Trace in Categories

JOSEPH BERNSTEIN

To Jacques Dixmier on his 65th birthday

0. Introduction

In this note we will introduce a trace morphism $tr_V : Z(g) \to Z(g)$ and give an explicit formula for it (formula (⋆) in proposition 2). This is a beautiful formula, which I think has many applications. We present one such application — namely, we reprove the description of the algebra of endomorphisms of the big projective module in the category O, due to W. Soergel (See [S]).

1. Definition of trace

1.1. Trace. Let V be a finite-dimensional vector space over a field k. For every endomorphism $a \in \text{End}(V)$ we define its trace by $tr(a) = \sum a_{ii}$, where (a_{ij}) is the matrix of a in some basis v_i of V.

In order to see that this definition does not depend on a choice of the basis, let us write it in a more invariant form. Consider canonical morphism $\mu : V \otimes V^* \to \text{End}(V)$, $\mu(v \otimes v^*) \xi = (v^*, \xi)v$. Since V is finite dimensional, this is an isomorphism, and we denote by ν the inverse morphism $\nu : \text{End}(V) \to V \otimes V^*$. We also consider natural morphisms $i : k \to \text{End}(V)$ and $p : V \otimes V^* \to k$, where $i(1) = 1_V$ and $p(v \otimes v^*) = (v^*, v)$.

Now for any endomorphism $a \in \text{End}(V)$ we define $tr(a)$ as the composition $p \circ a' \circ \nu \circ i : k \to \text{End}(V) \to V \otimes V^* \to V \otimes V^* \to k$, where $a' = a \otimes 1_{V^*}$.

1.2. Relative trace. The definition above can be immediately generalized. Namely, let M be another vector space over k. Then we define the trace morphism $tr_V : \text{End}(V \otimes M) \to \text{End}(M)$ as follows: for every $a \in \text{End}(V \otimes M)$ we denote by $tr_V(a)$ the endomorphism of M given by composition $p' \circ a' \circ \nu' \circ i' : M \to M \otimes \text{End}(V) \to M \otimes V \otimes V^* \to M \otimes V \otimes V^* \to M$, where $i' = 1_M \otimes i$ with similar formulae for p', ν', and $a' = a \otimes 1_{V^*}$.

1This research is supported by an NSF grant.
Let \(\{ u_i \} \) be some basis of \(V \). Then we can write an endomorphism \(a \in \text{End}(V \otimes M) \) as a matrix with entries \(a_{ij} \in \text{End}(M) \). It is easy to see, that \(\text{tr}_V(a) = \sum a_{ii} \in \text{End}(M) \). Using this formula it is easy to establish functorial properties of the morphism \(\text{tr}_V \). We will need the following

Lemma. If \(M \) is finite-dimensional, then \(\text{tr}(\text{tr}_V(a)) = \text{tr}(a) \).

2. Formula for trace morphism

Let us assume that the field \(k \) is algebraically closed of characteristic 0. We fix a reductive Lie algebra \(\mathfrak{g} \) over \(k \) and denote by \(U(\mathfrak{g}) \) its universal enveloping algebra. The center of this algebra we call central algebra and denote by \(Z(\mathfrak{g}) \).

We denote by \(M(\mathfrak{g}) \) the category of \(\mathfrak{g} \)-modules. Let us fix a finite-dimensional \(\mathfrak{g} \)-module \(V \) and denote by \(F_V : M(\mathfrak{g}) \to M(\mathfrak{g}) \) the functor \(F_V(M) = V \otimes M \). Using functorial properties of morphism \(\text{tr}_V \) one can easily check that \(\text{tr}_V : \text{End}(V \otimes M) \to \text{End}(M) \) defines a morphism \(\text{tr}_V : \text{End}(F_V) \to \text{End}(\text{Id}) \) from endomorphisms of functor \(F_V \) to endomorphisms of identity functor on \(M(\mathfrak{g}) \). We would like to have an explicit description of this morphism.

