n,-z |12 duy-
i i z

Since everything is positive, we can write
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M) = / M, du, where M, =) |n,|?.
2 i

In particular, this implies that the set Z, ={z €Z|M, = o} has measure 0.
Now, let us define the family of morphisms o, : L >H, by a=0if z€Z),
ozz(El.) =7, for all i if z €Z,, ie.if Mz < oo, Let us show that for each
vector £ € L the section z = o, (¢) represents the vector a(§) € H. The space
L' of all £ which have this property contains the basis {Ei} and hence is dense
in L. Thus it is enough to check that L' is closed. Let qbl by - be a se-
quence of vectors in L' and ¢, > ¢ € L. Then a(g,) > a(¢) and hence, passing
to a subsequence, we can assume that « (¢,) > a(¢), for almost each z (see
Lemma 1.2). On the other hand, for each z ocz(q)i) o (¢). This shows that the
section z+— &, (¢) represents the vector a(g), ie. € L. Q.E.D. L]

1.6. The following lemmas are useful in proving that a morphism is Hilbert-
Schmidt of fine.

LEMMA 1 Let L be a separable Hilbert space, H = L*(X, by ). Suppose that
for each x € X we are given a linear functional o, on L such that

(i) Forevery £ €L the function x - o (&) is measurable.
(ii) Each o, isboundedand M_ =|a,|? satisfies

M:/deuX<°<>.

Then the morphism o : L - H given by o(§)(x) = o (§) is Hilbert-Schmidt
and M(a) =M.

Proof. Clearly || allsM 12 Choose an orthonormal basis {Si} in 'L. Then

M@ =)_Ja)]|? =) / o, )] duy =
i i ¥

2/ I “x(%)llz duy 2/ M, duy =M. -
x ! e

LEMMA 2. Ler a: S~ S' be a morphism of topological vector spaces.
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Suppose that S is a direct limit of an increasing sequence of subspaces
S < §,C...CSie § U S; and the topology of S is the weakest one

in which all embeddings S; — S are continuous. Suppose that for each index
I the morphism a; —ozls S -+ 8" is fine. Then « is fine.

Proof. We can assume S = H = | H, dp,. Consider families of morphism
oy, - By Lemma 1.3.a) %, =0, for all z outside of'a subset Zi of measure

0. Set Z, = L'J Z; and define the family of morphisms o, by «, = h_n)l o,

forzEZO,az=O for ZEZO. , s

2. THE ALGEBRAIC NECESSARY CONDITION

Consider the following situation: G is a locally ccmpact group, I' C G a clo-
sed sub-group, X = G/T". For simplicity we assume that X has a G-invariantHaar
measure M. We fix by and consider the regular representation # of G in
the space H = L? (X, By ). Our goal is to find some restrictions on irreducible
representations of G which can appear in the spectral decomposition of (w, H).

2.1. Local structure of G

We are interested in applications to real, p-adic and adelic groups. So we
make the following assumpitons on G.
Assumption I. G has a countable base.
Assumption II. There exists a closed subgroup K C G, such that

(i) K is a profinite group (i.e. K is compact and totally disconnected).

(ii) Its normalizer G x = Norm (X; G) is open in G and the quotient GK /K
is a Lie group.

A subgroup K C G satisfying conditions (i), (i) we call regular.
Example. If G is a real Lie groups we take K ={e}. For p-adic G we take K
to be an open compact subgroup. For adelic G we take K to be an open com-
pact subgroup of its nonarchimedean part.
Remark. Condition II is equivalent to the condition that G has a finite topolo-
gical dimension (see [Ka]).

Let us describe the local structure of . Fix a regular subgroup K C G,
denote by G' the connected component of GK /K, and by G the universal
covering of G'.

PROPOSITION. There exists a unique morphzsm i: G- G compatible with the
projection p: G- G = GK/K. Group i(G) commutes with K and the mor-
phism i : GxK - G is a local homeomorphism.
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Proof: Replacing G with an open subgroup we can assume that K is normal
in G and that the group G/K is connected.

Let K, € K be an open normal subgroup. Consider the adjoint action of
G on K. Since K, is compact and open in K, its stabilizer G is open in
G. This implies that 1ts image in G’ = G/K is open and, since G' is connected,
it coincides with G'. Since GK 2 K, thismeansthat G, = G. Thus G/K, ~
G/K is a finite covering, and hence morphism p: G —>G' = G/K can be uniquely
lifted to G/K Since K isa limit K = 13_ K/K,, where K runs through
open normal subgroups we see that G = hm G/K Hence there exists a unique
morphism i: G - G compatible with p : e G' = G/K.

Since G is connected, the adjoint action of i(g) on K is trivial for all g € G,

e. i(G) commutes with K. Locally the covering p : G > G’ isa homeomor-
phism, and we denote by p~! the inverse local homeomorhipsm. Then locally
we can define the inverse of the morphism i': G x K -G by g~ (& g 1),
where§=p‘1(g mod X). n

Remark. 1t is easy to see that the group G and the morphism i: G - G donot
depend on the choice of K.

The Lie algebra g = Lie (G~) we will call the Lie algebra of G. We denote
by U(g) its universal enveloping algebra. The pair (g, K) completely determines
the local structure of G.

We call a subset B C G a ball if it is a compact symmetric neighborhood of
identity (symmetric means that g € B' = gl e B). If B is a ball, then for
all n>1 the subset B® = B-B-.. . -B (n factors) is also a ball. Any compact
subset 2 C G liesinaball (eg. RCBUBQ BUBQ! B).

Using assumption / on G, we can choose a regular subgroup K, a system
of normal regular subgroups K, 2 K2, ...,in K such that N K, ={e},and a
sequence of K-biinvariant balls B, - B1 C... suchthat G =UB,.

2.2. Garding spaces and Schwartz spaces

Let (p, V) be a topological G-module. For a regular subgroup K C G and
k=20 weset

vEk —fee V| ¢ is K-invariant and the function
g - p(g)¢ liesin CK(G/K, V)}.
Further we set V%= = n VX * (inverse limit topology) and V= = ;J |
k

(direct limit topology). The space V= is called the Garding space of V. It is
a G-module and a U(g)-module.
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Let X = G/T' be a homogeneous space of G, (YX) the space of continuous
functions on X and 7 the natural action of G on C(X), m1(g)(f)(x) = f(g~1 x).
We denote by C(X)™ the corresponding Garding space. For each compact  C X
set CJ ={fe CX)™| supp fC Q}. The space S(X)=U C; we call the Schwartz
space of X (another definition S(X) = (CC(X))"" ).

Similarly, we consider the G-module (w7, M(X)) of locally bounded Radon
measures on X, with the action {(m(g), m, f)= {m, w(g~ 1) f ). It is well known,
that, for any Haar measure ky, one has M(X)" = C(X)™- My -

The space M C(G) of compactly supported measures on G is an algebra with
respect to convolution. If (p, V) is a complete G-module, we define the action
of this algebra on V by

p@) (E)=/ p(g) £da®), a€EM (G), EEV.
G

Clearly p(M (G)") ¥ C V™ isdensein V.

The antiinvolution g g~! on G defines an antiinvolution of the algebra

MC(G), ara*. If (pl, V1 ), (p2, V2) have a G-invariant pairing
(,2:V, xV,>C, then (p, @ v ,v,)=(v,p,(a *)v, ).

The antilinear antiinvolution a = a¥ = @* has an analogous property with
respect to Hermitian pairings.

2.3. Algebraic necessary condition

PROPOSITION. Let X = G/T, H = L?(X, ty)- Then the natural embedding
a: S(X) > H is fine (see 1.4).
This proposition means that for any decomposition

H=/szuz
z

there exists a family of morphisms of G-modules o S(X) - H,, which re-
presents -o. We interpret it by saying that a representation (p, V) can con-
tribute to a spectral decomposition of H only if there exists a nonzero G-mor-
phism o, ! S(X) - V. This is an algebraic necessary condition of 0.2.

Proof of Proposition. By Lemma 2 in 1.6 it is enough to check that for a
fixed regular subgroup K C G and a compact subset £ C X the inclusion
cX= - 12X, uy) is fine.
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Choose % > dim g, consider in U(g) the subspace U(g)k , spanned by 1,
& 52, .. ,gk and fix a basis a'1 e dr in U(g)k For every function
FE€C”(X) define the function Q(f) on X by

o)=Y |d(N|2,

i=1

and define the Q-norm of f as

Hmé=/ O(f) duy -
X

Let L?(X; Q) be the completion of S(X) with respect to this norm and
LY (X, Q)sf the closure of the subspace CX = in L?(X, Q). We want to prove
that the natural inclusion « : L?(X, Q) nﬁ > L%(X, uX) is fine, and by the
Gelfand-Kostyuchenko theorem (see 1.5) it is enough to check that it is Hilbert-
Schmidt.

We will prove this using Lemma ! from 1.6: for each x € X consider the
functional o on L2(X, Q)X given by o (f) = f(x) and denote by o its
restriction to LZ(X, Q)g . We have to show that the function Mx = ” o, ||2 is
integrable on X. Clearly M_ =0 for x €Qand M, <M, =|d, |*. So
the proposition follows from the following result which we will prove in 3.4.
(*) The functional a)’c on L2(X, 0)X isbounded and the function MJ" =| oz)’c ||2
is locally bounded on X. =

2.4, Forms

Let us denote by S(X)* the Hermitian dual of S(X) and consider the Gel-
fand triple S(X) C H C S(X)*. We will interpret S(X)* as the space of distri-
butions on X. For each G-morphism o, S(X) - V, define the adjoint mor-
phism af, : V> S(X)* by («f, (1), ¢)= (v, @, (¢)). Wewill show that o, (V™)
consists of smooth distributions, i.e. there exists a morphism BV s VT > CXH”
such that oz“;, ) = {3V(v) C My (note that BV depends on the choice of the
Haar measure pX). Any G-morphism f8: V™ —>C(X)~ we calla V-formon X

PROPOSITION. Fix a Haar measure Ky on X. Then it defines an isomorphism
o, <@, between Hom (S(X), V) and Hom, (V" 6 C(X)7) via
(v, ap(9)) = (B, (V) 1y, §)

Proof. (i) Clearly we can replace G by an open subgroup, so we can assume
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that G has arbitrarily small regular normal subgroups K (see 2.1). It is enough
to check the isomorphism Hom G(S(X)K, VK) = HomG(VK"" . Cnk =)
for each of these subgroups K. Hence, replacing G by K\ G and X by K\JX,
we can assume that G is a Lie group.

