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w S t a t e m e n t  of the  t h e o r e m  

1.1. Let  G be a reductive p-adic group. A smooth representation (~', E )  of the 

group G on a complex vector space E is called a G-module. Usually we shorten the 

notation and write w or E. 

Let d~(G) be the category of G-modules,  Irr G the set of equivalence classes of 

irreducible G-modules,  and R (G)  the Grothendieck group of G-modules of fn i te  

length; R(G) is a free abelian group with basis Irr G. 

We fix a minimal parabolic subgroup PoC G and its Levi decomposition 

P0 = Mo" Uo. By a standard Levi subgroup we mean a subgroup M _D Mo which is a 

Levi component  of the parabolic subgroup P = M-  Po (notation M < G). For any 

standard Levi subgroup M < G the functors iGu : d/t(M)---, d~(G) and 

rM~ : d~ (G)--~ d~ (M) define morphisms i ~  : R (M)--~ R (G),  rM~ : R (G)--~ R (M) 

(see [2, w or [1, 2.5]). 

Let xlt(G)C {t~: G---~C*} be the group of unramified characters of G. It acts 

naturally on Irr G and R(G) by if: 1r ~ ~Tr. This group has a natural structure of 

complex algebraic group (isomorphic to (C*)d). 

1.2. Let  ~ ( G )  be the Hecke algebra of G (algebra of locally constant complex 

valued measures on G with compact support). Each measure h ~ ~ ( G )  defines a 

linear form fh : R(G)---~C b y / , ( ~ - )  = tr 7r(h). 

It is easy to see that the form f = fh satisfies the following conditions: 

(i) For any standard Levi subgroup M < G and or E I r rM,  the function 

~b ~ f(icM (~bo')) is a regular function on the complex algebraic variety xlt(M). 

(ii) There  exists an open compact subgroup K C G which dominates f, i.e., f is 

nonzero only on the G-modules E, which have a nontriviai space E K of 

K-invariant vectors. 

We want to prove that the conditions (i)-(ii) characterize the trace forms {fh}. 

Namely, let R*(G)=Homz(R(G),C)= Map(Irr G,C)  be the space of all linear 

forms on R(G). We call a form f :  R(G)---,  C good if it satisfies conditions (i)-(ii) 
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and trace [orm if ,f = [h for some h E ~ ( G ) .  We denote the subspaces of trace and 

good forms by F,r = F,r(G) C Fgood = Fgood(G). 

Theorem (Trace Paley-Wiener Theorem). F,r = F~ood. 

Remark. This theorem describes the image of the natural morphisms 

tr: ~(G)---~ R*(G). One can show that Ker t r  = [Yg(G), ~ (G) ] .  See Theorem B in 
[s]. 

1.3. The paper has the following structure. In Section 2 we recall the basic 

properties of the central algebra of a p-adic group (3. In Section 3 we formulate 

three technical results, which are proven in Section 5. In Section 4 we prove the 

theorem, using these results. Section 6 contains some remarks on the proof. 

w The central algebra 3 ( G )  

In this section we recall some definitions and results about the central algebra 

~](G) of a p-adic group (3. This algebra is analogous to the center of the universal 

enveloping algebra for a real group. We follow [1] but we use a slightly different 

terminology in order to emphasize this analogy. 

2.1.  Infinitesimal Characters 

We call a cuspidal pair a pair (M, p) where M < G is a standard Levi subgroup, 

p E Irr M is a cuspidal irreducible M-module. We denote by O(G) the set of all 

cuspidal pairs up to conjugation by G. A point 0 @ |  is called an infinitesimal 
character of G. 

For any cuspidal pair (M, p) the image of the map v~,: ~(M)---~ |  given by 

~b ~ (M, ~bp), is called a connected component of O(G). This component has the 

natural structure of a complex attine algebraic variety as a quotient of ~ ( M )  by a 
finite subgroup. We consider O(G) as a complex "algebraic variety", consisting of 

an infinite number of connected components | and we will write O(G) = U O. 
For each to E l r r G  there exists a cuspidai pair (M,p), such that r is a 

sub-quotient of i~M (p). This pair is uniquely defined up to conjugation by G and 

hence defines a point 0 ~ O(G), which is called the infinitesimal character of oJ 

(notation: 0 = inf. ch.(e0)). The map inf. ch.: Irr G ~ O(G) is onto and finite-to-one. 