In order to do this we need an explicit description of source and target of the morphism \(\text{tr}_V \). The target space \(\text{End}(\text{Id}) \) is isomorphic to \(Z(\mathfrak{g}) \). It can be explicitly described using Harish-Chandra’s theorem. Namely, fix a Cartan subalgebra \(\mathfrak{h} \subset \mathfrak{g} \) and denote by \(L \) the dual space and by \(W \) the corresponding Weyl group. Then \(\text{End}(\text{Id}) = Z(\mathfrak{g}) \) can be identified with \(\mathcal{F}(L)^W \), where \(\mathcal{F}(L) \) is the algebra of polynomial functions on \(L \) and \(\mathcal{F}(L)^W \) its \(W \)-invariant part.

Probably there exists a similar description for \(\text{End}(F_V) \), but I do not know it. However we have a natural morphism \(Z(\mathfrak{g}) \to \text{End}(F_V) \), which sends each \(z \in Z(\mathfrak{g}) \) to an endomorphism of the functor \(F_V \), given by the action of \(z \) on \(V \otimes M \in M(\mathfrak{g}) \). Composing it with the trace map \(\text{tr}_V \), we get a trace map

\[
\text{tr}_V : Z(\mathfrak{g}) \to Z(\mathfrak{g}).
\]

We will give an explicit formula for this morphism, as a morphism of \(\mathcal{F}(L)^W \) into itself.

Let \(P(V) \) be the set of weights of \(V \) with multiplicities counted. We define a convolution \(f \mapsto P(V) * f \) on the space of functions on \(L \) by

\[
(P(V) * f)(x) = \sum f(x + \mu),
\]

the sum being taken over all weights \(\mu \in P(V) \subset L \) with multiplicities counted. We denote by \(\Lambda \) the elementary \(W \)-skew symmetric function on \(L \), that is \(\Lambda(x) = \prod_{\alpha > 0} h_{\alpha}(x) \).
Proposition. Suppose we identified \(Z(\mathfrak{g}) \) with \(F(L)^W \) using Harish-Chandra isomorphism. Then the trace morphism \(\text{tr}_V : Z(\mathfrak{g}) \rightarrow Z(\mathfrak{g}) \) satisfies the following identity

\[
\Lambda \cdot \text{tr}_V(f) = P(V) \ast (\Lambda \cdot f).
\]

This proposition gives a formula for \(\text{tr}_V \), namely

\[
\text{tr}_V(f) = \Lambda^{-1}(P(V) \ast (\Lambda \cdot f)) .
\]

Proof. For each integral dominant regular weight \(\lambda \in L \) we denote by \(V_\lambda \) an irreducible finite dimensional \(\mathfrak{g} \)-module with highest weight \(\lambda - \rho \), where \(\rho \) is half sum of positive roots. It is known that the action of an element \(z \in Z(\mathfrak{g}) \) on \(V_\lambda \) is given by multiplication on \(f(\lambda) \), where \(f \) is the function on \(L \) corresponding to \(z \). Also \(\dim (V_\lambda) = C \cdot \Lambda(\lambda) \), where \(C \) is some constant, which implies, that \(\text{tr}(z|V_\lambda) = C \cdot (\Lambda f)(\lambda) \).

To prove formula (*) it is enough to check that the functions on both sides coincide for integral dominant \(\lambda \) which are sufficiently regular. Choose such a \(\lambda \) and let us compute the trace of the operator \(\text{tr}_V(z) \) on \(V_\lambda \). On the one hand it equals \(C \cdot (\Lambda \cdot \text{tr}_V(f))(\lambda) \). On the other hand by lemma in 1.2, it equals \(\text{tr}(z|V \otimes V_\lambda) \). It is known, that \(V \otimes V_\lambda \) is isomorphic to \(\oplus V_{\lambda + \mu} \), where sum is taken over weights \(\mu \in P(V) \) with multiplicities. Hence

\[
\text{tr}(z|V \otimes V_\lambda) = \sum_{\mu} \text{tr}(z|V_{\lambda + \mu}) = C \cdot \sum_{\mu} \Lambda f(\lambda + \mu) = C \cdot (P(V) \ast (\Lambda f))(\lambda).
\]

This proves formula (*). \(\square\)

3. Trace in categories

The definition of the trace morphism is a special case of a general construction in category theory. This construction is interesting in itself, so I would like to describe it, though we will not use it explicitly in application described in section 4.

