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Abstract. We propose a new approach to the study of eigenfunctions of the Laplace- 
Beltrami operator on a Riemann surface of curvature -1. It is based on Frobenius 
reciprocity from the theory of automorphic functions. We determine Sobolev class 
of arising automorphic functionals and discuss some applications. 0 AcadCmie des 
Sciences/Elsevier, Paris 

Normes de Sobolev des fonctionnelles automorphes 

et coej$cients de Fourier des formes cuspidales 

R&urn& Nous proposons une nouvelle upproche pour .4tudier les,fonctions propres de l’ope’rateur 
Laplace-Beltrami sur une surjuce de Riemann de courbure - 1. Cette approche repose 
sur la re’ciprocite’ de Frobenius en the’orie des fonctions automorphes. Nous de’tertninons 
la classe de Sobolev de certaines fonctionnelles automorphes qui apparaissent, et 
donnons quelques applications. 0 AcadCmie des Sciences/Elsevier, Paris 

Version franraise abr@&e 

Soient G = SL(2,Iw), K = SO(2,lR), I’ un rkseau de SL(2, W) et X = r\SL(2, R). Soit b le plan 
hyperbolique. Considkons la surface de Riemann Y = I?\ tj et I’opCrateur Laplace-Beltrami n sur Y. 
On identifie Y B X/K et les fonctions de L*(Y) aux fonctions de L’(X) K-invariantes. A toute 
fonction propre 4 de 1’opCrateur a sur Y, on associe le sous-espace fermC G-invariant 15~ c L’(X) 
engendre par 4 sous l’action de G. I1 Fst bien connu que (T, L) = (T+, ~54) est une representation 
unitaire irrkductible de G. Soit /L = y la valeur propre de 4. Alors (.rr, L) peut &tre rkalisCe comme 
la reprdsentation naturelle TA du groupe G dans I’espace LX des fonctions homogknes (paires) de 
degrk X - 1 sur Iw2\0. Ainsi, les fonctions propre 4 de valeur propre .D sur la surface de Riemann Y, 
correspondent aux G-morphismes rid, : Lx -+ L2(X). Soit I/ x c LA le sow-espace des vecteurs 
lisses. I1 est facile de voir que Rllorc:(Lx: L2( X)) N iMor~( VA, C-(X)). Par ailleurs, le thkorkme 
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de dualite de Frobenius fournit l’isomorphisme MorG(VA, C”(X)) N Morr( r/l,, C). Finalement, B 
toute fonction propre 4 est associee une fonctionnelle Id sur VA. En tant qu’espace vectoriel, I/x 
est isomorphe a l’espace CE,,(S’) des fonctions paires lisses sur S ‘. Ainsi, 1, peut etre consideree 
cornme une distribution sur S1. Nous posons la question naturelle suivante : 

Question : Quelle est la classe L2 de Sobolev de la fonctionnelle I ? 

Rkponse : La fonctionnelle 1 a la meme classe de Sobolev que la fonction 6 sur S1. De plus, pour 
tout s on peut determiner explicitement des constantes C, c > 0 telles que cl lSlls 5 )11(1, 5 C( ISlls. 

Nous presentons Cgalement une application de ce resultat B la theorie des fonctions automorphes. 

1. Introduction 

Let IJ be the upper half plane with the hyperbolic metric of constant curvature -1. The group 
of motions G of h is isomorphic to PSL(2,W) = SL(2, W)/{&l}. Fix a discrete subgroup P 
of SL(2, R) and consider the Riemann surface Y = I’\h; we will assume that Y is compact. 
Denote by n the Laplace-Beltrami operator acting in the space of functions on Y. We denote by 
0 = ~0 < ~1 2 ~2 < ... its eigenvalues in L’(Y) and by 4; the corresponding eigenfunctions; we 
normalize these eigenfunctions so that 1l&1 (IL” = 1. 

The study of eigenfunctions 4 and their corresponding eigenvalues is important in many areas of 
representation theory, number theory and geometry. 

In this Note, we present a new approach to the study of eigenfunctions 4 based on the study of 
Sobolev norms of corresponding automorphic functionals. 

We state our main result and give applications to some questions from the theory of automorphic 
functions. Complete proofs and other applications will appear elsewhere. 

