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1. Introduction

Let G be a linear reductive real Lie group G with Lie algebra g1.
Let us fix a maximal compact subgroup K of G. The representation
theory of G admits an algebraic underpinning encoded in the notion of
a Harish-Chandra module.
By a Harish-Chandra module we shall understand a finitely gener-

ated (g, K)-module with finite K-multiplicities. Let us denote by HC
the category whose objects are Harish-Chandra modules and whose
morphisms are linear (g, K)-maps. By a globalization of a Harish-
Chandra module V we understand a representation (π, E) of G such
that the K-finite vectors of E are isomorphic to V as a (g, K)-module.
Let us denote by SAF the category whose objects are smooth ad-

missible moderate growth Fréchet representations of G with continuous
linear G-maps as morphisms. We consider the functor:

F : SAF → HC, E 7→ EK−fin := {K − finite vectors of E} .
The Casselman-Wallach globalization theorem ([5], [16] and [18],

Sect. 11) essentially asserts that F is an equivalence of categories. To
phrase it differently, each Harish-Chandra module V admits an SAF -
globalization (π, V ∞) which is unique up to isomorphism. It follows
that

V ∞ = π(S(G))V
where S(G) is the Schwartz-algebra of rapidly decreasing functions on
G, and π(S(G))V stands for the vector space spanned by π(f)v for
f ∈ S(G), v ∈ V . In particular, V is irreducible if and only if V ∞ is
an algebraically simple S(G)-module.
The objective of this paper is to present a new approach to the

globalization theorem.
Our approach starts with a thorough study investigation of the topo-

logical nature of SAF -globalizations. A norm p on a Harish-Chandra
module V will be called G-continuous provided the completion Vp of
the normed space (V, p) gives rise to a Banach-representation of G. We
introduce the Sobolev order on the set of G-continuous norms:

p ≺ q :⇐⇒ (∃C > 0, k ∈ N0)(∀v ∈ V ) p(v) ≤ Cqk(v)

where qk refers to the k-th Sobolev norm of q. Two G-continuous norms
will be called Sobolev-equivalent provided p ≺ q and q ≺ p.

1Throughout this text Lie groups will be denoted by upper case Latin letters,
G, K, N ... , and their corresponding Lie algebras by lower case German letters g,
k, n etc.
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Casselman’s subrepresentation theorem implies that every Harish-
Chandra module admits a G-continuous norm. Within our terminology
the Casselman-Wallach theorem now reads:

Theorem 1.1. Any two G-continuous norms on a Harish-Chandra
module V are Sobolev-equivalent.

On a technical level it is quite cumbersome to deal with arbitrary
G-continuous norms p. However, the algebraic fact that K- multiplic-
ities on a Harish-Chandra module are polynomially bounded, implies
that the smooth vectors V ∞

p form a nuclear Fréchet space. It implies
that every G-continuous norm is Sobolev-equivalent to a K-invariant
Hermitian norm (see Theorem 5.5 below).
It is convenient to introduce an auxiliary notion and call a Harish-

Chandra module good provided it admits a unique SAF -globalization.
Note that the Casselman-Wallach Theorem is the assertion that all
Harish-Chandra modules are good. Using elementary functional anal-
ysis we show in Section 7 that a Harish-Chandra module is good if and
only if its associated matrix coefficients satisfy certain lower bounds
which are uniform in the K-types (see Theorem 7.1).
Section 8 with Appendix A is devoted to minimal principal series

representations( i.e. representations which are induced off a minimal
parabolic subgroup) and their canonical Hilbert-globalizations as sub-
spaces of L2(K). For such representations we define a Dirac-type se-
quence and establish essentially optimal uniform lower bounds for K-
finite matrix coefficients (see Theorem 12.3 below). As a consequence
we obtain that Harish-Chandra modules V of the minimal principal se-
ries are good. In addition we exhibit a generator ξ ∈ V and an explicit
linear continuous section of the quotient homomorphism

S(G)→ V ∞, f 7→ π(f)ξ ,

which depends holomorphically on the representation parameter of π
(see Theorem 8.1 and 12.8).
According to Casselman’s subrepresentation theorem one can embed

every Harish-Chandra module into a parabolically induced representa-
tion. In view of our results in Section 6 this implies that every Harish-
Chandra module admits a minimal and maximal G-continuous norm
with respect to the Sobolev order ≺ (see Cor. 8.3). Let us note that
this important technical step is likewise implied by Wallach’s upper
bounds on matrix coefficients (see [17], Theorem 4.3.5).
In Section 9 we show that ”good” is preserved by extensions, in-

duction and tensoring with finite dimensional representations. These
elementary technical results are useful in the sequel. In particular it
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follows that the task to show that all Harish-Chandra modules are good
is reduced to irreducible modules.
In Section 10 we present Casselman’s technique of holomorphic de-

formations of Harish-Chandra modules which, via Langlands classifi-
cation, leaves us to establish that all Harish-Chandra modules of the
discrete series are good. For a module V of the discrete series we
proceed as follows: we embed V into a minimal principal series repre-
sentation and are left to show that the unitary norm on V is Sobolev
equivalent to the minimal norm. This in turn is reduced to a famil-
iar result on meromorphic continuation of certain distributions (see [1]
and Appendix B of this paper). In this context we wish to point that
the fact that discrete series modules are good can be also proved using
Wallach’s upper bounds ([17], Theorem 4.3.5 and [18], Prop. 11.7.4).
In summary, we provide a functional analytic language for globaliza-

tions and emphasize that our main input, i.e. the estimates for minimal
principal series representation in Section 8, cannot be deduced from
the Casselman-Wallach theorem. In addition our bounds for matrix
coefficients are locally uniform in the representation parameters and
yield a Casselman-Wallach theorem for holomorphic families of Harish-
Chandra modules (see Theorem 11.6). This, for instance, is useful for
the theory of Eisenstein series (see Theorem 11.7 and Remark 11.8).
It was our intention to write an essentially self-contained account

on the subject which is accessible to graduate students. The reading
requires a good understanding of functional analysis and some basic
knowledge about real reductive groups and Harish-Chandra modules
as to be found in Wallach’s text book [17], Sect. 1-3.

2. Basic representation theory I: growth of repre-
sentations

We begin with a discussion of scale structures on Lie groups which
give us an appropriate notion of size on the group. We then collect a
few standards definition and facts of representation theory on topolog-
ical vector spaces. After that we discuss growth issues of representa-
tions and introduce the notion of F-representation. We show that the
category of smooth F-representations is isomorphic to a category of
non-degenerate algebra representations of a certain Schwartz algebra.
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2.1. Scale structures on Lie groups

Throughout this text G will denote a Lie group. It is our objective
to obtain a notion of size on G which will be suitable to define growth
for a representation.
By a scale on G we understand a function s : G→ R+ such that:

• s and s−1 are locally bounded,
• s is submultiplicative, i.e. s(gh) ≤ s(g)s(h) for all g, h ∈ G.

We introduce an ordering 4 on the space of scale functions by

s 4 s′ :⇐⇒ (∃C > 0, N ∈ N)(∀g ∈ G) s(g) ≤ Cs′(g)N .

This gives us a notion of equivalence ∼ on scale functions:

s ∼ s′ :⇐⇒ s 4 s′ and s′ 4 s′ .

By a scale structure on G we understand an equivalence class [s] of a
scale function s.
Note that every equivalence class [s] admits a continuous represen-

tative. Henceforth we will only consider continuous scale functions.
Let us discuss the various natural scale structures.

2.1.1. The maximal scale structure. Suppose that G is connected and
fix a left-invariant Riemannian metric g on G. Associated to g is the
distance function d(g, h), i.e. the minimum length of piecewise smooth
curve joining g and h in G. Note that d(·, ·) is left G-invariant and
hence can be recovered from

d(g) := d(g, 1) (g ∈ G) .
Note that d(g) is subadditive, i.e. d(gh) ≤ d(g) + d(h) for all g, h ∈ G.
Hence smax(g) := ed(g) defines a scale function on G. This scale is
maximal in the sense that for any other scale s we have s 4 smax (see
[7], Lemme 2). In particular, the equivalence class [smax] of smax is
independent of the choice of the particular left invariant metric. In the
sequel we will refer to [smax] as the maximal scale structure.

2.1.2. Algebraic scale structure. Let G be a real algebraic group. We
fix a faithful algebraic representation ι : G→ Gl(n,R). Then

‖g‖ := tr(ι(g)ι(g)t) + tr(ι(g−1)ι(g)−t) (g ∈ G)
defines a smooth scale function on G. If we choose another faithful
algebraic representation ι′ : G→ Gl(n′,R), and if ‖·‖′ is the associated
scale on G, then ‖ · ‖ and ‖ · ‖′ are equivalent. The resulting scale
structure on G will be referred to as the algebraic scale structure. We
often refer to ‖ · ‖ as a norm on G – see [17], Sect. 2.A.2 for the notion
of norm on a reductive group.
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Lemma 2.1. Let G be a connected real reductive group. Then the
algebraic and the maximal scale structure coincide.

Proof. Let ι : G→ Gl(n,R) be a faithful representation and henceforth
view G as a subgroup of Gl(n,R). We recall the Cartan decomposition
G = KAK where K < G is a maximal compact sungroup and A a non-
compact torus. From the definitions of the scale structures involved it
is easy to see that they coincide on A. The assertion follows. �

Remark 2.2. The maximal and algebraic scale structure of the alge-
braic group G = (R,+) are different (polynomial versus exponential
growth).

In the sequel we will understand in this paper by a Lie group G a
pair (G, [s]) where [s] is a scale structure. If G is real reductive, then
[s] shall be the maximal scale structure.

2.2. Representations on topological vector spaces

All topological vector spaces E considered in this paper are under-
stood to be locally convex. We denote by Gl(E) the group of all topo-
logical linear isomorphisms of E.
Let G be a Lie group and E a topological vector space. By a represen-

tation (π, E) ofG on E we understand a homomorphism π : G→ Gl(E)
such that the resulting action G×E → E is continuous. We emphasize
that continuity is requested in both variables. For an element v ∈ E
we shall denote by

γv : G→ E, g 7→ π(g)v

the corresponding continuous orbit map. The following Lemma is stan-
dard (cf. [19], Sect. 4.1).

Lemma 2.3. Let G be a Lie group, E a topological vector space, π :
G → Gl(E) a group homomorphism and G × E → E the resulting
action. Then the following statements are equivalent:

(i) The action G× E → E is continuous, i.e. (π, E) is a repre-
sentation.

(ii) (a) There exists a dense subset E0 ⊂ E such that for all
v ∈ E0 the orbit map γv : G→ E is continuous.

(b) For every compact subset Q of G the set {π(g) | g ∈ Q}
is an equicontinuous set of linear endomorphisms of E.

If π : G→ Gl(E) is a group homomorphism, then we say π is locally
equicontinuous if condition (b) in the Lemma above is satisfied.
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Remark 2.4. (a) Let π : G → Gl(E) be homomorphism. If E is a
Banach space, then, in view of the uniform boundedness principle, the
following statements are equivalent:

• The action G× E → E is continuous, i.e. (π, E) is a repre-
sentation.
• For all v ∈ E the orbit map γv is continuous.

In the existing literature one mostly considers representation on Banach
spaces and uses the second bulleted item as a definition for represen-
tation. Let us emphasize that these two notions will be different in
general.
(b) Suppose that (π, E) is a representation on a semi-normed space E.
Then all operator norms of π(g) are locally bounded in g ∈ G.
If (π, E) is a representation, then we call a continuous semi-norm p

on E a G-continuous semi-norm, if G× (E, p)→ (E, p) is continuous.
Here (E, p) stands for the vector space E endowed with the topology
induced from the semi-norm p.

Remark 2.5. Let p be a G-continuous semi-norm on a representation
module E and Ep be the completion of (E, p). As G× (E, p)→ (E, p)
is continuous, we obtain a representation of G on the Banach space Ep.

Let (π, E) be a representation of G. If E is a Banach (Hilbertian,
Fréchet) space, then we speak of a Banach (Hilbertian, Fréchet) repre-
sentation of G.

2.3. Growth of a representation

In this section G = (G, [s]) denotes a Lie group with scale structure
[s].
Let (π, E) be a representation of G on a semi-normed space (E, p).

Then

sπ : G→ R+, g 7→ ‖π(g)‖
is a scale. We call sπ the scale associated to (π, E). We will say that
(π, E) is [s]-bounded provided sπ 4 s.
A G-continuous semi-norm p on a representation module E will be

called [s]-bounded provided G× (E, p)→ (E, p) is a [s]-bounded repre-
sentation.

Definition 2.6. A representation (π, E) of G = (G, [s]) will be called
an F -representation provided E is a Fréchet space whose topology is
induced by a countable family of G-continuous [s]-bounded semi-norms
(pn)n∈N.
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Let us emphasize that Fréchet spaces are complete topological vector
spaces. In the context of F -representations this will play an important
role when it comes to vector valued integration.

Example 2.7. (a) If [s] is the maximal scale structure, then any rep-
resentation on a semi-normed space is [s]-bounded.
(b) Let G = (R,+) endowed with the algebraic scale structure. Then a
character π : G→ C∗ is [s]-bounded if and only if π is unitary.

Remark 2.8. (Fréchet representations versus F -representations) Let
us emphasize that a Fréchet representation is not necessarily an F -
representation. Here are some examples:
(a) Let G be non-compact connected Lie group and E = C(G) be the
space of continuous function on G. Then E, endowed with the topology
of compact convergence, becomes a Fréchet space. Let π denote either
the left or right regular action of G on E. Then (π, E) is a Fréchet but
not an F -representation.
(b) Let G = Sl(2,R), B < G the standard Borel subgroup and χ : B →
C∗ a character. Let E be the G-module of hyperfunction sections of
the line bundle G ×B Cχ → G/B. As a topological vector space E is
isomorphic to the hyperfunctions on the circle, hence a Fréchet space.
This yields a Fréchet representation which is not an F -representation.
More generally, if (π, E) is the maximal globalization of a Harish-

Chandra module (in the sense of Schmid, see [13]), then (π, E) is a
Fréchet representation but not an F -representation.

Recall that the category of Fréchet spaces is closed under taking
closed subspaces and quotients by closed subspaces. The same holds
for the category of F-representations. We record this fact, but skip the
very easy proof:

Lemma 2.9. Let (π, E) be an F -representation and H ⊂ E a closed
G-invariant subspace. Then the corresponding sub and quotient repre-
sentation on H, resp. E/H, are F -representations.

2.3.1. Representations of moderate growth. In [5] Casselman calls a
Fréchet representation (π, E) of a real reductive group G of moderate
growth provided for any semi-norm p on E there exists a semi-norm q
on E and an integer N > 0 such that

p(π(g)v) ≤ ‖g‖Nq(v) (g ∈ G) .
For an arbitrary Lie group G = (G, [s]) one thus might call a represen-
tation of moderate growth if for any semi-norm p on E there exists a
semi-norm q on E and an integer N > 0 such that

p(π(g)v) ≤ s(g)Nq(v) (g ∈ G) .
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Lemma 2.10. Let (π, E) be a Fréchet representation of the Lie group
(G, [s]). Then the following statements are equivalent:

(i) (π, E) is of moderate growth.
(ii) (π, E) is an F -representation.

Proof. By definition any F -representation is of moderate growth.
Conversely, assume that (π, E) is of moderate growth and let p, q

and N > 0 be as in the definition above. Then

p̃(v) := sup
g∈G

p(π(g)v)

s(g)N

defines a semi-norm on E such that

• p ≤ p̃ ≤ q.
• p̃(π(g)v) ≤ s(g)N p̃(v) for all g ∈ G.

The first bulleted item implies that the semi-norms p̃ define the topol-
ogy on E. The second bulleted item yields that p̃ is G-continuous and
[s]-bounded.

�

2.4. Smooth vectors and smooth representations

2.4.1. Smooth vectors.

Definition 2.11. Let (π, E) be an F -representation of G. We call a
vector v ∈ E smooth if γv is a smooth map. We denote by E∞ the
vector space of all smooth vectors.

Remark 2.12. It is common to define smooth vectors for arbitrary
representations (π, E): one says v ∈ E smooth provided γv is a smooth
map [4]. If (π, E) is not an F -representation then this leads to coun-
terintuitive examples:

(i) The regular action of a compact group G on the space of dis-
tributions E = C−∞(G) would be smooth. More generally, if
(π,H) is a Hilbert representation of G and H−∞ the topologi-
cal dual of H∞, then H−∞ would define a smooth representa-
tion.

