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ABSTRACT. The authors describe admissible families of curves, for which in the
complex case there are Radon type inversion formulas for the (local) problem
of integral geometry. Curves in such families admit compatible extensions
up to rational curves. As special cases we obtain the complete description
of admissible families of lines and conics. There is a connection with twistor
constructions of explicit solutions of nonlinear differential equations.

These notes have a long and unusual history. In 1979 we started to work on
the integral geometry for manifolds of curves. The impetus to these deliberations
was the paper [4], where a general structure of Radon type inversion formulas for
manifolds of complex curves was found. It turned out that every such formula is an
integration over an appropriate cycle of a universal closed (1, 1)-form « on the (infi-
nite dimensional) manifold of all curves with densities (for the exact constructions,
see Note 1 below). This form is the result of application of an explicit differential
operator of order (1, 1) to the integrals of functions along curves with respect to
densities. This result about the universal nature of local inversion formulas extends
the notion of the operator « developed by Gelfand, Graev and Shapiro for integral
geometry on complex planes [1] (the Radon-John transform).

An important direction in integral geometry is the study of admissible families
of submanifolds for which the problem of integral geometry admits local inver-
sion formulas. In terms of the operator « this problem reads as a problem about
characteristic families on which x can be computed (it does not use differentia-
tions in transversal directions). This problem of nonlinear analysis was solved for
families of complex lines in a quite general situation [2, 3]. In [4] all admissible
2-parameter families of complex curves with densities on 2-dimensional manifolds
were described (locally). In particular, all densities on lines for which Radon type
inversion formulas do exist were described.

In this article, we consider some similar problems for real curves. We start with
a description of finite dimensional families of curves on which there exist densities
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yielding admissible families of curves with densities (in the complex version there
is a Radon type inversion formula). We have found that such densities exist if and
only if the curves can be simultaneously extended to rational curves and the family
of extended curves is complete in a natural sense.

Our next problem is to describe complete subfamilies of complete families of
rational curves. A typical example is the problem about 2-parameter subfamilies
of quadrics in the projective plane with Radon type inversion formulas (the 5-
parameter family of all nondegenerate quadrics is a complete family of rational
curves). It turns out that such generic subfamilies are always defined by intersection
and tangency conditions with some subvarieties. The role of such intersection and
tangency conditions was already known in the case of admissible families of lines.

We give the general description of admissible subfamilies in the language of
o-processes (blowing up). Note that even in the case of lines the description of
admissible subfamilies that are not generic is new.

It is natural to compare the role of manifolds of rational curves in integral
geometry with the role of manifolds of rational curves in the Penrose twistor theory
[6]. Probably, their appearance in such different problems reflects an important
universal role of families of rational curves in explicitly solvable nonlinear problems.

Since the construction of self-dual solutions of the vacuum Einstein equation
includes constructions of 4-parameter families of rational curves on 3-folds, we can
apply to this problem our constructions of admissible subfamilies of large families
of rational curves. Using this method, we can construct new solutions of the self-
dual Einstein equation using subfamilies of conics in the projective space defined
by conditions of tangency and intersection (for more details, see [8]-[10]).

In 1981 one of us (J.B.) emigrated from the U.S.S.R. Before his departure we
prepared these notes to record some of the final results. The situation at that
time was such that we could not even think about publishing them. Nevertheless,
Mitya Leites translated them into English and later published them as preprints of
Stockholm University. We thank him very much for his help. We also thank Hai
Ying for the preparation of the TEX file of this paper.

We decided to publish a part of these rather old notes, since we believe that
they can still be useful to mathematicians working in integral geometry. We only
corrected a few typos and added a minimum of references reflecting the development
of the subject. The most important progress was achieved by Goncharov, who
gave a remarkable description of the algebraic admissible families of curves [12]
and obtained also some substantial multidimensional generalizations [13]. Notice
also an analytical approach to admissible complexes [11] parallel to the algebraic-
geometrical approach of Note 3, and a version of the operator & for families of
submanifolds of dimension greater than 1 in [14].

NoTE 1
ADMISSIBLE FAMILIES OF CURVES

Admissible families of curves arise naturally in problems of integral geometry.
In the simplest cases the object of the study is an integral transformation I that
to a function f with compact support assigns its integrals I f along straight lines.
Since the problem is overdetermined in dimensions n > 2, the inversion formula is
not unique. However, for complex lines a vast natural class of inversion formulas is
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obtained via integration of the universal differential form I f along various cycles.
The form <If is made from If by means of a differential operator, see [1]. The
family of lines that enables us to recover kI f from the restriction of I f to the family
is called admissible. This is a peculiar characteristic condition. It turns out that
all generic admissible families of complex lines can be described [2, 3].

In [4] this situation is completely generalized to integration along curves. The
universal form kIf can be extended, in a sense, from the manifold of lines to the
manifold of curves, and in this way the notion of an admissible family of curves
arises (see §1 below). It turns out that for the two-parameter family of curves on
the plane the notion of admissibility coincides with the “infinitesimal Desargues
property”, see [5]. Our goal is to generalize this result to any finite dimensional
family of curves.

Section 1 follows the lines of [4] with slight modifications (e.g., in the definition
of admissible operator). Section 1 provides motivations for the geometric notion of
an admissible family of curves.

Section 2 contains our main result — a purely geometric description of adntis-
sible families of curves. This description enables us to effectively describe these
families in Note 2. We start with weakly admissible families that naturally arise in
problems of integral geometry. It is known that an arbitrary 2-parameter family of
curves on the plane has lots of remarkable properties. First, on each curve of the
family a natural structure of a local projective line arises (see [5]). Weakly admis-
sible families are just the families with this property (each 2-parameter family of
curves on the plane is weakly admissible).

In what follows we will show that, as a rule, weak admissibility implies admissi-
bility (a version of the classical Desargues theorem). In general, admissible families
are distinguished among weakly admissible ones by a global projective structure on
the curves (Main Theorem).

Section 3 contains some examples: in addition to two-parameter families on the
plane considered in [4] we describe 4-parameter families on 3-dimensional manifolds.
The latter example is related to Penrose’s study of self-dual conformal metrics [8, 8].

As for the integral geometry, the situation is rather complicated. We consider
here the real case and produce a well-defined differential form which, however, does
not supply us with an inversion formula since in the real case there are no local
inversion formulas for curves. A natural generalization to the complex case leads
to inversion formulas, but through more cumbersome computations. Still another
way of generalization to the complex case is to consider the problem of integral
geometry for d-cohomology [7].

§1. Admissible operators and admissible families

1.1. Notation. Let X be a manifold. On X, we will consider families K of
smooth non-parameterized curves and families K of parameterized curves. In the
latter case, the induced family. of non-parameterized curves will be denoted by K.
Our considerations are mostly local. For non-parameterized curves the elements of
the tangent space Tg K to K at the curve F (i.e., the variations F of the curve E)
are naturally identified with the sections of the normal bundle N(E) to the curve E
in X, while for parameterized curves the elements of TgX are naturally identified
with the sections of the restriction TX|g to E of the tangent bundle to X.

-
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60 JOSEPH BERNSTEIN AND SIMON .GINDIKIN

Let IT be the space of pairs (E, ) consisting of a curve E and a smooth density
% on E. Let K(II) (resp. K(II)) be the corresponding family of curves. In II, the
curve may occur several times with different densities. So it is natural to assume
- that if (E,¢) € II, then (E, M) € II for all A € R. If curves are parameterized,
the tangent vectors to II are identified with pairs (6 E, 6¢), where §F is a tangent
vector to K(II) (i.e., a section of TX|g) and §v is a density on R!. If curves are
not parameterized, we shall consider the family K(IT) of all parameterizations of
curves from K (II), lift densities to K(II), and apply the above construction to the
resulting family II.
Let II be the space of curves with densities. Let us consider the integral trans-
formation I : C§°(X) — C§°(I) of the form

& = [ . )

We say that an operator L : C§°(X) — C§°(11) is local if f|g = 0 implies that
Lf(E,¢)=0.