1.1. Automorphic representations 

Let G = SL(2, W), K = SO(2, [w); we will identify h with G\K. 
Fix a cocompact lattice I? in G and denote by X the compact quotient X = P\G. (Our results below 

hold in the general case of cofinite P (i.e. vol(X) < IXJ). For the sake of simplicity, we mostly restrict 
ourselves to the cocompact case.) The group G acts on X and hence on the space of functions on X. 

We will identify the Riemann surface Y = I’\h with X/K. This induces the imbedding 
L2(Y) c L2(X), the image consisting of all K-invariant functions. For any eigenfunctions 4 of 
the Laplace operator on Y, we may consider the closed G-invariant subspace L4 c L2 (X) generated 
by 4 under the action of G. It is known that (n, L) = (TV,,: L+) is an irreductible unitary representation 
of G (see [3]). 

Conversely, fix an irreducible unitary representation (r, L) of the group G and a K-fixed unit vector 
v. E L. Then any G-morphism v : L + L2(X) defines an eigenfunction 4 = v(‘uo) of the Laplace 
operator on Y; this function is normalized if Y is an isometric imbedding. 

Thus eigenfunctions 4 correspond to tuples (7r, L, q) ~ v). 
All irreducible unitary representations of G with K-fixed vector are classified: these are 

representations of principal and complementary series, and trivial representation, For the sake of 
simplicity, we consider only representations of principal series. 

Such a representation (7r, L) can be realized as follows. Fix a purely imaginary number X and 
consider the natural representation 7r~ of the group G in the space Lx of (even) homogeneous 
functions on W2\0 of degree X - 1. Thus, vectors in LX are just locally L2 functions f on R2\0 
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satisfying f(az, ay) = lalX-lf(Z: y) f or all a E R*. The representation rr is induced by the natural 
action of G on (~,y). 

Note that the value of such a function is determined by its values on the unit circle S1; hence 
we may identify the space LX with the space L2(S1),y,n of even functions on S1. The G-invariant 
scalar product in Lx is given by Qo(f: y) = & J’S1 fydH. The K-fixed unit vector ‘00 corresponds to 
the constant function 1 on S1. The eigenfunction 4 of the Laplace operator which corresponds to a 
representation (TX> Lx) will have the eigenvalue IL = y. 

Thus, we see that eigenfunctions 4 on the Riemann surface Y with the given eigenvalue IL correspond 
to G-morphisms v++ : LX 4 L2(X) (namely 4 = ~~(21”)). Normalization 11411 = 1 means v preserves 
the scalar product. 

1.2. Automorphic functionals 

Let VA c Lx be the subspace of smooth vectors. It is easy to see that we have the following 
isomorphism MorG(Lx,L2(X)) N MorG(VA,C?(X)). The last space can be described using the 
following Frobenius duality theorem ([3], [6]): 

PROPOSITION. - MorG (VA, C”(X)) E Morr (15, C). 
Namely, to every G-morphism v : VA + P(I\G) we assign a I-invariant functional I on 

the space Vj, given by 1(z)) = u(u)(e) (h ere e is the identity in G). Given I, we can recover 11 
as u(u)(g) = I(r(g)w). 

Thus eigenfunctions 4 of the Laplace operator on Y with eigenvalue p correspond to I-invariant 
functionals I on the space VA. 

All this is well known (see [3]). What is new in our approach is that we are trying to get an 
information about the eigenfuntion 4 by looking at the analytic properties of the corresponding 
functional I$. 

For example, we can consider I as a distribution on S’, i.e. as a functional on Cx(S1). This 
fonctional is continuous, i.e. it is continuous with respect to some seminorms. Then we may ask: 

Question: What is the L2 Sobolev class of the functional I? In other words, for which real s is 
the functional I continuous with respect to the L*-type Sobolev norm S,, and how do we estimate 
the norm llrlls of I with respect to this Sobolev norm? (For the definition of Sobolev norms and 
the normalization we use see 1.3.) 

We get a very simple answer: 

THEOREM. - The functional I has the same Sobolev class as the S-function on S1. Moreover, ,for 
every s one can write explicit constants c, C > 0 such that cllSIIB 5 1lIl1, 5 CllSlls. 

In particular, this shows that the functional I is bounded with respect to a Sobolev norm S,,+ if 
and only if s > l/2. 

Our main result is in fact a more general statement which shows that I and the &function have 
comparable norms with respect to any Hermitian norm on the space VA such that the representation 
of G is continuous with respect to this norm (see Section 2). 