Define an algebraic action of ~ ( G )  on O(G) by ~b: (M, p)---> (M, ~b IM "P). Then 
inf. ch. is a q~(G)-equivariant map. We can decompose R(G)=OoR(O), 
0 E O(G), where R (0) is the subgroup, generated by irreducible G-modules with 

infinitesimal character 0. More generally, for each subset S C O(G) we put 

R(S)=@oR(O), OES. 

2.2. The Central Algebra ~q(G) 

Def in i t ion .  The central algebra ~q (G) is the algebra of regular functions on the 

complex algebraic variety 0 (G) .  
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The decomposition |  = U O shows that 3 ( G )  = I10 3(O), where 3 ( 0 )  is the 

algebra of regular functions on the component O. We denote by ~~ the ideal 
~)o 3(0)  C 3(G),  consisting of functions supported on a finite number of compo- 
nents. We can (and will) interpret infinitesimal characters 0 E | as algebra 

homomorphisms O: ,9(G)--+C, nontrivial on 3~ 

T h e o r e m  (see [1, 2.13]). On each G-module E there exists a natural action of 

3 ( G ) such that 

(i) z: E - *  E is a morphism of G-modules for each z E 3 ( G ) .  

(ii) Each G-module morphism a: E--> E'  is a 3(G)-morphism. 

(iii) On each irreducible G-module E the action of z E 3 ( G )  is given by 

z = inf. ch.(E)(z) .  1~. 

R e m a r k s .  (1) The system of actions of ~ (G)  on G-modules is uniquely 

determined by properties (i)-(iii). 
(2) Consider ~ ( G )  as a G-module with respect to the left action of G. Then the 

corresponding action of 3 ( G )  on ~g(G) identifies 3 ( G )  with the algebra of all 
endomorphisms of M(G), invariant with respect to left and right actions of G (see 

[i, w 
For each G-module ~', h E ~((G), z E 3(G) we have ~'(zh) = z o ~r(h). Hence 

the action of 3(G) on 7r can be described in terms of its action on ~(G). 

2.3. Decomposition Theorem 

Let E be a G-module. Then for each connected component O C O(G) its 

characteristic function le E 3 ( G ) acts on E as a projector on a G-submodule Ee ,  

and E = ~)~.~ E~.~. Moreover, for each open compact subgroup K C G there exists an 

open subset OK (G) C O(G), which is a union of a finite number of components, such 

that for 0 7 - O K ( G ) ,  E ~ = 0  for all G-modules E (see [1, 2.10]). 

This theorem implies that the Hecke algebra ~ ( G )  can be decomposed as a 
direct sum of two-sided ideals ~ ( G ) e  and for each open compact subgroup K C G 
the corresponding decomposition 2t~K (G) = (~e ~ (G)o has only a finite number of 
nonzero terms (here ~ r  (G) is the algebra of K-bi-invariant measures). 

2,4. Harish-Chandra Homomorphism 

Let M <  G be a standard Levi subgroup. Define the morphism 

iGM:O(M)--->O(G) by (L,p)- -*(L,p) .  This is a finite morphism of algebraic 
varieties (it is not an inclusion, since cuspidal pairs conjugate under G may be 
non-conjugate under M). We call the corresponding morphism 
ic*: ,~ (G)--+ 3 ( M )  the Harish-Chandra homomorphism. As for real groups ,~(M) 
is a finitely generated 3(G)-module.  

It is easy to check that the map i~M: O(M)---~O(G) is compatible with the 
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functors i~M and rM6, i.e., for each subset SM C O(M), ioMR(SM)C R(i~M(SM)) and 
for each subset S C O(G), rM~R (S)C R (ibl(S)). In fact, a more precise statement 

is true. 