Let \(A \) and \(B \) be two categories and \(F : A \rightarrow B \) a functor. Suppose that

(a) The functor \(F \) has a left adjoint functor \(E : B \rightarrow A \) and a right adjoint functor \(G : B \rightarrow A \).

(b) We have fixed a morphism of functors \(\nu : G \rightarrow E \).

Then for all objects \(X, Y \in A \) we define morphism

\[
\text{tr} : \text{Hom}_B(F(X), F(Y)) \rightarrow \text{Hom}_A(X, Y)
\]

by

\[
\text{tr}(a) = i_Y \circ E(a) \circ \nu_{F(X)} \circ j_X : X \rightarrow GF(X) \rightarrow EF(X) \rightarrow EF(Y) \rightarrow Y,
\]

where \(j_X : X \rightarrow GF(X) \) and \(i_Y : EF(Y) \rightarrow Y \) are adjunction morphisms, \(\nu_{F(X)} : GF(X) \rightarrow EF(X) \) \(\nu \)-morphism, corresponding to the object \(F(X) \), \(a : F(X) \rightarrow F(Y) \) any morphism in \(B \) and \(E(a) : EF(X) \rightarrow EF(Y) \) the corresponding morphism in \(A \).
In particular, for any object $X \in A$ we get a morphism $tr : \text{End}(F(X)) \rightarrow \text{End}(X)$. It is easy to see that this morphism has natural functorial properties. In particular, it defines a morphism

$$tr : \text{End}(F) \rightarrow \text{End}(Id_A).$$

The case discussed in section 2 corresponds to $A = B = M(g), F = F_V, E = G = F_{V^*}$.

4. An application.

Description of the endomorphism algebra of the big projective module

Fix a maximal nilpotent subalgebra n normalized by h and denote by O the corresponding category of highest weight modules. For every weight $\lambda \in L = h^*$ we denote by M_λ the corresponding Verma module of highest weight $\lambda - \rho$, by L_λ its irreducible quotient, and by P_λ the projective cover of L_λ in the category O (see [BGG1]).

Fix a regular integral antiprimitive weight λ. Then M_λ is irreducible and P_λ is what we call the “big” projective module. We want to describe the algebra $\text{End}(P_\lambda)$ of its endomorphisms in category O.

Theorem. The natural morphism $\eta : Z(g) \rightarrow \text{End}(P_\lambda)$ is an epimorphism. Its kernel coincides with the ideal J_λ, described below. In particular, the algebra $\text{End}(P_\lambda)$ is isomorphic to $Z(g)/J_\lambda$ which in turn is isomorphic to the cohomology algebra of the flag variety X of algebra g.

Let us describe the ideal J_λ. We identify $Z(g)$ with the algebra $F(L)^W$ and consider a linear functional $\nu = \nu_\lambda : F(L)^W \rightarrow k$, given by

$$\nu(f) = \sum_w T(w\lambda)(\Lambda f)/\Lambda(0) = \sum_w \epsilon(w) \cdot w(T(\lambda)(\Lambda f))/\Lambda(0).$$

Here $T(\mu)$ is a translation operator on $F(L)$, $T(\mu)(h)(x) = h(x + \mu)$, $\epsilon(w)$ is the sign of element $w \in W$. In order to see that these two expressions coincide, we use that $w(f) = f, w(\Lambda) = \epsilon(w)\Lambda$ and $T(w\lambda) = wT(\lambda)w^{-1}$.