1.2. Admissible operators. Denote by II;, z € X, the subspace of pairs
(E,%) such that z € E. Consider a family of first-order differential operators
D : C>(11) — Q!(I1,,) smoothly depending on the parameter z € X.

An operator D is admissible if for almost every z € X we have

(i) dDI =0, and

(i) there exists a local operator M : C§2(X) — C°°(I), where C$2(X) is the
subspace of functions f € C§°(X) that vanish at z, such that

DIf =dMf forany f e Cga(X).
LEMMA. Ifdim K > dim X and dim X > 2, then (i) implies (ii).

What does the notion of the admissibility of an operator mean? Its complex
analogue provides us with a closed form DIf such that the integrals of this form
along appropriate cycles return cf, where c # 0, i.e., we obtain an inversion formula
[4].

In the real case the integrals along all cycles vanish; nevertheless, the notion
of admissible operator is meaningful, though it does not provide us with any in-
version formula. The transition to the complex case of the results stated below is
straightforward.

Note that conditions (i), (ii) above are local, and in our investigation no inte-
gration along cycles is involved.

It turns out ([4]) that admissible operators are parameterized by functions pg
on E depending on the fixed point € E. If curves are not parameterized, the
admissible operators will be considered on II.

PROPOSITION. For any admissible operator D there exists a unique system of
functions pgy o on E € K(II) such that

_ReSﬂE,¢,x : ¢Iy=z =c(z) 2)
(i.e., Res depends only on x and not on E or ¢)) and D is of the form
DF(SE, &) = dF (pE, d(u)([OE, 5¢)), 3)

where 1y is considered as a map from II to the space of densities on R' and d(u)
is its differential.
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The operator (3) is well defined. This follows from (2) since E(z) = 0. The
operator (3) is defined on the space of all parameterized curves with densities and
can be descended to the space of all non-parameterized curves with densities.

» Properties (i) and (ii) are quite straightforward.

The operator (3) may be restricted to II whenever the vector (udE, d(uy))
is tangent to II. The admissible operator D is trivial if, in its presentation (2),
c(x)=0.

1.3. Admissible families of curves. A family of curves K is calied admis-
sible if on each curve E there exists a density ¢¥g such that the family II(K) =
{(FE,v£)} has a non-trivial admissible operator. Proposition 1.2 implies the follow-
ing assertion.

COROLLARY. The family of curves K is admissible if and only if there ezist
YE and pg z, p(E) such that for almost all E and z, where x € E, we have

(i) c(z) # 0 in (2),

(ii) pg»0F € TeK if 6E € TgK,, and

(iii) dy[udE] = d(uy)[0E] + p(E)(¢)-

§2. Finite-dimensional admissible complexes

2.1. Admissible subspaces of sections. We begin with the study of families
of curves satisfying conditions (i), (ii) of Corollary 1.3. Let us consider the tangent
space to a fixed curve E.

Let E be a connected curve, N a vector bundle on E. The space of sections
W C T'(E, N) is admissible if W generates almost all fibers, for almost all z € E the
subspace W, of sections vanishing at  has a non-zero dimension, and for almost
all z € E there exists a function u; such that piz(y) = ;2 +..., where a # 0 and
pWy CW.

PROPOSITION. Let W be a finite dimensional admissible subspace. The func-
tions py are related for various x by linear-fractional transformations, i.e., these
functions define a morphism p: E — PL.

The family p, for x € E is determined by W up to a transformation u, —
o(z)pe + B(z).

2.2. Weakly admissible families of curves. A family of curves K (or
a family of parameterized curves K) is called weakly admissible if for each curve
E € K (resp. E € K) the image of TgK in I'(N(E)) (resp. TeK in I'(TX|g))
under the natural embedding is an admissible subspace of sections.

In other words, weak admissibility means that conditions (i), (ii) of Corollary
1.3 (which do not involve densities 1g) are satisfied. Thus the question, “When is
the weakly admissible family K admissible?” is reduced to the question, “When do
densities ¢ 5 satisfying condition (iii) of Corollary 1.3 exist?”

As follows from Proposition 2.1, in the finite dimensional case the system of
functions p is completely determined by the conditions (i), (ii).

Let K be a weakly admissible finite dimensional family of curves. Proposition
2.1 implies that in each sufficiently small neighborhood 2 C X there is a natural
structure of the locally projective line on the curves E € K (in general, the maps
4z only cover P1). In Q, consider the family K, of curves from K with arbitrary
projective parameterizations consistent with the local projective structures on these
curves.
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THEOREM. A weakly admissible finite dimensional family of curves K is ad-
missible in a sufficiently small neighborhood Q@ C X if and only if the family K, of
parameterized curves is weakly admissible.

Note that the possibility of constructing K, from K assumes weak admissibility
of K. The notion of weak admissibility of K (or K) involves the first infinitesimal
neighborhood of curves of K (resp. K), while the weak admissibility of X, involves
the second infinitesimal neighborhood of curves of K, since the first one is already
used in the definition of K.

Consider the subset V(E) = J,cp Te(K:) in TpK and let L(V(E)) be the
linear envelope of V(E).

THEOREM. Let us assume that dim X > 2; let K be a finite dimensional weakly
admissible family of curves such that (dim L(V(E)) — dim Tg(K,)) > 1 for almost
allz € §/ Then K is admissible.

This result is a local analogue of the Desargues theorem.

§3. Examples

3.1. Admissible 2-parameter families of curves on 2-dimensional
manifolds. Let X be a manifold, dim X = 2, and © a family of curves on X
such that dim© = 2. To a point € X there corresponds the set of curves § € ©
such that z € 8. Let § € © be a curve in X. To points € @ there correspond
curves 6,(s) from © such that 6,(0) = 6. By assigning to points z € § tangent lines
{cf(0)} at s = 0 we introduce a local projective line structure on 8.

When dim X = dim © = 2, the families of curves are always weakly admissible
and the above projective structure coincides with the general construction of the
previous section.

In coordinates on ©, the condition of admissibility is equivalent (according to
[4]) to the existence for almost every x € © and A € Tp© of the unique curve
64(s) such that 6,(0) = 8 and 6,(0) = A, where mp(\) = [),8,(0)] is a third degree
polynomial in A and [+, ] is the skew product of vectors on the plane.

Equivalently, this condition means that there is a diffeomorphism that straight-
ens all curves 8, on © up to third-order infinitesimals. This means, in turn, that
the family 6, may be realized as a family of geodesics for an affine connection.

For the initial family © of curves on X, the condition of admissibility coincides
with the “infinitesimal Desargues property” [5]. In Note 2 we will show that an
admissible 2-parameter generic subfamily in a 5-parameter family of second-order
curves on the plane is a set of curves tangent to three fixed curves. On the other
hand, the family of circles of fixed radius is an example of a non-admissible family.

3.2. Admissible 4-parameter families on 3-dimensional manifolds.
The simplest example is the family of lines in RP3. Let X be a manifold, dim X = 3,
and K the manifold of curves on X, so that dim K = 4. Let K, be the family of
curves of K passing through z (z € X). In general, dim K, = 2 and there are
functionally independent variations of curves 6 E1,6E; € TgK,. Suppose that this
is the case and that A, (z € E) is the 2-dimensional plane in Tg K tangent to K.
Then Ve = J,cp Az is a cone in Te K

It turns out that in this case weak admissibility coincides with admissibility (it
is an infinitesimal version of the classical Desargues theorem, cf. Theorem 2.2.2)

«
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and is equivalent to the fact that Vg is a quadratic cone. Then the system of cones
Vg, where E € K, defines on K a conformal class of metrics with signature (2,2)
(Vg are just the isotropic or “light” cones). This metric is automatically self-dual.