Proposit ion.  Let z E 3(G) ,  zM = i~M ( z ) ~  3(M).  Then for each M-module 
~r, i~M(ZM) = Z on i~,.(cr) and  for each G-module 7r, rM~(z) = zM on rM~(rr). 

The proof can be found in [1, 2.13-2.16]. 

2.5.  Finiteness Theorem 

Theorem (see [1, w Let K C G be an open compact subgroup. Then for any 
finitely generated G-module E the space E K of K-invariant vectors is a finitely 
generated 3~ In particular, the algebra ~K (G) is a finitely generated 

~~ G )-module. 

This is an analogue of Harish-Chandra's finiteness theorem for real groups (see 

[5, 9.5]). 

w Preparat ion for induction: discrete G-modules  and discrete 
forms  

3.1. Discrete G-modules 

Let R ~ (G) C R (G) be the subgroup of "strictly induced" G-modules, defined by 

R ~(G) = EM i~M (R (M)) with M ~  < G. An irreducible G-module ~o is called discrete 
if w ~ R~(G). An infinitesimal character 0 is called discrete if it is the infinitesimal 

character of a discrete G-module (or, equivalently, if R (0)Z  R t(G)). We denote 

the set of all discrete infinitesimal characters by Od~sc(G). 

Proposi t ion (see 5,1-5.2). For each connected component O C O(G) the set 

Odi,c = O I'] Odi .c (G)  consists of a finite number of ~(G)-orbits, 

Let M < G, or E Irr M. The family {ic,~4 (~cr)} parametrized by xtt(M) is called a 

standard family of G-modules. 

C o r o l l a r y .  For each connected component O C O ( G )  the group R(O) is 

generated by a finite number of standard families {i~M (~bo-)}, corresponding to 
discrete M-modules ~r. 

Indeed, it is clear that R (O) is generated by standard families, corresponding to 

discrete M-modules ~r with infinitesimal characters in ib,~4(O)CO(M). Since 

ib)m(O) consists of a finite number of components and the map 

inf. ch.: Irr M ~ O(M) is finite-to-one, the proposition shows that there are only a 

finite number of such families. 

3.2.  Let ~M: R*(G)---~R*(M) and rM~:R*(M)---~R*(G) be morphisms 

adjoint to morphisms icM and rMc,. 
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Propos i t ion  (see 5.3). (i) i~M(F~ood(G))C Fgoo~(M); 

(ii) r,~, (F,,(M)) C F,~(G). 

3.3. A linear form f E R * ( G )  is called discrete if f (R*(G))=O,  i.e., 

i*~ (f) = 0 for all M ~  G. 

Combinator ia l  L e m m a  (see 5.4-5.5). There are constants cM ~ Q for each 

M ~ G such that for each linear form f ~ R * ( G ) the form f~ = f - EM cMr *~ o i *~(f ), 
M ~ G, is discrete. 

w Proof  of Theorem 1.2 

4.1. The central algebra 3(G) naturally acts on R*(G)  by zf(r 

inf. ch.(w)(z) ,  f(r z E 3 (G) ,  f ~ R * ( G ) ,  o) E Irr G. Using Remark 2 in 2.2 we 

see that tr: ~(G)---> R*(G)  is a morphism of 3(G)-modules,  so its image F,r is a 

3(G)-submodule.  It is also easy to check that the subspace F, ood C R*(G)  is a 

3(G)-submodule  (one should only notice that for each standard family {iaM (qJo')} 

the corresponding map u':  ~(M)--~ O(G) is a morphism of algebraic varieties). 

The group xIt(G) naturally acts on R*(G)  by 4s(f)(w)=f(~b~o). Clearly the 

subspace F~ood is ~(G)-invariant.  In order to prove that F,r is ~(G)-invariant it is 

sufficient to observe that the morphism tr: ~(G)--~ R * ( G )  is ~(G)-equivariant,  

where ~ ( G )  acts on Y( by ~0: h ~ Oh. 