(ii) Let a: S(X)—-> ¥V bea G-morphism. We want to show that the adjoint
morphism & maps V= into the subspace C(X) By, and hence into C(X)” Hy -

Fix a point x € X and its relatively compact neighbourhood €. By definition
of topology on S(X), we can extend « to a morphism a C(X)’;_L - V for
some k > 0.

We will use the following standard

STATEMENT. For every k > 0 we can find some n > 0 operators diE U(g)"
and measures a, on G, supported in a small neighbourhood of identity, such
that

(i) a; are of class C* on G.

(ii) T a; « d; =35, — the & measure at identity. (Here we identify d, with
a distribution d8, on G).

Now for each vector v € ¥V® and function ¢ € C(X):fZ we have
(o v, ¢) =t (Zp(a) dv), $) = (T pla)) dv, ap) = Z (d, a(n(a] ) ¢)),
where alf are measures on G of class CX¥ . Clearly, the right-hand side is defined
when ¢ isa d-function rSy at some point y near x. ‘

Thus near the point x we get a function y b f(y) = Z (dp, a(n(aif) 5 )
It is easy to check, that f is continuous, |f(¥) |<C- |v| ,» (the norm of
v in V™), and that near x, a* (v) = flty -

(iii) Suppose we are given a G-morphism f: V= - C(X)” . We want to show
that it corresponds to a morphism o« : S(X) = V. It is enough to check that for
all ¢ € S(X) the functional v+ {B(v)uy , ¢) is bounded in Iy -

Fix a compact £ C X. By definition of topology on V= we see that for
some k= 0 we have a bound

”B(v)"L’(Q,pX)<C”v" yk-

As in (ii), we can write 5, = X a, * d;. Then for vE€ V7, ¢ € C(X) we
have (B(V)u, ¢) = (B(U)MX, Za@)nd)p)=2 (B(p(a;r V) By n(d,) ¢).
Using inequalities | ﬁ'(p(a;r W) || L2 < p(a1.+ Wi px <|v], and
||di¢”1,’ <]|¢|[n, where || ||L2 and | |]n are norms in Lz(ﬂ,uX) and in
C(X)*, we see that | (ﬁ(v)uX’ 9| <C- |v b - | #|,- This shows that the adjoint
morphism « is defined on C(X)g, and has a bound | a(¢) I y<Clo|,-
This proves the proposition. ]
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2.5. Frobenius reciprocity

The space of V-forms on X = G/T' can be naturally identified with the space
of I'-invariant functionals on ¥V~ . Namely, to each G-morphism 8: V™ - C(X)~
corresponds the functional v : V= — @ given by ~v(v) = 8(v) (xy), where
x, € X is the class of T'. Conversely, given v € Hom_ (V= , ) we define
B by the formula B(v)(g) = v(g~ ! v). This identifies ¥-forms with Homr(V‘” ()]
(see details in [Ol]).

3. THE ANALYTIC NECESSARY CONDITION
3.1. Weights and tempered forms

Let (p, V) be an irreducible unitary G-module and 8: V= - C(X)™ a V-form
on X. In this section we prove some analytic necessary conditions on forms
§ which can contribute to the spectral decomposition of the space H = L? X, pX).

Suppose we are given a G-module S in-between S(X) and H, ie. we have
G-morphisms i’ : S(X)—>S and «' : S~ H, such that both i, &' are embeddings,
the image of i’ is dense in S, and the composition « = &' o ;' : §(X) - H is
the standard embedding. We say that a V-form BV is S-tempered if the cor-
responding morphism &, : S(X) > ¥ can beextended to amorphism oz’V :S-V
If the morphism «' : S - H is fine, then the Gelfand-Kostyuchenko method
implies that only S-tempered V-forms can contribute to the spectral decomposi-
tion of H. This condition we call an analytic necessary condition.

We will choose S to be the Garding space of space L*(X, wiy ) for some
function w on X. Since we want G to act on the space, we will impose some

- restrictions on w.

DEFINITION: A weight on X is a strictly positive function w on X which
satisfies the following condition:

For every ball B C G there exists a constant C = C(B, w) such that

w(gx) < Cw(x) forall g€B, xE€X

For every continuous weight w on X we define G-module (7, Lw) by
L, =L*(X, wuy) and 7(g) x) = flg"'x), fEL,.

The Garding space L: we denote by S, .

If w and w' are comparable continuous weights, then the spaces Lw and
Lw, coincides as spaces of functions on X and as topological G-modules. In
particular, Sw =Sw,.

Fix a continuous weight w and let us describe S -tempered VAforms. Let
B: V> - CX) bea V-form, a: SX) - V the corresponding G-morphism.
For each v € V= the function f = f(v) is defined by the condition that for

each
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pESX) (*) (v, a(¢)>=/ fédpy,.
X

If B is S, -tempered, then the morphism « can be extended to o S, >V,
which would imply that the right hand side of (*) extends to ¢ € Sw. This
implies that f € L?(X, w=1 - #y) =L, 1. Thus, forall S -tempered V-forms
B we have B(V~ ) C L, -1. Conversely, it is easy to see that this condition
is equivalent to the fact that the form B is S, -tempered.

It is convenient to define G-modules Lw and Sw for all weights. This can
be done using the following

LEMMA. For every weight w there exists a comparable continuous weight w'.

Using this lemma, we will define Lw = Lw .. By the remark above, this de-
finition does not depend on the choice of a continuous weight w' comparable
to w. '

Proof of the lemma Fix a function f€C_(G) such that fle)=1 and
f@)€[0,1] for all gE€G, and define a function w' on X by w'(x)=
sup{f(g) wigx) |g € G}. Clearly, w(x) <w'(x) < C(B, w)w(x), where B isa
ball, containing supp(f). This shows that w' is comparable to w and, in par-
ticular, that w' is a weight.

Let us show that w' is multiplicatively uniformly continuous: for every
D <1 there exists a neighborhood of identity U C G such that w'(ux) > Dzw'(x)
for all # € U, x € X. Indeed since f is continuous and has compact support,
for every € >0 we can find a neighborhood U such that | f(gu~™ ) -f@)|<e
forall ge G, uel.

By definition of w'(x), we can find a ¢ € G such that f(g) w(gx) is close
to w'(x), e.g. flg) wigx) > D w'(x). Moreover, since g € supp(f) C B,
w(gx) < Cw(x) with C = C(B, w), i.e. we can always assume f(g)=C~ 1 For
all u €U, flgu= 1) > flg) — €, i.e. for the appropriate choice of €, we have
flegu= ') > D flg). This implies that w'(ux) > flgu— 1) w(gx) > Df(g) wigx)
> D*w'(x). QE.D. =

3.2. Summable weights

A subset N C X is called a net if there existsa ball B C G such that B-N = X.
We say that a weight w on X is summable if for some countable net N C X
it satisfies
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Z w1l (n) <oo,

neN

The following theorem, which we prove in 3.4, is the central result of the
paper.

THEOREM. Let w be a summable weight on X. Then the inclusion Sw - H=
L2(X, uy) is fine.

Thus, as explained in 3.1. every summable weight w gives the following
analytic necessary condition.

Cond(w): Only S, -tempered V-form on X can contribute to the spectral
decomposition of L2 (X, pX).

Let us discuss in more details the notion of summable weight.

Let N C X bea net. We say that N is sparse if for each ball  C G the
number of points in N N £x is bounded by a constant k(V, £2) independent
of x.

Criterion. a) Sparse nets exist;
b) Let N be a sparse net. Then a weight w on X is summable iff it is N-sum-
mable, i.e. iff

Z wn) ! <oo,

neEN

Proof. a) Fix a ball B and fix a maximal (with respect to inclusion) subset
N C X such that the sets {Bn | n € N}are all disioint. We claim that N isa
sparse net. First of all, B?>- N =X, since otherwise one can find a point
x & B? - N and then the ball Bx is disjoint from all the bails {Bn | n € N},
which contradicts the maximality of N.

Any compact £ C G can be covered with a finite number of shifted balls
Bg,, i=1,...,k Thenforall x€X we have

BFNNQO<) #WNVNBgXI<) 1=k
i i

since for all
YEX #WNBy)=# nEN|{Bn 3 y}<l.
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Thus N is a sparse net.

b) We have to check that a weight w which is N'-summable for some net
N' is automatically N summable. Choose a ball B C G, such that BN' = X
and set C= C(B, w), k = k(N, B). Then we have

Y wmrt< Y ( )R w(n)—‘)< Y ke Cown) 1 <oo,

neN n'eN’'\neNnBn' n'enN’

since # (NN BnY<k and wn') < Cw(n) for n € Br'. .

3.3. Standard measure on X

LEMMA -DEFINITION. a) There exists a strictly positive measure my on X
satisfying

(i) my is a weight measure, i.e. for each .ball B CG thereexistsa C>0
such that n(g) - my < CmX forall g €B,

(ii) For every ball B C G there existsa C>0 such that C-1 <m, (Bx)<C
forall x € X.

b) Any measure my satisfying (i) and (ii) is comparable to my.