(ii) Let (π, E) be a Banach representation and Eω the space of
analytic vectors with its natural inductive limit topology. The
dual strong dual E−ω of Eω, the space of hyperfunction, is a
Fréchet space. The induced action of G on E−ω would be a
smooth representation.
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Note that U(g), the universal enveloping algebra of the Lie algebra
g of G, acts naturally on E∞. As customary we denote this algebra
action by dπ.

2.4.2. Sobolev semi-norms. For a continuous semi-norm p on E we wish
to associate a family of Sobolev semi-norms (pk)k∈N0 . We proceed as
follows: Fix a basis X1, . . . , Xn of g. For all k ∈ N0 and v ∈ E∞ we set

pk(v) :=
[ ∑

m1+...+mn≤k

p(dπ(Xm1
1 · . . . ·Xmn

n )v)2
] 1

2

and refer to pk as a k-th Sobolev norm of p.

Remark 2.13. (a) The definition of pk depends on the choice of the
basis X1, . . . , Xn. However, a different basis yields an equivalent semi-
norm.
(b) If p is G-continuous (resp. Hermitian), then so is pk for any k ∈ N0.

2.4.3. Smooth representations. In the sequel we view E∞ as a topo-
logical vector space with the locally convex topology induced by all
Sobolev semi-norms.

Definition 2.14. An F -representation (π, E) is called smooth if E =
E∞ holds as topological vector spaces.

Let us denote by C∞(G,E) the space of E-valued smooth functions.
We endow C∞(G,E) with the topology of smooth compact conver-
gence. We let G act on C∞(G,E) as

g · f(x) := π(g)f(g−1x) (g, x ∈ G; f ∈ C∞(G,E)

and note that this action is continuous. Hence the space of G-invariants
C∞(G,E)G is a closed subspace of C∞(G,E). The following standard
fact is found in [4].

Lemma 2.15. Let (π, E) be an F -representation of G. Then the map

E∞ → C∞(G,E)G, v 7→ γv

is an isomorphism of topological vector spaces. In particular, E∞ is
complete.

In the sequel we call a smooth F -representation simply SF -representation.

Corollary 2.16. Suppose that (π, E) is an F-representation. Then
(π, E∞) is an SF-representation of G.
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2.5. Integration of representations and algebra actions

Let us denote byM(G) the Banach space of complex Borel measures
on G. We recall thatM(G) carries a natural Banach algebra structure
by convolution of measures:

(µ ∗ ν)(f) := µx(νy(f(yx)))

for µ, ν ∈ M(G) and f ∈ Cc(G). We denote by Mc(G) ⊂ M(G) the
subalgebra of compactly supported complex measures.

Remark 2.17. The left action of G on G induces an action of G on
M(G) by isometries. This natural action is not continuous, i.e. does
not define a representation. Call a measure µ continuous provided the
orbit map

G→M(G), g 7→ (λg)∗µ

is continuous. Here λg(x) = gx for x ∈ G is the left translate. Let us

denote by M̃(G) the space of continuous complex measures. If we fix
a left Haar measure dg on G, then the map

L1(G)→ M̃(G), f 7→ f · dg
provides an isomorphism of Banach algebras.

If (π, E) is representation of G on a complete topological vector
space, then we denote by Π the corresponding algebra representation
ofMc(G):

(2.1) Π(µ)v =

∫

G

π(g)v dµ(g) (µ ∈Mc(G) v ∈ E) .

Note that the defining vector valued integral converges as E is com-
plete.
Depending on the type of the representation (π, E) larger algebras

asM(G) might act on E. For instance if (π, E) is a bounded Banach
representation, then Π extends to a representation of M(G). The
natural algebra acting on an F -representation is the algebra of rapidly
decreasing complex measures on G.
The space of rapidly decreasing continuous complex measures on G

is defined as

R(G) := {µ ∈ M̃(G) | (∀n ∈ N) s(g)n ∈ L1(G, |µ|)} .
Let us emphasize that R(G) only depends on the scale structure [s].
We write L × R for the regular representation of G × G on functions
on G:

(L×R)(g1, g2)f(g) := f(g−1
1 gg2)
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for g, g1, g2 ∈ G and f ∈ C(G). The following properties of R(G) are
easy to verify:

• (L× R,R(G)) is an F -representation of G×G.
• R(G) is a Fréchet algebra under convolution.
• Any F-representation (π, E) of G integrates to a continuous
algebra representation

(2.2) R(G)× E → E, (µ, v) 7→ Π(µ)v,

i.e. the E-valued integrals in (2.1) converge absolutely, the
bilinear map (2.2) is continuous and Π(µ ∗ ν) = Π(µ)Π(ν)
holds for all µ, ν ∈ R(G).

For u ∈ U(g) we will abbreviate Lu := dL(u) and likewise Ru for
the derived representations. The smooth vectors of (L × R,R(G))
constitute the Schwartz space

S(G) := {f · dg | f ∈ C∞(G);∀u, v ∈ U(g), ∀n ∈ N

s(g)nLuRvf ∈ L1(G)} .
It is clear that S(G) is a Fréchet subalgebra of R(G) (see [17], Sect.
7.1 for a discussion in a wider context if G is reductive).

Remark 2.18. Suppose that [s] is the maximal or algebraic scale struc-
ture on G. Then for a function f ∈ R(G) the following assertions are
equivalent: (1) f is in S(G), i.e. f is L × R-smooth; (2) f is R-
smooth; (3) f is L-smooth. In fact, a left derivative Lu at a point
g ∈ G is the same as a right derivative RAd(g)−1u at g. Now observe
that ‖Ad(g)‖ ≤ Cs(g)C for all g ∈ G and a fixed C > 0.

The natural algebra to consider for a SF-representation is the Schwartz
algebra S(G) (see Proposition 2.20 below).

Remark 2.19. If (π, E) is a smooth Fréchet-representation, then
Π(C∞

c (G))E = E by Dixmier-Malliavin [6]. Assume in addition that
(π, E) is a SF-representation. As R(G) acts on E and R(G) ⊃ S(G) ⊃
C∞
c (G), we deduce that Π(S(G))E = Π(R(G))E = E.

If A is an algebra without 1 and M is an A-module, then we call M
non-degenerate provided AM =M .

Proposition 2.20. Let G be a Lie group. Then the following categories
are equivalent:

(i) The category of SF-representations of G.
(ii) The category of non-degenerate continuous algebra represen-

tations of S(G) on Fréchet spaces.
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Proof. We already saw that every SF-representations (π, E) gives rise
to a non-degenerate continuous algebra representation (Π, E) of S(G).
Conversely let (Π, E) by a continuous non-degenerate algebra repre-
sentation of S(G). Let us denote by S(G)⊗̂πE the projective tensor
product of S(G) and E. Clearly S(G)⊗̂πE is a Fréchet space and we
define an SF-module structure for G by

g · (f ⊗ v) := L(g)f ⊗ v (g ∈ G, f ∈ S(G), v ∈ E) .
As Π is non-degenerate, E becomes a quotient of S(G)⊗̂πE and Lemma
2.9 completes the proof. �

3. Basic representation theory II: Banach represen-
tations

In this section we investigate Banach representations, in particu-
lar we are interested in the fine Sobolev structure of smooth vectors.
We view Banach representations as appropriate local models for F-
representations and point out that the main results in this section hold
for F-representations as well.

3.1. Contragredient representations

Throughout this section we let E denote a Banach space. We denote
by E∗ its topological dual. We fix a norm p on E and note that E∗ is
Banach space with respect to the dual norm

p∗(λ) := sup
p(v)≤1

|λ(v)| (λ ∈ E∗) .

Let (π, E) be a Banach representation of G and consider the group
homomorphism

π∗ : G→ Gl(E∗), π∗(g)(λ) := λ ◦ π(g−1) .

From the local equicontinuity of π the local equicontinuity of π∗ fol-
lows (see [15], Ch. 19). However, orbit maps for π∗ might fail to be
continuous as we will see in an example below.
The fact that orbit maps for π∗ might fail to be continuous can be

dealt with in the following way. Let us consider the subspace Ẽ ⊂ E∗

consisting of those vectors λ ∈ E∗ for which the orbit map γλ : G→ E∗

is continuous (we call this space the continuous dual). Lemma 2.3

implies that Ẽ is a closed G-invariant subspace of E∗. Following [4] we



14 JOSEPH BERNSTEIN AND BERNHARD KRÖTZ

restrict the action of G to this subspace and obtain a representation

(π̃, Ẽ) that we call the contragredient representation of (π, E).
Let us denote by H(G) = C∞

c (G) · dg the algebra of smooth com-
pactly supported measures on G. The standard technique of Dirac
approximation yields:

Lemma 3.1. Let (π, E) be a Banach representation of G. Then the
following assertions hold:

(i) For all µ ∈ H(G) the operator Π∗(µ) is defined on E∗ and

maps E∗ into Ẽ.

(ii) The spaces Π∗(H(G))(Ẽ) and Π∗(H(G))E∗ are dense in Ẽ.

We write p̃ for the restriction of p∗ to Ẽ. Consider the natural iso-

metric morphism E → E∗∗. The inclusion Ẽ → E∗ yields a contractive

projection E∗∗ → (Ẽ)∗ and hence a contractive map i : E → ˜̃
E ⊂ (Ẽ)∗.

Proposition 3.2. Let (π, E) be a Banach representation of G and p

be a defining norm on E. Then the natural morphism i : E → ˜̃
E is an

isometric embedding.

Proof. We need to show that

(3.1) p̃∗(v) = p(v) (v ∈ E) .
As E∗∗ → (Ẽ)∗ is contractive, the inequality “≤” follows. As for the
reverse inequality let us fix a unit vector v ∈ E. By Hahn-Banach, we
find λ ∈ E∗ with p∗(λ) = 1 such that λ(v) = 1. Let ǫ > 0 and choose
a non-negative normalized µ ∈ H(G) such that p(Π(µ)v − v) < ǫ.
Set ξ := Π∗(µ∨)(λ), where µ∨ is the push-forward of µ under g 7→ g−1.

Then ξ ∈ Ẽ by the previous lemma. If we choose supp(µ) small enough
such that ‖ξ‖ ≤ 1 + ǫ, then

|ξ(v)| = |1 + λ(Π(µ)v − v)| ≥ 1− ǫ
and the proof is complete. �

Let us call a Banach representation (π, E) reflexive if the morphism

i : E → ˜̃
E is an isomorphism.

Note that Proposition 3.2 shows that (π, E) is reflexive if E is re-
flexive (see also [19], Cor. 4.1.2.3). The converse is not true as the
following example shows.

Example 3.3. Let G be a compact Lie group and (π, E) be the left
regular representation of G on E = L1(G). Then it is easy to check
that:
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(i) Ẽ = C(G) while E∗ = L∞(G).

(ii) C̃(G) = L1(G) while C(G)∗ is the space of Radon measures
on G.

This shows that a representation (π, E) can be reflexive while the Ba-
nach space E is not reflexive.

3.2. Induced Sobolev norms

Our definition of smooth vectors for a representation (π, E) was a
geometric one: we said v ∈ E is smooth if the orbit map γv : G → E
was smooth. Further we put a Fréchet topology on E∞ via the Sobolev
norms pk which turned (π, E∞) into an SF -module for G.
In this paragraph we will introduce a new class of Sobolev norms on

E∞ which are more quantitative and easier to work with.
To begin with we associate to λ ∈ E∗ and v ∈ E the matrix coeffi-

cient

mλ,v(g) := λ(π(g)v) (g ∈ G)
which is a continuous function on G and smooth provided v is smooth.
We fix a relatively compact neighborhood B of 1 in G and a test
function φ on G which is supported in B and positive near 1.
We denote by F the space of test function on G which are supported

in B. For a continuous semi-norm q on F we define a semi-norm pq on
E∞, the semi-norm induced by q, by

pq(v) := sup
p∗(λ)≤1

q(φ ·mλ,v) (v ∈ E∞) .

Note that the choices of both B and φ for the definition of Sps are
irrelevant; other choices yield equivalent norms.
Typical examples we have in mind for q are Lp-Sobolev norms or

semi-norms of the form q(f) = supg∈CB
|Df(g)| whereD is a differential

operator and CB a compact subset of B. Since mλ,v(g) = mλ,π(g)v(1) =
mπ̃(g−1)λ,v(1) we conclude that the semi-norms pq are G-continuous. In
the special case where q is the L2-Sobolev norm on F for order s ∈ R

we write Sps instead of pq.

Lemma 3.4. Let (π, E) be a Banach representation of G. Then the
following assertions hold:

(i) For all k ∈ N0 there exists a constant Ck > 0 such that

Spk(v) ≤ Ck · pk(v) (v ∈ E∞) .
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(ii) For all k ∈ N0 and s > k + dimG/2 there exists a constant
cs > 0 such that

pk(v) ≤ cs · Sps(v) (v ∈ E∞) .

Proof. The first assertion is obvious and the second is the standard
Sobolev Lemma. �

3.2.1. Laplace Sobolev norms. For our fixed basis X1, . . . , Xn of g we
define a Laplace-element

∆ := X2
1 + . . .+X2

n ∈ U(g) .
If p is a defining norm of E, then we set

∆p2k(v) :=
( k∑

j=0

p(dπ(∆j)v)2
) 1

2
(v ∈ E∞) .

We will refer to ∆p2k as the 2kth Laplace-Sobolev norm of p. Note that
∆p2k is equivalent to a norm induced from q where

q(f)2 =

k∑

j=0

|∆jf(1)|2 .

The next result is an immediate consequence of Lemma 3.4 and was
motivated by [8], Rem. 5.6 (b).

Proposition 3.5. Let G be Lie group and (π, E) be a Banach repre-
sentation of G. Then for all k ∈ N there exists a Ck > 0 such that

p2k(v) ≤ Ck · ∆p2k+dimG(v) (v ∈ E∞) .

In particular, the topology of E∞ is defined by the family of Sobolev
norms (∆p2k)k∈N.

We can put this into a more general context: For any s ∈ R we let
Es be the completion of E∞ with respect to Sps.

Lemma 3.6. For a Banach representation (π, E) the following asser-
tions hold true:

(i) E∞ =
⋂
s>0Es.

(ii) For all s ∈ R the map

dπ(∆) : Es → Es−2

has closed range. If it is injective, then it is an isomorphism
of Banach spaces.
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3.3. Action of distributions

In this paragraph e recall a few facts and notions about compactly
supported distributions on G and their action on smooth vectors.
Recall that C∞(G) carries a natural Fréchet topology and that its

dual, in symbols D′
c(G), are the distributions with compact support.

We let G act on C∞(G) by left translation in the argument. This
induces an action of U(g) on C∞(G). If u 7→ ut is the canonical anti-
automorphism of U(g), we then obtain action of U(g) on distributions
D′
c(G) by

(u ∗ T )(f) := T (utf) (u ∈ U(g), T ∈ D′(G), f ∈ C∞
c (G)) .

Note that D′
c(G) is an algebra under convolution: for S, T ∈ D′

c(G)
and φ ∈ C∞(G) define

(S ∗ T )(φ) := Sx(Ty(φ(xy))) .

By the fundamental theorem of distribution theory every T ∈ D′
c(G)

can be expressed as T = u ∗ f for some u ∈ U(g) and f ∈ Cc(G). One
checks that

Π(f)v :=

∫

G

f(g)π(g)dπ(u)v dg (v ∈ E∞)

does not depend on the representation T = u∗f and defines an algebra
action of D′

c(G) on E
∞.

Lemma 3.7. (Elliptic regularity) Let B be neighborhood of 1 in G.
Let m ∈ N be such that 2m > dimG. Then

δ1 = ∆m ∗ f1 + f2

for a C2m−dimG−1-function f1 and a smooth function f2, both supported
in B.

Proof. By local solvability and regularity of elliptic PDE (see [10], Th.
7.3.1 and Cor. 7.3.1) there exists a C2m−dimG−1-function f on G,
smooth on G\{1}, such that ∆m∗f = δ1 holds in a small neighborhood
V ⊂ B of 1 in G.
Let U be a relatively compact open neighborhood of 1 with U ⊂ V

and let ψ be a test function with ψ |U= 1 and suppψ ⊂ V . Set
f1 := ψf and f2 := ∆m(ψf) − ψ∆m(f) and note that f1 and f2 are
both supported in B with f2 smooth. �

Corollary 3.8. Let (π, E) is a Banach representation of G. Then for
u ∈ U(g) and m ∈ N as in Lemma 3.7:

(3.2) v = Π(f1)dπ(∆
m)v +Π(f2)v (v ∈ E∞)
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3.4. Banach representations for a reductive group

In this paragraph we assume that G is a real reductive group. We
fix a maximal compact subgroup K < G.
Recall the notion of Laplace-Sobolev norm ∆p2k for a Banach rep-

resentation (π, E). For that we fixed a basis X1, . . . , Xn to define the
Laplacian element ∆ =

∑n
j=1X

2
j . The choice of the basis is in fact irrel-

evant and henceforth we will use a specific basis which is suitable for us.
Such a basis is constructed as follows. Let k denote the Lie algebra ofK
and let g = k+p be the associated Cartan decomposition of g. We fix a
non-degenerate invariant bilinear formB(X, Y ) on g such thatB is neg-
ative definite on k and positive definite on p. If θ : g→ g is the Cartan-
involution associated to g = k + p, then 〈X, Y 〉 = −B(θ(X), Y ) is an
inner product. Our choice of X1, . . . , Xn will be such that X1, . . .Xm

forms an orthonormal basis of k and Xm+1, . . . , Xn is an orthonormal
basis of p.
With regard to our choice of basis we obtain a central element

(Casimir element) in Z(g) by setting

C = −
m∑

j=1

X2
j +

n∑

j=m+1

X2
j

and with ∆k :=
∑m

j=1X
2
j we arrive at the familiar relation

(3.3) C = ∆− 2∆k .