The converse is also true: any 4-dimensional manifold K equipped with a
conformal self-dual metric of signature (2,2) can be realized via Penrose’s scheme
[6] as an admissible family of curves on a 3-dimensional manifold X so that all the
structures are consistent. As we will show in Note 2, the family of second degree
flat curves in RP3 tangent to four fixed surfaces is admissible.

The construction of the family of densities ¢z satisfying condition (iii) of Corol-
lary 1.3 is essentially equivalent to the choice of a metric in the given conformal
class.

NOTE 2
TueE GEOMETRIE STRUCTURE OF ADMISSIBLE FAMILIES OF CURVES

This note is a continuation of Note 1, where we studied the admissible families
of curves that arise in the integral geometry.

In Section 1 we give another definition of admissible families of curves. Accord-
ing to Note 1 the notions are equivalent.

In Section 2 the infinitesimal structure of the manifold K consisting of an ad-
missible family of curves on a manifold X is described. Observe that this description
is given in terms of K only and does not involve X; any manifold K endowed with
this structure can be realized consistently with all structures as an admissible family
of curves on a manifold.

This is a generalization of the assertion from Note 1 that problems on 4-
parameter admissible families of curves on 3-dimensional manifolds and problems
on conformal self-dual metrics are equivalent.

In Section 3 we move in the opposite direction: we start with a fixed manifold
X with many compact rational curves, prove that the family of all such curves
is admissible, and describe its admissible subfamilies. This is a generalization of
results from [1] and [2] on admissible families of lines.

Qur constructions allow one to give a lot of meaningful examples and, in par-
ticular, new examples of global self-dual conformal metrics on four-dimensional
manifolds [8, 9]. Here the ground field is C and all manifolds, curves, bundles and
so on are supposed to be holomorphic.

§1. Admissible families of curves

1.1. Admissible subspaces of sections of a vector bundle on the curve.
Let C be a connected curve and E a vector bundle on C. A subspace W C T'(C, E)
is admissible if W spans almost all fibers, dim W,, # 0 for all z € C, where W, is
a subspace of sections vanishing at z, and for almost all z € C' there is a function
po(y) = 3% + ..., y € C, such that y W, C W for some a #0.

PROPOSITION. Let W C T'(C, E) be a finite dimensional subspace. -Then the
functions pg, = € C, are related by linear-fractional transformations, i.e., they
define a morphism p: C — PL.
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There exist a bundle E on P! and a bundle morphism i : y*E — E such
that W is the image of T'(P?, E) and i is an isomorphism on almost all fibers. The
bundle £ and the morphism ¢ are defined up to an isomorphism.

Regarding the relation between the p, for distinct z’s, see Note 1. It is im-
portant that for generic points z,y € C we have W, = (Ajpy — A\2)W,, where
paly) = 32.

Conversely, if z is a generic point, we set W(A) = (A — X)W, for A =
(/\1,/\2) e C? \ {0}

If p(y) = %f, then W(A) = W,. The multiplication by (Aipt — A2) is an
operator without kernel. Therefore, by setting

E/\ = W/W()‘)v

we obtain the desired bundle.

1.2. P-structure on the linear space. The above arguments make the
following definition natural. Let W be a linear space. We say that a system P(W)
of v-dimensional subspaces in W (i.e., P(W) C Gr, W) defines a P-structure on W
if there are a linear space L and maps Ay, Ay : L — W such that

P(W) = {Im (A A; + A\243) for any A € C?\ {0}} and  v=o
VeP(W)

By definition, P(W) is naturally isomorphic to P!.

LEMMA. Let P(W) C Gr,W define a P-structure on W and let E = E(P(W))
be a bundle on P(W) with fibers Eyy = W/V. Then (P(W),E)=W.

This lemma implies that the triple {L, A;, A2} is recovered from the P-structure
up to a natural transformation.

If W is an admissible subspace of sections, then on W a P-structure arises:
P(W) is the Zariski closure of the set {W,} C Gr,W.

1.3. Admissible families of curves. Let K be a family of non-parameterized
curves k — C(k), k € K, on the manifold X. The family K is called a covering if
Ukex C(k) covers an open set in X. We will usually assume that our families are
coverings.

There is a natural mapping T3 K — I'(C(k), N), where N is the normal bundle
to C(k). Up to a closed nowhere dense subset in K, this mapping is injective and
we can identify T3 K with a subspace of I'(C(k), N).

If € is a family of parameterized curves, then there is a natural mapping
TxK — T(C(k), TX|c)). Similarly, let us identify T}k with its image under
this mapping. The family K (resp. K) is weekly admissible if subspaces of sections
identified with T, K (resp. TxX) are admissible.

If K is a weakly admissible family, then Lemma 1.2 implies that on C(k),
k € K, there is a natural structure of a local projective line. In a sufficiently
small neighborhood @ on X, consider a family Kp of curves C(k), k € K, for
all projective parameterizations consistent with their projective structures. The
weakly admissible family K is admissible if Kp is weakly admissible.

«
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§2. Infinitesimal structure of admissible families of curves

2.1. Manifolds with P-structures. We say that a manifold K is endowed
with a P-structure of dimension v if this structure is introduced on every Ty K. In
‘particular, if K is realized as a weakly admissible family of curves, it has a natural
‘P-structure corresponding to this realization.

Let K be a manifold with a P-structure of dimension v. Denote by P(K) the
manifold of pairs (k,V), where k € K and V € P(T;K), i.e., V is a subspace of
the P-structure on T3 K. There is a canonical projection pr : P(K) — K with the
fiber PL. .

The (local) distribution » — F(u) of dimension v, where u € P(K), on P(K)
is consistent with the P-structure on K if pr,F(u) =V for any u = (k, V), where
ke K and V € T} K.

Let K be a weakly admisgible family of curves on X and

C(K)={(z,k) |z € X and k € K such that z € C(k)}.

By Proposition 1.1 there is a natural mapping p : C(K) — P(K). Let F(X, K) be
a distribution on C(K) tangent to the natural projection C(K) — X. Since pis a
diffeomorphism in a neighborhood of the generic point, F(X, K) can be transferred
to P(K).

The local distribution thus obtained is consistent with the P-structure on K
related to the realization of K as a family of curves. Obviously, F(X, K) is inte-
grable.

THEOREM. A weakly admissible family of curves K on the manifold X is
admissible if and only if F(X, K) is algebraic along the fibers of the projection
pr: P(K) — K.

Since F is algebraic, the local distribution F can be extended to a global
distribution on P(K). On the other hand, any global distribution is automatically
algebraic along the fibers.

PROPOSITION. If K is a manifold with a P-structure of dimension v > 1 and
dim K — v > 1, then there exists at most one integrable distribution F on P(K)
consistent with the P-structure on K. This distribution, if it exists, is algebraic
along the fibers of pr.

In particular this proposition implies the admissibility of weakly admissible
families of curves provided dim K > dim X > 2 — the result formulated in Theorem
2.2.2 of Note 1. -

Let us define a (P, F)-structure on K to be a pair consisting of a P-structure
on K and a consistent integrable distribution F which is algebraic along the fibers
of pr: P(K) — K.

2.2. A realization of the manifold with a (P, F)-structure as a family
of curves. The (P, F)-structure on K is an essential characterization of the pair
(K, X), where K is an admissible family of curves on X.

PROPOSITION. Let K be a manifold with a (P, F)-structure. Then K may be
realized as an admissible family of curves on X = X(P(K),F) consistently with
the (P, F)-structure. This realization can be chosen so that k € K corresponds to
a rational curve on X.
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This proposition is proved by a direct construction. Let us take a local quotient
of P(K) by F. Since F is transversal to all compact fibers of projection pr :
P(K) — K, the factorization can be continued to P(£2), where € is a sufficiently
,small neighborhood in K.