¢) Fix a ball B C G and a left invariant Haar measure ug on G. Then
there exist constants Cl, C2 > 0, such that for all positive functions Q on X
and for all x € X one has

¢ /Q(g‘lﬂ duG(g)<f 0(y) dmy (») .<C2/ 0@ 'x) dp; )
B Bx B?

The measure my (or rather the comparability class of this measure), we
will call a standard measure on X. Note that it is quite different from the Haar
measure (as we will see in 3.6, it exists even if By does not).

We will use the inequality c) in the proof of theorem 3.2.

Proof. (i) First let us prove uniqueness. If m;( is another measure, satisfying
(*) and (**) then the ratio w = ms( /mX is a function and, moreover, a weight.
Fix a ball B C G. Then, for all x € X, my (Bx) < C' and m,(Bx) > C~!,
which implies that, for some y € Bx, w(3) < CC'. Since w is a weight, it is
bounded on Bx by some constant independent of x, ie. m:‘, <my. Similarly
my <my.

(ii) Fix a ball BC G and define a function v, on X by vp(x) = u, (Bx)~ 1.
We claim that vp s a weight and my =vp - My is a standard measure on X.

If B’ is another ball, we can cover it with a finite number of shifted balls

gB i=1,..., k Then VB,(x)—l = pX(B'x)<E By @Bx) < k- py(Bx) <
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<k'VE(x)_ Le. vg <k- vp,
which shows that Vg and v g are comparable.
Let £ C G be a compact. Choose a ball B’ containing B£2. Then for any

g € 2 we have

1
vp@x) = py (Bgx) ' 2 py Bx) ! =) > — vy(x),

ie. vpx)< kvg(gx). This shows that vy isa weight.

ThlS fact and the definition of », imply that there exists a C>0 such that
c-1 g my (Bx) < C for all x EX where my =vp -y For any other ball
B' the measure mX = Vg - Uy is comparable to my, and satisfies Cl‘1 <
my (Bx) < C,. This implies that C;' < m,(B'x) < C, for some C, >0,
which means that m ¥ is a standard measure. . )

(iii) For i = 1, 2, 3 consider on G measures a; = x(B") kg, Where x(BY)
is the characteristic function of the ball B*. Set

Q; = m(a)Q, d=/ Q(y) dmy ().
Bx

We have to prove the inequalities C Q xX)<d< C Q (x).
We can (and will) assume that Q@ is supported on Bx Then

/ Qdm, =d
X

is a weight measure, all integrals

/ Q; dmy
X

are comparable to d. »
For all b € B we have er *a) <a,, hence 7r(b)Q1 < Qz' Thus for all
y € Bx we have 0, (y)> Q, (x), which implies that

and since my

f Q,(»)dmy>Q (x)my (Bx)=>C"1Q, (x).
X

Since this integral is comparable to d, we get the first inequality, C1 Q1 ) <d
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Similarly, Q, is supported in B%x, and for all y € B?x, Ql(y) < @, (x).
Thus [ Q, dm, < Q;(x) - my B2 -x)<C Q,(x), and since the integral is
comparable to d we get the second inequality, d < c, Q3 (x). ]

CRITERION . A weight w is summable if and only if

/ w1 dmx <oo.
X

Proof Choose a sparse net N and a ball B C G such that B- N=X. Then
it is clear that

-1
/ w de
X

is comparable to

2/ w1 de,
B

neN n

which in turn is comparable to

Z w(n)’l.

neN

This proves the criterion. .

3.4. Proof of Theorem 3.2

Fix a summable weight w. We want to show that the embedding Sw - H
is fine. By lemma 2 in 1.6 is enough to check that for any regular subgroup
K C G and for a sufficiently large k the embedding o Lf"‘ - H is fine.
This follows from theorem 1.5 and the following

PROPOSITION. Let w be a summable weight on X, K C G a regular subgroup,
k a natural number, k > dim g, where g is the Lie algebra associated to G
(see 2.1). Then the natural embedding o : Lf'k - L2(X, ky) is a Hilbert-
Schmidt morphism.
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First of all let us describe the scalar product on L ‘f k¥ Fix a basis dl, e dr

of U(g)’c (the elements of the universal enveloping algebra of g of degree
< k) and for each function f on X consider a new function Q(f) on X given
by

o) =) |df|%

Then L f k is the completion of S(X ¥ with respect to the norm

1713, = / Q(f) - wdpy,

X

KEY LEMMA. Fix a standard measure m, on X, a regular subgroup K C G,
aball BCG anda k > dimg Then there exists a C > 0, such that for any
function f€ C(X)X* one has

| f)|2 <C- / Q(f) dm, .
Bx

This lemma implies the proposition. Indeed, let us consider for every x € X
a functional o s SQOK —>(D', o (f) = fix) and set M, =|a I z,w ieM
== sup {| flx) | 2/ 11 é,w | fES(X)X}. By the key lemma, we have

| fx)| 2 <C~/ o(f)dmy <CIV(X)W(X)'1.
Bx

| / 0 waity < Cy) WG| £
Bx )

~1
where My = Vily. Thus Mx <C1 v(x) - w(x)™", and hence

/deungl'fw“lvdpszlf w-ldm, <,
X X

By lemma 1 in 1.6 this implies that o« : LX* — H is a Hilbert-Schmidt morphism.
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Proof of the key lemma

Step 1. Let D be the unit ball in R"” with coordinates x
let k = n. For every function f€ C* (D) set

)

i

o X, and

n

o =f1*+ )

i=1

and define

FiF =/ Q(f) dx.
D

Then there exists a constant C > 0 such that for all f€ C“(D)| f(0) | lgC 171 ZQ
This is a standard fact, known as an a priory estimate (see e.g. [ReSi], v. I).
Step 2. For every function f€ C(G)™ define Q(f) = | d, f] 2 Then there

exists a constant C > 0 such that for all f€ C(GYX = onehas

| fle)| 2 <c-/ 0(f) dug -

B

Indeed, passing to K \ G we can assume that G is a Lie group. Then choosing
some coordinates x,, ..., X, near the pointe € G, and expressing all operators
(3/3x Y interms of d 1 dr, we reduce the inequality to the a priory estima-
te of step 1.

Step 3. Fix x € X and consider the projection G — X, g~ gx. For each
function f on X denote by f* its lift to G, given by f*(g) = f(gx). Clearly
QU *) = (Q(f)*.

Let f€ C(X)X'= . Then

If(X)|2=lf*(e)[2<C-[

Q(f*)dug =C-[(Q(f))* dug
B

B

by step 2. By lemma 3.3c¢), the right hand side is bounded by

c’ / o) dmy, ,
Bx

where C' isindependent of x. This proves the lemma and the theorem. u
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REMARKS 1. It is instructive to prove the estimate in the key lemma directly
incases SL(2, R)/SL(2, Z) and SL(2, R)/SO(2).
2. With mild modifications, the proof above yields the following

THEOREM. Let w be a summable weight on X, k >dimg Let w’ be another
weight, m > 0. Then the natural embedding

L"uf{"f,* m —>L§ 1™ is Hilbert-Schmidt and hence fine. =

3.5. Scales. Spaces of polynomial growth

Let w and w; be weights on X, such that w < w’'. If w is summable,
then w' is also summable and Sw, C Sw. This means that the analytic neces-
sary condition Cond(w) is stronger than the condition Cond(w'). Thus it is
natural to try to find a summable weight w which is minimal or almost minimal.

Since it depends on too many parameters, it is not clear how to look for a
minimal w. But in applications the homogeneous space X is usually given
with a large scale structure. We will discuss this notion in more detail in section
4. For now, we will use only one piece of this structure — the radial function
r: X > IR", which roughly measures the distance to a basic point X, € X. This
function has the following properties

(*) r is positive, locally bounded and proper, i.e. for any R € R* the “ball”
B(R) ={x €X| r(x) < R} is relatively compact in X.

(**) For every ball B C G there exists a constant € > 0 such that
| r(gx) —r(x)| <C forall g€B, x €X.

The radial function is defined up to the following equivalence:

G**)r ~7¢" if (1 +7) and ( 14+ #") are comparable.

This means that the value of r is relevant only for large distances and only
up to a fixed factor.

Let us fix a radial function r on X, and use it to construct a “small” summa-
ble weight, Namely, we will consider only weights, which are functions of 7,
i.e. weights of the form w(x) = u(r(x)) for some function u on R*.

Fix a sparse net N and consider a counting function

() =7y () =#BWONN)=#{n|r(n)< t}.

We call 7 a growth function of X. Forlarge t itis comparable to the func-
tion 7Tr(l‘) = My (B()). In particular, it does not depend on the choice of N.
The change of r by an equivalent function leads essentially to a linear rescaling
of an argument in .

Let w be a weight of the form w =u(r). Weclaim that if for large
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tu@t) >a)te oreven u()> w(t)(log w(2))!*€ for some € >0, thenthe
weight w is summable. Indeed, let us order the points of N in such a way
that the sequence r;, =r (ny) is increasing. Then for large i, n(r) =i andm(r) =i
if all r; are distinct. Hence

Y W)l =C+ Y wim)leC+ ) (ogD'te) <o,

i=1 i>k i>k

The same calculation shows that if w(?) € w(¢), then usually the weight w
is not summable.

DEFINITION. Let X be a homogeneous space with a radial function r. We
say that X has polynomial growth if for some d > 0, 1r’(t) <1+ f’). The
greatest lower bound of such numbers d we call the rank of X and denote
it by rk(X).

Let X be a homogeneous space of polynomial growth. Then for every
d > rk(X) the weight w(x) = (1 + r(x)¥ is summable and hence only Sw-
tempered forms can contribute to the decomposition of L2 (X, By ).