4.2.  Consider any subset S C R(G) .  We call the restrictions to S of good and 

trace linear forms good and trace functions on S. We denote the corresponding 

spaces of functions by Fgood[S], F,r[S]. 

L e m m a .  For a finite ,set S the restriction to S of any linear form f: R (G)----> C is a 

trace fimction. In particular, F,~[S] = F~,~,d[S]. 

This is just another way of saying that characters of irreducible G-modules are 

linearly independent functionals on Y((G). 

Proposi t ion.  Let S C Irr G be a union of a finite number of ~ (  G )-orbits. Then 

F,,[SI = F, oodISl. 

P r o o f .  The set S has the natural structure of algebraic variety, as a union of a 

finite number of *(G)-orbits.  By definition of good forms F,r[S] C Fgood[S] C ~ (S), 
where ~ ( S )  is the algebra of regular functions on S, 

Choose a cocompact lattice A in the center Z ( G )  of the group G and put 

Y=xF(A)=Hom(A,C*) .  Then the restriction mapr:qt(G)-- -*Y is a finite 

epimorphism of algebraic groups. Define a map c': Irr G --~ Y by 

c': r Its restriction to S, c: S---*Y is a finite W(G)- 

equivariant submersive morphism of algebraic varieties. In particular, ~ ( S )  is a 
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finitely generated ~ (Y) -modu le .  We claim that F,,[S], Fgood[S] are ~ ( Y ) -  

submodules of ~ ( S ) .  For Fgood[S] it is clear. For F,r[S] one can either directly 

describe the action of ~ (Y), which is after all just the group algebra of A, on Ftr[S], 

or use the homomorphism ~t(Y)--->3(G), corresponding to c": O(G)---> Y. 

Let y ~ Y, d~y C ~ (Y) the corresponding maximal ideal. For each ~ (Y)-module 

we put ~ = , ~ / ~ y ~  - -  the fiber of ~: at y. Since c: S ~  Y is finite and 

submersive, the set Sy = c- l (y)  is finite and the fiber ~ (S)y coincides with ~ (S r). 

By the lemma above Ft~[Sy] = F~ood[Sr], which gives 

Fgood[S] C Ft,[S l + d,/y~ (S). 

Put .,~ = ~(S)/F..[S], ~ '  = Fsood[S]/F..[S ] C ~. Then the inclusion above can be 

written as 

( . )  o ~ '  C d~y~- for each y E Y. 

Since ~: is a finitely generated ~ (Y) -modu le  it is locally free at almost every 

point y E Y. Since it is W(G)-equivariant, it is locally free everywhere. Hence (*) 

implies that ,,~'= 0, i.e., Ft,[S] = Fsood[S ]. 

4 .3 .  P r o o f  of  T h e o r e m  1.2.  Let f ~ Fgoo,J(G). By definition f is dominated 

by an open compact subgroup K C G (see condition (ii) in 1.2). Using 2.3 we can 

write f = X lo .  f, where lo .  f = 0 for all but a finite number of components O. It is 

sufficient to prove that lo" f E Ft,(G) for each component  O, so we can fix O and 

assume that 1~. f = f. 
By Proposition 3.1 the group R (Od,~c) is generated by a subset S C Irr G, which is 

a union of a finite number of W(G)-orbits. Using Proposition 4.2, we can find a 

trace form fh such that f = fh on R (Odisc). Replacing f by f -  lo" fh we can assume 

that f is zero on the subgroup Rd~ = R(Oa~(G)). 
Consider the form f~ = [-EMcMr*~i*Mf, defined in 3.3. This form is discrete, 

i.e., it equals 0 on R~(G). It also equals 0 on Ro~, since f ( R d ~ ) = 0  and the 

operators i~M ~ rMc preserve Rd,~ because they preserve R (O) for each O E @(G). 