Using Lemma 1.2, it is easy to show that any curve in X(P(K),F) close to
C(k) is of the form C(k') for some k' € K.

2.3. A relation between X and X(P(K),F). Let K be an admissible
family on X. Then on K, there exists a (P, F)-structure. From this structure
using Proposition 2.2 we recover the manifold X (P(K),F) by assigning to every
point k € K a rational compact curve. How are X and X(P(K),F) related with
each other?

It is natural to believe that in good cases X is embedded in X(P(K),F).
The obstruction is that generally u : C(K) — P(K) is not an inclusion. The pair
(K, X) is said to be irreducible if p is an inclusion. In the general case the reduction
process based on the following lemma can be applied.

LEMMA. Let k € K and z,y € C(k) be generic points. If u(z, k) = p(y, k) and
for k¥’ € K close to k we have z € C(k'), then y € C(kK') and p(z, k') = u(y, k')

Thus, i induces an equivalence at generic points of X. Let X be the quotient
of X modulo this equivalence. The curves from K are descended to X, and the
pair (K, X) is irreducible.

If (K, X) is an irreducible covering pair, then to C(K) there corresponds an
open set X(K) € X(P(K),F).

PROPOSITION. dim X (K) = dim X, and there ezists a natural mapping X(K)
— X which is a local diffeomorphism almost everywhere.

This implies that locally every irreducible covering family of curves correspond-
ing to the manifold K with given (P(K), F)-structure can be obtained by the fol-
lowing construction.

On X(P(K),F), the curves from K can be restricted to an arbitrary open
part , and to 2 we apply the mapping which is a local diffeomorphism almost
everywhere. Further, if (K, X) is an irreducible covering pair, a small neighborhood
Q C X of a generic point of X is embedded into X (P(K), F). The passage from Q
to X (P(K),F) consists in constructing an extension of 2 together with the curves
in such a way that on this extension all curves from K are compact and rational.
Moreover, these are all the curves of this type on X (P(K), F).

83. A construction of admissible families of compact curves

In Section 2 we gave a general construction of admissible families of curves. In
this section we produce a more effective description of global admissible families on
the manifold X with plenty of compact curves.

We describe families such that p : C(K) — P(K) is a diffeomorphism. This
means that K is an irreducible family of compact rational curves. Under the natural
assumption on X, the family K (X) of all curves on X satisfies these conditions.

In the sequel we list the conditions that distinguish the admissible subfamilies
in K(X).
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3.1. The critical set of an admissible pair (K, X). Let (K, X) be an
irreducible admissible pair, x : C(K) — P(K) a diffeomorphism and k € K. By
Proposition 1.1, on the curve C(k), there exists a subbundle Nx C N such that the
image of Ty K in I'(C(k), N) coincides with I'(C(k), Nk). The bundle S = N/Ng
on C(k) is supported at a finite number of points, which will be called critical
points, and the dimension of the bundle at a critical point is called the multiplicity
of the point, cf. [1, 2]. Denote by Crit(K, X) C X the critical set, i.e., the union
of critical points of all curves C(k), where k € K.

STATEMENT. Crit(K, X) is a nowhere dense analytic subset in K.
3.2. Admissible families without critical points.

PROPOSITION. Let X be a manifold, and C a compact rational curve on X
with non-trivial normal bundle generated by its global sections. Then on X all
curves close to C form an admissible family K(X) of curves without critical points,
provided this family is a covering one.

The converse statement is, evidently, also true: any admissible family of com-
pact curves on X without critical points coincides with K(X). Observe that under
the conditions of this proposition, X and X (P(K),F) are diffeomorphic.

3.3. A description of admissible subfamilies in terms of critical
points.

PROPOSITION. Under the hypothesis of Proposition 8.2 the covering subfamily
K in K(X) is admissible if and only if codimK is equal to the sum of multiplicities
of critical points on curves C(k), k € K.

For the family of lines this statement is proved in [3].

3.4. A o-construction of admissible families. Let K be an admissible
family. We give two main constructions of admissible subfamilies.

(A) Let Y be a submanifold in X such that codimY > 1. Then the family of
curves from K that intersect Y is admissible.

(B) Let Z be a submanifold in X such that codimZ = 1. Then the family of
curves from K that are tangent to Z with the fixed order of tangency ! is admissible.

The construction (A) can be reformulated as follows.

(A’) Consider the o-process (blowing up) X; — X along Y, and take the
curves from K that can be lifted to X; and have a nonempty intersection with the
pullback of Y in X;. More precisely, the o-process must be performed in an open
part of X such that Y is closed in this part.

The construction (A’) can be iterated and combined with (B) as follows. Con-
sider the tower of o-processes

A: Xy — Xg1 — ... — Xo=X,

where o; : X; — X;_1 is the o-process along the submanifold Y;_; C X;_;, where
i=1,...,q. Let Z1,..., Z;, be submanifolds in X, of codimension 1 and I, ...,
some positive integers. Denote by K(X; A, Z1,...,Zm,l1,...,ln) the subfamily of
curves in K(X) that can be lifted to X, have nonempty intersections with the
pullbacks of Yy, ..., Y,_1, and for which the orders of tangency with Z, ..., Z,, are
equal to ly,...,l,,, respectively.
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THEOREM. If K(X;A,Z1,...,Zm,l1,...,lm) is a covering family, then it is
admissible.

Conversely, under the hypothesis of Proposition 3.2 any admissible subfamily of
curves in K(X) in a neighborhood of a generic point is of the form K(X; A, Z1,.. .,
Zm,lla--',lm)' ’

Note that any generic admissible subfamily of curves in K(X) is defined by
the condition of being tangent to a collection of submanifolds Zi,..., Z,;, each of
codimension 1 in X. For the family of the form K(X;.A), i.e., in the absence of the
Z;, the manifolds X, and X (P(K),F) are diffcomorphic. In the general case the
relation between X and X (P(K),F) is more complicated.

3.5. Induced (P, F)-structures. The problem of describing admissible sub-
families of an admissible family of curves can be interpreted in terms of non-linear
differential equations.

Let K be endowed with a (P, F)-structure. As a rule, this structure is not
inherited by any submanifold K c K. Suppose a linear space W is endowed with
a P-structure P(W); let W be a subspace in W. Suppose that in general position
dimW NV = i for V € P(W), and let P(W) be the Zariski closure in Gr;W of
the set of #-dimensional linear subspaces of the form W NV. We say that Wis a
characteristic subspace with respect to the P-structure P(W) if and only if P(W)
defines a P-structure on W.

A submanifold K C K is said to be characteristic with respect to the P-structure
P(K) if the subspaces T K are characteristic with respect to P(TK) for almost
all k € K. It is clear that on K, the (P, F)-structure is induced if and only if K is
characteristic.

The condition for possessing the characteristic property is a non-linear system
of differential equations, cf. [2, 3, 11]. The construction in 3.2 based on o-processes
can be viewed as a procedure for solving this system explicitly. Namely, for X =
K(P(K)),F) we must take K of the form K(X;A,Z1,..., Zm,l1,...,lm).

§4. Examples

4.1. Admissible families of curves on a 2-dimensional manifold. Any
2-parameter family K of curves on a 2-dimensional manifold X is weakly admissible.

Let X satisfy the hypothesis of Proposition 3.2 and let the curves from K be
compact and rational. Then any one-dimensional distribution F(X, K) is algebraic
on the fibers of pr : P(K) — K, and K is admissible. Observe that the degree
3 homogeneous function w(\) defined in Note 1, which determines admissibility, is
now defined on C2; hence, w()\) is a polynomial.