Let s ∈ N0 and define the 2s-th K-Sobolev norm of p by

p2s,K(v)
2 :=

s∑

j=0

p(∆s
kv)

2 (v ∈ E∞) .

We claim that K-Sobolev semi-norms ps,K can be naturally defined
for every s ∈ R. Heuristically this can be seen as follows: Let t < k

be a Cartan subalgebra. We fix a notion of positivity on t and identify
irreducible representations τ of K with its highest weight in it∗. For
an element λ ∈ it∗ we write |λ| for its Cartan-Killing norm. Now on
each K-type E[τ ] of E one has

−∆kv = (|τ + ρk|2 − |ρk|2︸ ︷︷ ︸
=:‖τ‖

)v (v ∈ E[τ ])

and it is clear how ∆s
k should be defined as an operator by breaking a

vector v ∈ E into its K-Fourier series. On a more formal level we note
that action of ∆s

k on E is realized by left convolution with a distribution
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Θs ∈ C−∞(K) on K. Hence the fact that C−∞(K) acts continuously
on every SF-module yields our claim.

Proposition 3.9. Let (π, E) be a Banach representation of a real re-
ductive group G. Suppose that one of the following conditions is satis-
fied:

(i) The linear map dπ(C) : E∞ → E∞ extends to a morphism on
E.

(ii) There exists a polynomial P such that P (dπ(C))|E∞ ≡ 0.

Then the topology on the SF-module E∞ is induced by the K-Sobolev
norms norms (p2n,K)n∈N0.

Proof. Assume first that dπ(C) extends to a continuous linear operator
on E. Let v ∈ E∞ and note that:

p(dπ(∆)v) = p(dπ(C + 2∆k)v) ≤ Cp(v) + 2p(dπ(∆k)v) .

The assertion follows with Proposition 3.5.
Assume now that the second condition is staisfied and let d be the

degree of the polynomial P . As ∆ = C + 2∆k we get for k ∈ N, k > d,
that

∆k =
m∑

j=0

Qj,k(C)∆j
k

with Qj,k polynomials of degree smaller than d. For m sufficiently
large, Lemma 3.7 yields δ1 = ∆m ∗ f1 + f2 with f2 smooth and f1 in
C2m−dimG−1(G) and both compactly supported. In particular we get
for l ∈ N0

∆l = ∆m+l ∗ f1 +∆l ∗ f2

=
m+l∑

j=0

∆j
k ∗Qj,m+l(C) ∗ f1 +∆l ∗ f2

With Fj := Qj,m+l(C) ∗ f1 and F = ∆l ∗ f2 we thus get

∆l =

m+l∑

j=0

∆j
k ∗ Fj + F .

If m is large compared to l, the Fj are continuous and F is smooth.
The assertion follows if we apply this identity to a smooth vector.

�

For a representation (π, E) of G let us write E∞
K for the space of

smooth vectors for the K-representation π |K .
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Corollary 3.10. Let (π, E) be a Banach representation of a real re-
ductive group G. Suppose that one of the conditions in Proposition 3.9
holds. Then E∞ = E∞

K .

Proof. Set V := E∞. We claim that V is dense in the Fréchet space
E∞
K .
In order to prove the claim we first note that the Garding subspace

ΠK(C
∞(K) · dk)E is dense in E∞

K . Let µ ∈ C∞(K) · dk be a smooth
measure and v = ΠK(µ)u for some u ∈ E. Let (νk)k∈N ⊂ C∞

c (G) ·dg be
a Dirac sequence so that uk := Π(νk)u→ u in E. Then vk := ΠK(µ)uk
is in E∞ and converges to v in E∞

K , establishing our claim.
The claim implies that E∞

K is the completion of V with respect to
(p2n,K)n∈N0 and the conclusion follows with Proposition 3.9. �

4. Harish-Chandra modules I: algebraic facts

In this section we will review some central algebraic facts about
Harish-Chandra modules. This is followed by a discussion of basic
topological properties of their globalizations in the following section.
From now on we assume that G is a linear reductive group. Let us

fix a maximal compact subgroup K of G.

By a K-module V we shall understand a complex vector space en-
dowed with linear algebraic action of K, that is V is a union of finite
dimensional algebraic K-representations.
If (π, E) is a representation of K, then we denote by EK−fin the

K-module consisting of K-finite vectors.
We call aK-module E weakly admissible provided for all finite dimen-

sional representations (τ,W ) of K the multiplicity space HomK(W,E)
is finite dimensional.
We call a representation (π, E) of G weakly admissible provided

EK−fin is a weakly admissible K-module.
By a (g, K)-module V we understand a module for g and K such

that:

• The derived action of K coincides with the action of g re-
stricted to k := LieK.
• The actions are compatible, i.e.

k ·X · v = Ad(k)X · k · v

for all k ∈ K, X ∈ g and v ∈ V .
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Remark 4.1. (a) If (π, E) is a weakly admissible Banach representa-
tion of G, then EK−fin consists of smooth vectors and is stable under g
– in other words EK−fin is a weakly admissible (g, K)-module.
(b) Let us emphasize that a weakly admissible (g, K)-module is not
necessary finitely generated as a g-module. For example the tensor
product of two representations of the holomorphic discrete series for
(g, K)=(sl(2,R), SO(2,R)) is admissible but not finitely generated as a
g-module.

Let us denote by Z(g) the center of U(g) and by spec(Z(g)) its spec-
trum, i.e. the set of all algebra characters Z(g)→ C. A U(g)-module V
will be called Z(g)-finite provided there exists an ideal I ⊳Z(g) of finite
codimension which annihilates V , or, equivalently, provided there exists
χ1, . . . , χn ∈ spec(Z(g)) and d ∈ N such that

∏n
j=1(χj(z) − z)dv = 0

for all v ∈ V and z ∈ Z(g).
We denote by Irr(g, K) be the set of equivalence classes of irreducible

(g, K)-modules. As customary we will not distinguish between equiv-
alence classes and their representatives. As every V ∈ Irr(g, K) is of
countable dimension, Dixmier’s version of Schur’s Lemma is applicable
(see [17], 0.5.1 and 0.5.2) and associates to V an infinitesimal character
χV ∈ spec(Z(g)).
Harish-Chandra study of distributional characters of irreducible ad-

missible representations led him to the following fundamental result:

Theorem 4.2. (Harish-Chandra)

(i) Every V ∈ Irr(g, K) is weakly admissible.
(ii) The map

Irr(g, K)→ spec(Z(g)), V 7→ χV

has finite fibers.

Harish-Chandra’s theorem allows us to characterize finitely gener-
ated weakly admissible modules in various useful ways:

Theorem 4.3. For a weakly admissible (g, K)-module V the following
assertions are equivalent:

(i) V is finitely generated as a g-module.
(ii) V is Z(g)-finite.
(iii) V is finitely generated as an n-module, where n is a maximal

unipotent subalgebra of g.

Proof. (i)⇒(ii) follows from the fact that we can take generators of
V belonging to K-types and the fact that Z(g) preserves K-types.
Harish-Chandra’s Theorem 4.2 implies (ii)⇒(i).
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The implication (iii)⇒(i) is clear. Finally, a result of Osborne ([17],
Prop. 3.7) asserts that

U(g) = U(n)FZ(g)U(k)
for a finite dimensional subspace F ⊂ U(g). Thus (i) and (ii) together
imply (iii). �

A (g, K)-module V will be called Harish-Chandra module or admis-
sible (g, K)-module if the conditions in the theorem above are satisfied.
Likewise, we will call a smooth Fréchet representation (π, E) admissible
provided the underlying (g, K)-module EK−fin is admissible.
Harish-Chandra modules form a category HC with morphisms the

linear (g, K)-maps. This category has a natural duality structure which
we are going to describe now. If V is a Harish-Chandra module, then
we denote by V ∗ its algebraic dual and by Ṽ ⊂ V ∗ the K-finite vectors

in V ∗. Note that Ṽ is a g-submodule of V ∗. As V is weakly admissible

the same holds for Ṽ and we readily obtain that

˜̃
V = V .

As V is Z(g)-finite, the same holds for Ṽ and thus Ṽ is again a Harish-

Chandra module by Theorem 4.3 above. We refer to Ṽ as the Harish-
Chandra module dual to V .
Another basic feature of Harish-Chandra modules is the Casselman

embedding theorem which asserts that every Harish-Chandra module
can be embedded into the K-finite vectors of some minimal principal
series representation ([5]). To be more specific, let us fix an Iwasawa
decomposition G = NAK and write Pmin = MAN for the associated
minimal parabolic subgroup. Here M := ZK(A) is the centralizer of A
in K. For a finite dimensional Pmin-module W we denote by

I∞(W ) := C∞(W ×Pmin
G)

the smooth sections of the G-equivariant vector-bundle W ×Pmin
G →

Pmin\G, that is the smooth functions f : G→ W which satisfy f(pg) =
p · f(g) for all p ∈ Pmin and g ∈ G. We topologize I∞(W ) with
the natural Fréchet topology of compact convergence of all derivatives.
Note that I∞(W ) becomes an admissible SF-module for G under right-
displacements in the arguments, i.e. the prescription

R(g)f(x) := f(xg) (g, x ∈ G, f ∈ I∞(W ))

gives rise to an admissible SF-representation (R, I∞(W )). The corre-
sponding (g, K)-module

I(W ) := I∞(W )K−fin
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is a Harish-Chandra module.

Theorem 4.4. (Casselman) For every Harish-Chandra module V there
exists a finite dimensional Pmin-module W and a (g, K)-embedding
V → I(W ).

Proof. [17], Cor. 4.2.4. �

Let us remark that the restriction morphism

ResK : I∞(W )→ C∞(W ×M K), f 7→ f |K

is aK-equivariant isomorphism of Fréchet spaces. The image C∞(W×M
K) is often more convenient to work with as K is a compact mani-
fold. It is important to note that the corresponding G-representation
(π, C∞(W×MK)) defined by π(g) := ResK ◦R(g)◦(ResK)−1 completes
to a Hilbert representation (π, L2(W ×M K)).
As a K-module I(W ) is isomorphic to C[W×MK] and this allows us

to give a polynomial bound on theK-multiplicities of a Harish-Chandra
module. More specifically let us denote by K̂ the set of equivalence
classes of irreducible unitary representations of K. We will identify an
equivalence class [τ ] ∈ K̂ with a representative τ . If V is a K-module,
then we denote by V [τ ] its τ -isotypical part. Similarly we denote for
v ∈ V by vτ its τ -isotypical component.
Let t be the Lie algebra of a maximal torus of K. We often identify τ

with its highest weight in it∗ (with respect to a fixed positive system).
In particular, |τ | ≥ 0 will refer to the Cartan-Killing norm of the
highest weight τ . As a consequence of Theorem 4.4 we obtain Harish-
Chandra’s multiplicity bound.

Theorem 4.5. (Harish-Chandra) Let V be a Harish-Chandra module.
Then there exists a C > 0 such that

dimV [τ ] ≤ C(1 + |τ |)dimK−dimM (τ ∈ K̂) .

5. Harish-Chandra modules II: topological proper-
ties

This section is devoted to topological properties of representations
(π, E) whose K-finite vectors form a Harish-Chandra module.
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5.1. Definition and existence of globalizations

Given a Harish-Chandra module V we say that a representation
(π, E) of G is a globalization of V provided the K-finite vectors EK−fin

of E are smooth and isomorphic to V as a (g, K)-module.
Every Harish-Chandra module V admits a Hilbert globalization H

(and hence an SF-globalization by taking the smooth vectors in H).
In fact, by Theorem 4.4, we can embed V into some minimal principal
series I(W ) and the closure of V in L2(W ×M K) defines a Hilbert
globalization H of V . Note that H∞ coincide with the closure of V in
I∞(W ).

Remark 5.1. We caution the reader that there exist irreducible Banach
representation (π, E) of G which are not admissible [14], i.e. they are
not globalizations of Harish-Chandra modules. However, if (π,H) hap-
pens to be a unitary irreducible representation, then Harish-Chandra
has shown that π is admissible.

Remark 5.2. Let V be a Harish-Chandra module and (π, E) a Banach
globalization. Then

Π(R(G))V = Π(S(G))V .

Indeed, by a basic result of Harish-Chandra there exists for each v ∈ V
a K ×K-finite h ∈ C∞

c (G) such that Π(h)v = v. As R(G) ∗C∞
c (G) ⊂

S(G) the asserted equality is established.

5.2. The contragredient of a Banach-globalization

In the introductory section we saw that the dual of a Banach rep-
resentation (π, E) might not be continuous which brought us to the

notion of contragredient representation (π̃, Ẽ). Recall that the contin-

uous dual Ẽ was the largest closed subspace of E∗ on which the dual

action is continuous. If E happens to be reflexive then Ẽ = E∗

The case where (π, E) is a Banach globalization of a Harish-Chandra
module V is of particular interest to us. Here the situation is as follows:

Lemma 5.3. Let V be a Harish-Chandra module and Ṽ its dual. If
(π, E) is a Banach globalization of V , then Ṽ ⊂ Ẽ. In particular,

(π̃, Ẽ) is a Banach globalization of Ṽ .

Proof. Let (π, E) be a Banach globalization of V . For a K-type τ ∈ K̂
let us consider the projection

prτ : E → E[τ ] = V [τ ], v 7→ dim(τ)

∫

K

χτ (k)π(k)v dk
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on the τ -isotypical component. Here χτ refers to the character of τ . As

prτ is continuous, the first assertion Ṽ ⊂ Ẽ follows. Further, a K-type

of Ẽ does not vanish on V as V is dense in E. Thus theK-finite vectors
of Ẽ are contained in Ṽ . �

5.3. Nuclear structures on smooth vectors

The goal of this section is to prove that the smooth vectors of a
Banach-globalization carry the structure of a nuclear Fréchet space.
It is convenient to introduce some useful notation in this regard. Let

V be a Harish-Chandra module and p be a norm on V . Then we say
that p is a G-continuous norm on V provided the completion of V with
respect to p gives rise to a Banach representation of G.
We introduce a preorder on the set of G-continuous norms on a

Harish-Chandra module V : in symbols

p ≺ q :⇐⇒ (∃k ∈ N0, C > 0) p(v) ≤ Cqk(v) (v ∈ V ) .
We say that p and q are Sobolev-equivalent, in symbols p ≍ q, provided
p ≺ q and q ≺ p.
To begin with we recall a familiar result from convex analysis (John’s

Theorem, see [12], Th. 3.3).

Lemma 5.4. Let (V, ‖ · ‖) be a finite dimensional normed vector space
of dimension n. Then there exists λ1, . . . , λn ∈ V ∗ with ‖λi‖ = 1,
1 ≤ i ≤ n, such that the associated Hermitian form

Q(x) :=
n∑

j=1

|λj(x)|2

satisfies
‖ · ‖2 ≤ Q ≤ 2n‖ · ‖2 .

Theorem 5.5. Let V be a Harish-Chandra module and p be a G-
continuous norm. Then the following assertions hold:

(i) There exists a G-continuous Hilbert-norm q such that p is
Sobolev equivalent to q.

(ii) There exits a k ∈ N such that inclusions (V, pk)→ (V, q) and
(V, q)→ (V, pk) are nuclear.