Since R ( G ) =  Rd,~+ R ' (G) ,  fd =-0, i.e., f=EMCMr*6oi*Mf, M 6  G. 
Let M ~  G. By induction in dim M we can assume that F,~(M) = Fg,.,o(M). Then 

i*Mf ~ Fgood(M) = F,,(M) and hence r*6o i~Mf ~ r*~F,,(M)C F,~(G) (see 3.2(0, 

(ii)). This shows that f E Ft,(G). 

w Proofs  of Propos i t ions  3.1, 3 .2 and 3.3 

5.1.  Fix a connected component  0 C O(G).  We want to prove that the subset 

Odi,~ C O of discrete infinitesimal characters consists of a finite number  of ~ ( G ) -  

orbits. 

L e m m a .  Od~ is a construcable subset of O, i.e., a union of a finite number of 
subsets, locally closed in Zariski topology. 
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This lemma is "morally obvious", since the whole situation is algebraic. But, as 

usual in such cases, the proof is a little tiresome. 

P r o o f .  Step 1. Let ~ be a commutative algebra over C, E a G -~ -m o d u le ,  i.e., 

a G-module  together with a homomorphism ~ --* End~ (E). Suppose E is finitely 

generated as a G - ~ - m o d u l e  and for each open compact subgroup K C G 

~ -modu le  E K is projective and finitely generated. In this situation we call E a 

-family of G-modules.  For any homomorphism of algebras ~ --~ ~ '  we denote by 

E~, the induced ~ ' - family of G-modules  E~. = ~ '  ~ E. 

Usually we consider ~ to be the algebra of regular functions on an algebraic 

variety S, and then call E an S-family of G-modules.  For each morphism 4) : S' ~ S 

we denote by Es, an induced S'-family of G-modules.  For instance, for any point 

s ~ S the corresponding G-module  Es is the specialization of the family E at s. 

For an S-family of G-modules E we define a function v~: S---~ R ( G )  by 

ve (s) = E,. We call functions of this type regular. A regular function v: S ~ R (G)  

is called irreducible if v (S)C Irr G. Two irreducible functions u, v' are called 

disjoint if for each s ~ S, v(s) ~ v'(s). 

Step 2. Let  v: S --* R (G)  be a regular function. Then there exists a dominant 

6tale morphism 4): V--~S, irreducible regular functions {Aj: V---~R(G)} and 

nj E Z + such that 4)*(v) = E njAj. 
Let  E be an S-family of G-modules,  representing v. We can find an open 

compact subgroup K C G such that E is generated by E r as a G-module.  If we 

choose K to be good, then any nonzero subquotient E '  of E has a nonzero space 

E ' r  (see [1, w This implies that we can everywhere replace G-modules E '  by 

~ r -modules  E 'r, where ~ r  = ~ r ( G ) ,  i.e., essentially we study families of 

finite-dimensional ~r -modules .  

We can assume that S is irreducible. Let  ~ = ~ (S), L be the field of fractions of 

~.  There  are two possibilities. 

(i) ~ r  C EndL (EL r) generates the whole space as L-module.  Then, after replac- 

ing S by an open subset, we can assume that ~ r  generates E n d ~ ( E  ~) as a 

~-module ,  i.e., E~ is irreducible for each s E S. 

(ii) Yt~r does not generate EndL(E~)  as an L-module.  Then for some finite 

extension L '  of L the representation of ~ r  in ELK, is reducible. Replacing S by 

some V, 6tale over S, we may assume that L ' =  L. 

Let E~ C E~  be a nontrivial ~ r  ~) L submodule. Replacing S by an open subset 

we can assume that E~ = (E0)L, where E0 C E x is an ~ r  (~ ~) submodule, such that 

Eo and E r/Eo are projective ~-modules .  Induction on dim~ E r finishes the proof. 

Step 3 (Decomposition in irreducible functions). Let  v~, . . . ,  v,: S - - ) R ( G )  be 

regular functions. Then there exist a dominant 6tale morphism 4) : V--) S, irreduci- 

ble regular [unctions A~: V--> R (G)  and integers n~j ~ Z + such that 4)*(v~ ) = E n~Aj. 

Moreover,  we can Choose Aj to be disjoint. 
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Indeed, repeating Step 2 we can find Aj. If A, A' are two irreducible functions, 

then the set of points v E V such that A(v) ~- A'(v) is closed in Zariski topology. 