Usually it is more convenient to consider a weaker condition. Namely, follow-
ing Harish-Chandra, we define a Harish-Chandra Schwartz space € = €(X) by

= = 2 ,m
€= 0 Suina Y0 LXK A +0F u)om,

where m, d >0, K CG is a regular subgroup.

We call a V-form B: V™ - C(X)” X-tempered if it is € -tempered. In other
words, B is X-tempered if for some d >0 (1+r)y%p@w) € L?(X, “X) for
all v € V™ (See 3.1). As we have shown, only such forms contribute to the
spectral decomposition of L2 (X, u x)

Note that the Harish-Chandra Schwartz space % is nuclear, since for
d > rk(X), k = dim g the embedding Llfl'ﬁj)Z'+ ¢ =L ¢ is Hilbert-Schmidt
for all m, £ and K (See remark at the end of 3.4).

K.m
(1+r)

3.6. Generalization, The case of an induced representation

Let (0, E) be a finite-dimensional I'’-module. We want to study the induced
G-module Ind(; (E). Let us denote by CX the sheaf of germs of continuous
functions on X, and let ¢ = Ind(F) be the sheaf of CX-moduIes, whose sections
are given by functions f on G with valuesin E, satisfying flgy) = o(y)~ 1 f(®),
Yy€ET.

Clearly ¢ is a G-equivariant locally free and finitely generated sheaf of C X"
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modules. Conversely, each such sheaf arises from a finite-dimensional '-module.
We denote by C(X, {) the space of continuous sections of ¢, by C.X D
the subspace of sections with compact support, and by S(X, ¢) its Garding
space.
Now suppose (o0, E) is a unitary I''module. We will introduce a G-invariant
scalar product on S(X, {) by

<¢,w>=/ (8, V) duy
X

and denote by H = L?(X, ¢) the completion of S(X, {) with respect to this
scalar product.

All the results and proofs of §2, 3 remain valid for the unitary G-module
(m, H) with the following modifications.

Contributions of (p, V) to the spectral decomposition of H are given by
morphisms «, - S(X, {) > ¥V, orequivalently, by V-forms B, : Ve CWX, £,
or, equivalently, by I'morphisms V= — E.

For each weight w’ we denote by L_({) the completion of S(X, {) with
respect to the scalar product (¢, v, = [ @, x[/x) w duy, and set Sw ) =
L, )~ . A form B, :VZ>CWX )™ is S,, (§)-tempered iff BV(V“’) CL,_1(5).
If w is a summable weigth, then only Sw -tempered forms can contribute to
the spectral decomposition of H.

REMARK 1. Sometimes it happens, that for a nontrivial Imodule (o, E) the
bound in key lemma 3.4 can be strengthened, namely

| fe) |2 <C-uy (x)-/ O(f)dmy,

Bx

where ug(x) < 1 is some weight, depending on E (see examples 4.3.4 and
4.3.5 below).

We say that a weight w is E-summable if the weight uE‘l - w is summable
(but w itself is not necessarily summable). Then, repeating the proof in 3.4,
one checks that theorem 3.2 and psoposition 3.4 remain valid for such a weight,
and hence one gets a stronger analytic necessary condition, Cond(w).

REMARK 2. It would be interesting to analyse the case of an infinite-dimensional
I'-module E, but I do not known how to do it. The natural approach would
be to assume that F is given together with a Gelfand pair, i.e. with a fine mor-

phism of I'-modules «, : E' - E. After this one has to consider S(X, {') and
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complete it with respect to some scalar product in order to define Lw «€". How-
ever, since the action of T' on E’ is not unitary, it is not clear how to define
(,), on SX ¢".

It can be done in some simple cases, but the general pattern is unclear. On the
other hand, 1 do not know examples of interesting applications in this case,
so may be this is just the wrong question.

3.7. Generalization, The case when X has no invariant measure

Let AX be the sheaf on continuous measures on X (m € AX if locally
it has a form m = f(1r(a)8x), feCX), a EMC(G)"’, x €x). Thisis a G-equiva-
riant invertible sheaf of C, -modules, which is isomorphic to Ind(A, @), where
A is the character of I' equal to AG /AF,AG,AF —moduliof G and T.

We denote by & the sheaf of half-measures on X, ie. an invertible sheaf
of CX—modules with a positivity structure and an isomorphism 4§ ® 6§ = Dy
This sheaf can be constructed as Ind(Am, @). Let (0, E) be a finite-dimen-
sional unitary I-module, ¢ = Ind(E) the corresponding sheaf and { = I -XP
The scalar product on E defines a natural pairing (, ): fx f—»AX. Using this

pairing we define the scalar product on S(X, {) by
(9, ¥) = f (o0x), Y(x)).
X

The completion of S(X, ) is a G-module (7, H), unitary induced from (o, E).

All the results of Sections 2 and 3 remain valid with the following modifica-
tions:

Contributions of V' to H correspond to G-morphisms o, : S(X, 5>V or,
equivalently, to V-forms B, : V= - C(X, {)” or, equivalently, to I'-morphisms
(p, V=)~ (82 0, E).

For every weight w we define Lw &) and Sw (3] using scalar product

(¢, ¥, =/ (p(x), Y(x))w(x).
X

A form B, is S, -temperedif B, (V=)CL, _;().

The definition of a standard measure remains the same as in 3.3, but the
proof of its existence has to be modified, since in the proof in 3.3 we used the
Haar measure u. In fact, the only thing we used about u was that it is a weight
measure. Hence in order to modify the proofin 3.3 we need the following
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LEMMA . There exists a weight measure u on X. L]
Proof. Fix a sparse net N C X and aball B C G such that B- N = X. Choose

smooth positive measures a;, a, € M (G)” such that a;, # 0 and for all
8E€B 7@l <a,. Set

”lz an

neN

1

the sum of #A-measures at n €N and u = m(ay)n (see 2.2). We claim that
u is a weight measure.

Fix a ball & C G. We want to show that m(g)u < C- u forall g€, ie.
for every positive function @ on X (m(@ Q) < C- (u, Q). Without loss of
generality, we can assume that @ is supported in a ball Bx for some point
x€X.

The function Ql = 1r(a1 )Q is continuous, positive, and has compact support.
Let us denote by A its maximum. We want to show that {u, Q)> A4, and
(m(gm, )< C- A.

By definition, (4, Q) =<(u,, @,), where Q, =m(a,)Q.

By the choice of a, a,, Q2 > 1r(g)Q1 for all g€ B. In particular, if
Q,(x,) =-A then Q, |on > A, and hence (u, Q)= A.

We can choose a positive measure a, GMC (G)™ such that, for all
g leq, ajb, < ay*a;. Then (g™, @)=, m(ay* 5,00 <Ay, on,
where Q' =7(q;) m(a, )0 =7(4q)0, .

Clearly, @' is bounded by C'A and is supported in B'x  where
-B' = supp(a, ) - supp(a, ) - B. Hence (m(g~ Dy, Q) <(p,, oY<k-C- 4,
where k is a bound on #(B' x NN) (see 3.2).

The rest of 3.3 goes as before.

In the proof of Theorem 3.2, as given in 3.4, the proof of the key lemma
remains the same, but now we need a modified version of the lemma. Namely
let us consider the standard measure m, as a section of the sheaf Dy Then
the following version of the key lemma remain true.

(*) Let B C G beaball, K CG aregular subgroup, and k =>dim g. Then
there exists 2 C > 0 such that for all ¢ € C(X, £H)X->

| px)| 2 <C- mX(X)~/ Q(¢).

Bx

Proof. Choose a smooth positive measure a € MC(G)“" , and replace m,
by a new measure n(a)mX. This again is a standard measure, but it is already
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smooth in the sense that it is fixed by some regular subgroup K and foralld € U(g)
| 7r(d)mX | <@ -my. v

Using the section %%  of the sheaf & we will identify & with C, and
¢ with ¢ (¢ Ef—»fd’ = my 12 9€¢) Since my, issmooth, we have
Q(p) €my - O f¢) Hence, using the inequality of the key lemma+

| fx) |2 <f O(f) dmy .
Bx

we can deduce the inequality (*)

The remainder of the proof of proposition 3.4 remains essentially the same.
Namely, using the isomorphism of § with ¢ we will identify H with L2 (g, dmy ).
For every point x € X let us denote by ¢, the morphism &, - S(X, OHX > E
given by o (¢) = f¢(x). Using inequality (*) we see that M, = I a "3;0 <
C - w(x)~!. This implies, that the Hilbert-Schmidt norm M of the embedding
a: L, (X §X* > H isbounded by C-dimE - fw~!(x)dmy < oo, which
proves proposition 3.4 and theorem 3.2. -

;4. EXAMPLES
4.1. Large scale spaces

Let M be a metric space with a distance function d(x, ¥). This function,
in fact, defines two structures on M. One is a small scale structure, which takes
only small distances into account — for instance, it will not change if we replace
d by d; =min (4 1). Only this structure is responsible for the topology
of M. Another is a large scale structure, which takes into account only large
distances — for instance, it will not change if we replace d by
d, = max (d(x, ¥), 1) for x # y. This structure was used by many mathemati-
cians (see e.g: |Grol}, [Mos]), mostly to analyze the global effects of hyperbolici-
ty. Let us describe some basic features of this structure, which we use asan
intuitive background for the discussion below.

We define a semimetric space as a set M with a distance function dx, y)
such that

(i) dix, y)=d(y, x)2 0, dx,x)=0 for x, yEM
(i) d(x, z) £ dx, y)+d(y, 2), x, y, zEM.

We say that two distance functions d,, d, on the same set M are equivalent
(notation d, ~d,) if there exists a constant C> 0 such that C-1(d; +1 )<
d, + H<C@d; + 1.
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A set M with a class of equivalent distance functions we call a large scale
space.