If X = CP? and K is the (5-parameter) family of all second order curves, then
almost all admissible 2-parameter subfamilies have the following structure: they
consist of curves containing ¢ fixed points and tangent to m fixed curves, where
g+ m = 3. Observe that all circles form an admissible 3-parameter family, since
they are determined by the fact that they pass through two cyclic points.

4.2. Four-parameter families of curves on 3-dimensional manifolds.
Let (X, K) be such a pair (a 3-dimensional manifold, a 4-parameter family). Then
in the generic case weak admissibility implies admissibility. Two cases may occur:

«
-
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a bundle Nx C N such that variations of curves from K correspond to its sections
is isomorphic to either O(1) ® O(1) or O(2) & O.

In the general position the first case occurs. It is related to self-dual met-
rics. This relation is based on considerations due to Penrose [4]. The notion of
P-structure on a 4-dimensional generic manifold is equivalent to the notion of con-
formal metric together with an orientation. Now, the isotopic (light) cone at a point
k € K is the union of 2-subspaces T, K. The existence of a consistent integrable
distribution F on P(K) is equivalent to the self-duality of this metric.

Using the results of 3.2, we can give several examples of global self-dual metrics.
For instance, consider the 8-parameter family of flat second order curves in CP3
and the subfamily K of curves that intersect ¢ given curves and are tangent to m
surfaces, ¢ + m = 4. The family K is admissible. Due to Penrose, a conformal
metric on K is determined by the condition that two points on K corresponding to
intersecting curves lie on an isotropic curve (t.e., the “conformal distance” between
them equals zero).

Similarly, for an admissible family of curves in CP3, take the images of third
degree mappings CP' — CP3, and the subfamilies of this family obtained by
a o-process. We can also take admissible subfamilies in the family of graphs in
CP! x CP? of polynomial mappings CP! — CP? of fixed degree.

\\

NOTE 3
ADMISSIBLE SUBFAMILIES OF RATIONAL CURVES

This note contains the proofs of the basic statements of 2.3 in Note 2 about
admissible subfamilies of admissible families of curves (the intersection-tangency
conditions). These results give a very powerful tool that allows us to construct
explicit examples of admissible families of curves starting with some large classical
families of rational curves (e.g., a family of flat quadrics).

§0. Vocabulary

0.1. A manifold is a complex analytic manifold; it is assumed to be connected
unless otherwise stated. A submanifold is an arbirary locally closed submanifold;
a map or morphism is a holomorphic map of manifolds. Usually, our constructions
are local; in particular, the coordinates are always local.

If Y C X is a submanifold, denote by Tx the corresponding sheaf of ideals in
the structure sheaf Ox; the sheaf Zx is well defined on X \ (Y \ Y).

A map o : Z — X induces the map o* : ['(X,0x) — I'(Z,0z) and, more
generally, the maps o* : ['(X, Q%) — T'(Z, Q%), where € is the sheaf of differential
i-forms.

Any sheaf 7 of principal ideals in Oy is called a divisor. A divisor is called
nonsingular if it is of the form Zr, where T is a closed submanifold; we will usually
make no distinction between Iy and T.

We say that nonsingular divisors T3, .. ., Ty have normal crossings if in a neigh-
borhood of every point z € X coordinates z,. .., T, may be chosen so that

UNTi={(x1,...,2,) CU | &; =0} for i = 1,...,k (here n = dim X).

-
-
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0.2. A subset K of a manifold X is called analytic if in a neighborhood of
every point 2o € K the set K is defined by a system of equations f; =0,i € I,
is a finite set, and the f; are analytic functions. If K is given by k (independent)
functions, we say that codimK < k (in a neighborhood of ). The tangent space
to K at z is ‘

Te(K) = {£ € T.(X) | df(¢€) = 0 for any function f such that f|x = 0}.

STATEMENT. codimTy(K) < codimK. The equality is attained if and only if
K is nonsingular (i.e., a submanifold) in a neighborhood of x.

0.3. A curvein X is amap ¢ : E — X, where F is a 1-dimensional manifold
and ¢ is a diffeomorphism of E onto a submanifold of X.

A family of curves is a collection (H, E(H),m,¢), where H and E(H) are
manifolds, 7 : E(H) — H is a fibration, and ¢ : E(H) — X are maps such that
E(h) = n~1(h) is a 1-dimensional manifold and ¢(h) = ¢|g) is a curve in X for
every h € H.

Clearly, coordinates uy,...,uy on H considered as functions on E(H) can be
extended to a coordinate system (ui,...,un;t) on E(H); such a system will be
called standard.

A germ of a curve is a nondegenerate germ of a map a : (E,e) — X at a
point e € E of a curve E. A family of germs of curves is a collection

(H, E(H), n: E(H) — H, e=e(H), a:E(H) — X),
where e(H) is a submanifold in F(H) such that 7 : e(H) — H is a diffeomorphism,
a is the germ of the map along e(H) and a(h) = a|g) is a germ of a curve for
any h € H.

Set e(h) = e E(h). Given a family of germs of curves a : (E(H),e) —
X, coordinates (u1,...,un;t) on E(H) such that t|.z) = 0 are called standard
coordinates.

§1. Families of curves given by intersection conditions

1.1. Given a submanifold Y C X, dim X = n, codimY = d, we say that a map
o0:7Z — X is a o-map with center in Y if

a) o determines a diffeomorphism Z \ ¢~1(Y) ~ X \ ¥, and

b) for a domain U C X with coordinates z1,...,z, such that

YﬂU:{(.’tl,...,z‘n)EU'zl="'=xd:O}
and a submanifold
Zya={(21,...,2:) €U, (tr,...,ta) P} | tiwj = tjw; for 1 <4,j <d} CUXP

there exists a diffeomorphism o~!(U) ~ Zy 4 compatible with the projection on U.

It is well known that a o-map always exists and is uniquely determined (up to
a canonical diffeomorphism) by X and Y. ‘

Set T, = 0~ }(Y). Clearly, T, is a nonsingular divisor in Z and Iz, = *(Zy).
Moreover, o*(Q") = I%:IQ’_‘Z , since o is an open map for d = 1.

Given a closed subset F' C X, define its ezact preimage o~ (F) C Z to be
oY (Z\Y).

Let T be a nonsingular divisor in X. If T D Y, then ¢~ (T') is a nonsingular
divisor in Z and the preimage of T is ¢*(T) = 0 (T) +T,. T NY = 0, then
o0*(T) = o= (T) is a nonsingular divisor in Z.

P
-



NOTES ON INTEGRAL GEOMETRY FOR MANIFOLDS OF CURVES 71

For nonsingular divisors T, ..., T, in X with normal crossings such that either
T; DY or T;NY = @ for each ¢, the divisors T, 0~ (T1),...,0~ (Tk) also have
normal crossings in Z.

1.2. For a manifold X, a o-series of length m in X is a collection A =
(X;,Y:,0:) of manifolds Xg = X, Xj,...,Xnm, submanifolds ¥; C X;, and maps
o;: X; — X;—1 for i # 0 such that

a) o0; is a o-map with center in Y;_;, and

b) 0i(Y;) C Y;_1, and the morphism o; : ¥; — Y;_; is a submersion onto an
everywhere dense subset.

The support of a o-series A is the closure of Yp in X.

Set

TH =T, cX; (i=1,...,m).
For k =1i+41,...,m, define the exact preimages Ti(k) C X, by setting
\ T®) — 5~ (T.(k—l))
1 1 *

A o-series A is called nonsingular if

c) for any k > 1, either Yj41 C Ti(k) or Yy does not intersect with Ti(k).

Clearly, any o-series may be made into a nonsingular one if we delete from each
Y; a nowhere dense subset and accordingly modify the X}, for k > 4.