Hence, replacing V by an open subset, we can assume that each two functions Ai, Aj 

either coincide, or are disjoint. 

Step 4. Let v~ . . . . .  v~, ~ . . . . .  ~,~: S---~R(G) be regular functions. Consider 

the subset S0C S consisting of all points s, such that {u~(s) . . . . .  v,(s)} lie in a 

subgroup of R (G),  generated by {g~(s) . . . . .  /.~,, (s)}. Then there exists a dominant 

6tale morphism ~b: V---~ S such that ~b-~(So) is either empty or the whole V. 

It follows immediately from Step 3. 

Step 5 Proof of the Lemma. In order to prove that the subset Odisc C O is 

constructible it is sufficient to check the following condition. 

(*) Let  S C O be a locally closed subvariety, So = S \ (S fq Od~). Then there exists 

a dominant 6tale morphism ~b: V---~ S such that ~b-'(So) is either empty or 

the whole V. 

Let  (N, p) be a cuspidal pair, corresponding to | v~: ~(N)- -*  O the correspond- 

ing morphism. For each standard Levi subgroup M < G, which contains N, 

consider the regular function vM: ~(N)---~ R(M) given by ff ~ iMN(~bp). 
" VI -"* S is dominant Choose a subvariety V1 C qt(N) such that v~(V~)C S and up. 

6tale, and denote by VM the restrictions of functions VM to V~. Using Step 1 we can 

replace V~ by V2, 6tale over V1, such that on Vz for each M we have a 

decomposition vM = E n~AMi with irreducible AM,. 

Now consider on V2 two systems of regular functions: the first is {A~,i} and the 

second is {i~M (AM.j)I M ~  < G}. It is clear that the set (V2)o of points v for which the 

second system generates the first one is exactly the pre-image 4~(S0),  where 

~b2: V2---~ S is the natural 6tale morphism. So Step 4 proves (*) and the lemma. 

5 .2 .  Proof of Proposit ion 3.1.  For  each G-module  ~r denote  by Ir § 

its Hermitian contragradient G-module.  This defines an involutive map 

+ : R (G)--* R (G),  which maps Irr G into itself. This involution is compatible with 

morphisms i ~ .  For  each subgroup M < G the involution + acts on ~ ( M )  and on 

the set of cuspidal pairs (M, p). This defines an action of + on |  which is 

compatible with the map inf. ch. It is easy to see that the action of + on the 

algebraic varieties ~ ( M ) ,  |  is antiholomorphic (more precisely, antialgebraic). 

By Langlands theory (see [3, XI.2]) the group R(G) is generated by standard 

families {i6~ (qJ~r)} in which cr is a tempered M-module.  Hence each point 0 E Odi,c 

can be written as 0 = inf. ch.(qJlr), with qJ E ~ ( G ) ,  and ~r an irreducible tempered 

G-module.  Since ~r is tempered,  it is unitary, i.e., ~r + = 7r. This implies 

( , )  0 + ~ ,I , (G)0.  
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Suppose for a moment  that V ( G ) =  {1}, i.e., G has compact center. Then the 

subset Od~ C O is constructible by 5.1 and is pointwise fixed by the antialgebraic 

involution + .  This implies that this subset is finite. 

For arbitrary ~ ( G ) t h e  same proof,  applied to the subset ~)d~ = O,~i~o/au of the 

algebraic quotient  variety ~) = O/V(G),  shows that ~)d~ is finite, i.e., O~i~ consists of 

a finite number  of V(G)-orbits .  

5 .3 .  Proof  of  P r o p o s i t i o n  3.2 .  Fix M < G. The inclusion 

i~M (Fgood(G))C Fsoo~(M)is straightforward. We prove the inclusion r*~ (F,r(M)) C 

F,r(G) using a modification of the method used in [4]. 

