Trace in Categories
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To Jacques Dizmier on his 65th birthday

0. Introduction

In this note we will introduce a trace morphism try : Z(g) — Z(g)
and give an explicit formula for it (formula (*) in proposition 2). This
is a beautiful formula, which I think has many applications. We present
one such application — namely, we reprove the description of the algebra
of endomorphisms of the big projective module in the category @, due to
W. Soergel (See [S)).

1. Definition of trace

1.1. Trace. Let V be a finite-dimensional vector space over a field k.
For every endomorphism a € End(V') we define its trace by tr(a) =Y ay,
where (a;;) is the matrix of a in some basis v; of V.

In order to see that this definition does not depend on a choice of
the basis, let us write it in a more invariant form. Consider canonical
morphism g : V ® V* — End(V), p(v ® v*)¢ = (v*,€)v. Since V is
finite dimensional, this is an isomorphism, and we denote by v the inverse
morphism v : End(V) — V ® V*. We also consider natural morphisms
i:k—End(V)and p: V®V* — k, where i(1) = 1y and p(v ® v*) =
(v*,v).

Now for any endomorphism a € End(V') we define tr(a) as the com-
position poa’ovoi:k — End(V) - V@ V* = V®V* — k, where
d=a®ly..

1.2. Relative trace. The definition above can be immediately gen-
eralized. Namely, let M be another vector space over k. Then we define
the trace morphism try : End(V ® M) — End(M) as follows: for every
¢ € End(V ® M) we denote by try(a) the endomorphism of M given
by composition p’oa’ o v’ 0i' : M - MQEnd(V) » MV R V* —
M@V ®V* — M, where ¢ = 1y @i with similar formulae for p’, v’, and
where @’ = a ® ly-..
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Let {v;} be some basis of V. Then we can write an endomorphism
a € End(V ® M) as a matrix with entries a;; € End(M). It is easy
to see, that try(a) = Y. ai; € End(M). Using this formula it is easy
to establish functorial properties of the morphism ¢ry . We will need the
following

LEMMA. If M is finite-dimensional, then tr(try(a)) = tr(a).

2. Formula for trace morphism

Let us assume that the field k is algebraically closed of characteristic 0.
We fix a reductive Lie algebra g over k and denote by U(g) its universal
enveloping algebra. The center of this algebra we call central algebra
and denote by Z(g).

We denote by M(g) the category of g-modules. Let us fix a finite-
dimensional g-module V and denote by Fy : M(g) — M(g) the functor
Fy(M) = V ® M. Using functorial properties of morphism {ry one can
easily check that ¢ry : End(V ® M) — End(M) defines a morphism
try : End(Fy) — End(Id) from endomorphisms of functor Fy to endo-
morphisms of identity functor on M(g). We would like to have an explicit
description of this morphism.

In order to do this we need an explicit description of source and target
of the morphism try. The target space End(Id) is isomorphic to Z(g).
It can be explicitly described using Harish-Chandra’s theorem. Namely,
fix a Cartan subalgebra ) C g and denote by L the dual space and by W
the corresponding Weyl group. Then End(Id) = Z(g) can be identified
with F(L)¥, where F(L) is the algebra of polynomial functions on L and
F(L)¥ its W-invariant part.

Probably there exists a similar description for End(Fy), but I do not
know it. However we have a natural morphism Z(g) — End(Fy), which
sends each z € Z(g) to an endomorphism of the functor Fy, given by the
action of z on V ® M € M(g). Composing it with the trace map try, we
get a trace map

try : Z(g) — Z(9).

We will give an explicit formula for this morphism, as a morphism of
F(L)Y into itself.

Let P(V) be the set of weights of V with multiplicities counted. We
define a convolution f — P(V) x f on the space of functions on L by
(P(V) * f)(z) = 3 f(z + p), the sum being taken over all weights p €
P(V) C L with multiplicities counted. We denote by A the elementary

W-skew symmetric function on L, that is A(z) = [] ha(z).
a>0



TRACE IN CATEGORIES 419

Proposition. Suppose we identified Z(g) with F(L)Y using Harish-
Chandra isomorphism. Then the trace morphism try : Z(g) — Z(9)
satisfies the following identity

A-try(f) = P(V)x(A- f). (*)

This proposition gives a formula for try, namely
trv(f) = A7{(P(V) * (A~ f)).