Proof. Let p be a G-continuous norm of E. We recall from Theorem
4.5 that there is an integer N > 0 such that

(5.1) m(τ) := dimV [τ ] ≤ (1 + |τ |)N (τ ∈ K̂) .
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According to Lemma 5.4 we find for each τ ∈ K̂ a basis λτ1 , . . . , λ
τ
m(τ)

of V [τ ]∗ such that the Hermitian form

Qτ (v) :=

m(τ)∑

j=1

|λj(v)| (v ∈ V [τ ])

satisfies

(5.2) p2(v) ≤ Qτ (v) ≤ 2m(τ)p2(v) (v ∈ V [τ ]) .
Define a Hermitian form Q on V by

Q(v) :=
∑

τ∈K̂

Qτ (vτ )

and let q̃(v) be the associated norm. Let now k ∈ 2N and q̃k,K be the

k-th K-Sobolev norm of q. For τ ∈ K̂ we set

‖τ‖k :=
( k/2∑

j=0

‖τ‖2j
) 1

2

and note that ‖τ‖k ≍ ‖τ‖k. For all v ∈ V [τ ] we have

q̃k,K(v) = ‖τ‖kq̃(v) .
Since p(v) ≤∑τ∈K̂ p(vτ ), we obtain for sufficiently large k that

p(v) ≤
∑

τ∈K̂

q̃(vτ ) =
∑

τ∈K̂

1

‖τ‖k
‖τ‖k q̃(vτ )

≤
[∑

τ∈K̂

1

‖τ‖2k

] 1
2 ·
[∑

τ∈K̂

‖τ‖2kQτ (vτ )
] 1

2

≤ Cq̃k,K(v)

The second inequality in (5.2) combined with the multiplicity bound
(5.1) yields a constant C > 0 such that

q̃(v) ≤ Cpk,K(v) (v ∈ V )
provided k ∈ N is taken large enough.
As q̃ might not be G-continuous, we have to address this issue. First

note that pK,k ≤ Cpk and that pk is G-continuous. Thus for sufficiently
large c > 0 the prescription

q(v) :=

(∫

G

q̃(π(g)v)2e−cd(g) dg

)1
2
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defines a G-continuous Hilbert norm with q ≤ Cpk. Local Sobolev on
the other hand readily yields that q̃ ≤ Cqk for k ∈ N sufficiently big.
This completes the proof of the theorem. �

Corollary 5.6. Let (π, E) be an SF-globalization of a Harish-Chandra
module V . Then:

(i) E is a nuclear Fréchet space.
(ii) The topology on E is determined by a countable family of G-

continuous K-invariant Hilbert semi-norms.

In view of Theorem 5.5 it is no loss of generality to assume that a
G-continuous norm on a Harish-Chandra module to be Hermitian. In
addition we will request that all norms are K-invariant.

5.3.1. Weighted function spaces. This subsection is about natural re-
alizations of Harish-Chandra modules in weighted function spaces on
G.

For m ≥ 0 we define the weighted Banach-space

C(G)m :=
{
f ∈ C(G) | pm(f) := sup

g∈G

|f(g)|
‖g‖m <∞

}
.

We view C(G)m as a module for G under the right regular action R.
Note that this action might not be continuous in general (take m = 0
and G not compact). From the properties of the norm one readily
shows that

pm(R(g)v) ≤ ‖g‖m · pm(v)
for all g ∈ G. Thus the action is locally equicontinuous. It follows that
the smooth vectors for this action C(G)∞m define an SF -module for G.
Note that C(G)∞m ⊂ C∞(G) as a consequence of the local Sobolev-
Lemma.
Likewise we associate to m ≥ 0 the weighted Hilbert-space

L2(G)m := L2(G, ‖g‖−mdg) .
Note that the right regular action of G on L2(G)m defines a Hilbert
representation of G. Let us denote by hm the corresponding Hilbert
norm.
Let k0 > 0 be such that

∫
G
‖g‖−k0 dg <∞. Then for all m ∈ R one

obtains a continuous embedding

(5.3) C(G)(m−k0)/2 → L2(G)m
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or to phrase it equivalently that there exists a constant C > 0 such
that

(5.4) hm ≤ C · p(m−k0)/2 .

To obtain inequalities of the reverse kind we shall employ the Sobolev
Lemma on G. It is not hard to show that the derivatives of the norm
function ‖ · ‖ are bounded by a multiple of ‖ · ‖. Hence we obtain
constants C > 0 and l0 ∈ N with l0 independent from m such that

(5.5) pm ≤ C · h2ml0
holds on L2(G)∞m .
If V is a Harish-Chandra module, then we denote by Ξ ⊂ V a Z(g)-

invariant set of generators of minimal dimension, say k.
Let V be a Harish-Chandra module V and Ξ ⊂ Ṽ a Z(g)-stable

set of generators as above. We fix an inner product on Ξ and let
ξ1, . . . ξk be an orthonormal basis of Ξ. The inner product on Ξ yields
an inner product on the dual space Ξ∗. Attached to Ξ we consider the
G-equivariant embedding

φΞ : V ∞ → C∞(G)⊗ Ξ∗ = C∞(G,Ξ∗);φΞ(v)(g)(ξ) := mξ,v(g)

with ξ ∈ Ξ and mξ,v(g) = ξ(π(g)v) the corresponding matrix coeffi-
cient.
We claim that imφΞ lies in some Cm(G)

∞⊗Ξ∗ for m suitably large.
In fact choose a Banach globalization (π, E) of V with norm q. Then

max1≤j≤k|mξj ,v(g)| ≤ C‖g‖Nq(v) (v ∈ V ∞)

for suitable constants N and C > 0. Hence imφΞ ⊂ CN(G)
∞ ⊗ Ξ∗.

Let now EN be the closure of φΞ(V
∞) in CN(G)⊗ Ξ∗.

Lemma 5.7. With the notation from above, EN defines a Banach glob-
alization of V .

Proof. It is clear that EN is a Banach space. With regard to the norm
on EN the operators π(g) are bounded by ‖g‖N . Hence the action
is locally equicontinuous. Further, as pN is dominated by q on V ∞

we conclude that all orbit maps γv : G → EN are continuous. Thus
G×EN → EN is a representation by Lemma 2.3. �

From our construction it is clear that the smooth vectors E∞
N for EN

coincide with the SF-closure φΞ(V
∞) in CN (G)

∞ ⊗ Ξ∗. Let us denote
the restriction of pN to EN by the same symbol.
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Set N ′ := 2N+k0. Then there is a natural G-equivariant embedding

ψΞ : V ∞ → L2(G)N ′ ⊗ Ξ∗; ψΞ(v)(g)(ξ) = mξ,v(g)

and the closure of the image defines a Hilbert globalization HN ′ of V .

5.3.2. The dual of an SF-globalization. The material in this subsection
is not needed in the sequel of this article. However it contains a fact
worthwhile which is worthwhile to mention and thematically fits in our
discussion.
Let (π, E) be an SF-globalization of a Harish-Chandra module V . In

Corollary 5.6 we have shown that E is a nuclear Fréchet space. As nu-
clear Fréchet spaces are reflexive, it follows that the dual representation
(π∗, E∗) of (π, E) exists and that the bi-dual representation (π∗∗, E∗∗)
is naturally isomorphic to (π, E).
For any SF-representation (π, E) we recall that the natural action of
S(G),

S(G)× E → E, (f, v) 7→ Π(f)v

is continuous, i.e. a continuous bilinear map (Proposition 2.20).
On the dual side we obtain a dual action

S(G)× E∗ → E∗, (f, λ) 7→ Π∗(f)λ; Π∗(f)λ = λ ◦ Π(f ∗)

where f ∗(g) = f(g−1). For a general SF-representation on a reflexive
Fréchet space the dual dual action Π∗ of S(G) might not be continuous.
For globalizations however matters behave well and we record:

Lemma 5.8. Let (π, E) be an SF-globalization of a Harish-Chandra
module V . Then the dual algebra action S(G)×E∗ → E∗ is continuous.

Proof. We recall from Corollary 5.6 that (π, E) = lim←−(πn, En) is a
projective limit of Hilbert representations (πn, En). Thus (π∗, E∗) =
lim−→(π∗

n, E
∗
n) is a direct limit of Hilbert representation. As for all n ∈ N

the dual action S(G) × E∗
n → E∗

n is continuous, the assertion follows.
�

6. Minimal and maximal SF-globalizations of Harish-
Chandra modules

Let us introduce a preliminary notion and call a Harish-Chandra
module V good if it admits a unique SF-globalization. Eventually it
will turn out that all Harish-Chandra modules are good (Casselman-
Wallach).
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As we will see below there are two natural extremal SF-globalizations
of a Harish-Chandra module, namely minimal and maximal SF-globa-
lizations. Eventually they will coincide but they are useful objects
towards a proof of the Casselman-Wallach theorem.

6.1. Minimal globalizations

An SF-globalization, say V ∞, of an Harish-Chandra module V will
be called minimal if the following universal property holds: if (π, E) is
an SF-globalization of V , then there exists a continuous G-equivariant
map V ∞ → E which extends the identity morphism V → V .
It is clear that minimal globalizations are unique. Let us show that

they actually exist. We need to collect some facts about matrix coeffi-
cients. In this context we record the following result (see [5]):

Lemma 6.1. Let (π, E) be a Banach globalization of a Harish-Chandra

module V . Then for all ξ ∈ Ṽ ⊂ E∗ and v ∈ V , the matrix coefficient

mξ,v(g) = ξ(π(g)v) (g ∈ G)
is an analytic function on G. In particular mξ,v is independent of the
particular Banach globalization (π, E) of V .

We will now give the construction of the minimal globalization of a
Harish-Chandra module V . For that let us fix a Banach globalization
(π, E) of V . Let v = {v1, . . . , vk} be a set of generators of V and
consider the map

S(G)k → E, f = (f1, . . . , fk) 7→
k∑

j=1

Π(fj)vj .

This map is linear, continuous and G-equivariant (with S(G)k consid-
ered as a module for G under the left regular representation). Let us
write

S(G)v := {f ∈ S(G)k |
k∑

j=1

Π(fj)vj = 0}

for the kernel of this linear map. Note that S(G)v is a closed G-
submodule of S(G)k. We claim that S(G)v is independent of the choice
of the particular globalization (π, E) of V : In fact, for v ∈ V and

f ∈ S(G) we have Π(f)v = 0 if and only if ξ(Π(f)v) = 0 for all ξ ∈ Ṽ .
As g 7→ mξ,v(g) = ξ(π(g)v) is analytic and hence independent of π
(Lemma 6.1), the claim follows.
Lemma 2.9 shows that S(G)k/S(G)v is an SF-module for G. Since

Π(S(G)K×K)V = V for S(G)K×K theK×K-finite functions of S(G), it
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follows that S(G)k/S(G)v is an SF-globalization of V . By construction
S(G)/S(G)v is the minimal globalization V ∞.
We record the following general Lemma on quotients of Harish-

Chandra modules in relation to minimal globalizations.

Lemma 6.2. Let V be a Harish-Chandra module and V ∞ its unique
minimal SF-globalization. Let W ⊂ V be a submodule and U := V/W .
Let W be the closure of W in V ∞. Then U∞ = V ∞/W .

Proof. Let us write (πU , V
∞/W ) for the quotient representation ob-

tained from (π, V ∞). Then Π(S(G))V = V ∞ implies that ΠU(S(G))U =
V ∞/W and hence the assertion. �

Remark 6.3. Suppose that a Harish-Chandra module V admits a max-
imal G-continuous norm p with respect to our Sobolev ordering ≺.
Then V ∞ coincides with the smooth vectors of the Banach comple-
tion of (V, p). However, we want to emphasize that the existence of a
minimal globalization does not automatically imply the existence of a
maximal norm.

6.2. Dual norms

Let q be a G-continuous Hilbert norm on a Harish-Chandra module
V . The associated Sobolev norms (qn)n∈N induce an SF-structure on
V .
Recall the notion q∗ of dual norm. Our discussion from Subsection

3.4, then readily yields:

Lemma 6.4. Let q and p be G-continuous Hermitian norms on a
Harish-Chandra module V . Then q ≍ p if and only if q∗ ≍ p∗.

6.3. Maximal Globalizations

Let us call an SF-globalization of V , say V ∞
max, maximal if for any

SF-globalization (π, E) of V there exists a continuous linear G-map
E → V ∞

max sitting above the identity morphism V → V .
It is clear that maximal globalizations are unique provided that they

exist. Moreover, in case a maximal globalizations of a Harish-Chandra
module V exists, then V is good if and only if V ∞ = V ∞

max.
Let us emphasize that a maximal globalization of V exists if and

only if there exists a G-continuous Hilbert norm q such that q ≺ p for
all G-continuous norms p on V . Since a module V is good if and only if
p ≍ q for all G-continuous norms p and q on V , we obtain from Lemma
6.4 that:
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Lemma 6.5. A Harish-Chandra module V is good if and only if its

dual Ṽ is good.

With the elementary tools developed so far we cannot give a con-
struction of maximal globalizations, but we would like to emphasize
that the existence of maximal globalization would be implied by the
matrix coefficient bounds established in [17], Sect 4. For us the follow-
ing criterion will be sufficient:

Lemma 6.6. Let U be a good Harish-Chandra module and U∞ its
unique SF-globalization. Let V ⊂ U be a submodule and let V be the
closure of V in U∞. Then V ∞

max = V .

Proof. Let p be a G-continuous Hilbert norm on V . Further let q̃ be a
G-continuous Hilbert norm on U and q := q̃|V . We have to show that

q ≺ p. Let π : Ũ → Ṽ be the map dual to the inclusion V → U . As Ũ
is good we get that p∗ ≺ q̃∗ ◦ π. It follows that q ≺ p. �

We conclude this paragraph with an observation which will be fre-
quently used later on.

Lemma 6.7. Let V1 ⊂ V2 ⊂ V3 be an inclusion chain of Harish-
Chandra modules. Suppose that V2 and and V3/V1 are good. Then
V2/V1 is good.

Proof. Let V3 be an SF-globalization of V3. Let V 1, V2 be the closures of
V1,2 in V 3. As V2 is good we have V2 = V ∞

2 and thus Lemma 6.2 implies
that V2/V1 = (V2/V1)

∞. Our second assumption gives (V3/V1)
∞ =

V3/V1 and Lemma 6.6 yields in addition that V2/V1 = (V2/V1)
∞
max. �

7. Lower bounds for matrix coefficients

The objective of this section is to show that Harish-Chandra modules
are good if and only if they feature certain lower bounds for matrix
coefficients which are uniform in the K-type.
As before, given a Harish-Chandra module V we fix a finite dimen-

sional Z(g)-invariant set of generators Ξ ⊂ Ṽ . We let ξ1, . . . , ξk be a
basis of Ξ. For r > 0 we define balls in G by

Br := {g ∈ G | ‖g‖ < r} .
Set r0 := min{‖g‖ | g ∈ G} ≥ 1.
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Theorem 7.1. Let V be a Harish-Chandra module. Then V is good if
and only if for all G-continuous norms q on V ∞ there exists a choice

of Ξ ⊂ Ṽ and constants c1, c2, c3 > 0 such that

( k∑

j=1

∫

Br

|ξj(π(g)v)|2 dg
) 1

2 ≥ c2
(1 + |τ |)c3 · q(v)

for all τ ∈ K̂, v ∈ V [τ ] and r > max{r0, (1 + |τ |)c1}
In view of the local Sobolev Lemma this is equivalent to the following

pointwise version.

Theorem 7.2. Let V be a Harish-Chandra module. Then V is good if
and only if for all G-continuous norms q on V ∞ there exists a choice

of Ξ and constants c1, c2, c3 > 0 such that for all τ ∈ K̂ and v ∈ V [τ ]
there exist a gτ ∈ G such that ‖gτ‖ ≤ (1 + |τ |)c1 and

max1≤j≤k|ξj(π(gτ )v)| ≥
c2

(1 + |τ |)c3 · q(v) .

Proof. 2 Suppose that V is good. We shall establish the pointwise lower
bound in Theorem 7.2. By assumption there exists an n ∈ N and C > 0
such that

|ξj(π(g)v)| ≤ C · ‖g‖nq(v)
for all v ∈ V ∞, g ∈ G and 1 ≤ j ≤ k. For N ≥ n we write EN for the
Banach completion of V ∞ with respect to the norm

pN(v) := max1≤j≤k sup
g∈G

|ξj(π(g)v)|
‖g‖N (v ∈ V ) .

We recall that EN is a Banach module for G (cf. Lemma 5.7).
As V is good, we obtain that

(7.1) V ∞ = E∞
N = E∞

N ′

for all N,N ′ ≥ n. Now fix N and let N ′ = N + l > N . In view of
Proposition 3.9 there exists an s ∈ 2N0 and C > 0 such that

(7.2) pN(v) ≤ C · pN ′

s,K(v)

for all v ∈ V ∞.
Let us fix τ ∈ K̂, v ∈ V [τ ] and gτ ∈ G such that g 7→ max1≤j≤k

|ξj(π(g)v)|

‖g‖N′

becomes maximal at gτ . We then derive from (7.2) that

2Throughout this paper we use the convention that capital constants C > 0
might vary from line to line
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max1≤j≤k
|ξj(π(gτ )v)|
‖gτ‖N

≤ C · (1 + ‖τ‖)s ·max1≤j≤k
|ξj(π(gτ)v)|
‖gτ‖N+l

for all v ∈ V [τ ], i.e.