For a nonsingular g-series, all the divisors Ti(k) C X}, are nonsingular and have
normal crossings.

Set T} = T\™ C Xp.

Let A = (X;,Y;,0;) be a nonsingular o-series of length m. Suppose dy =
codimYy; = 1 for some k < m. Then

dp =dpy1 =" =dm =1,

and the maps ok, ...,0n are open embeddings. Therefore, we can abbreviate the
notation for A to a o-series A of length & by setting

XiZXi,f’i=Y;,&i=Ui fori<k
Xk = X, ?k =Y ﬂ&k(Xm), where 6y = 0 ...0m.

A nonsingular o-series of length m will be called complete if d,, = 1. The above
description implies that no complete series admits a nontrivial continuation; more-
over, 0, is an open embedding and o, : Ty, — Y,y is a diffeomorphism. Therefore,
T, does not intersect T; for i < m, since A is nonsingular.

1.3. To every nonsingular o-series A, assign the matrix (a;;) defined as follows:
for every k =1,...,m set

L={i|0<i<kand T®NT® £0} ={i|0<i<kand ¥y c T*V}.
and let ’
air =0 for i >k,
agr = 1,

Qi = Zjelk a;; for i < k.
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A geometric interpretation of (a;;) is as follows. For the sheaf of ideals Zy, C Ox,_,
denote by Z; C Oy, its preimage (0;...0m)*(Zy;). The sheaf I, determines a
divisor Z; in X,, equal to the preimage (o;41 . .- am)*(Ti(i)) of the divisor Ti(l) c X;.
Using induction in m and formulas for o*(T') from 1.1, it is easy to prove that
Zi = Zk aika. ’
Denote py, = cardly. Clearly, p; =0 and pr, > 0 for k > 1, since I € k~1. Set

codimA = Zaim(di — p;), where d; = codim Y;.
i

The meaning of this definition will be clarified in 1.6 and 1.7.
LEMMA. codimA = 143", aim(d; — 1).

PrOOF. Let us prove by induction that Y, a;x(p; — 1) = —1. For k = m we
get the desired formula.
For k = 1 the formula is true. Suppose it is proved for all j < k. Then

Zaik(])i - =pe—1+ Z Zaij(pi -1l =pe—1+ Z(—l) =-L
i jEI i Jj€L

O

1.4. Given a submanifold ¥ C X and a germ of a curve  : (E,e) — X,
we say that o intersects Y at least | times (exactly | times) if o*(Zy) C T! (resp.
o*(Zy) = I.). Here we implicitly assume that a(e) € Y'\Y, since otherwise a*(Zy)
is not defined.

Leto:Z — X be ao-map withcenterinY. A liftofaisamap & : (E,e) —
Z such that & = a. If a(E) ¢ Y, i.e., the multiplicity ! of the intersection of «
with Y is finite, then such a lift exists and is unique. It is given by the formula

& (@) = a*(z:), & (t:) = o (t:)/t,
where x1,...,Tn;t1,...,tq are the coordinates in U x P41 considered in 1.1 and ¢
is the standard coordinate on E. Clearly, & intersects T exactly ! times.
We say that a family of curves a : (E(H),e) — X intersects Y (ezactly)
l times if so do all the germs a(h), h € H. A lft of a is a family of germs
& : (E(H),e) — Z such that 0& = a. If « intersects Y exactly ! times, then such
a lift exists and is unique.

1.5. Let A = (X;,Y;,0;) be a nonsingular o-series in X of length m, and
a: (F,e) — X a germ of a curve. Suppose that a admits a collection of lifts
a;: (E,e) — X; fori=0,1,...,m such that

ap =a; o;1 = oz for i > 0.
If a(E) ¢ Y — this is the only case we are interested in — then the a; are uniquely
determined.

Denote by I; the multiplicity of the intersection of the germ of the curve o
with the divisor Ti('); clearly, [; is equal to the multiplicity of the intersection of
a;—1 with the divisor Y;. The set [y, ...,[,, is called the set of the multiplicities of
the intersection of o with A.

Denote by Ax the multiplicity of the intersection of a,, with Tx. As follows

from 1.3,
li = Z aik/\k.
k
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Since det(a;;) # 0, all the A, are uniquely determined from the ;.
For a complete o-series A and an integer L > 0 we say that a germ « intersects
A with multiplicity (ezactly equal to) L if there exist lifts o; to  and the multiplicity
of the intersection of ¢, with T}, is equal to L. Since Ty, does not intersect T}, for
k < m, this is equivalent to
/\1 == Am—l = 0; Am =L (i.e., li = laim).

We say that a family of germs of curves o : (E(H),e) — X intersects A
exactly L times if so do all the germs a(h), h € H.

1.6. Let A be a nonsingular o-series in X of length m and I,,...,1l,, a set of
positive integers; let a : (E(H),e) — X be a family of germs of curves. Set

Ho(Aly,...,l,) = {h € H| the set of the multiplicities of the intersection

of a(h) with A is equal to (I1,...,L.)}

STATEMENT. a) Ho(A;l4,...,0ln) is an analytic subset in H.

b) In a neighborhood of every point h € Ho(A;la,. .., ly) there exists a family
of germs of curves 8 : (E(H),e) X such that Hg(A;ly,...,l,) = H and
a(h) = B(h) for all h € Hy(A;ly, ... 1n).

c) codimHy, (A;ly, ...y lm) < Y0 1i(d; — ps).

PROOF. a) Let m = 1, i.e., A consists of one o-map o : X; — X with center
inY; =Y, and

Hy(A;h) = Ho(Y511) = {h € H | a(h) intersects Y exactly I; times}.
Let hg € Ho(Y;l1). Introduce coordinates x,...,Z, in a neighborhood of the
point a(e(ho)) € X so that Y is defined by the equations x; = --- = 24 = 0; let ¢

be the coordinate on E(H).
On H, consider the functions

Pa*(z;) ,
it s P4 < <ji<
fJ o L=0 for0<p<l;and1<j<d,

and define a map §: (E(H),e) — X by setting
a*(z;) for j > d,
Fe)=Na@)- ¥ & frj<d
0<p<i-1
Clearly, in a neighborhood of kg the set H,(Y;1;) is singled out by the equations
{ff(h)=0]0<p<lyand1<j<d}
and Hg(Y;11) = H. Moreover, a(h) = B(h) for all h € H,(Y;1;).
Let us use induction on m. Deleting X,,, Y, and o, from A, we obtain a o-
series A’ of length m —1. Let 3’ be a family of germs for which Hg (4%;14, ..., lm—1)

= H and which coincides with o on Ha(A4';11,...,ln-1).
By 1.4, the lifts 31, ..., 3,,_, are families of curves; set

V= Bpr : (B(H), ) — Xpn1.
Clearly,
Ha(A; ll, ey lm) = HQ(AI; ll, ceay lm—l) n H’y(Ym; lm)

So, a) follows by induction.
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b) Let § : (E(H),e) — Xy,—1 be a family of germs of curves that intersect Yy,
exactly l,, times and coincide with v on Hy(Yp; 1) (see the proof of part a)).

Clearly, 3=01...0m—10 : (E(H),e) — X satisfies the conditions of b).

c) To prove this statement, it suffices, by b), to verify that codimH, (Yrn;lm) <

lm(dm - pm) .
On X,,—_1, introduce the coordinates z1,..., T, such that Y,, is given by the
equations z; = --- = x4, = 0 and each equation z; =0 for j = 1,...,pm cuts off

one of the divisors T _1), where i € I,,,. This can be done, since the divisors have
1
normal crossings.