1.3. Sobolev norms 

Let (r., V) be a smooth representation of G = SL(2, W) equipped with an invariant positive definite 
Hermitian form P; we denote by I I I Ip the corresponding norm on V. 

DEFINITION. - For every real number s, we define the Sobolev Hermitian scalar product & and 
the corresponding Sobolev norm S, on V as follows. Fix the standard K-invariant scalar product 
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on g = s1(2,W)(X w trXXt). Let X1, XL?, Xs be an orthonormal basis of g = sl(2, W). Consider 
the element A of the universal enveloping algebra of g given by A = - c, Xf; this element is 
K-invariant and generates an essentially self adjoint operator on V. We define the Sobolev norm S, 
on V by S,(V) = Il(A + 1)“i2 ]I 2, p, or equivalently, by Q9(u) = P((A + l)“/“~). 

1.4. Invariant norms on representations and Lp-norms on X 

Let N, denote the supremum norm on the space of functions on X, i.e. N,(f) = SUP,~~~- If(z)]. 
Theorem 1.2 can be interpreted as an estimate N, ( .v( w)) << S, (v) which holds for every s > l/2. 

In fact, we can prove a better bound on N, in terms of L1 Sobolev norm SI,,~. Namely, we claim 
that for any s > l/2 we have K,(Y(v)) < So,,. Note that Sl,, is a nonhermitiun norm on V 
and it is almost G-invariant when s is close to l/2. 

Thus we see that for the function V(V) on the space X we have explicit estimates of two norms 
- the supremum norm N, and the L2 norm Nz. Using the interpolation theorem for Banach norms 
on the space V, we can prove, for p 2 2, the following estimate for the Lr norm N, of the function 
V(V) in terms of Sobolev norms of the vector II : Np(u) << S,,,(V), where q and s are chosen such 
that l/q + l/p = 1 and s > l/2 - l/y. Note that when s is close to l/2 - l/p, the norm S,,, on V 
is close to a G-invariant norm. We hope to return to this subject elsewhere. 

1.5. Triple products 

We consider an application of the above approach to a particular problem in the theory of 
automorphic functions related to the theory of Rankin-Selberg L-functions (see [8] for more details 
and historic remarks). To state the problem, let us fix an automorphic function 4 and consider the 
new function $2 on Y (it is not an automorphic function since it is not an eigenfunction). Since $2 
is in L’(Y), we may consider its spectral decomposition: 

with respect to the basis {&}, A& = X,&. Here ci = (42, &). 

CLAIM. - The G’S have an exponential decay. 
We introduce new (normalized) coefficients: b, = Ic; I2 exp (5 I& I). Our main result is 

THEOREM. - We have the following inequality: 

c b, < C(lnT)“, 

1x2 IIT 

for some constant C > 0, as T -+ 00. 

This was conjectured earlier by P. Sarnak. 

1.6. Fourier coefficients of cusp forms 

Similar estimates hold when r is non-cocompact but of finite covolume, e.g., !Z = SL(2, Z). Namely, 
let I’ be a non-uniform lattice in SL(2, W) with a cusp at 30. We assume that the generator of the 

corresponding unipotent subgroup is given by 
1 1 

( > 0 1 . 
Let d, be a cusp form. We have then the 

following Fourier decomposition (see [4]): 4(x + iy) = c u,,yiK+ (27r1rzly)e2ninZ, where K4 (y) 
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is the K-Bessel function. In order to study the coefficients a,, Rankin and Selberg introduced the 

following L-function: L(s) = En>0 $$ (see [lo]). It is known as the L-function L(s, 4 @ 4) 
associated to a pair of cusp forms (see [2]). They discovered that L(s) has the following integral 
representation. Let E(z, s) be the Eisenstein series associated to the cusp at oc. As before we can 
define coefficients c, = (q?, E(z, s)) = Jr,,, $*> E(z, s)dz. We then have L(s) = g(s)cs, where g(s) 
is explicitly given (it is a product of I-functions). Our theorem above implies nontrivial bounds 
on c, and hence on these L-functions without the assumption of arithmetic@ of I. For example 
we have the following 

COROLLARY 1. - $” IL($ + i~)ld~ << TlnT. 
This in turn implies a bound on the Fourier coefficients (L, of $ by standard methods of analytic 

number theory. Namely we have the following 

COROLLARY 2. - We have IanI << 714+E for any E > 0. 