Let M, N be two large scale spaces. A large space map f: M - N isa map,
such that for some constant C >0

da(fe), () £ Cd(x, y) + 1), x, v EM.

Two large scale maps f|, f, : M > N are called equivalent (notation fi ~ 1)
if the distances d(f1 (x), f2 (x)) are bounded by some constant C > 0 for all
xXEM

Clearly these notions are well defined, the composition of large scale maps
is a large scale map and f, ~f,, h; ~h, implies fiohy ~f,oh,.

A large scale map f: M — N is called a large scale equivalence if there exists
a large scalemap % . N—->M suchthat fo h ~ IdN, hof~ IdM.

Example: The embedding Z" - R" is a large scale equivalence.

Let M be a large scale space with a distance function d. Let R € R*. For
each point x €M consider the ball B(x, R) of radius R around x, i.e.
B(x, R) ={y € M| d(x, y) £ R}. Forany subset N C M we define its R-neigh-
borhood B(N, R) by

BN, Ry= U B R).

nenN

We say that two subsets N, N' C M are equivalent if forsome R >0 B(N, R) DN’
and B(N', R) D N. Clearly, in this case large scale spaces (N, d) and (N, d)
are canonically equivalent.

We say that a subset N CM isawnet if it is equivalent to M, ie. M =B(N, R)
for some R > 0.

A net NCM is called sparse if for any R >0 the number of points in
N NB x, R) for x €M is uniformly bounded by a constant k = k(N, R).

For a fixed point x € M and a sparse net N CM we consider a counting
function 7, . (1) = #{nEN|dkx, n) < 1.

The following statement is straightforward:

(*) Let (M, d), (M', d') be equivalent large scale spaces, x € M x' € M',
N CM, N CM' sparse nets. Then for some constant C >0

L+ Ty, gt S CA 41y | 4(C)

This shows that the function =, which we call a growth function of the
space M, is well defined up to comparability and linear rescaling of the argu-
ment.

Esamples 1: R" has polynomial growth. Namely, 7 »(#) ~ " ie rk(R") =n
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2. The hyperbolic space H" has exponential growth. Namely, for large ¢
exp(C 1) € 7yn(t) < exp(C,t)

Remark 1. It would be useful to have some geometric picture for a largescale
space defined up to a large scale equivalence. One of the approaches can be to
use Gromov’s limit procedure, described in [Gro2 ] Namely,let (M, d) be a
large scale space. Fix a point x, € M, and consider the family{Mh, xo} of
semimetric spaces, where A € R** and M N is the set M with the distance
function Ad. Suppose that for A - 0 the family {Mx,xo} has a limit (Y, dy)
in a sense of [Gro2].

Then this limit is a metric space (Y, x,) defined up to a Lipschitz isomor-
phism, and it contains some information about the original space M.

Remark 2. In fact, the objects we have discussed should be called connected
large scale spaces. The general notion of a large scale space should be based
on a distance function d which takes on valuesin R* U oo,

4.2, Large scale structures on G and X

DEFINITION: Let G be a locally compact group. A radial function on G is a
locally bounded function r: G - R* such that

*) r@)=rg"1)>0, rg, - g,) <rg,) +r@g,), &8, & EG.

Two radial functions » and 7' are called equivalent if (' + 1) is comparable
to (r+ 1), ie.for some C>0C ¢+ 1)<r'+1<Cr+ 1).

Given a radial function r on G, we will define a distance function on every
homogeneous G-space X by d(x, y) = inf{r(g)| gx = y)} for x # y. The
equivalence class of functions r defines a large scale structure on X.

Remark: If X is a nonhomogeneous G-space, this definition is still applicable
if we allow d(x, y) to take on infinite values. The resulting large scale space
will be disconnected.

Usually we will fix a point x, € X and consider a function Ty (x) =d(x, X0,
which we also call a radial function on X. We say that the function ry on X
is proper ifforany R € R* the ball B(R) = {x | r, () < R} is relatively compact.

Note, that we can always replace r by an equivalent continuous radial func-
tion (see the trick in 3.1). Then every ball B(R) will be closed.

A weight w on X is called r-admissible if there exists a C > 0 such that

w(gx) < €T w(x) on Gx X.
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In other words, w is r-admissible if the map w : X - R** is a large scale
map, where the distance on IR* * is defined via the isomorphism log: R** —+ R.
Comparable weights correspond to equivalent large scale maps.

Given a proper radial function ry on X, we define the growth function
1TX(t) asin 4.1. In other words, we fix a sparse net N C X and set

my (1) = #{n€EN| ry(n) £ t}=#(N N B(#)). As we saw in 3.5, it also can be
defined as 1rX(t) = mX(B(t)), where my

There are several ways to introduce a radial function on G. Let us discuss

is the standard measure on X.

some of them.

1. Natural large scale

Suppose that G is compactly generated. Fix a ball B C G, generating G,
and consider the radial function 7,(g) = min{k|g € B},

It is easy to see that T, is a proper radial function. Up to equivalence, this
function does not depend on the choice of B, and it defines a large scale on
G which we call natural.

Note that r, dominates all the other radial functions on G. Indeed, if r
is another radial function, then on B it is bounded by some constant C. Hence
rigk £ kC ie rsC-r,.

2. Algebraic large scale structures

Let F be a local field, [| — the standard norm on F. For every n we in-
troduce the norm | | on the vector space F" by |v=(v),...,V,) | =
max | Y; |, and consider the operator norm on the group GL(n, F), gl =
sup {|ev /v |, vEF"\0} Itiseasy to see that if g = (gil.), then |g| =
rr}]ax ] g | in the non-Archimedean case and | g| ~ ml_}'_ax | g; | in any case.

We define a proper radial function r on GL(n, F) by r(g) = max(log|g|,
log | g ! |). Let G be an algebraic group over F, G = G(F) the locally com-
pact group of its F-points. Choose a faithful representation p : G - GL(n)
for some n, and define a radial function r, on G by rp(g) =r(p(g)).

LEMMA. (See 4.5)a) r, Isaproper radial function on G. lIts equivalence class
does not depend on the choice of p. We call it an algebraic large sclae on G

(notation r,).
b) Let G be a reductive F-group. Then G is compactly generated, and

the algebraic large scale 1, is equivalent to the natural large scale r,. =

The case of adelic groups we will discuss in 4.4.
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4.3. Examples. Reductive groups over local fields

Let F be alocal field, G areductive algebraic F-group, r =r, the algebraic
large scale on G (it is also equivalent to the natural large scale Ty ).

We consider several examples of subgroup I' C G, and describe the growth
of homogeneous spaces X = G/I". The proofs are given in 4.6.
Example 1: Let G, be a reductive F-group, G =G, x Gy, I' = AG, (the
diagonal subgroup), X = G/T'~ G,. Then X has polynomial growth, rk(X)
equals the split rank of G .
Example 2: T' = K — the maximal compact subgroup of G (or T' is an open
subgroup of K). Then X has polynomial growth, rk(X) equals the split rank
of G.
Example 3: T' ={e}and G is not compact. Then X = G has exponential growth.
Example 4: G is a reductive group over R, I' C G an arithmetic subgroup.
Then X = G/T" has polynomial growth. If I' arises from an algebraic group
G over @ of split rank d, then rk(X) =d.
Example 4': In example 4, consider an induced G-module H = Indcl;, (E), where
E is a unitary I'-module. Then some weights w which are not summable can
be E-summable (see Remark 1 in 3.6).

For example, consider the case G = SL(2, R),T" = SL(2, Z). Then the weight
w = (1 + r)? is summable iff d > 1. Suppose E is a module, which does
not have vectors invariant with respect to the subgroup

(ln
0 1

Then it is easy to check that in this case all the weights are E-summable. In other

' =

oo

cr

words, in this case the passage from the trivial I'-module to I'-module E effecti-
vely reduces the rank of the problem from 1 to 0.
Example 5: T' = U — a maximal unipotent subgroup of G. Then X has poly-
nomial growth, rk(X) equals the split rank of G.

This space appears in the study of principle series representations and in the
study of Whittaker models. Note, that in the last case when we study
H = IndtG/ (Y), where Y - U - @ * is a nondegenerate character, there exist
weights w which are Y-summable but not summable (see Remark 1 in 3.6).

For example, consider the case G = SL(2, R). Using Iwasawa decomposi-
tion G = KAU, where K = S0(2), A = {a(y) = diag(y, » 1 | y > 0}, we
see that as a large scale space X = G/U is equivelent to A and

rX(x)~| 10gy| for x = ka(y).

Let w(y) be any weight on A (and hence on X). It is easy to check that
w is summable if
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oo

/ wol(»)dy < e,
4]

and w is Yy-summable if

1
j wol(y)dy <oo.
0

Example 6: Let o : G - G be an involutive automorphism, I' an open sub-
group of finite index in the group G® of its fixed points, X = G/T' a semi-
simple symmetric space. Then, if F = IR, X has polynomial growth, rk(X)
equals the split semisimple rank of the symmetric pair (G, T"). Probably the
same is true for any Idcal field F provided char(F)=+ 2 (see 4.6).

4.4. Examples, Reductive groups over adeles

Let F be a global field, { p}-places of F,
_— r
A= ll;l F,

the adeles of F.

For each n we introduce a radial function r on GL(n, A)by r=Z T
where for g = (gp) rp(g) = r(gp ).

Let & be an algebraic F-group, G = G(/A) — the locally compact group
of its adelic points. Let us choose a faithful representation p : G - GL(n) over
F, and define a radial function r, on G by r, ) = r(pg)).