Set /7 = T |
ff(h)=0for 0<p<lpand1<j<dm.
Therefore, it suffices to verify that fJ’f’ (h)=0for0<p<lpand 1< j<pn,so

there remain exactly I, (dm — pPm) equations.
Let A} for k =1,...,m — 1 be the ?ultiplicity of the intersection of v with

T,Em_l)‘ We have to verify that A} > ln, for k € I,. From 1.3 it follows that l; <

o Then H(Ym;lx) is given by equations

> k<m GikAy; hence, the A} are uniquely determined from l1,. .., l;m—1. Therefore, if
there exists at least one germ & that intersects A with multiplicities l1,...,lm—1,Im,
then A} = )\i > I, for k € I, because T,Em_l) O Y,.. O

1.7. Let A = (X,,Y;,0:) be a complete o-series of length m in X. In what
follows we assume that suppA = Y; is compact: since all our arguments are local,
this can be achieved in a small neighborhood of Y.

We will say that a curve ¢ : E — X intersects A ezactly L > 0 times if for
each point ¢ € E this is true for the germ ¢ : (E,¢) — X and p(E)Nsupp” = ¢(c).

Given a family of curves ¢ : E(H) — X, set

H,(A; L) = {h € H| ¢(h) intersects A exactly L times}.

COROLLARY. H,(A4;L) is an analytic subset of H, and codimH,(A4;L) <
L codimA - 1.

PROOF. For every h € H,(A; L), denote by c(h) a point at which (k) inter-
sects A exactly L times. Clearly, at c(h) the multiplicity of intersection of ¢(h) and
A is equal to exactly | = l; = Lai,, see sect. 1.5.

Let hg € Hy(A;L) and co = c(hg). In a neighborhood of hg, construct a
holomorphic map h — e(h) € E(h) so that e(h) = c(h) for h € H,(4;1).

For this, consider standard coordinates (us,...,uyn;t) on E(H) and a function
f in a neighborhood of ¢(cp) € X such that fly, = 0 and y—g;;(f—)lhm, # 0. Set
g= al—:;,%‘éﬁ. Then g = 0 and %‘tl # 0 at (ho, co); hence, the equation g(h,e(h)) =0
determines a holomorphic map h — e(h).

If h € Hy(A; L) is close to ho, then c(h) is close to ¢o since E(hg) NsuppA =
©(co). Clearly, g(h,c(h)) = 0; therefore, c(h) = e(h).

(i) Let there be given a family of gems of curves a : (E(H),e) — X, where

H=E(H)={(h,e) | hc Hec E(h)},
E(H) = {h = (h,e) € H,c € E(h)},
where a(h,c) = p(h,c), e(h) =e.
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It follows from 1.5, 1.6 that H,(A; L) is an analytic subset of H whose codi-
mension satisfies the inequality codimH,, (A; L) < L - codimA.

Let us identify H with a submanifold of H of codimension 1 consisting of the
points of the form (h;e(h)), where e(h) is determined in (i). Then it follows from
(i) that fIa(A; L) C H and, moreover, fIa(A; L) = H,(4; L), implying

codimyH,(A; L) < L - codimA — 1.

8§2. Critical points

2.1. Given a family of curves ¢ : E(H) — X and points h € H, ¢ € E(h),
we call the point (h,c) € E(H) critical if all the forms from ¢*(Q"X), where
n = dim X, vanish at this point, i.e., for a germ w of an n-form on X at ¢p(h,c) the
form ¢*(w) vanishes on Ty, o) E(H).

We will also say that c is a critical point on the curve E{h) with respect to .

On E(H), select coordinates 21, . . ., zy+1 and express every form from ¢*(Q2"X)
in these coordinates; let Z,, be the ideal of functions on E(H) generated by the co-
efficients of these forms. Restricting onto E(h), we get an ideal in the ring of
functions on E(h). The multiplicity of this ideal at ¢ will be denoted cr,(h,c). We
call ¢ critical if cr,(h,c) > 0.

A point h € H is critical (with respect to ¢) if all ¢ € E(h) are critical or,
equivalently, ILplE(H) =0.

LEMMA. Let cry(ho,co) =k > 0.

a) For h close to ho the sum of multiplicities of all the critical points c € E(h)
close to ¢y does not exceed k.

b) Suppose for every h close to hg there exists a point c(h) € E(h) of multiplicity
k close to co (such a point, if any erist, is unique due to a)). Then the map h — c(h)
is holomorphic.

PROOF. Let (u1,...,un;t) be standard coordinates on E(H), and f € I, a
function with zero of multiplicity k at (ho, c). Then on E(H) the multiplicity of ¢
does not exceed the multiplicity of zero of f|g () at ¢, implying a).

Set g = Zeif) = ince 2
et g = “sr—3~. Clearly, g(h,c(h)) = 0 for all h. Since 3Z(ho,co) # 0, we get
b) due to the implicit function theorem. O

2.2. A family of germs of curves o : (E(H),e) — X is said to be critical if
e(h) € E(h) is critical with respect to o for all h € H.

STATEMENT. Let A be a nonsingular o-series of length m in X, and also let
a: (E(H),e) — X be a family of germs of curves.

a) Suppose that all the germs a(h) intersect A with multiplicities l1,...,Ly.
Then cro(h,e(h)) >3 1; for allh € H.

b) For a complete o-series A, an o that intersects A strictly L times, and a
submersion Ym = 0m|om) : e(H) — T, we have cro(h,e(h)) = L - codimA — 1.

Proof. (i) By 1.4 there exists a set of lifts «; : (E(H),e) — X;, 0 <i < m.
Let Z; = IT(i) C Ox,. Then

o} (Q"X;_1) = TFTIQX;,
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see 1.1. By definition a}(Z;) = Z%. Therefore,
o) 1 (X)) = TH GV 0r X,

, Le.,
Cla;_, (ha e(h)) = Cra(ha e(ﬁ)) + li(di - 1)'
Thus, it suffices to estimate cr,,, (h,e(h)).
Introduce coordinates zi,...,z, on X,, so that T}, is singled out by the
equation :r,n = 0, and let u;,...,un,t be standard coordinates on E(H). Then
al,(zn) = t'f, where f is an mvertlble function. Hence

ap(dzy A ANdayp) = It~ fal, (doy A -+ Adzp_1) Adt + tw,

where w is a form. Therefore, crq,, (h, e(h)) > I, — 1, implying a).

b) In this case l; = Laim; in particular, I, = L. Further, by hypothesis the
form o5, (dzy A -+ A dxn_;) is nondegenerate on e(H). So crq,, (h,e(h)) = L —1
and, therefore,

Lo (hye(h)) =Y li(di— 1)+ (L—1) = LY aim(d; — 1) +1) - L.
By Lemma 1.3 this number is equal to L - codimA4 — 1.
2.3.

STATEMENT. Let o(E(H),e) — X be a critical family of germs of curves of
multiplicity ezactly equal to k, 0 < k < oo. Then for every generic point h € H
there exist a neighborhood Hy, a complete o-series A, and an integer L > 0 such
that k = L - codimA — 1 and a(h) intersects A ezactly L times for any h € Hy.

PROOF. To construct A, consider v = olem) : e(H) — X. Since e(H)
consists of critical points of E(H), it follows that v*(Q"X) =0, i.e., rky < n.

Replacing H by a neighborhood of a generic point, we can assume that v is
of constant rank r < n. By the theorem on maps of constant rank, there exists a
submanifold Y; of dimension r in X such that y(e(H)) C Y1 and 7 : (e(H)) — Y1
is a submersion (all this is only true in a neighborhood of a point of H). At generic
points o intersects Y7 exactly /; times, where I; > 0.

Consider a o-map o3 : X3 — X with center in Y;. By 1.4 there exists a lift
a1 : (E(H),e) — X1 of a such that oy (E(H)) c TV = T,,,.