Remark. In order to compute $\nu(f)$ we use the fact that f is a polynomial, i.e. we computed $\nu(f)$ using some kind of limit.

In terms of the functional ν the ideal J_λ is described as

$$J_\lambda = \{ f \in F(L)^W \mid \nu(f \cdot F(L)^W) = 0 \}.$$

In order to prove the theorem it is enough to check the following three lemmas.
Lemma 1. \(\dim(\text{End}(P_\lambda)) \leq \#(W) \).

Lemma 2. Set \(J = \text{Ann}_{Z(\mathfrak{g})}(P_\lambda) \), i.e. \(J \) is the kernel of morphism \(\eta : F(L)^W \rightarrow \text{End}(P_\lambda) \). Then \(\nu(f) = 0 \) for all \(f \in J \). In particular, \(J \subset J_\lambda \).

Lemma 3. The algebra \(F(L)^W/J_\lambda \) has dimension equal to \(\#(W) \) and is isomorphic to the cohomology algebra of the flag variety \(X \).

Remark. Lemmas 1 and 3 are more or less straightforward exercises on category \(O \) and cohomology algebra of flag variety respectively. From the point of view of this note the key statement is lemma 2.

Proofs. 1. Let \(V \) be an irreducible finite dimensional \(\mathfrak{g} \)-module with lowest weight \(\lambda \), \(\theta \) the corresponding character of \(Z(\mathfrak{g}) \). Consider Verma module \(M_0 \), corresponding to weight 0. Then \(P_\lambda \) is the direct summand of \(F_\lambda(M_0) \), corresponding to the character \(\theta \) of \(Z(\mathfrak{g}) \). This implies that \(P_\lambda \) has a composition series whose factors are isomorphic to Verma modules \(M_\mu \), with \(\mu \) of the form \(w\lambda \) for \(w \in W \); moreover \([P_\lambda : M_{w\lambda}] \leq [F_V(M_0) : M_{w\lambda}] = 1\). Thus \(\dim \text{Hom}(P_\lambda, P_\lambda) \leq \sum_w \dim \text{Hom}(P_\lambda, M_{w\lambda}) = \sum_w [M_{w\lambda} : L_\lambda] \leq \#(W) \).

2. Let \(P(V)_e \) be the set of extremal weights in \(P(V) \). Clearly \(P(V)_e = \{w\lambda | w \in W\} \). Choose a \(W \)-invariant polynomial \(p \) on \(L \) with the following properties:
 a) The polynomial \(p \) vanishes up to order \(\geq \#(W) \) at all non extremal points of \(P(V) \).
 b) The polynomial \(1-p \) vanishes up to order \(\geq \#(W) \) at all extremal points of \(P(V) \).

Clearly, the corresponding element \(z(p) \in Z(\mathfrak{g}) \), acting on the module \(F_V(M_0) \), gives a projection onto the submodule \(P_\lambda \). This shows, that a function \(f \in F(L)^W \) lies in the ideal \(J = \text{Ann}(P_\lambda) \) iff \(z(f) \cdot z(p) = 0 \) on \(F_V(M_0) \). In this case clearly \(tr_V(z(f) \cdot z(p)) = 0 \) on the module \(M_0 \).

We claim that the action of the operator \(tr_V(z(f) \cdot z(p)) \) on \(M_0 \) is given by multiplication by \(\nu(f) \), which implies that \(\nu(f) = 0 \) for \(f \in J \).

Using formula (*) from section 2 we see that the operator \(tr_V(z(f) \cdot z(p)) \) acts on \(M_0 \) as a scalar \(\sum_{\mu} [\Lambda f(z \mu)/(\Lambda(z))(0)] \).

Using properties of \(p \) we can rewrite this sum as \(\sum_{\mu} (\Lambda f(z \mu)/(\Lambda(z))(0)) \),
where the sum is over extremal weights \(\mu \). Since \(\Lambda f \) is skew-symmetric under the action of \(W \), and extremal weights are of the form \(w\lambda \), this sum equals to \(\nu(f) \).