‖gτ‖ ≤ C · (1 + ‖τ‖) s
l .

Here ρk ∈ it∗ is the usual half sum ρk =
1
2
tr adk.

On the other hand (7.1) combined with Proposition 3.9 implies like-
wise that there exists C > 0 and s′ > 0 such that

q(v) ≤ C · pN ′

s′,K(v)

for all v ∈ V ∞. For v ∈ V [τ ] we then get

|ξ(π(gτ)v)| ≥
C · ‖gτ‖N ′

(1 + ‖τ‖)s′ · q(v) .

As ‖g‖ ≥ 1 for all g ∈ G, the asserted lower bound is established.
Assume now that the lower bound in Theorem 7.1 holds true. Let

N > 0 be large enough so that mξj ,v is square integrable with respect

to dg
‖g‖N

and define a Hermitian norm by

p(v)2 :=

k∑

j=1

∫

G

|ξj(π(g)v)|2
dg

‖g‖N .

In view of the lower bound we readily obtain that q ≺ p. On the other
hand, for large enough N we have that p ≺ q and the proof is complete.
�

8. Minimal principal series representations

This section is devoted to the study of minimal principal series rep-
resentation of G and contains one of our main results. In particular we
will show that all modules of the minimal principal series are good.
Recall the minimal parabolic subgroup Pmin = MAN of G. For

a finite dimensional Pmin-module W we considered the corresponding
induced module V := I(W ) with its canonical Hilbert globalization
H := L2(W ×M K). Note that H∞ = C∞(W ×M K). In the sequel
‖ · ‖ will refer to the L2-norm on H. We now state one of the main
theorems of this paper:
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Theorem 8.1. Let V = I(W ) be a minimal principal series represen-
tation of G and H = L2(W ×Pmin

K) its canonical Hilbert globalization.
Let ξ1, . . . , ξk be a set of generators of V .

(i) Then there exists constants, c1, c2, C1, C2 > 0 such that for all

τ ∈ K̂ and vτ ∈ V [τ ] there exists functions fτ,1, . . . , fτ,k ∈
C∞
c (G) with the following properties:

(a)
∑k

j=1Π(fτ,j)ξj = vτ .

(b) supp(fτ,j) ⊂ {g ∈ G | ‖g‖ < C1(1 + ‖τ‖)c1}, for all
1 ≤ j ≤ k.

(c)
∑k

j=1 ‖fτ,j‖1 ≤ C2 · ‖vτ‖ · (1 + ‖τ‖)c2, where ‖ · ‖1 refers

to the norm in L1(G).
(ii) One has C∞(W ×K W ) = V ∞ and the surjection

S(G)k 7→ V ∞, (f1, . . . , fk) 7→
k∑

j=1

Π(fj)ξj

admits a continuous linear section V ∞ → S(G)k.
(iii) V is good.

Remark 8.2. (a) Below we will deduce (ii) from (i). Further (iii)

follows from (i) as Ĩ(W ) ≃ I(W ∗). In Appendix B we reduce assertion
(i) to the case of spherical principal series representations and prove it
in this case.
(b) The constant c1 can be made explicite. Certainly it depends on the
particular norm ‖ · ‖ on G. Let us fix a specific K×K-invariant norm,
namely

‖a‖ =
∑

w∈W

awρ (a ∈ A)

with ρ ∈ a∗ the Weyl half sum. Then our proof shows that any choice
of c1 with

1

2
c1 > dim a = rankR(G)

is possible.
The constant c2 > 0 depends only on the growth rate of the Pmin-

representation W .

In view of Casselman’s embedding theorem we can embed every
Harish-Chandra module V into a minimal principal series modules
I(W ). As I(W ) is good by Theorem 8.1 (iii) we thus conclude from
Lemma 6.6:
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Corollary 8.3. Every Harish-Chandra module V admits a maximal
globalization V ∞

max. In particular, V admits a unique minimal and max-
imal G-continuous norm with respect to the Sobolev order ≺.

Proof of Theorem 8.1 (ii). Assuming Theorem 8.1(i) we are going

to establish (ii). For any τ ∈ K̂, let vτ,1, . . . , vτ,l(τ) be an orthonormal
basis of the τ -isotypical component H[τ ] = V [τ ]. Let v ∈ V ∞ = H∞

be a smooth vector, that is v =
∑

τ∈K̂

∑l(τ)
j=1 cτ,jvτ,j ∈ H and for all

N > 0 one has

(8.1)
∑

τ∈K̂

l(τ)∑

j=1

|cτ,j|(1 + ‖τ‖)N <∞ .

Given τ and 1 ≤ j ≤ l(τ) we choose fτ,j,1, . . . , fτ,j,k as in (i), (a)-(c),

that is
∑k

i=1Π(fτ,j,i)ξi = vτ,j etc.

For all 1 ≤ i ≤ k we set fi :=
∑

τ∈K̂

∑l(τ)
j=1 cτ,jfτ,j,i. We first claim

that
∫
G
|fi(g)| · ‖g‖r dg <∞ for all r > 0. In fact,

∫

G

|fi(g)| · ‖g‖r dg ≤
∑

τ

∑

j

|cτ,j|
∫

G

|fτ,j,i(g)| · ‖g‖r dg

≤
∑

τ,j

|cτ,j|
∫

{‖g‖≤C1(1+‖τ‖c1 )}

|fτ,j,i(g)| · ‖g‖r dg

≤
∑

τ,j

Cr
1(1 + ‖τ‖)rc1|cτ,j|

∫

G

|fτ,j,i(g)|dg

≤ Cr
1C2

∑

τ,j

(1 + ‖τ‖)rc1+c2|cτ,j|

which is finite in view of (8.1).

Note that
∑k

j=1Π(fj)ξj = v. Now for each 1 ≤ j ≤ k we choose a

K×K-finite test function φj such that Π(φj)ξj = ξj. This allows us to
replace fj by fj ∗φj and thus we may assume that fj ∈ L1(G, ‖g‖rdg)∞
for all r > 0. Here “∞” refers the smooth vectors of the right regular
representation of G on L1(G, ‖g‖rdg). In view of Remark 2.18 we
obtain fj ∈ S(G) as to be shown. �
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9. Reduction steps: extensions, tensoring and in-
duction

In this section we will show that “good” is preserved by induction,
tensoring with finite dimensional representations and as well by exten-
sions. We would like to emphasize that these results are not new can
be found, mostly we different proofs, for instance in [18], Sect. 11.7.

9.1. Extensions

Lemma 9.1. Let

0→ U → L→ V → 0

be an exact sequence of Harish-Chandra modules. If U and V are good,
then L is good.

Proof. Let (π, L) be a smooth Fréchet globalization of L. Define a
smooth Fréchet globalization (πU , U) of U by taking the closure of U
in L. Likewise we define a smooth Fréchet globalization (πV , V ) of
V = L/U by V := L/U . By assumption we have U = ΠU(S(G))U and
V = ΠV (S(G))V . As 0 → U → L → V → 0 is exact, we deduce that
Π(S(G))L = L as vector spaces. Finally the open mapping theorem
implies that Π(S(G))L = L as topological vector spaces, i.e. L is good.
�

As Harish-Chandra modules admit finite composition series we con-
clude:

Corollary 9.2. In order to show that all Harish-Chandra modules are
good it is sufficient to establish that all irreducible Harish-Chandra mod-
ules are good.

9.2. Tensoring with finite dimensional representations

This subsection is devoted to tensoring a Harish-Chandra module
with a finite dimensional representation.
Let V be a Harish-Chandra module and V ∞ its minimal globaliza-

tion. Let (σ,W ) be a finite dimensional representation of G. Set

V := V ⊗W
and note that V is a Harish-Chandra module as well. It is our goal to
show that the minimal globalization of V is given by V ∞ ⊗W .
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Let us fix a covariant inner product 〈·, ·〉 on W . Let w1, . . . , wk be
a corresponding orthonormal basis of W . With that we define the
C∞(G)-valued k × k-matrix

S := (〈σ(g)wi, wj〉)1≤i,j≤k
and record the following:

Lemma 9.3. With the notation introduced above, the following asser-
tions hold:

(i) The map

S(G)k → S(G)k, f = (f1, . . . , fk) 7→ S(f)

is a linear isomorphism.
(ii) The map

[C∞
c (G)]k → [C∞

c (G)]k, f = (f1, . . . , fk) 7→ S(f) .

is a linear isomorphism.

Proof. First, we observe that the determinant of S is 1 and hence S

is invertible. Second, all coefficients of S and S−1 are of moderate
growth, i.e. dominated by a power of ‖g‖. Both assertions follow. �

Lemma 9.4. Let V be a Harish-Chandra module and (σ,W ) be a finite
dimensional representation of G. Then

V∞ = V ∞ ⊗W .

Proof. We denote by π1 = π ⊗ σ the tensor representation of G on
V ∞ ⊗W . It is sufficient to show that v ⊗wj lies in Π1(S(G))V for all
v ∈ V ∞ and 1 ≤ j ≤ k.
Fix v ∈ V ∞. It is no loss of generality to assume that j = 1. By

assumption we find ξ ∈ V and f ∈ S(G) such that Π(f)ξ = v.
We use the previous lemma and obtain an f = (f1, . . . , fk) ∈ S(G)k

such that

St(f) = (f, 0, . . . , 0) .

We claim that

k∑

j=1

Π̃(fj)(ξ ⊗ wj) = v ⊗ w1 .

In fact, contracting the left hand side with w∗
i = 〈·, wi〉 we get that
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(id⊗ w∗
i )

(
k∑

j=1

Π1(fj)(ξ ⊗ wj)
)

=
k∑

j=1

∫

G

fj(g)〈σ(g)wj, wi〉π(g)ξ dg

= δ1i ·
∫

G

f(g)π(g)ξ dg = δ1i · v

and the proof is complete. �

Proposition 9.5. Let V be a good Harish-Chandra module and (σ,W )
be a finite dimensional representation of G. Then V = V ⊗W is good.

Proof. It is easy to see that maximal and minimal Sobolev norms (with
respect to ≺) on V induce maximal and minimal Sobolev norms on V.
The assertion follows. �

9.3. Induction

Let P ⊃ Pmin be a parabolic subgroup with Langlands decomposition

P = NPAPMP .

Note that AP < A, MPAP = ZG(AP ) and N = NP ⋊ (MP ∩ N). For
computational purposes it is useful to recall that parabolics P above
Pmin are parameterized by subsets F of the simple roots Π in Σ(a, n).
We then often write PF instead of P , AF instead of AP etc. The
correspondence F ↔ PF is such that

AF = {a ∈ A | (∀α ∈ F ) aα = 1} .
We make an emphasis on the two extreme cases for F , namely: P∅ =
Pmin and PΠ = G.
In the sequel we write aP , nP for the Lie algebras of AP and NP

and denote by ρP ∈ a∗P the usual half sum. Note that KP := K ∩MP

is a maximal compact subgroup of MP . Let Vσ be a Harish-Chandra
module for MP and (σ, V ∞

σ ) its minimal SF-globalization.
For λ ∈ (aP )

∗
C we define as before the smooth principal series with

parameter (σ, λ) by

Eσ,λ = {f ∈ C∞(G, V ∞
σ )) |(∀ nam ∈ P ∀ g ∈ G)

f(namg) = aρP+λσ(m)f(g)} .
and representation πσ,λ by right translations in the arguments of func-
tions in Eσ,λ.
In this context we record:
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Proposition 9.6. Let P ⊇ Pmin be a parabolic subgroup with Langlands
decomposition P = NPAPMP . Let Vσ be an irreducible good Harish-
Chandra module for MP . Then for all λ ∈ (aP )

∗
C the induced Harish-

Chandra module Vσ,λ is good. In particular, V ∞
σ,λ = Eσ,λ.

Proof. As Ṽσ,λ ≃ Vσ̃,−λ it is sufficient to show that Vσ,λ is good.
In the first step we will show that Eσ,λ is the maximal globalization

of Vσ,λ. To begin with let NP := MP ∩ N and AP := MP ∩ A. Then
Q := NPAPM is a minimal parabolic subgroup of MP . As Vσ is
irreducible, we find an embedding of Vσ into a minimal principal series
module of MP , say Iσ:

Iσ = IndMP

Q (1⊗ (µ+ ρP )⊗ γ)
with µ ∈ (aP )∗C and (γ, Uγ) an irreducible representation of M . Then
L2(Uγ ×M KP ) is a Hilbert globalization of Iσ and we denote by Hσ

the closure of Vσ in L2(Uγ ×M KP ). As Vσ is good, it follows that
V ∞
σ = H∞

σ . With Hσ we obtain a Hilbert model for Vσ,λ namely Hσ,λ =
L2(Hσ ×KP

K). Notice that the smooth vectors of Hσ,λ coincide with
Eσ,λ.
We proceed with double induction (see [11], Ch. VII, §2 (4)) and

obtain an embedding of Vσ,λ into the minimal principal series repre-
sentation V := Vγ,µ+λ. Let us endow V with the Hilbert structure
induced from the compact model H = L2(Uγ ×M K). Observe that
the embedding Hσ,λ to H is isometric. As V is good we get that the
maximal globalization of Vσ,λ is the closure of Vσ,λ in V∞. From our
discussion it follows that this closure is H∞

σ,λ = Eσ,λ.
To conclude the proof we need to show that Eσ,λ coincides with the

minimal globalization of Vσ,λ as well. We proceed dually: start from the
realization of Vσ as a quotient of a minimal principal series Jσ of MP

etc. As before we will end up with a Hilbert model Ĥσ,λ for Vσ,λ with

Ĥ∞
σ,λ = Eσ,λ and an orthogonal projection of some Hilbert globalization

Ĥ of some good tensor product module onto Ĥσ,λ. Hence Lemma 6.2
implies that Eσ,λ equals the minimal globalization. �

10. Reduction steps II: deformation theory and dis-
crete series

We already know that every irreducible Harish-Chandra modules V
can be written as a quotient U/H where U is good. Suppose that H
is in fact a kernel of an intertwiner I : U →W with W good. Suppose
in addition that we can deform I : U → W holomorphically (as to be
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made precise below). Then, provided U and W are good we will show
that im I ≃ U/H is good. In view of the Langlands-classification, the
assertion that every Harish-Chandra module is good then reduces to
the case of discrete series representations.
This section is organized as follows: we recall the holomorphic de-

formation theory of Casselman (see [5], Sect. 9) in a slightly modified
form. Then we prove that discrete series are good, and, finally, prove
the Casselman-Wallach globalization theorem.

10.1. Deformation theory

For a complex manifold D and a Harish-Chandra module U we write

O(D,U) for the space of maps f : D → U such that for all ξ ∈ Ũ the
contraction ξ ◦ f is holomorphic. Henceforth we will use D exclusively
for the open unit disc.
By a holomorphic family of Harish-Chandra modules (parameterized

by D) we understand a family of Harish-Chandra modules (Us)s∈D such
that:

(i) For all s ∈ D one has Us = U0 =: U as K-modules.

(ii) For all X ∈ g, v ∈ U and ξ ∈ Ũ the map s 7→ ξ(Xs · v) is
holomorphic. Here we use Xs for the action of X in Us.

Given a holomorphic family (Us)s∈D we form U := O(D,U) and
endow it with the following (g, K)-structure: for X ∈ g and f ∈ U we
set

(X · f)(s) := Xs · f(s) .
We emphasize that the algebra multiplication of O(D) on U commutes
with the (g, K)-action.
Of particular interest are the Harish-Chandra modules Uk := U/skU

for k ∈ N. To get a feeling for this objects let us discuss a few examples
for small k.

Example 10.1. (a) For k = 1 the constant term map

U1 → U, f + sU 7→ f(0)

is an isomorphism of (g, K)-modules.
(b) For k = 2 we observe that the map

U2 → U ⊕ U, f + s2U 7→ (f(0), f ′(0))

provides an isomorphism of K-modules. The resulting g-action on the
right hand side is twisted and given by

X · (u1, u2) = (Xu1, Xu2 +X ′u1)
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where

X ′u :=
d

ds

∣∣∣
s=0

Xs · u .

Let us remark that X ′ = 0 for all X ∈ k.
We notice that U2 features the submodule sU/s2U which corresponds

to {0} ⊕ U in the above trivialization. The corresponding quotient
(U/s2U)/(sU/s2U) identifies with U ⊕ U/{0} ⊕ U ≃ U . In particu-
lar U/s2U is good if U is good by the extension Lemma 9.1.