Proof. For each integral dominant regular weight A € L we denote by
¥, an irreducible finite dimensional g-module with highest weight A — p,
where p is half sum of positive roots. It is known that the action of an
element z € Z(g) on V, is given by multiplication on f(A), where f is the
function on L corresponding to z. Also dim (Vi) = C - A(}A), where C is
some constant, which implies, that tr(z|V3) = C - (Af)(}).

To prove formula () it is enough to check that the functions on both
sides coincide for integral dominant A which are sufficiently regular. Choose
such a ) and let us compute the trace of the operator try (z) on V. On the
one hand it equals C-(A -try(f))(A). On the other hand by lemma in 1.2,
it equals tr(z|V ® Vi). It is known, that V' ® V), is isomorphic to &Va+y,

m

where sum is taken over weights g € P(V) with multiplicities. Hence
tr(z]lV @ V) = Ltr(z|Vasu) = C- L Af(A +p) = C - (P(V) * (A))(N)-
H u

This proves formula (%). O

3. Trace in categories

The definition of the trace morphism is a special case of a general
construction in category theory. This construction is interesting in itself,
so I would like to describe it, though we will not use it explicitly in
application described in section 4.

Let A and B be two categories and F : A — B a functor. Suppose
that

(a) The functor F has a left adjoint functor E : B — A and a right

adjoint functor G : B — A.
(b) We have fixed a morphism of functors v : G — E.
Then for all objects X,Y € A we define morphism

tr : Homp(F(X), F(Y)) — Hom4(X,Y) by
tr(a) = iy o E(a) ovp(x)ojx : X = GF(X) —» EF(X) — EF(Y) -,
where jx : X — GF(X) and iy : EF(Y) — Y are adjunction mor-
phisms, vp(x) : GF(X) — EF(X) v-morphism, corresponding to the ob-
ject F(X), a: F(X) — F(Y) any morphism in B and E(a) : EF(X) —
EF(Y) the corresponding morphisms in A.
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In particular, for any object X € A we get a morphism ¢r : End(F(X )=
End(X). It is easy to see that this morphism has natural functorial prop-
erties. In particular, it defines a morphism

tr : End(F) — End(Id4).

The case discussed in section 2 corresponds to A = B = M(g),F =
Fy,E=G= Fy-.

4. An application.
Description of the endomorphism algebra
of the big projective module

Fix a maximal nilpotent subalgebra n normalized by h and denote by 0
the corresponding category of highest weight modules. For every weight
A € L = b* we denote by M) the corresponding Verma module of highest
weight A — p, by Ly its irreducible quotient, and by P, the projective
cover of Ly in the category O (see[BGG1]).

Fix a regular integral antidominant weight A. Then M) is irreducible
and P, is what we call the “big” projective module. We want to describe
the algebra End(Py) of its endomorphisms in category O.

Theorem. The natural morphism n : Z(g) — End(P,) is an epimor-
phism. Its kernel coincides with the ideal Jj, described below. In par-
ticular, the algebra End(Py) is isomorphic to Z(g)/Jx which in turn is
isomorphic to the cohomology algebra of the flag variety X of algebra g.

Let us describe the ideal Jx. We identify Z(g) with the algebra F(L)¥
and consider a linear functional v = vy : F(L)¥ — k, given by

v(f) = (D T(wA)(A)/AN0) = [D_ e(w) - w(T(A)(AF))/ANO)-

Here T(u) is a translation operator on F(L), T(u)(h)(z) = h(z + p),
e(w) is the sign of element w € W. In order to see that these two
expressions coincide, we use that w(f) = f, w(A) = e(w)A and T(w)) =
wT(\)w™ L.

Remark. In order to compute v(f) we use the fact that f is a poly-
nomial, i.e. we computed v(f) using some kind of limit.
In terms of the functional v the ideal J, is described as

D= {f € F(L)V |v(f - F(L)Y) =0}

In order to prove the theorem it is enough to check the following three
lemmas.
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Lemma 1. dim(End(P»)) < #(W).

Lemma 2. Set J = Annzg)(P»), ie. J is the kernel of morphism 1 :
F(L)¥ — End(P»). Then v(f)=0forallf € J. In particular, J C Ji.

Lemma 3. The algebra F(L)% /J\ has dimension equal to #(W) and is
isomorphic to the cohomology algebra of the flag variety X.

Remark. Lemmas 1 and 3 are more or less straightforward exercises
on category O and cohomology algebra of flag variety respectively. From
the point of view of this note the key statement is lemma 2.