LEMMA : (see 4.5). r, is a proper radial function on G, whose equivalence
class does not depend on p. We call it an algebraic scale on G (notation r,). ™

In the examples below, we condiser a reductive group G with large scale
r.
élxample I: Let G be a reductive F-group, G =G(A),I'=G(F). Then
X = G/T" has polynomial growth, rk(X) equals the split rank of G.
Example 2: Let P C G be a parabolic subgroup, U its unipotent radical. Set
G = GA), I = P(F)-U(A). Then X = G/T" has polynomial growth, rk(X)
equals the split rank of G,
Example 3: G = _QO(A) X QO(A), r :QO(A) the diagonal subgroup. Then
X = G/T" has exponential growth.
Example 4: G = G(A), ' = U(A), where U isamaximal unipotent subgroup
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of G. Then X = G/T" has exponential growth.

4.5. Algebraic, natural and standard large scales

In this section we discuss the relation betwegn algebraic and natural large
scales for groups over local fields and adeles. We also introduce the standard
radial function, which is usually equivalent to the algebraic and natural ones,
but has the advantage of a more rigid definition.

First of all, let us prove lemmas 4.2 and 4.4. Let G be an algebraic group
over a local field F, p : G — GL(n) a faithful (algebraic) representation, T,
the corresponding radial function on G, r, &) =r(p@).

Since r 1is a proper radial function on GL(n, F), r, is properon G. In
order to prove that furctions r for different p are equivalent, it is enough
to check that for any representation ¢ : G - GL(m) one has r, < 1+ rp).

Let us denote by L the class of all the representations ¢ which satisfy this
condition. It is easy to see that if ¢ € L then ¢* € L, and that any represen-
tation o¢' isomorphic to a subquotient of ¢ belongs to L. Also, ifo, TEL,
then 097 €L and o7 € L.

Any representation ¢ is a submodule of a direct sum of several copies of
the regular representation (R, F[G]) in the space of regular functions on G.
Consider a submodule (7, M) C (R, F[G]), spanned by the matrix coefficients
of p and p*. Since 7 is a quotient of a direct sum of n copies of p @ p*,
it belongs to the class L. Since G C GL(n), M generates F[G] as an algebra.
The properties of the class L imply that any G-submodule o C F['G] belongs
to L, and hence any G-module belongs to L.

Now consider the adelic case (lemma 4.4). The function r=2 r, on
GL(n, A) is proper, since for any C > 0 there exist only a finite number of
places p, such that r, can take on values between 0 and C. Hence if G
is an F-group and p : G - GL(n) a faithful algebraic representation, then the
function rp(g) = r(p(g)) on G = G(A) is proper.

The proof that up to equivalence r, does not depend on p is the same as
in the local case, but one has to be a little bit more careful with tensor products.
Namely, let o0, 7 be two representations of G. Then it is clear that SN

T.p
r + r + Cp where C » is a constant, which does not depend on g €

a?{é’ C » =TI(7) if p is a non-Archimedean place. Since there is only a finite number
of Archimedean places, Toay STy T 1, + C, and the rest of the proof is the same
as above.

Now let us prove lemma 4.2b. Let G be a reductive group over a local field
F. Choose a maximal split F-torus 4 C G and find a lattice (i.e. a finitely gene-
rated discrete free abelian subgroup) L C 4 such that A/L is compact. By

®
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Cartan decomposition, there existsaball B C G suchthat G=B-L-B. In
particular, G is compactly generated and it is enough to check the equivalence
r; ~r, onthelattice L.

Suppose r, is defined using a representation p : G > GL(n, F). Since A
is split, we can diagonalize it in some basis, i.e. we can assume that p(4) con-
sists of diagonal matrices. Then it is clear that on L r, €(1+r,). Since r,
dominates any radial function, we see that ry~Ty Q.E.D.

It would be nice to have an analogous lemma for adelic groups. At first glance
this seems impossible, since adelic groups are not compactly generated. But
it turns out that in the most interesting examples, 4.4.1 and 4.4.2, it is possible
to do.

DEFINITION: Let G be a locally compact group, X = G/T" its homogeneous
space. We say that X is compactly generated if

(*) There exists a ball B C G, such that the subgroup G, = UkBk, generated
by B, acts transitively on X. We denote by dB the corresponding distance
function on X, dB(x, y) = min{k] y Eka}.

(**) For large enough balls B the corresponding distance functions dB
are equivalent.

- Given a compactly generated X, we define the natural large scale on X
by using the distance function dB for sufficiently large B. In turn, we define
a radial function r, on G by r,(g) = sup{dB (gx, x)| x € X}. Note that the
radial function r,(x) = dg(x,, x) is proper, while the function r, on G is
not necessarily proper.

0’

LEMMA . In examples 4.4.1 and 4.4.2 the space X is compactly generated and
the natural large scale on X is equivalent to the algebraic large scale. Moreover,
the natural radial function is equivalent to the algebraic one on the group G/Z(F),
where Z is the center of G. u

Let G be a locally compact group, I' C G, X = G/T". Let us assume that X
has a G-invariant measure Hy- As shown in 3.3, one can also construct the
standard measure m, on X, which is canonically defined up to comparability.

The ratio v = my /;.I.X is a weight, which we call the standard weight on X.
Let us define the standard radial function r,, on X by r (x) = | logv (x) | .
This function is defined canonically up to the addition of a bounded function,
which is much more rigid than our constructions of functions 7, and r, . In
some interesting cases, notably in examples 4.3.1, 4.3.2, 4.3.4, and 4.4.1, for
semisimple groups G, this function is equivalent to r, and r,. This shows
that in these cases there is a natural choice of a radial function on X, which
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is defined up to the addition of a bounded function. The corresponding radial
function on G can be chosen as r(g) = sup| log »(gx) — log ¥(x) ]| .
X

4.6. Proofs for 4.3

In this section we analyze examples of homogeneous spaces X listed in 4.3.
In each case we will try to construct a model of X as a large scale space. Given
such a model, it is easy to describe the growth function of X.

We are mostly interested in the case where X has poiynomial growth. In
these cases we willmodel X on the following “elementary” space.

Let g be a finite dimensional Euclidean space, W C Aut(g) a finite reflection
group a” Ca Weyl chamber for W. We consider a as a large scale space with
the standard distance ana a' as its subspace. Note that a* ~ g/W.

Let G be a locally compact group with a radial function », X = G/T" its

homogeneous space with the corresponding .distance function d,. We will
call an g*-model of X a large scale map m : X - a which satisfies the condition
(M) below. This condition essentially requires that X could be covered by a
finite number of subsets S,, ..., S, (which we call Slegel domains), such that
for any i m: S, >ga would be a large scale equivalence of S; with at Ca
Remark I: We will not check it, but in the examples below one can choose
Siegel domains S1’ e, Sk in such a way that for i #j m(Si N S].) liesina
neighborhood of a wall of at. Moreover, it seems that X isglued from k&
copies of a¥ in such a way that all the glueings are along the walls. This \/ague
statement probably can be made precise if we replace X and a* by their
Gromov’s limits.
Remark 2: The model map X — g is useful in detailed harmonic analysis on X.
The reason is that any weight function w on a* gives a weight on X. Thus
we have more freedom than just considering weights which are functions of
ry (see 3.5). In particular, by choosing appropriate weights, we can analyze
functions which have different growth along different faces of a* .

To describe a Siegel domain § in X is the same as to describe a large scale
section k : gt - X. We want to have some explicit description of such a section.
One of the difficulties here is that in the case of p-adic fields the space X is
totally disconnected, so it is difficult to represent « by a map. So we adopt
the following:

DEFINITION: Let X = G/I' be a homogeneous space, p . G — X the natural
projection. Let m : X - a be a large scale map. A Siegel section of m is any
pair (L, «) consisting of a compact lattice L Ca and a group homomorphism
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k:L -G, such that on the semigroup L* =L Na* the composition
m-p-k:L* ->a isequivalent to the standard embedding LY —»a

Given a Siegel section » : L - G and a ball B C G (preferably large) we
define a Siegel domain S=Sx)CX as S=B-p- k(L*"). Clearly px: Lt - S
and m :§—a give mutually inverse large scale equivalences of L* ~g* and S.

We say that m : X - g isan a*-model of X if it satisfies the following
condition:

(M) There exist Siegel sections k, of M,i=1,2,...,k k>1, and a ball
B C G, such that the corresponding Siegel domains S; cover X.

Let m:X —>a bean a*-model Then the following facts are obvious.

() X has polynomial growth, Ty () ~ £ where d =dima

(ii) Replacing M by an equivalent map, we can assume that m(X) Cat.

(iii) The collection of Siegel sections « , k, completely determines
m up to a large scale equivalence.

Thus in order to construct a model of X we have to find an appropriate triple
(a. W, a™); detine a iarge scale map m : X - a describe sections ki L =G
and prove that they are Siegel sections; and prove that for some ball B Siegel
domains S; would cover X (usually this is the most difficult part). Let us
describe step by step, how we are going to do this.

- We fix a connected reductive group G over a local field F, set G = G(F)
and consider some homogeneous space X = G/T".

Step 1. The elementary space & is in fact a model of a split torus. Suppose
we are given a split torus 4 over F. Consider the lattice L = Hom(GM, A)

I SO k

of cocharacters (or one-parameter subgroups) of A and the dual lattice
L* = Hom(4, G, )=Hom (L, Z) of characters of A.

We want to construct a large space equivalence between L and A. In order
to do this, fix an element ¢ € F* such that | c¢|>1 and define an embedding
i:L—>A by i(®) = 2¢); sometimes we will identify L with its image in 4.
Since A/L is compact, i is a large scale equivalence. In order to describe an
inverse map, let us consider the linear space a = L ® IR, which is equivalent
to L as a large scale space.