Using arguments similar to those above, we construct a submanifold Y, C X3,
a o-map 02 : X2 — Xj with center Y3, and a lift ay : (E(H),e) — X, so that
M = aile) : (e(H)) — Y is a submersion and oy intersects Y, exactly I times
(in a neighborhood of a generic point in H).

We similarly construct Y;, o;, X; for i = 3,4,... by deleting at each step a
nowhere dense set from Y; in order to get a nonsingular o-series.

Statement 2.2 implies that for any ¢ we have

k= cra,, (h,e(h)) > > Ldi—1),

1<i<q

where d; = codimY;. Therefore, d,,, = 1 for some m.

Let A = (X;,Y;,0;) be the o-series of length m thus obtained. The map
Ym = @mle(x) determines a submersion e(H) — Ty, since oy, : Ty — Y, is
a diffeomorphism and omYm = Ym-1 : e(H) — Y;, is a submersion. Besides,

-
-
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o intersects A exactly L = I, times. It follows from Statement 2.2b) that k =
L -codimA — 1. a

. 2.4. Denote by £ the set of all curves in X. Every family of curves ¢ :
E(H) — X determines a map H — €. Considering £ as an infinite dimensional
manifold, it is natural to view the map H — & as being holomorphic. In particu-
lar, for any point A € H it should determine the tangent map ty : Th(H) — Tg€,
where E = E(h) and Tg€ is the tangent space to € at E.

Without going into details related to subtleties of infinite dimensional mani-
folds, we will explicitly describe Tg€ and ty and show how to express in these terms
the critical points on E.

a) Given a curve E C X, denote by Ng(X) the normal bundle to FE in X, and
let Tg = P(E, NE(X))

b) Given a family of curves ¢ : E(H) — X, set E = E(h) for h € H. Let us
construct {yp.

The differential of ¢ determines a map ¢’ : Ng(E(H)) — Ng(X) of normal
bundles over E. The projection 7w : E(H) — H determines an isomorphism of
bundles 7’ : Ng(E(H)) — Np(H), i.e., Ng(E(H)) is the trivial bundle with the
fiber N, (H) = Tn(H). Denote by ty the through map

to:Th(H) — I'(E,Th(H)) = Ng(E(H)) — I'(E,Ng(X)) = Tg.

c) Let N = Ng(X), k = dimN = dimX — 1, and let L = A*N be the
determinant line bundle over E. For any &, ...,£ € Tg denote by cr(£y,...,&;c)
the order of the zero at ¢ of the section & A --- A & of L. For a subspace W C Tg
set

crw(F,c) = mincr(éy,...,&k; ).
w(E,c) g (& &k;c)

STATEMENT. Let ¢ : E(H) — X be a family of curves, h € H, E = E(h),
W = to(Th(H)) C Tg. Then cry(h,c) = cxw(E, ¢).

The proof is a direct consequence of the definitions.

2.5. Let us use the above definitions to refine Statement 2.2.

STATEMENT. Let a : (E(H),e) — X be a family of germs of curves, A a
nonsingular o-series of length m in X, and K = Hy(A,L) = {h € H | a(h)
intersects A exactly L times}. For h € K denote

W =Ty(K), E=E(h), e=ce(h).
Then
criow (E,€e) > L -codimA — 1.

PROOF. Replace a by a family 5 that intersects A exactly L times and coincides
with a on K. This can be done due to 1.6.
Clearly, the maps ta,t8 : Tp(H) — Tk coincide on W. Therefore,

criaw (E,e) = crigw(E, €) > crygr, () (E, €) = crg(F,e).
By Statement 2.2, criow (E,e) > L - codimA4 — 1. O
§3. Admissible complexes

In this section we fix a family of curves ¢ : E(H) — X.
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3.1. To every submanifold K C H there corresponds a subfamily ¢(K) :
Set cri (h, ¢) = cryx)(h, c) for every (h,¢) € E(K), and

crg(h) = Z crg(h, c).
ceE(h)

We say that h € K is critical (with respect to K) if crx (h, ¢) = oo.

A submanifold K C H not all of whose points are critical with respect to K,
i.e., such that @(K)*(Q") # 0, is called a complez of curves.

a) A family of curves ¢ : E(H) — X is called perfect if it is a complex and
crg (h) < codimK in H for each complex K C H and each noncritical point heK.

b) Given a perfect family of curves ¢ : E(H ) — X, a complex K is called
admissible if cr (h) = codimK for generic points h € K.

Note that the definitions a) and b) are local in H.

3.2. Let us reformulate the definition of a perfect family in terms of tangent
spaces. Let h € H, E = E(h), to : To(H) — Tg. For every subspace W C Ty, (H)
set

crw (h, ) = crepwy(E,c) forc€ E,
crw(h) = Zcrw(h, c).

Clearly,
crg(h,c) = crp, (k) (h,c)  and  crg(h) = Zchn(K)(h)'
c

We call W saturated if cry (b, c) < 00.

A family ¢ : E(H) — X is called perfect if crw (h) < codimW for any he H
and a saturated W C Th(H) (assuming such pairs (h, W) exist). A subspace W for
which the equality is attained is called admissible.

A submanifold K C H is called a complex (resp. an admissible complez) if
Tw(K) C Ty(H) is saturated (resp. admissible) for a generic point he K.

3.3. Given a complete o-series A1, . . ., A, such that the supports of Aj,...,Ar
are compact and disjoint, and positive integers L1, . .. ,L,, set

an(Al, ...,AT;Ll,.. .,L,«) = Hcp(Al;Ll) [RREE nH«p(AﬁLr)

for every family of curves ¢ : E(H) — X. By 1.7 this is an analytic subset in H,
and codimg(Ay, ..., Ar; L1,..., L) < 3 (L . codimA4; — 1). ‘

THEOREM (Main Theorem). For a perfect family of curves ¢ : E(H) — X,
set
K =H,(A1,...,AsLy,...,L); C=) (LicodimA; — 1),

a) If K is a complez, then it is admissible and codimK = C. Moreover, if W =
Th(K) is saturated at some point h € K, then K is nonsingular in a neighborhood
of h and is an admissible complex.

b) Any admissible complex K in a neighborhood of a generic point is of the
form K = Hy(A1,...,Ar; L1, .., L,), where the A; form a complete o-series with
compact disjoint supports and with L; > 0.
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PROOF. a) Let ¢;(h) be the intersection point of h and A;. Using the same
arguments as in 1.7, we can construct\i‘family of germs o; : (E(H),e) — X
such that a; = ¢ and e(h) = ¢;(h) for’h € K. Then it follows from 2.2 that
cry (h) > LicodimA; — 1. Since all the points ¢;(h) are distinct, crw (h) > C. If W
is saturated, then codimW > cryy(h) > C, since ‘p is perfect.

On the other hand, from 1.7 it follows that codimK < C. If K is a manifold
this implies codimK = C = codimW = cry (h), i.e., K is an admissible complex. If
it is not known that K is a manifold but it is known that W = T}, (K) is saturated,
then the inequality codimW > C > codimK implies that K is nonsingular in a
neighborhood of k (see Statement 0.2). Hence, K is an admissible complex.

b) Let K be an admissible complex. There are different critical points c1 (h), ...,
c¢r(h) of multiplicities kj,...,k, at a generic point h € K, and neither r nor
k1,..., k- depend on h. By 2.1, the c¢;(h) holomorphically depend on h.

By Statement 2.3, if H = K, then for every generic point h € K there exist a
neighborhood Kj, a complete o-series Aj,..., A,, and positive integers L;,..., L,
such that

ki =L;-codimA; —1 and Ko C K = H,(A1,..., A L1,...,Ly).

Clearly, Th(K } O Tw(K) is saturated and, due to a), K is an admissible complex,
codimK = C = Y_k;. Since K is an admissible complex, codimK = crg(h) =
S~ k; = codimK and, therefore, Ky is a neighborhood of h. a
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