Let P = M U  be the standard parabolic subgroup, corresponding to M, P - =  

MU- the opposite parabolic. Choose a small good subgroup K C G, i.e., an open 

compact subgroup such that K = (K n U- ) .  (K n M ) .  (K n U). Put F = K O M 

and consider Hecke algebras ~ r  (G)  and ~ r (M) .  We want to prove that for each 

h E ~ r ( M )  the form r*6 (fh) ~ R *(G)  is a trace form. Let  J denote the subspace of 

h E ggr(M) for which it is true. We should prove that J = ~ r (M) .  

Step 1. Fix a central element a E Z ( M )  such that Ad a l u is a strictly contract- 

ing operator.  Then for each h E ~ r ( M ) ,  a"h  ~ J for large n. 

Proof .  Let er, eK be units in ggr(M) and ggK(G). For  each m E M  put 

h(m) = er" 8,, �9 er, h'(m) = 86112(m) �9 er �9 8 ,  �9 eK, where 6 ,  is the 8-distribution at 

m and 8u = modu E ~ ( M )  (this factor appears since we use the normalized functor 

rM~, see [1, 2.5]). 

We can assume that a given measure h is of the form h(m) for some m E M. 

Replacing a by its power and m by a ' m  we can assume that a, m lie in 

M + ={m E M I m ( K  n U)m- '  c K n U and m-t(K n U-)m c K n U-}. 

Then (see [4, 2.1]) 

h ( a ' m ) =  h ( a ) ' ,  h(m) and h'(a 'm) = h '(a) 'h ' (m)= h'(m),  h ' (a ) ' .  

Let  r be an admissible G-module ,  or = rM~ (or). Then, arguing as in [4, w we see 

that for large n 

tr r = tr or(h(a'm)). 

Since both functions of n are Z-finite, for n --- 1, equality holds already for n = 1 

(see [4, w167 This proves that 

r*o (/~t~,)) = )r is a trace form, 

i.e., 

h(am) = ah(m) E J. 
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Step 2. By the finiteness theorem 2.5, ~ r ( M )  is finitely genrated as ,~(M)- 

module and hence is finitely generated as ~ (G)-module .  Since J C ~ r ( M )  is a 

~(G)-submodule ,  we can deduce from step 1 that for some n ~ Z, a ~ r ( M ) C  jr. 

But a ~ r ( M ) =  ~ r ( M ) ,  so J = ~ r (M) .  

5 .4 .  Relations Between Morphisms i and r 

Let We = Nom(Mo, G)/Mo be the Weyl group of G. For m < G we consider W~ 

as a subgroup of W~. 

We call two standard Levi subgroups M, N < G associate if N = wMw-I  for 

some w ~ Wo. Each such element w defines an isomorphism w: R (M)---~ R (N), 

which depends only on the class w W ~  = W s w  of w. If w': R ( L ) - - * R ( M )  is 

defined, we have w w ' =  w o w': R(L)---> R ( N ) .  

L e m m a .  The system o[ groups R ( M )  for M < G, isomorphisms w and morph- 

isms iNM, rMN for M < N < G satisfies the following felations. 

(i) For L < M < N < (3, iN~ ~ iML = iNL, rLM o rMN = rLN. 

(ii) Let M, N < G, W ~  ~ be the set of representatives of WN \ WG / WM of minimal 

length. Then 

rNG o iOM = E iNN.  o W o rM~M 
w 

NM with w E MG , Mw = w-~Nw fl M, Nw = wMww -1 = N N wMw-I .  

(iii) I f  N = w M w  -1, then 

ie.N~ f o r c r E R ( M ) .  

P r o o f .  (i) is standard, (ii) is the reformulation of [2, 2.11]. The statement (iii) is 

well known, but we were unable to find a reference. So we give a proof of it. 

It is sufficient to check (iii) on generators of R (M). Hence by Langlands theory 

(see [3, XI 2]) we can assume that ~r = iML ($~O), where L < M, $ EW (L) ,  o~ is a 

tempered irreducible L-module.  Since iGM(~r)=i~L(~aJ) and ioNow(o ' )=  

i~.wL,-'(w(~bo~)), we can just assume that L = M, cr = Sw. 