It is easy to check that there exists a. unique homomorphism j: A - a which
satisfies the following condition:

(*)For any AE&L* (A j(@)=log| Na)|/log| c|. It is also clear that
j-i:L— L isthe identify homomorphism, so 7 and j give mutually inverse
large scale equivalences between L ~g and A.

Now suppose se are given a root system X C L* and a positive root system
Z* C X. We denote by W the Weyl group of X, acting on g, and by a*
its Weyl chamber, corresponding to TV, ie. a* ={t€a|{y, 1) 2 0 for all
yEZtT) Wealsoset LT =LNat, AT =j Hat).
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Step 2. Suppose we are given (4, £, £¥) and a reductive group G. Let us
fix a family of embedding « : A = G, which are all conjugate under the adjoint
action of G(F) and have the following property:

x: A > k(4) gives an isomorphism of £ C L* with the root system
Z(k(4), G) C L*(k(4)).

The embedding x from our family we will call sections. Each section «
defines (and is determined by) a homomorphism k : L = G, £ - k(i(R)).

Let (p, V) be an algebraic G-module. For any k the representation
p- kA - GL(V) isdiagonalizible,ie. V=9 Vﬂ, where 4 € L* and on I{‘ A
acts by multiplication with character u. We denote by P(VY C L* the set of
weights qf V, ie. P(V)={u | Vu # 0}. Since all sections k are conjugate
this set does not depend on k.

We say that V' is a highest weight module if there exists a weight A € P(V)
such that any other weight u € P(V) hasaform p=\ — Zln7 v, YEZT,

n, 2 0. Such a weight A, which is obviously unique, we call the highest weight
of V.

Given a G-module (p, V), we define a function my, : G->R by
m, () = log | p(g) | where | | is the norm on GL(¥), defined with respect to
some basis in V. Clearly m,, is a large scale map, defined canonically up to
a large scale equivalence. If V is a highest weight module with the highest weight
A, then for any section k:A — G the function mV(K(Q)) on Lt isequivalent
to the function 2+ (A, 2) log| c|. Indeed, we can assume that the representation
p KA > GL(V) is diagonalized in the basis of ¥, used to construct a norm
on GL(V). Then for every £ € L the matrix px(%) has entries
{2 | W €PWV)). If RELY, then (u, < (A, L) forall p €P(V), and there-
fore | pr(®)| =] c| **® and m., k() =\, O log|c|.

Step 3: Now define a function ml;, @) = inf {mV(g7)| v €T}, 1t is well defined
if {|] o(m].v€ I'} is bounded from 0. This is not a restrictive condition, and
we will consider only the G-modules V' for which it holds. The function ml;
is right T-invariant, and hence defines a map ml;, ;X — IR. This is a large
scale map defined canonically up to a large scale equivalence.

We say that a section k: 4 - G is (I', V)-special if the functions m,, and
1;, are equivalent on k(L*). This is equivalent to the following condition:
(*) There existsa C >0 such that

m

[e@ | C|poEy)| forall g€xr(L?), yET.

(in the example below, this inequality would hold for all g € k(L), v €.
Now suppose we have choosen a collection of G-modules (pl., Vi),

i=1,...,% such that their highest weights A;,. .., A, form a basis of

a* D L* Then A, ..., A, define a coordinate system on g, so we can define
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amap m : X > g by condition A, m(x)) = ml;,,(x)/log | ¢|. Thisis a large
scale map, which is defined by collection {Vi} up to a large scale equivalence.

let x: A - G be a section special for (T, V,.), i=1,...,% Then forany
i m‘;,i(K(SZ)) ~ mVi(K(Q)) ~ (N, ®) log|c| as functions on L*. This means
that on L* the map 2+~ mpk(R) is equivalent to the standard embedding
L* >a, ie.that k: L > G isa Siegel section of m.

To summarize, in order to construct a model of X we have to choose a torus
A, root systems Z,Z* and a family of sections k : 4 - G, choose a collection
of G-modules Vl, c, VQ, whose highest weights form a basis of @a* and prove
that there exist sections Kis - oo s K, which are special for (T, I’i), and a
ball B C G such that the Siegel domains S] = Bpk, (L*) cover X.

Before we begin with the detailed analysis of examples, let us make some

elementary observations.
Factr 1: 1et k be a field, G a connected reductive k-group, 4 C G a k-split
torus, £ = X(4, G). Fix a positive root system T C X. Then there exists a
family {V,} of highest weight G-modules whose highest weights )\i span L¥*
as a group. In particular, one can choose a collection of G-modules V1 N
whose highest weights ferm a basisin a* D L*.

Indeed, choose a Cartan:subgroup CC_ G, containing 4. If C is k-split,
then the family {V,} of all irreducible G-modules satisfies the above conditions
for € and hence for 4. If C is not split, choose a finite extension k' of k
over which C splits, find a family { Vl'} of G-modules, which are defined over
k', whose highest weights span L* and consider the G-modules Vi obtained
from Vlf by restricting scalars from k&' to k. These modules are reducible,
but since P(Vi) = P( V'i) they are highest weight modules and their highest
weights span L¥*.

Fact 2; Let r,c I' be a subgroup of finite index, Xl = G/Fl, p,: X1 - X

the natural projection. Then for any G-module V the functions m?, and m
on G are equivalent. If we fix a collection of G-modules ( by Vz.), i=1,...'%

and define the maps m.: X - g, my X1 ~>a as above, then m, is equivalent
to mp, : X1 —a. The map m, isan a*-model iff m isan a*-model.
Indeed, write I' as a finite union I' =U . Then clearly

inf{| p(¢7) | , ¥ ET'} is comparable to inf{| p(gy) |, ¥y €I';}. This means that
on G ml;, ~ mII;l , andon X, m ~mp. If i : Lt —» G is a family of Siegel
sections for Xl such that the cormresponding Siegel domains Sl. cover Xl,
then the same is true for X. Conversely, let K;: LT — G be a family of Siegel
sections for X and B a ball such that the sets Si =B-p- Kl.(L+) cover X,
ie. G = UB- ici(L+ ). Consider sections Ky = 7].Ki7j'1 : LT > G and aball
B1 containing B'y].' 1 Then Ky are Siegel sections for X1’ and G =
U B, Kz.].(LJr )T} ie. Siegel domains S cover X.
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Now we are ready to analyse the examples from 4.3:
Example 4.3.1. G = G0 X GO, I = AGO. Choose a maximal split torus 4 C QO
and a positive root system It C T = Z(4, G,). We fix one section k: 4 -G,
k(@) = (a, ¢). To each (_}O-module (P Vo) we assign a G-module p(V) by
V = End(V,), p(g,, 8,0 = py(g, Jup,®;"). If V, has highest weight A,
then V' has the same highest weight A .

In order to check, that the section k is special for (I', V), let us note that
the identity matrix ¢ € V is [-invariant. This implies that

[o@D]z [0 @], =[s®e], =} p®]. 2EL yET

(here we have chosen a basis in VO, consisting of eigenvectors for oy (4), and
the corresponding “matrix” basis in V).

Usign fact 1 above, choose G0 -modules VOi whose highest weights form a
basis of a* and use the comresponding Gmodules Vi to construct a map
m: X —->qa Then k isa Siegel section of the map.

By Cartan decomposition, there exists a ball B, C G0 such that

G, =B, At . B,. Since A/L is compact, we can enlarge B, so that
B, - Lt. B, =G,. This means that for the ball B =R x B, C G the Siegel
domain S = Bpx(L*) covers X.
Example 4.3.2. T' is commesurable to a maximal compact subgroup K of G
(i.e. T' N K has finite index in both I and KX). Usign fact 2 above, we can
assume T' = K. Choose a maximal split torus A C G and a positive root system
stCcr= E(_ G), and consider the standard section k; 4 > G.

Using fact 1 above; choose G-modules (p;, V;) and define a map m: X—a
Since I' is compact, k is special for (I', V), i.e. it is a Siegel section.

By Cartan decomposition, there exists a ball B C G such that BAT - K=0G.
Hence for some larger ball B Siegel domain S = Bpk(L*) covers X.

Example 4.3.3. I ={e}, X = G. In this case the standard measure m, coincides
with the Haar measure My - Hence Ty t)y = my By = Hy (B(t)). It is well
known that this volume grows exponentially in ¢.

Remark: In the case when I' ={e}, the natural model of a large scale space
X =G isgiven by K\ G. If F is Archimedean, this is just the symmetric
space of G. For non-Archimedean F, consider the Bruhat-Tits building B
of the group G (with a right action of G). If we fix a vertex b € B, then
the map g~ bg is a large scale equivalence of G with B, which gives a nice
model of the large scale space G.

Note that for any subgroup I' C G the space B/T" gives a nice model of the
large scale space X = G/I'. The building B is a union of images of natural
simplicial maps a© — B, which shows that this model is closely related to the
at -models we are considering.
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Example 4.3.4: F = R, T C G is an arithmetic subgroup. By the definition of
an arithmetic group, there exists a connected reductive ®-group G, a subgroup
1"0 = G(Z) C G(R), and an epimorphic homomorphism with compact kernel
p < G(R),» G, such that p(FO) is commensurable with T". Using fact 2 above,
we can reduce our analysis to the case G = G(R), T = r,.

Choose a maximal Q-split torus 4 € G and a positive root system T+ C T =
Z(G, A). For our sections «: A > G we will choose all the AG(Q)—conjugates
of the standard embedding 4 - G.

We claim that any such section k isspecial for (I, ¥) if (p, V) isa G-modu-
le defined over Q. Indeed, in this case we can choose a basis in V(®Q), consisting
of eigenvectors for k(4). If we denote by V(Z) the lattice spanned by this
basis then there exists a subgroup of finite index, I, €T, which preserves this
lattice, and, without loss of generality, we can assume that l"1 =T (see fact 2).
Then for any ¥ €T p(y) is a nondegenerate mairix with integral entries, and
hence for any g €x(L) | p(g)| < | olev)] -

Using fact 1, choose G-modules (pi, Vi) defined over @, and using them
constructamap m. X - a.