From the previous discussion it follows that Uk is good for all k ∈ N0

provided that U is good.
Let now W be another Harish-Chandra module and W a holomor-

phic deformation of W as above. By a morphism I : U → W we
understand a family of (g, K)-maps Is : Us → Ws such that for all
u ∈ U and ξ ∈ W ∗ the assignments s 7→ ξ(Is(u)) are holomorphic. Let

us write I for I0 set I ′ := d
ds

∣∣∣
s=0

Is etc. We set H := ker I.

We now make two additional assumptions on our holomorphic family
of intertwiners:

• Is is invertible for all s 6= 0.
• There exists a k ∈ N0 such that J(s) := skI−1

s is holomorphic
on D.

If these conditions are satisfied, then we call I : U → W holomor-
phically deformable.
For all m ∈ N we write Im : Um →Wm for the intertwiner induced

by I. Likewise we define Jm.

Example 10.2. In order to get a feeling for the intertwiners Im let us
consider the example I2 : U2 → W2. In trivializing coordinates this
map is given by

I2(u1, u2) = (I(u1), I(u2) + I ′(u1)) .

We set Hm := ker Im ⊂ Um. For m < n we view Um as a K-
submodule of Un via the inclusion map

Um → Un, f + smU 7→
m−1∑

j=0

f (j)(0)

j!
sj + snU .

We write pn,m : Un → Um for the reverting projection (which are
(g, K)-morphisms).
The following Lemma is related to an observation of Casselman, see

[5], Prop. 9.3.
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Lemma 10.3. Suppose that k ∈ N0 is minimal such that J(s) is holo-
morphic. Then the morphism

I2k|Hk+skU/s2kU : Hk + skU/s2kU → skW/s2kW

is onto. Moreover, its kernel is given by skHk ⊂ skU/s2kU .

Proof. Clearly, I2k(Hk + skU/s2kU) ⊂ skW/s2kW and hence the map
is defined. Let us check that it is onto. Let [w] ∈ skW/s2kW and
w ∈ skW be a representative. Note that I−1|skW : skW → U is
defined. Set u := I−1(w) and write [u] for its equivalence class in U2k.
Then u ∈ Hk+ s

kU/s2kU and I2k([u]) = [w] which shows that the map
is onto.
A simple verification shows that skHk lies in the kernel. Further, the

first part of the proof shows that p2k,k ◦ I2k−1 : skW/s2kW → Hk is an
injection. Thus skHk is the kernel. �

If we set V3 := Hk+ skU/s2kU , V2 := skU/s2kU and V1 := skHk, the
previous Lemma implies an inclusion chain

V1 ⊂ V2 ⊂ V3

with

V2/V1 ≃ Uk/Hk, V2 ≃ Uk and V3/V1 ≃Wk .

Hence in combination with the squeezing Lemma 6.7 we obtain that
Uk/Hk is good if U and W are good.
We wish to show that U/H is good. Write Hk,1 := pk,1(Hk) for the

projection of Hk to U1 ≃ U . Note that Hk,1 is a submodule of H . We
arrive at the exact sequence

0→ U/H ≃ sk−1U/sk−1H → Uk/Hk → U/Hk,1 → 0 .

But U/H is a quotient of U/Hk,1. Thus putting an SF-topology on U
we get one on H , Uk, Hk, Uk/Hk and U/Hk,1. As a result the induced
topology on U/H is both a sub and a quotient of the good topology on
Uk/Hk. Hence U/H is good.
We summarize our discussion.

Proposition 10.4. Suppose that I : U → W is an intertwiner of
good Harish-Chandra modules which allows holomorphic deformations
I : U → W. Then im I is good.
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10.2. Discrete series

The objective of this subsection is to show that every Harish-Chandra
module belonging to the discrete series is good.
Let Z < G be the center of G. Throughout this section V shall

denote a unitarizable irreducible Harish-Chandra module, i.e. there
exists a unitary irreducible globalization (π,H) of V . We say that V is
square integrable or belongs to the discrete series provided for all v ∈ V
and ξ ∈ Ṽ one has

∫

G/Z

|mξ,v(g)|2 d(gZ) <∞ .

In this situation, there exists a constant d(π), the formal degree, such
that for every unitary norm p on V one has

(10.1)
1

d(π)
p(v)2p∗(ξ)2 =

∫

G/Z

|mξ,v(g)|2 d(gZ) (v ∈ V, ξ ∈ Ṽ ) .

Proposition 10.5. Let V be a Harish-Chandra module of the discrete
series. Then V is good.

Proof. It is no loss of generality to assume that the center Z < G is
compact. Choose a minimal principal series U := Vσ,λ such that V

embeds into U . Let ξ ∈ Ũ such that ξ|V 6= 0. Then there exists
an s0 > 0 such that all matrix coefficients mξ,v , v ∈ U , belong to
L2(G, ‖g‖−s0dg). For every s ∈ C with Re s > s0 we define a continuous
Hermitian form on U∞ by setting

(v, w)s :=

∫

G

mξ,v(g)mξ,w(g)‖g‖−s dg .

Let us write B(U∞, U∞) for the topological vector space of continuous
Hermitian forms on U∞. We obtain a holomorphic map

{s ∈ C | Re s > s0} → B(U∞, U∞), s 7→ (·, ·)s
and in Appendix B we show that it admits a meromorphic continuation
to the complex plane.
Let (·, ·) be the constant part of s 7→ (·, ·)s at s = 0. Note that for

v, w ∈ V we have

(v, w) =

∫

G

mξ,v(g)mξ,w(g) dg .

As, on the other hand (·, ·) ∈ B(U∞, U∞) and U∞ is good, we conclude
from (10.1) and Lemma 6.6 that the unitary norm p on V is a maximal
norm on V w.r.t. ≺. As V is unitary, p is also minimal. �
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10.3. Proof of the Casselman-Wallach-Theorem

Theorem 10.6. All Harish-Chandra modules are good.

Proof. Let V be a Harish-Chandra module. We have to show that V is
good. In view of Corollary 9.2, we may assume that V is irreducible.
Next we use Langland’s classification (see [11],Ch. VIII, Th. 8.54) and
combine it with our Propositions on deformation 10.4 and induction
9.6. This reduces to the case where V is tempered. However, the case
of tempered readily reduces to square integrable ([17], Ch. 5, Prop.
5.2.5). The case of square integrable Harish-Chandra modules was
established in Proposition 10.5. �

10.4. Discussion

In the introduction we phrased the Casselman-Wallach in several
different ways. One way was the equivalence of categories HC and
SAF or, equivalently, that there is only one Sobolev-equivalence class
of G-continuous norms on a Harish-Chandra module.
The objective of this subsection is to show that the equivalence of

categories HC ≃ SAF can be slightly refined.
By a marking of a Fréchet space E we shall understand an increasing

family (pn)n∈N of semi-norms which define the topology on E. Pairs
(E, (pn)n) will henceforth be called marked Fréchet spaces – in the
literature one also finds the notion of graded Fréchet space (see [9]).
By a morphism of marked Fréchet spaces (E, (pn)n) and (F, (qn)n)

we understand a linear map T : E → F with the following property:
there exists a k ∈ N0 such that for all n ∈ N there exists Cn > 0 with:

qn(T (x)) ≤ Cnpn+k(x) (x ∈ E) .
In this sense we obtain the additive category of marked Fréchet

spaces, say Fmark.
For an F -representation (π, E) we are automatically led to the notion

of a G-continuous marking. Let us define now SAFmark ⊂ Fmark to be
the sub-category of smooth admissible F -representation with respect
to a G-continuous marking. The refined Casselman-Wallach theorem
asserts that

(10.2) HC ≃ SAFmark .

Note that this immediate from the fact that V ∞ is a quotient of S(G)k
for some k ∈ N.
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11. Applications

11.1. Lifting (g, K)-morphisms

Let (π, E) be a representation of G on a complete topological vector
space E. Let us call (π, E) an S(G)-representation if the natural action
of C∞

c (G) on E extends to a separately continuous action of S(G) on
E. Some typical examples we have in mind are smooth functions of
moderate growth on certain homogeneous spaces. Let us mention a
few.

Example 11.1. (a) Let Γ < G be a lattice, that is a discrete subgroup
with cofinite volume. Reduction theory (Siegel sets) allows us to con-
trol “infinity” of the quotient Y := Γ\G and leads to a natural notion
of moderate growth. For every α > 0 there is a natural SF-module
C∞
α (Y ) of smooth functions on Y with growth rate at most α. The

smooth functions of moderate growth C∞
mod(Y ) = limα→∞ C∞

α (Y ) be-
come a complete inductive limit of the SF-spaces C∞

α (Y ). Hence S(G)
acts on C∞

mod(Y ).
The space of K and Z(g)-finite elements in C∞

mod(Y ) is referred to
as the space of automorphic forms on Y .
(b) Let H < G be a symmetric subgroup, i.e. an open subgroup of the
fixed point set of an involutive automorphism of G. We refer to X :=
H\G as a semisimple symmetric space. The Cartan-decomposition of
X allows us to control growth on X and yields natural SF-modules
C∞
α (X) of smooth functions with growth rate at most α. As before one

obtains C∞
mod(X) = limα→∞C∞

α (X) a natural complete S(G)-module of
functions with moderate growth.

If (π1, E1), (π2, E2) are two representations, then we denote by
HomG(E1, E2) for the space of continuous G-equivariant linear maps
from E1 to E2.

Proposition 11.2. Let V be a Harish-Chandra module and V ∞ its
unique SF -globalization. Then for any smooth S(G)-representation
(π, E) of G the linear map

HomG(V
∞, E)→ Hom(g,K)(V,E

K−fin), T∞ 7→ T := T∞|V
is a linear isomorphism.

Proof. It is clear that the map is injective. To show that the map is
onto let us write λ, resp. Λ, for the representation of G, resp. S(G),
on V ∞. Let v ∈ V ∞. Then we find f ∈ S(G) such that v = Λ(f)w for
some w ∈ V . We claim that

T∞(v) := Π(f)T (w)
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defines a linear operator. In order to show that this definition makes
sense we have to show that T∞(v) = 0 if Λ(f)w = 0. Let ξ ∈ (E∗)K−fin

and µ := ξ ◦ T ∈ Ṽ . We consider two distributions on G, namely

Θ1(φ) := ξ(Π(φ)T (w)) and Θ2(φ) := µ(Λ(φ)w) (φ ∈ C∞
c (G)) .

We claim that Θ1 = Θ2. In fact, both distributions are Z(g)− and
K ×K-finite. Hence they are represented by analytic functions on G
and thus uniquely determined by their derivatives on K. The claim
follows.
It remains to show that T is continuous. We recall the construction

of the minimal SF-globalization of V , namely V ∞ = S(G)k/S(G)v. As
the action of S(G) on E is separately continuous, the continuity of T∞

follows. �

11.2. Automatic continuity

For a Harish-Chandra module V we denoted by V ∗ its algebraic dual.
Note that V ∗ is naturally a module for g.
If h < g is a subalgebra, then we write (V ∗)h, resp. (V ∗)h−fin, for the

space of h-fixed, resp. h-finite, algebraic linear functionals on V .
We call a subalgebra h < g a (strong) automatic continuity subalge-

bra ((S)AC-subalgebra for short) if for all Harish-Chandra modules V
one has

(V ∗)h ⊂ (V ∞)∗ resp. (V ∗)h−fin ⊂ (V ∞)∗ .

Problem 11.3. (a) Is it true that h is AC if and only if 〈exp h〉 < G
has an open orbit on G/Pmin ?
(b) Is it true that h is SAC if [h, h] is AC ?

The following examples of (S)AC-subalgebras are known:

• n, the Lie algebra of an Iwasawa N -subgroup, is AC and a+n,
the Lie algebra of an Iwasawa AN -subgroup, is SAC. (Cassel-
man).
• Symmetric subalgebras, i.e. fixed point sets of involutive au-
tomorphisms of g, are AC (Brylinski, Delorme, van den Ban;
cf. [3], [2]).

Here we only wish to discuss Casselman’s result. We recall the def-
inition of the Casselman-Jacquet module j(V ) =

⋃
k∈N0

(V/nkV )∗ and

note that j(V ) = (V ∗)a+n−fin.

Theorem 11.4. (Casselman) Let n be the Lie algebra of an Iwasawa
N-subgroup of G and a+n the Lie algebra of an Iwasawa AN-subgroup.
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Then n is an AC and a+n is SAC. In particular, for all Harish-Chandra
modules V one has j(V ) ⊂ (V ∞)∗.

Proof. Let us emphasize that the proof needs only results up to Section
8, i.e. that minimal principal series are good.
We first prove that a+n is SAC. Let V be a Harish-Chandra module

and 0 6= λ ∈ j(V ). By definition there exists a k ∈ N such that
λ ∈ (V/nkV )∗. Write (σ, Uσ) for the finite dimensional representation
of Pmin on V/nkV and denote by Iσ the corresponding induced Harish-
Chandra module. Note that I∞σ = C∞(Uσ ×Pmin

G).
Applying Frobenius reciprocity to the identity morphism V/nkV →

U yields a non-trivial (g, K)-morphism T : V → Iσ (cf. [17], 4.2.2).
Now T lifts to a continuous G-map T∞ : V ∞ → I∞σ by Proposition
11.2. If ev : I∞σ → Uσ denotes the evaluation map at the identity, then
λ∞ := λ ◦ ev ◦ T∞ provides a continuous extension of λ to V ∞.
The assertion that n is AC follows from the fact that the space of

(V ∗)n is finite dimensional (Casselman), and in particular a-finite. �

11.3. Lifting of holomorphic families of (g, K)-maps

We wish to give a version of lifting (cf. Proposition 11.2) which
depends holomorphically on parameters.
To begin with we need a generlaization of Theorem 12.3 and Theo-

rem 12.8 for principal series representations which are induced from an
arbitrary parabolic subgroup.
Let P = NPAPMP be a parabolic above Pmin. We fix an SAF-

representation (σ, V ∞
σ ) ofMP and write Vσ for the corresponding Harish-

Chandra module.
As K-modules we identify all Vσ,λ with V := C[Vσ×KP

K]. Note that
Vσ is a KP -quotient of some C[KP ]

m, m ∈ N. Double induction gives
an identification of V as a K-quotient of C[K]m. Note that C∞(K)m

induces the unique SF-topology on V ∞. For each τ we write χτ for its
character and δσ,τ for the orthogonal projection of (χτ , . . . , χτ )︸ ︷︷ ︸

m−times

to V [τ ],

the τ -isotypical part of V .

Theorem 11.5. Let P = NPAPMP be a parabolic subgroup and Vσ an
irreducible unitarizable Harish-Chandra module forMP . Let Q ⊂ (aP )

∗
C

be a compact subset and N > 0. Then there exists ξ ∈ C[Vσ×KP
K] and

constants c1, c2 > 0 such that for all τ ∈ K̂, λ ∈ Q, there exists aτ ∈ A,
independent of λ, with ‖aτ‖ ≤ (1+|τ |)c1 and numbers bσ(λ, τ) ∈ C such
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that

‖[πσ,λ(aτ )ξ]τ − bσ(λ, τ)δσ,τ‖ ≤
1

(|τ |+ 1)N+c2

and

|bσ(λ, τ)| ≥
1

(|τ |+ 1)c2
.

Here ‖·‖ refers to the continuous norm on V induced by the realization
of V as a quotient of C[K]m ⊂ L2(K)m.

Proof. Let us first discuss the case where P = Pmin and σ is finite
dimensional. With the reduction steps explained in the beginning of
the next section this becomes a simple modification of Theorem 12.3.
As for the general case we identify Vσ as a quotient of a minimal

principal series forMP . Using double induction we can write the Vσ,λ’s
consistently as quotients of such minimal principal series. The assertion
follows. �

As a consequence we get an extension of Theorem 12.8.

Theorem 11.6. Let Q ⊂ (aP )
∗
C be a compact subset. Then there exist

a continuous map

Q× C∞(V ∞
σ ×KP

K)→ S(G), (λ, v) 7→ f(λ, v)

which is holomorphic in the first variable, linear in the second and such
that

Πσ,λ(f(λ, v))ξ = v .

As a Corollary to Theorem 11.6 we obtain the holomorphic lifting
result:

Theorem 11.7. Let (π, E) be a Banach representation of G. Within
the notation of Theorem 11.6 let Ω ⊂ (aP )

∗
C be an open set and

T : Ω× C[Vσ ×KP
K]→ E∞

a map such that:

• For every v ∈ C[Vσ×KP
K] the assignment Ω ∋ λ 7→ T (λ, v) ∈

E∞ is holomorphic.
• For every λ the assignment

Vσ,λ = C[Vσ ×KP
K]→ E∞, v 7→ T (λ, v)

is a (g, K)-map.