3. Given a commutative \(k \)-algebra \(B \) and a linear map \(\nu : B \rightarrow k \) we denote by \(J(B, \nu) \) the ideal \(J(B, \nu) = \{b \in B | \nu(bb) = 0\} \) and by
$Q(B, \nu)$ the quotient algebra $B/J(B, \nu)$. By definition $J_\lambda = J(F(L)^W, \nu)$. Our aim is to compute the algebra $Q = Q(F(L)^W, \nu)$.

Set $A = F(L)^W$. Clearly ν vanishes on some power of ideal $J_\theta \subset A$ corresponding to the character θ. Hence the algebra Q will not be changed if we replace A by its completion \hat{A} at θ.

Since λ is regular point of L, the algebra \hat{A} is naturally isomorphic to the completion \hat{F}_λ of $F(L)$ at point λ.

Translation operator $T(\lambda)$, $T(\lambda)f(x) = f(x + \lambda)$, identifies \hat{F}_λ with the algebra \hat{F}_0–completion of $F(L)$ at 0. Let us identify \hat{A} with \hat{F}_0 using $T(\lambda)$. Then the functional ν on \hat{A} corresponds to the following functional ν' on \hat{F}_0

$$\nu'(f) = \nu(T^{-1}_0(\lambda)(f)) = \left(\sum_{w} \epsilon(w) w(T(\lambda)A \cdot f)/A\right)(0).$$

In other words, if we define a linear map $\tau : \hat{F}_0 \to k$ by

$$\tau(h) = [Alt(h)/A](0) = \left(\sum_{w} \epsilon(w) \cdot w(h)/A\right)(0)$$

then $\nu'(f) = \tau(T(\lambda)(\cdot f))$. Since the function $T(\lambda)(A)$ is invertible in \hat{F}_0, we have $Q(\hat{A}, \nu) = Q(\hat{F}_0, \nu) = Q(\hat{F}_0, \nu') = Q(F(L), \tau) = Q(F(L), \tau)$.

In order to describe this last algebra let us consider an ideal J_+ in $F(L)$, generated by W–invariant polynomials of positive degree, and denote by H the quotient algebra $F(L)/J_+$. It is easy to see that $\tau(J_+) = 0$, i.e. τ can be considered as a functional on H, and $Q(F(L), \tau) = Q(H, \tau)$.

By well known result of A. Borel (see [BGG2] or [D]) H is isomorphic to cohomology algebra of flag variety X and functional τ on H is given by evaluation on fundamental class of X. This implies, that the bilinear form $< h, f > = \tau(hf)$ on H is non degenerate and hence $Q(H, \tau) = H$ (direct algebraic proof of the fact that this form is non degenerate see in [D], Prop. 4). This proves lemma 3.

Remark. Slightly modifying above arguments one can prove the following more general result

Theorem. Let $\lambda \in L$ be any antidominant weight, L_λ an irreducible module with highest weight $\lambda - \rho$ and P_λ its projective cover in category O. Then the natural morphism $\eta : Z(g) \to \text{End}(P_\lambda)$ is an epimorphism. Its image is isomorphic to $F(L)^W(\lambda)/J(W(\lambda/R))$, where $W(\lambda) = \{w \in W | w\lambda = \lambda\}$, $W(\lambda/R) = \{w \in W | w\lambda - \lambda \in \text{Root lattice} R\}$, $F(L)^W(\lambda)$ is the algebra of $W(\lambda)$–invariant polynomial functions on L and $J(W(\lambda/R))$ is an ideal, generated by $W(\lambda/R)$–invariant polynomials of positive degree.

This finite–dimensional algebra can be realized as cohomology algebra of some partial flag variety.
REFERENCES

Received April 30, 1990

Department of Mathematics
Harvard University
Cambridge, MA 02138