Consider a pair (B, 4,), where P isa minimal Q-ational parabolic subgroup,
A4, CP amaximal Q-split torus. Then we can find a section k : 4 - G which
will identify (4, 1) with 4, Z®).

In [Bor], a Siegel domain S for P is defined as S =KA* §, where K is
the maximal compact subgroup of G, £ a compact subset of P. It is also
shown in [Bor] that the set {aga—} la € AT, g € 2} is relatively compact in G.
Hence for some ball B Br(L*t) D S, i.e. Siegel domain S(k) = Bpr(LT) C X
which we use contains the image of the Siegel domain S defined in [Bor]. It
is shown in [Bor] that one can choose a finite number of parabolic subgroupes
P]., J =1, ...,k and the corresponding Siegel domains Sj, so that their images
cover X. If we consider the corresponding sections k, : A - G, and choose
a large enough ball B C G, then Siegel domains S(Kj) = BpK].(L+) will cover
X, which shows that m ; X >a isan a-model.

Example 4.3.5. T' = U, a maximal unipotent subgroup of G. Fix a maximal
split torus A C G, normalizing U, andset £ =24, G); Z7 =24, U).

Each w € W = Norm(4, G)/Cent(4, G) definesa homomorphism w:A4—->A4CG,
and we consider these homomorphisms as sections. These sections are (I', ¥)-
special for any G-module (p, V). Indeed, choose a basis in V, consisting
of A eigenvectors. Then in this basis p(a) is diagonal for @ € A, and p(y)
is unipotent and uppertriangular for y €', which implies that || p(a) | < | play)|
forall a€ A, ye€T.

Choose G-modules (o Vi), as in fact 1, and consider the corresponding
map m . X - a. Iwasawa decomposition of G shows, that for some ball B C G,
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= BLU. Since L isa unionof wL™, w €W, we see that Siegel domains
s, = Bpw(L*) cover X, and hence m: X > g isan a*-model
Remark 1: In this case, one can easily describe a better model for X. Namely,
consider g as before, and construct an g-model m' : X - a, which corresponds

to the trivial reflection group in a, as follows:
. m'@) = log | p(@) v; | flog] ¢,

where v; € Vi is a U-invariant vector of weight )\i.

The corresponding section L — G is the standard embedding. Thus m' is

a large scale equivalence of X and a The map m can be obtained from m’
using the composition X Sa ~a/W ~a™,
Remark 2: Suppose we are studying the G-module H = Ind% (¥), where
Y : U > C* isa nondcgenerate character of U. Then it is easy to check that
a weight w on & ~ X is y-summable provided that it is summable on a*.
Thus the correct large scale model of the pair (X, ¢) should be a* and not a.
Example 4.3.6. T is an open subgroup of finite index of<the fixed point group
G° for some involution ¢: G »> G.

Using fact 2 above, we can assume that I' = G°, Let 4 C G be a maximal
split torus such that ¢(a) = a~ 1 for a € A. We will assume the following facts:

() £ = Z(4, &) is aroot system, and elements w € W(Z) are realized by
inner automorphism of G.

(ii) There exists a ball B C G such that G = BAT.

For F = R these facts are proven in [Ro], but probably they are true for
any local field F with char(F) # 2. To every G-module (pO, Vo) assign a
G-module (p, ¥) by V =End(V,), p@)v) = p,@wp,(a(®)™!). If ¥, has
highest weight A, then V has highest weight A = 2N;- Let us show that
there exists a C >0 such that | p(a)| < | p(ay)| forall a €A, v ET. Indeed,
the identity matrix e € V is I'-invariant,so | p(@7) | 2 | plav)e| , =] p(@e |, =
| p(@)], where we compute the norms with respect to a basis in V0 consisting
of eigenvectors for 4.

Choose G-modules 0, ; Voi), as in fact 1, and using the corresponding
modules (pi, Vl.) constructamap m: X >a

Fix a positive Toot system X' C X and consider sections w: 4 -4 CG
defined by elements w € W = W(ZX). Then all of them are Siegel sections. As
follows from (ii), for large enough ball

B G=BLI'=U Bw(l*)T,
w

which means the Siegel domains S, cover X.
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Remark: Set W' = Norm (4, I')/Cent(4, T') ¢ w1 think that the following facts
are true:

(i) W' is a reflection group in a.

(ii) There exists a large scale equivalence m' : X > a/W' such that m is
equivalent to the composition

X>a/W —>a/W~a*.

For F = 1R these facts can be deduced from [Ro].

4.7. Proofs for 4.4

In this section we consider adelic groups. We fix a global field F and denote
by A the corresponding ring of adeles. We also fix a reductive F-group G,
denote by G the corresponding adelic group G (A), and by r, the algebraic
radial function on G (see 4.4).

In order to describe the homogeneous spaces X = G/I' which have polynomial
growth, we will use the same strategy as in 4.6, with the following modifications.
Step 1: Let A be a split F-torus, 4 = A(A), L = Hom(G,, 4),a=L e R.
We fix an element ¢ € A* such that [c¢|>1 and | <y | = 1 for all places p.
Then we identify L with a subgroup of A4 using an embedding i: L — A,
2+ f(c). - The inverse homomorphism j: A —>a is given by the condition
(A, f(a)) = log| Na) | [log| c|, for A€ L* Since joi:L —a isthe natural
embedding, A/LA(F) is compact, and j(A(F)) = 0, we see that i and j give
mutually inverse large scale equivalences of L ~ g and A/A( F). We choose
=, T, asbefore, and set AT =;"1(a").

Step 2: We fix a system of sections « : A - G, all conjugate under G(F), and
define highest weight G-modules as in 4.6.

We define the norm | | on GL(n, A) by ”g | =1| g, |, for g = (gp).
For every finite-dimensional vector space V over F we define a norm on
GL(V({A)) using some isomorphism V= F7,

For every G-module (p, V) we define a large scale map m,, - G >R by
m,€)=log| p(g)| . If V has highest weight A, then for any section k: A4->G
the function m, (k(2)) on L* isequivalent to (A, © log|c|. Indeed, in a
basis of eigenvectors for k(4) we have for each € L7 | p((2)) I
I | p(K(Q))p |= 11| ¢, ]”"2) =lc]| %) (here we used that | ¢, |21 forall
places p, see 4.6).

Step 3: We define functions ml;, :V—->R and amap m: X - a using G-mo-
dules (o, V) asin4.6. We call a section k: 4 > G (I, V)-special if

| o(er) | > | p(g) | for g € k(L*), v €T; and we call it a Siegel section if
itis (T, Vi)-special forall i
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Now consider

Example 4.4.1. T = G(F). Choose a maximal F-split torus 4 C G and a positive
root system Tt C ¥ = Z(4, G). We claim that the standard section k : 4 = G
is (I, V)-special for any highest weight G-module V, ie. | p(gY) | > | p(@) |
forall g€L* ,yET.

Indeed, choose a basis of ¥V consisting of eigenvectors for 4, and for each
g € G denote by p(g)i]. the matrix entries in this basis. We can choose an order-
ing of the basis such that p(g), 1= >\(g) for g € A, where A is the highest
weight of V.

Choose an idex j such that the entry b = ,o('y)1 1{ € F is nonzero. Then
p(Y) ; = b - ™Y, and therefore | p(#Y) | 2 [ ™V =|c| M =] (9 |

for R€Lt.

" As follows from [Bor), there exists a ball B C G such that BATI'=G. Since
A/LA(F) is compact and A(F) C T, we can enlarge B sothat BL™T' =G,
ie. so that the Siegel domain S=B-p(L*) coincides with X. Thus
m: X —>a* isa large scale equivalence.

Remark: The decomposition G = BL*T implies that the space X = G/T" is
compactly generated in the sense of 4.5, and that the resulting natural large scale
on X isequivalent to the algebraic one.

Example 4.4.2. Let P C G be a parabolic subgroup, P = MU its Levi decompo-
sition, I' = P(F) - U(A) CG.

This example is a mixture of examples 4.4.1. and 4.3.5. We leave it to the

reader to define a map m : X - g and to show that it is an @ -model. In fact,
in this case one can construct a large scale equivalence m' : X —.a/W, , where
WM is the Weyl group of M. In order to do so one can either use the method
described in remark 1 to example 4.3.5, or to prove directly that as a large scale
space X is equivalent to M/M(F) = P/P(F) - U(A), using the fact that G/P
is compact.
Example 4.4.3. G = G0 X GO, I' = AGO. This is a negative statement, so let
us consider just the simplest case: F=G@Q, G0 = SL(2). We can write
G =GR)x G(H, X = XIR) x X(f), where (R) stands for the real compo-
nent, (f) for the product of all the p-adic components. Let us ignore the real
component, which we have already analyzed in example 4.3.1, and consider
the group G(f) and its homogeneous space X(f).

Let N be the set of natural numbers with a distance function
d(n, m) = log n + log m — 2 log(n, m) where (n, m) is the greatest common
divisor of m and n. Using Cartan decomposition for p-adic groups it is easy
to check that the natural embedding N — X(f), n — diag(n, n'l) is a large
scale equivalence, which provides a concrete model for the large scale space

X(N.
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This model shows that the space X(f) has exponential growth.

On the other hand, using the same model we can describe summable weights
which are close to minimal. (Namely the weight w(n) = n(log n)? is summable
for d > 1 and is not summable for d < 1. This shows that as a large scale
space X(f) has a very regular structure, without being a space of polynomial
growth.

We will leave it to the reader to construct an explicit model for the homogene-
ous space X in example 4.4.4.
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