Then T admits a holomorphic extension to a map

T∞ : Ω× C∞(V ∞
σ ×KP

K)→ E∞ .
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Proof. It is no loss of generality to assume that Ω is relatively compact.
Within the notation of Theorem 11.6 we define

T∞(λ, v) := Π(f(λ, v))T (λ, ξ) .

�

Remark 11.8. (Application to Eisenstein series) Let Γ < G be a lattice
and Y := Γ\G. Let

T : Ω× C[Vσ ×KP
K]→ C∞

mod(Y )

be a map which satisfies the conditions in Theorem 11.7. Then, basic
automorphic theory implies for all relatively compact Ω ⊂ (aP )

∗
C the

existence of a growth index α such that imT ⊂ L2
α(Y ). In particular

Theorem 11.7 is applicable.
A typical application is as follows. Let us consider Eisenstein se-

ries attached to the lattice Γ < G. We assume that P = MPAPNP is
cuspidal and set L :=MP ∩K. Fix a finite dimensional unitary repre-
sentation (σ, U) of L and a Γ∩MP -invariant L

2-section ψ of the vector
bundle (Γ ∩MP )\MP ×L U → (Γ ∩MP )\MP . Suppose that all con-
tractions 〈ψ, u〉 ∈ L2(Γ∩MP \MP ), u ∈ U , generate a Harish-Chandra
module for (mP , L). Let f be a smooth section of the K-equivariant
vector bundle U ×L K → L\K. Then one defines Eisenstein series

E(λ, ψ, f)(Γg) :=
∑

γ∈Γ∩P\Γ

ã(γg)λ〈ψ(m̃(γg)), f(k̃(g))〉

where g = ñ(g)ã(g)m̃(g)k̃(g) ∈ NPAPMPK and λ ∈ (aP )
∗
C. Suppose

you have shown that for all K-finite sections f that E(λ, ψ, f) can
be meromorphically continued to some region in the parameter space
Ω ⊂ (aP )

∗
C. Then the same holds true for all smooth sections f .

12. Appendix A: Spherical principal series and the
proof of Theorem 8.1(i)

We first discuss how the proof of Theorem 8.1(i) reduces to the case
of spherical principal series. We use the notation from Section 8.
First it is clear that it is sufficient to establish the result for one fixed

set of generators ξ1, . . . , ξk of I(W ). Next let {0} = W0 ⊂ W1 ⊂ . . . ⊂
Wn = W be a Jordan-Hölder series ofW . It induces an inclusion chain
of (g, K)-modules

{0} = I(W0) ⊂ I(W1) ⊂ . . . ⊂ I(Wn) = I(W )
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with I(Wj+1)/I(Wj) ≃ I(Wj+1/Wj). It follows that we can and will
assume that W is irreducible. In particular, the Pmin-representation
W factors to Pmin/N ≃ M × A. Let us write σ × χ for this M × A-
representation onW . Next there exists a finite dimensional representa-
tion F of G with N -invariants FN such that W →֒ FN ⊗Cχ ⊂ F ⊗Cχ.
Further I(F ⊗ Cχ) ≃ I(Cχ) ⊗ F and thus we obtain an embedding
I(W ) →֒ I(Cχ) ⊗W . In view of our discussion of tensoring with fi-
nite dimensional representations (see Subsection 9.2) matters reduce
to W = Cχ.

12.1. Spherical principal series representations

In this section we introduce a Dirac-type sequence for spherical prin-
cipal series representations (see Subsection 12.1.4 with Theorem 12.3).
This allows us to establish lower bounds for matrix-coefficients which
are uniform in the K-types (cf. Corollary 12.4). These lower bounds
are essentially sharp, locally uniform in the representation parameter,
and stronger than the more abstract estimates in Theorem 7.1.
The lower bounds established give us a constructive method for find-

ing Schwartz-functions representing a given smooth vector and as a
side product a proof of Theorem 8.1(i) for spherical principal series
(see Subsection 12.1.5).

According to the Iwasawa decomposition G = NAK we decompose
elements g ∈ G as

g = ñ(g)ã(g)k̃(g)

with ñ(g) ∈ N , ã(g) ∈ A and k̃(g) ∈ K. We recall M = ZK(A) and
the minimal parabolic subgroup Pmin = NAM of G.
The Lie algebras of A,N and K shall be denoted by a, n and k.

Complexification of Lie-algebras are indicated with a C-subscript, i.e.
gC is the complexification of g etc. As usually we define ρ ∈ a∗ by
ρ(Y ) := 1

2
tr(adn Y ) for Y ∈ a.

The smooth spherical principal series with parameter λ ∈ a∗C is de-
fined by

H∞
λ := {f ∈ C∞(G) |(∀nam ∈ Pmin, ∀g ∈ G)

f(namg) = aρ+λf(g)}
We note that R defines a smooth representation of G on H∞

λ which
we denote henceforth by πλ. The restriction map to K defines a K-
isomorphism:
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ResK : H∞
λ → C∞(K\M), f 7→ f |K .

The resulting action of G on C∞(M\K) is given by

[πλ(g)f ](Mk) = f(Mk̃(kg))ã(kg)λ+ρ .

This action lifts to a continuous action on the Hilbert completion Hλ =
L2(M\K) of C∞(M\K). We note that this representation is unitary
provided that λ ∈ ia∗.
We denote by Vλ the K-finite vectors of πλ and note that Vλ =

C[M\K] as K-module. For later reference we record that the dual rep-
resentation of (πλ,Hλ) is isomorphic to (π−λ,H−λ) via theG-equivariant
pairing

(12.1) (·, ·) : H−λ ×Hλ → C, (ξ, v) :=

∫

M\K

ξ(Mk)v(Mk) d(Mk) .

Here G-equivariance means that

(π−λ(g)ξ, v) = (ξ, πλ(g
−1)v)

for all g ∈ G.

12.1.1. K-expansion of smooth vectors. We recall K̂, the set of equiv-

alence classes of irreducible unitary representations of K. If [τ ] ∈ K̂
we let (τ, Uτ ) be a representative. Further we write K̂M for the subset
of M-spherical equivalence classes, i.e.

[τ ] ∈ K̂M ⇐⇒ UM
τ := {u ∈ Uτ | τ(m)u = u ∀m ∈M} 6= {0} .

Given a finite dimensional representation (τ, Uτ ) of K we denote

by (τ ∗, U∗
τ ) its dual representation. With each [τ ] ∈ K̂M comes the

realization mapping

rτ : Uτ ⊗ (U∗
τ )
M → L2(M\K), u⊗ η 7→ (Mk 7→ η(τ(k)u)) .

Let us fix a K-invariant inner product on Uτ . This inner product
induces aK-invariant inner product on U∗

τ . We obtain an inner product
on Uτ ⊗ (U∗

τ )
M which is independent of the chosen inner product on

Uτ . If we denote by d(τ) the dimension of Uτ , then Schur-orthogonality
implies that

1

d(τ)
‖u⊗ η‖2 = ‖rτ (u⊗ η)‖2L2(M\K) .
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Taking all realization maps together we arrive at a K-module isomor-
phism

C[M\K] =
∑

τ∈K̂M

Uτ ⊗ (U∗
τ )
M .

Let us fix a maximal torus t ⊂ k and a positive chamber C ⊂ it∗. We
often identify τ with its highest weight in C and write |τ | for the norm
(with respect to the positive definite form B) of the highest weight. As
d(τ) is polynomial in τ we arrive at the following characterization of
the smooth functions:

C∞(M\K) =
{ ∑

τ∈K̂M

cτuτ |cτ ∈ C, uτ ∈ Uτ ⊗ (U∗
τ )
M , ‖uτ‖ = 1

(∀N ∈ N)
∑

τ∈K̂M

|cτ |(1 + |τ |)N <∞
}
.

Let us denote by δMe the point-evaluation of C∞(M\K) at the base
point Me. We decompose δMe into K-types:

δMe =
∑

τ∈K̂M

δτ

where

δτ = d(τ)

l(τ)∑

i=1

ui ⊗ u∗i

with u1, . . . , ul(τ) any basis of UM
τ and u∗1, . . . , u

∗
l(τ) its dual basis. For

1 ≤ i, j ≤ l(τ) we set

δi,jτ := ui ⊗ u∗j
and record that δτ = d(τ)

∑l(τ)
i=1 δ

i,i
τ . Note the following properties of δτ

and δi,jτ :

• ‖δi,iτ ‖∞ = δi,iτ (Me) = 1.
• δτ ∗ δτ = δτ .
• δτ ∗ f = f for all f ∈ L2(M\K)τ := im rτ .

12.1.2. Non-compact model. We have seen that the restriction map
ResK realizes H∞

λ as a function space on M\K. Another standard
realization will be useful for us. Let us denote by N the opposite of
N . As NAMN is open and dense in G we obtain a faithful restriction
mapping:

ResN : H∞
λ → C∞(N), f 7→ f |N .
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Note that this map is not onto. The transfer of compact to non-
compact model is given by

ResN ◦Res−1
K : C∞(M\K)→ C∞(N),

f 7→ F ; F (n) := ã(n)λ+ρf(k̃(n))

The transfer of the Hilbert space structure on Hλ = L2(M\K) re-
sults in the L2-space L2(N, ã(n)−2Reλdn) with dn an appropriately
normalized Haar measure on N . In the sequel we also write Hλ for
L2(N, ã(n)−2Reλdn) in the understood context. The full action of G in
the non-compact model is not of relevance to us, however we will often
use the A-action which is much more transparent in the non-compact
picture:

[πλ(a)f ](n) = aλ+ρf(a−1na)

for all a ∈ A and f ∈ L2(N, ã(n)−2Reλdn).

12.1.3. K-finite vectors with fast decay. The fact that ResK is an iso-
morphism follows from the geometric fact that Pmin\G ≃ M\K. Now
N embeds into Pmin\G = M\K as an open dense subset. In fact the
complement is algebraic and we are going to describe it as the zero set
of a K-finite functions f on M\K. We will show that f can be chosen
such that f restricted to N has polynomial decay of arbitrary fixed
order.
Let (σ,W ) be a finite dimensional faithful irreducible representation

of G. We assume that W is K-spherical, i.e. W admits a non-zero
K-fixed vector, say vK . It is known that σ is K-spherical if and only
if there is a real line L ⊂ W which is fixed under Pmin = MAN . Let
L = Rv0 and µ ∈ a∗ be such that σ(a)v0 = aµ ·v0 for all a ∈ A, in other
words: v0 is a lowest weight vector of σ and µ is the corresponding
lowest weight.
Let now 〈·, ·〉 be an inner product on W which is θ-covariant: if

g = k exp(X) for k ∈ K and X ∈ p and θ(g) := k exp(−X), then
covariance means

〈σ(g)v, w〉 = 〈v, σ(θ(g)−1)w〉
for all v, w ∈ W and g ∈ G. Such an inner product is unique up to
scalar by Schur’s Lemma. Henceforth we request that v0 is normalized
and we fix vK by 〈v0, vK〉 = 1. Consider on G the function

fσ(g) := 〈σ(g)v0, v0〉 .
The restriction of fσ to K is also denoted by fσ.
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Let now n ∈ N and write n = ñ(n)ã(n)k̃(n) according to the Iwa-

sawa decomposition. Then k̃(n) = n∗ã(n)−1n for some n∗ ∈ N . Con-
sequently

fσ(k̃(n)) = ã(n)−µ .

If (nj)j is a sequence in N such that k̃(nj) converges to a point in

M\K − k̃(N) =:M\K −N , then ã(nj)
−µ → 0. Hence

M\K −N ⊂ {Mk ∈M\K | fσ(k) = 0} .
As fσ is non-negative one obtains for all regular σ that equality holds:

M\K −N = {Mk ∈M\K | fσ(k) = 0}
(this reasoning is not new and goes back to Harish-Chandra). Let us
fix such a σ now.
We claim that the mapping n→ fσ(n) is the inverse of a polynomial

mapping, i.o.w. the map

N → R, n 7→ ã(n)µ

is a polynomial map. But this follows from

ã(n)µ = 〈σ(n)vK , v0〉
by means of our normalizations.
In order to make estimates later on we introduce coordinates on N .

For that we first write n as semi-direct product of a-root vectors:

n = RX1 ⋉ (RX2 ⋉ (. . .⋉RXn) . . .) .

Accordingly we write elements of n as X :=
∑n

j=1 xjXj with xi ∈ R.
We note the following two facts:

• The map

Φ : n→ N, X 7→ n(X) := exp(x1X1) · . . . · exp(xnXn)

is a diffeomorphism.
• One can normalize the Haar measure dn of N in such a way
that:

Φ∗(dn) = dx1 · . . . · dxn .
We introduce a norm on n by setting

‖X‖2 :=
n∑

j=1

|xj |2 (X ∈ n) .

Finally we set

fσ(X) := fσ(k̃(n(X))) = ã(n(X))−µ

and summarize our discussion.
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Lemma 12.1. Let m > 0. Then there exists C > 0 and a finite
dimensional K-spherical representation (σ,W ) of G such that:

(i) M\K −N = {Mk ∈ M\K | fσ(k) = 0}.
(ii) |fσ(X)| ≤ C · (1 + ‖X‖)−m for all X ∈ n.

12.1.4. Dirac type sequences. Dirac sequences do not exist for Hilbert
representations as they are features of an L1-theory. However, rescaled
they exist for the Hilbert representations we shall consider.
Recall our function fσ onM\K. We let ξ = ξσ be the corresponding

function transferred to N ≃ n i.e.

ξ(X) := ã(n(X))ρ+λfσ(k̃(n(X))) = ã(n(X))ρ+λ−µ .

It is clear that ξ is a K-finite vector for πλ.
We recall that ξ(X) satisfies the inequality

|ξ(X)| ≤ C · (1 + ‖X‖)−m

where we can choose m as large as we wish (provided σ is sufficiently
regular and large). Record the normalization ξ(0) = 1.
We will chose m at least that large that ξ becomes integrable and

write ‖ξ‖1 for the corresponding L1(N)-norm.
The operators πλ(a) can be understood as scaling operators in the

non-compact picture. For our purpose the scaling in one direction of
A will be sufficient. To make this precise we fix an element Y ∈ a such
that α(Y ) ≥ 1 for all roots α ∈ Σ(a, n). For t > 0 we put

at := exp((log t)Y ) .

Note that for η ∈ a∗C one has

aηt = tη(Y ) .

In the sequel we will often abbreviate and simply write tη for tη(Y ).
In order to explain the idea of this section let us assume for a moment

that λ is real. Then ξ is a positive function and

(
aρ−λt

‖ξ‖1
· πλ(at)ξ

)

t>0

forms a Dirac sequence for t→∞ (If λ is not real, then ξ is oscillating
and we have to be slightly more careful).
In the compact picture this means

lim
t→∞

aρ−λt

‖ξ‖1
· πλ(at)fσ = δMe =

∑

τ∈K̂M

δτ .
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It is our goal to understand this limit in the K-types: How large do we
have to choose t in dependence of τ such that the τ -isotypical part of
aρ−λ
t

‖ξ‖1
· πλ(at)fσ approximates δτ well. It turns out that t can be chosen

polynomially in τ . If we denote by Dτ the transfer of the character δτ
to the non-compact model, the precise statement is as follows.

Theorem 12.2. Let λ ∈ a∗C and N > 0. Then there exists a choice of
σ and hence of ξ = ξσ ∈ Vλ, constants c > 2, C > 0 such that for all

τ ∈ K̂M one has

[πλ(at(τ))ξ]τ = a−ρ+λt(τ) · Iξ ·Dτ +Rτ

where t(τ) := (1 + |τ |)c,

Iξ :=

∫

N

ξ(n) dn 6= 0

and remainder Rτ ∈ Hλ[τ ] satisfying

‖R(τ)‖
|a−ρ+λt(τ) |

≤ C

(1 + |τ |)N .

Proof. Recall the M-fixed functions δi,jτ ∈ L2(M\K)τ , 1 ≤ i, j ≤ l(τ)

for τ ∈ K̂M . In the sequel we abbreviate and set d := d(τ), l := l(τ).

LetDi,j
τ (n) = ã(n)ρ+λδi,jτ (k̃(n)) the transfer of δi,jτ to the non-compact

model. We also set Di,j
τ (X) := Di,j

τ (n(X)) for X ∈ n. Let us note that
|Di,j

τ (0)| = δij.
As πλ(a)ξ is M-fixed for all a ∈ A we conclude that

[πλ(at)ξ]τ =

l∑

i,j=1

bi,j(t) · d ·Dij
τ .