1.7. Remarks 

1. The interest in triple scalar products as above stems mostly from their connection to the theory 
of automorphic L-functions. Namey, as we mentioned earlier, the scalar product of 4* with the 
Eisenstein series has been considered by Rankin and Selberg for this reason. 

P. Garret discovered that this is a special case of a more general construction. He considered triple 
products of three automorphic functions and showed that this is (up to an explicit factor) the value 
for the triple L-function L(s, $1 @ 42 4% 43) at i ( see [l], [2]). Our result above (Theorem 1.5) could 
be interpreted as the mean value Lindelof conjecture for these L-functions (see [9]) for the spectral 
significance of Lindelof conjectures). We note that our proof does not use any arithmetical information. 

2. Fourier coefficients of cusp forms have also been extensively investigated. The upper bound 
)a711 < ni is due to Hencke and follows from the fact that 4 is bounded (it is sometimes called 
the standard (or convexity) bound). The Petersson-Ramanujan Conjecture claims that IalL/ < ‘I),” 
and it is expected for congruence subgroups. The best known bound, In,1 << n%+E for congruence 
subgroups, is due to Bump-Duke-Hoffstein-Iwaniec. However, for nonarithmetic subgroups, there 
was no improvement over the Hecke bound and it was suspected that the Hecke bound might 
be of true order. Recently Sarnak in [8] gave the first improvement over the Hecke bound for a 
general F (he treated the case of SL(2, C) and SL(2, R) case done in [7]). He also suggested that the 
Petersson-Ramanujan Conjecture might be true in this general setting. 

3. For I = SL(2,Z), an analog of Theorem 1.5 (in a slightly weaker form) was proved by 
M. Jutila [5] using nontrivial arithmetic information. 

2. Proofs 

We will discuss the method behind the proof of Theorem 1.2. The proof of Theorem 1.5 is based on 
this fact and some other considerations involving invariant (non-hermitian) norms on representations 
and analytic continuation of representations of SL(2, W) to a domain in SL(2: C). We will discuss 
these elsewhere. 

2.1. Relative traces 

In order to prove the theorem, consider the following general problem. Suppose we are given a 
representation (‘lr, G, V) of a locally compact group G on a topological vector space V. Suppose 
we are given a morphism of representations v : V + C(X), where X is a G-space and C(X) the 
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space of continuous functions on X. Then, each point z E X defines a continuous functional I, on V 
by I,(v) = U(U)(Z). W e wish to establish some bounds on the norm of the functional 1,. More 
precisely, suppose we are given a norm N on V (we always assume that 7r is continuous with respect 
to this norm). We would like to give a priori estimate of the norm 11111~ of the functional I with 
respect to N, where llll/lv := sup $#. 

Of course, for this, we have to know something about the morphism v. Let us assume that the 
action of G on X is transitive and that a G-invariant measure /L-Y is fixed such that the image of V 
lies inside L2(X,ps). Then the scalar product in L’(X) defines a Hermitian form P on V. 

We are supposed to bound 1111 I .br in terms of the norm N and the Hermitian form P on the space V. 
It turns out, that in the case when the norm N is obtained from a Hermitian scalar product Q on V, 
we sometimes can give a reasonable bound for 1111 I!v. Namely, we claim that 1111 IN can be estimated 
in terms of the relative trace tr(PIQ) of Hermitian forms P and Q. 

More precisely, let H(V) be the space of continuous Hermitian forms and let H(V)+ c H(V) be 
the subset of nonnegative Hermitian forms. For any pair of forms P, Q E H+(V), one can define a 
number tr(PlQ), the relative trace of P with respect to Q, taking values in R+ U 0~. (For example, 
if Q is positive definite and P < Q, the form P can be represented in a Hilbert space completion of 
the space V by some selfadjoint operator Ap; in this case we have tr(PIQ) = trAp). 

This number may be usually effectively computed. It turns out that one case on give tight estimates 
of the norm 11111 ,v in terms of this number. Namely, we have the following general result. 

THEOREM 2.2. - We have an estimute lll,Pli& < C. tr(PIQ), w 84~ ere C is an efectively computable 
constant. If X is compact this estimate is tight, i.e. II Isll$ 2 c. tr(PIQ) for a constant c > 0. 

Specifying this theorem to the case of an irreducible representation of principal series, where P 
is the invariant L2 Hermitian form and Q = Qs is the s-Sobolev Hermitian form, we see that 
tr(PlQ) = IlSllf. This proves Theorem 1.2. 
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