Proofs. 1. Let V be an irreducible finite dimensional g-module with
lowest weight A, 8 the corresponding character of Z(g). Consider Verma
module Mo, corresponding to weight 0. Then P, is the direct summand of
Fx(My), corresponding to the character 8 of Z(g). This implies that P,
has a composition series whose factors are isomorphic to Verma modules
M, with p of the form w for w € W; moreover [Py : My < [Fv(Mo) :
My,]) = 1. Thus dim Hom(Py, P\) < )_dim Hom(Px, My») = S [Mux :

w w

L] < #W).

2. Let P(V). be the set of extremal weights in P(V). Clearly P(V). =
{wA|w € W}. Choose a W—invariant polynomial p on L with the follow-
ing properties:

a) The polynomial p vanishes up to order > #(W) at all non extremal
points of P(V).

b) The polynomial 1—p vanishes up to order > #(W) at all extremal
points of P(V).

Clearly, the corresponding element z(p) € Z(g), acting on the module
Fy (M), gives a projection onto the submodule P,. This shows, that a
function f € F(L)Y lies in the ideal J = Ann(Py) iff z(f) - 2(p) = 0 on
Fy(Mp). In this case clearly try (z(f) - 2(p)) = 0 on the module Mp.

We claim that the action of the operator try (z( f)-2z(p)) on Mo is given
by multiplication by v(f), which implies that »(f) = 0 for f € J.

Using formula () from section 2 we see that the operator try (2(f)-z(p))
acts on Mo as a scalar [J(Afp)(z + 1)/A(2)](0).

m

Using properties of p we can rewrite this sum as (A f)(z+p)/A(2)](0),

N

where the sum is over extremal weights p. Since Af is skew-symmetric
under the action of W, and extremal weights are of the form wA, this sum
equals to v(f).

3. Given a commutative k-algebra B and a linear map v : B — k
we denote by J(B,v) the ideal J(B,v) = {b € B|v(bB) = 0} and by
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Q(B, v) the quotient algebra B/J(B,v). By definition J) = J(F(L)V,v).
Our aim is to compute the algebra @ = Q(F(L)%,v).

Set A = F(L)¥. Clearly v vanishes on some power of ideal J; C A
corresponding to the character #. Hence the algebra @ will not be changed
if we replace A by its completion A at 6.

Since ) is regular point of L, the algebra A is naturally isomorphic to
the completion Fy of F(L) at point A.

Translation operator T()), T(A\)f(z) = f(z + )), identifies F with
the algebra Fy-completion of F(L) at 0. Let us identify A with Fp using
T()). Then the functional v on A corresponds to the following functional
v on Fy

V(£) = (T3 H()) = [ e(w)w(T(A)A - £))/A)(0).
In other words, if we define a linear map 7 : Fy — k by

7(h) = [Alt(h)/A)(0)) = [(D_ e(w) - w(h))/AI(0)

then v/(f) = 7(Ta(A) - f). Since the function Ty(A) is invertible in Fj,
we have Q(A,v) = Q(A,v) = Q(Fo,v') = Q(Fo,7) = Q(F(L), 7).

In order to describe this last algebra let us consider an ideal J4 in F(L),
generated by W-invariant polynomials of positive degree, and denote by
H the quotient algebra F(L)/J4. It is easy to see that (J;) = 0,ie. 7
can be considered as a functional on H, and Q(F(L),7) = Q(H, 7).

By well known result of A. Borel (see [BGG2] or [D]) H is isomorphic
to cohomology algebra of flag variety X and functional 7 on H is given
by evaluation on fundamental class of X. This implies, that the bilinear
form < h,f >= 7(hf) on H is non degenerate and hence Q(H,r) = H
(direct algebraic proof of the fact that this form is non degenerate see in
[D], Prop. 4). This proves lemma 3.

Remark. Slightly modifying above arguments one can prove the fol-
lowing more general result

Theorem. Let A € L be any antidominant weight, Ly an irreducible
module with highest weight A — p and P its projective cover in cate-
gory O. Then the natural morphism n : Z(g) — End(P,) is an epimor-
phism. Its image is isomorphic to F(L)¥ ™) /J(W()/R)), where W()) =
{w € WlwA = A}, W(A/R) = {w € W]w)l — X € Root lattice
R}, F(L)"®) is the algebra of W(X)~invariant polynomial functions on L
and J(W(A/R)) is an ideal, generated by W(A/R)—invariant polynomials
of positive degree.

This finite—-dimensional algebra can be realized as cohomology algebra
of some partial flag variety.
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