If 〈·, ·〉 denotes the Hermitian bracket on Hλ = L2(N, ã(n)−2Reλdn),
then the coefficients bi,j(t) are obtained by the integrals

bi,j(t) = 〈πλ(at)ξ,Di,j
τ 〉 =

∫

n

(πλ(at)ξ)(X) ·Di,j
τ (X) · ã(n(X))−2Reλ dX ,

where we used the notation

dX := dx1 · . . . · dxn
for X =

∑n
j=1 xjXj .

Fix 1 ≥ t0 > 0 and set t = t−2
0 .

We split the integrals for bi,j(t) into two parts bi,j(t) = b1i,j(t)+ b
2
i,j(t)

with
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b1i,j(t) :=

∫

{‖X‖≥t0}

(πλ(at)ξ)(X) ·Dτ (X) · ã(n(X))−2Reλ dX .

In our first step of the proof we wish to estimate b1i,j(t). For that let
C, q1 > 0 be such that

ã(n(X))−2Reλ ≤ C · (1 + ‖X‖)q1 .
Likewise, by the definition of Di,j

τ we obtain constants C, q2 > 0 which
only depend on Reλ and such that

|Di,j
τ (X)| ≤ C · (1 + ‖X‖)q2

for all τ and 1 ≤ i, j ≤ l. Set q := q1 + q2.
From the inequalities just stated we arrive at:

|b1i,j(t)| ≤ C · tReλ+ρ

∫

{‖X‖≥t0}

|ξ(Ad(at)−1X)| · (1 + ‖X‖)q dX .

As |ξ(X)| ≤ C · (1 + ‖X‖)−m for some constants C,m > 0 we thus get
that

|bi1(τ, t)| ≤ C · tReλ+ρ

∫

{‖X‖≥t0}

(1 + ‖X‖)q
(1 + ‖Ad(at)−1X‖)m dX .

By the definition of at we get that ‖Ad(at)−1X‖ ≥ t‖X‖ and hence

|b1i,j(t)| ≤ C · tRe λ+ρ

∫

{‖X‖≥t0}

(1 + ‖X‖)q
(1 + t‖X‖)m dX .

We continue this estimate by employing polar coordinates for X ∈ n:

|b1i,j(t)| ≤ C · tRe λ+ρ

∫ ∞

t0

rn(1 + r)q

(1 + tr)m
dr

r

= C · tn−2(Reλ+ρ)
0

∫ ∞

1

rn(1 + t0r)
q

(1 + tt0r)m
dr

r

= C · tn−2(Reλ+ρ)
0

∫ ∞

1

rn(1 + t0r)
q

(1 + t−1
0 r)m

dr

r

= C · tn−2(Reλ+ρ)+m
0

∫ ∞

1

rn(1 + t0r)
q

(t0 + r)m
dr

r

≤ C · tn−2(Re λ+ρ)+m
0

∫ ∞

1

rn+q−m
dr

r
.
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Henceforth we request that m > n + q + 1. Thus for every m′ > 0
there exist a choice of ξ and a constant C > 0 such that

(12.2) |b1i,j(t)| ≤ C · t−m′

.

Next we choose t in relationship to |τ |. Basic finite dimensional
representation theory yields that in a fixed compact neighborhood of
X = 0 the gradient of Di,j

τ is bounded by C · (1 + |τ |) for a constant
C independent of τ . Let γ > 1. Then for ‖X‖ ≤ (1 + |τ |)−γ the mean
value theorem yields the following estimate

(12.3) |Di,j
τ (X)−Di,j

τ (0)| ≤ C · (1 + |τ |)−γ+1

This brings us to our choice of t, namely

t = t(τ) := (1 + |τ |)2γ .
Recall the definition of

Iξ =

∫

n

ξ(X) dX

Here we might face the obstacle that Iξ might be zero. However as
ξ(X) = ã(n(X))ρ+λ−µ it follows I 6= 0 provided µ is large enough. So
for any m′ we find such a non-zero Iξ.
In the following computation we will use the simple identity:

∫

n

πλ(at)f(X) dX = tλ−ρ
∫

n

f(X) dX

for all integrable functions f . Now if i 6= j, then Di,j
τ (0) = 0 and we

obtain from (12.2) and (12.3) that

bi,j(t) =

∫

{‖X‖≤t0}

(πλ(at)ξ)(X) ·Di,j
τ (X) ã(n(X))−2Re λdX

+O

(
1

(1 + |τ |)2γm′

)

=

∫

{‖X‖≤t0}

(πλ(at)ξ)(X)
(
Di,j
τ (X)−Di,j

τ (0)
)
ã(n(X))−2Reλ dX

+O

(
1

(1 + |τ |)2γm′

)

= tλ−ρ · ‖ξ‖1 ·O
(

1

(1 + |τ |)γ−1

)
+O

(
1

(1 + |τ |)2γm′

)
.

For i = j we have Di,i
τ (0) = 1 and we obtain in a similar fashion that
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bi,i(t) =

∫

{‖X‖≤t0}

(πλ(at)ξ)(X) · ã(n(X))−2Reλ dX

+ tλ−ρ · ‖ξ‖1 · O
(

1

(1 + |τ |)γ−1

)
+O

(
1

(1 + |τ |)2γm′

)

= tλ−ρ · Iξ +O

(
1

(1 + |τ |)γ−1

)
+O

(
1

(1 + |τ |)2γm′

)
.

If we choose c := 2γ and γ− 1 = N and m′ large enough, the assertion
of the theorem follows. �

The proof of the theorem shows that the approximation can be made
uniformly on any compact subset Q ⊂ a∗C. We further observe that at(τ)
is bounded from above and below by powers of 1 + |τ |. If switch to
the compact models Hλ = L2(M\K) and denote fσ also by ξ, then an
alternative version of the theorem is as follows:

Theorem 12.3. Let Q ⊂ a∗C be a compact subset and N > 0. Then
there exists ξ ∈ C[M\K] and constants c1, c2 > 0 such that for all

τ ∈ K̂M , λ ∈ Q, there exists aτ ∈ A, independent of λ, with ‖aτ‖ ≤
(1 + |τ |)c1 and numbers b(λ, τ) ∈ C such that

‖[πλ(aτ )ξ]τ − b(λ, τ)δτ‖ ≤
1

(|τ |+ 1)N+c2

and

|b(λ, τ)| ≥ 1

(1 + |τ |)c2 .

Here ‖ · ‖ refers to the norm in L2(M\K).

Finally we deduce the following lower bound for matrix coefficients.
Recall the non-degenerate complex bilinear G-equivariant pairing (·, ·)
between Hλ and H−λ.

Corollary 12.4. Let Q ⊂ a∗C be a compact subset. Then there exists
ξ ∈ C[M\K], constants c1, c2, c3 > 0 such that

sup
g∈G

‖g‖≤(1+|τ |)c1

|(πλ(g)ξ, v)| ≥ c2
1

(1 + |τ |)c3 ‖v‖

for all λ ∈ Q, τ ∈ K̂M and v ∈ V−λ[τ ]. Here ‖v‖ refers to the norm
on H−λ = L2(M\K). In particular there exist a s ∈ R such that

sup
g∈G

‖g‖≤(1+|τ |)c1

|(πλ(g)ξ, v) ≥ c2‖v‖s,K
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for all λ ∈ Q, τ ∈ K̂M and v ∈ V−λ[τ ].
Thus Theorem 7.1 in conjunction with the above Corollary yields

the Casselman-Wallach Theorem for spherical principal series:

Corollary 12.5. Let λ ∈ a∗C and Vλ the Harish-Chandra module of
the corresponding spherical principal series. Then Vλ admits a unique
smooth Fréchet globalization.

12.1.5. Constructions in the Schwartz algebra. Let us fix a relatively
compact open neighborhood Q ⊂ a∗C. We choose the K-finite element
ξ ∈ C[M\K] such that the conclusion of Theorem 12.3 is satisfied.

Lemma 12.6. Let U be an Ad(K)-invariant neighborhood of 1 in G
and F(U) the space of Ad(K)-invariant test functions supported in U .
Then there exists a holomorphic map

Q→ F(U), λ 7→ hλ

such that Πλ(hλ)ξ = ξ.

Proof. Let Vξ ⊂ C[M\K] be the K-module generated by ξ. Let n :=
dimVξ. Let U0 be a Ad(K)-invariant neighborhood of 1 ∈ G such that
Un
0 ⊂ U .
Note that any h ∈ F(U0) induces operators

T (λ) := Πλ(h)|Vξ ∈ End(Vξ) .

The compactness ofQ allows us to employ uniform Dirac-approximation:
we can choose h such that

Q→ Gl(Vξ), λ 7→ T (λ)

is defined and holomorphic. Let n := dimVξ. By Cayley-Hamilton
T (λ) is a zero of its characteristic polynomial and hence

idVξ =
1

det T (λ)

n∑

j=1

cj(λ)T (λ)
j

with cj(λ) holomorphic. Set now

hλ :=
1

det T (λ)

n∑

j=1

cj(λ) hλ ∗ . . . ∗ hλ︸ ︷︷ ︸
j-times

.

Then Q ∋ λ 7→ hλ ∈ F(U) is holomorphic and Πλ(hλ)ξ = ξ. �
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For a compactly supported measure ν on G and f ∈ S(G) we define
ν ∗ f ∈ S(G) by

ν ∗ f(g) =
∫

G

f(x−1g) dν(x) .

For an element g ∈ G we denote by δg the Dirac delta-distribution at
g. Further we view δτ as a compactly supported measure on G via the
correspondence δτ ↔ δτ (k) dk.

For each τ ∈ K̂M we define hλ,τ ∈ S(G) by

(12.4) hλ,τ := δτ ∗ δat(τ) ∗ hλ .
Call a sequence (cτ )τ∈K̂M

rapidly decreasing if

sup
τ
|cτ |(1 + |τ |)R <∞

for all R > 0.

Lemma 12.7. Let (cτ )τ be a rapidly decreasing sequence (cτ )τ and hλ,τ
defined as in (12.4). Then

Hλ :=
∑

τ∈K̂M

cτ · hλ,τ

is in S(G) and the assignment Q ∋ λ→ Hλ ∈ S(G) is holomorphic.

Proof. Fix λ ∈ Q. For simplicity set H = Hλ, hλ,τ = hτ .
It is clear that the convergence of H is uniform on compacta and

hence H ∈ C(G). For u ∈ U(g) we record

Ru(hτ ) = δτ ∗ δat(τ) ∗Ru(h)

and as a result H ∈ C∞(G). So we do not have to worry about right
derivatives. To show that H ∈ S(G) we employ Remark 2.18: it
remains to show that H ∈ R(G), i.e.

(12.5) sup
g∈g
‖g‖r · |H(g)| <∞

for all r > 0. Fix r > 0. Write g = k1ak2 for some a ∈ A, k1, k2 ∈ K.
Then

‖g‖r|hτ (g)| ≤ ‖a‖r · sup
k,k′∈K

|h(a−1
t kak′)| .

Let Q ⊂ A be a compact set with logQ convex and W-invariant and
such that supp h ⊂ KQK. We have to determine those a ∈ A with
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(12.6) a−1
t Ka ∩KQK 6= ∅ .

DefineQt ⊂ A through logQt being the convex hull ofW(log at+logQ).
Then (12.6) implies that

a ∈ Qt .

But this means that ‖a‖ << |τ |c for some c > 0, independent of τ .
Hence (12.5) is verified and H is indeed in S(G).
Finally the fact that the assignment λ 7→ Hλ is holomorphic follows

from the previous Lemma. �

Theorem 12.8. Let Q ⊂ a∗C be a compact subset. Then there exist a
continuous map

Q× C∞(M\K)→ S(G), (λ, v) 7→ f(λ, v)

which is holomorphic in the first variable, linear in the second and such
that

Πλ(f(λ, v))ξ = v .

In particular, Πλ(S(G))Vλ = H∞
λ for all λ ∈ a∗C.

Proof. Let v ∈ H∞
λ . Then v =

∑
τ cτvτ with vτ normalized and (cτ )τ

rapidly decreasing. As S(G) is stable under left convolution with
C−∞(K) we readily reduce to the case where vτ =

1√
d(τ)

δτ .

In order to explain the idea of the proof let us first treat the case
where the Harish-Chandra module is a multiplicity free K-module.
This is for instance satisfied when G = Sl(2,R).
Recall the numbers b(λ, τ) from Theorem 12.3 and define

Hλ :=
∑

τ

cτ√
d(τ) · b(λ, τ)

hλ,τ .

It follows from Theorem 12.3 and the Lemma above that Q ∋ λ →
Hλ ∈ S(G) is defined and holomorphic. By multiplicity one we get
that

Πλ(Hλ)ξ =
∑

τ

cτvτ .

and the assertion follows for the multiplicity free case.
Let us move to the general case. For that we employ the more general

approximation in Theorem 12.3 and set

H ′
λ =

∑

τ∈K̂M

cτ√
d(τ) · b(λ, τ)

hλ,τ .
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Then
Πλ(H

′
λ)ξ =

∑

τ∈K̂M

cτvτ +R

where, given k > 0, we can assume that ‖Rτ‖ ≤ |cτ | · (|τ | + 1)−k

for all τ (choose N in Theorem 12.3 big enough). Finally we remove
the remainder Rτ by left convolution with C−∞(K) (use the Neumann
series (id+R)−1). �

13. Appendix B: On the meromorphic extension of
certain distributions on G×G

Let X and Y be real smooth affine varieties. We may view X , resp.
Y , as Zariski closed subsets in Rn, resp. Rm. Let S ′(X × Y ) the space
of tempered distributions on X × Y . Further let p : Y → R+ be a
positive polynomial function such that p(y) > ‖y‖ (y ∈ Y ) for some
norm ‖·‖ on Rm. We consider the canonical projections π : X×Y → X
and ρ : X × Y → Y . Let E ∈ S ′(X × Y ). Since E is tempered, there
exists an r0 > 0 such that for all λ ∈ C with Reλ > r0 the prescription

I(λ) := π∗(p
−λE)

defines a distribution on X . Furthermore, if D′(X) denotes the topo-
logical vector space of distribution on X , then the assignment

{z ∈ C | Re z > r0} ∋ λ→ I(λ) ∈ D′(X) .

is meromorphic. Note the formula

I(λ)(φ) = E(p−λ ◦ ρ · φ ◦ π) (φ ∈ C∞
c (X)) .

Let D = D(X × Y ) be the ring of differential operators on X × Y
with polynomial coefficients.
Suppose now that E is holonomic, that is the D-module generated

by E in S ′(X × Y ) is holonomic. A slight modification of the main
result in [1] then yields differential operators d1(λ), . . . , dk(λ) ∈ D(X),
polynomially depending on λ, as well as a polynomial function b(λ)
such that

b(λ)I(λ + k) = d1(λ)I(λ+ k − 1) + . . .+ dk(λ)I(λ) .
In particular, I(λ) admits a meromorphic continuation as a distribution
on X .
In the sequel we will use this result for X = G × G and Y = G.

Let V be a Harish-Chandra module of a discrete series representations.
Let I = IndGPmin

(σ1) be a minimal principal series representation with
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respect to an irreducible representation σ1 of Pmin/N =M×A such that
V →֒ I. Likewise we choose a minimal principal series J := IndGPmin

(σ2)

such that Ṽ →֒ J . Write W1, W2 for the representation module for σ1,
resp. σ2. Let ν1,2 ∈ W1.2 be fixed non-zero elements. Let us consider
the continuous surjections:

Φ : C∞
c (G)→ I∞, φ 7→

(
g 7→

∫

Pmin

φ(pg)σ1(p)
−1ν1 dp

)

and

Ψ : C∞
c (G)→ J∞, ψ 7→

(
g 7→

∫

Pmin

ψ(pg)σ2(p)
−1ν2 dp

)
.

Further we let ξ ∈ Ĩ and η ∈ J̃ be such that the maps

V → C∞(G), v 7→ mξ,v

Ṽ → C∞(G), w 7→ mη,w

are injective.
Now for λ ∈ C with Reλ sufficiently big, the prescription

I(λ)(φ, ψ) :=
∫

G

mξ,Φ(φ)(g)mη,Ψ(ψ)(g)‖g‖−λ dg (φ, ψ ∈ C∞
c (G))

defines a distribution on G × G. We claim that I(λ) admits a mero-
morphic continuation to the complex plane. In fact

E(g, h1, h2) := ξ(h1g
−1)(ν1) · η(h2g−1)(ν2)

defines a moderately growing function on G×G×G, hence a tempered
distribution. With respect to the first variable projection π : G×G×
G→ G we readily verify the identity

I(λ) = π∗(‖ · ‖−λE) .
The fact that E is holonomic implies the claim.
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