Since characters of both parts in (iii) are regular functions in $ it is sufficient to 

check (iii) for a generic character $. 

Using the formula 

Home  (ieM (~k~O), i~N (W (~b~O))) = HomN (rN~ o ieM (~W), W (~0))  

and using (ii) we see that this Hom space is 1-dimensional, since for generic ~b all 

subquotients of rNa o i~M ( $ o ) e x c e p t  w (qJoJ) have central characters different from 

the central character of w($o~). Hence it is sufficient to check that the G-module  

iaM ($~)  (and similarly i~N (w($o~))) is irreducible for generic ~. 

The same proof as above shows that for generic ~, Ende  (iOM(~O))= C. If ~ is 
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unitary, the G-module i ~  (~b~o) is unitary and, hence, irreducible. Since irreducibil- 

ity is an open condition on ~, i~(~bca) is irreducible for generic ~b. 

C o r o l l a r y .  For each M <  G denote by T~ the 

i~Mor~o: R (G) - -~  R ( G ) .  Then 
N M  (i) T ~ o i 6 M = Y ,  i6~ or~.~, w E  W o  , M , = M O w - ~ N w ,  

N M  (ii) T~o T~ = E , T ~ . ,  w E  W 6  , M ,  = M A w-~Nw. 

operator Tu = 

P r o o f .  (i) T~ o i ~  = ic~ o rN~ o i~u = X .  io~o  i ~ .  o w o rM~u = X~ i o ~ o  w o r u . u  

= 5".~i~o r~..~. 

(ii) Ts o TM = T~ o i ~  o r~o = E ,  i~M. o r~.u o r M o  = ~'w ~M. o r~.o = ~,, T M . .  

5 . 5 .  P r o o f  o f  t h e  C o m b i n a t o r i a l  L e m m a  3 . 3 .  For each M < G put 

d(M)=dim~(M)- the "depth" of M in G. Define a decreasing filtration 

{R ~ C R(G)} by R '  = E~M)~,i~M(R(M)). By definition R '  = R ( G )  for i _-< d(G), 

R ~<~)+~= R : ( G )  ~ the subgroup of strictly induced G-modules and R ~= 0 for 

i > d (M0). 
Corollary 5.4 (i) shows that each operator Ts preserves this filtration and gives an 

explicit description of the action of T~ on quotients. For instance, if we put 

P ( N )  = #(Norm(N, Wo)[W~),  then for d = d ( N )  the action of Ts on R d / R  d+t is 

given by 

TNi6M (0") = P ( N ) "  Gu (o') if M ~ N, 

TNicu (tr) = 0 if M7 z N. d (M) = d. 

This implies that the operator Aa = IId~t~)~d(TN- P ( N ) )  preserves the filtration 

{R ~} and annihilates R a/R a.l 

Put A =Aat~o)oAat~)-~ . . . . .  Aatov.,. Then A ( R I ( G ) ) = O  and by Corollary 

5.4(ii) A takes the form A = P(1 - EMcMTM), ME (3, with cu E Q, P E z, P ~  0. 

Then the adjoint operator A *: R *(G)--* R*(G) maps R *(G) into the orthogonal 

complement to R ~(G), i.e., into the subspace of discrete forms, and is of the form 

A * = P(1 -~ucur*oi~M), M E  G with cu E Q, P E Z, P #  0. But this is eaxctly the 

statement of Lemma 3.3. 

w  M i s c e l l a n e o u s  r e m a r k s  

6.1. Let M < G, o-E IrrM. Then the natural morphism v': ~ ( M ) - - + O ( G ) ,  

~ inf.ch, ioM (~o') is a finite morphism of algebraic varieties. Indeed, it is a 
composition of the morphism v": ~(M)--* O(M), ~ ~, inf. ch.(O~r) which is finite by 

4.2, and a finite morphism /~M: O(M)-*O(G). 
Fix a connected component O C O(G) and consider a finite set of standard 

families, given by {(M~, try)}, generat ing  R (O). Put X = [.J ~ ~ ( M ~ )  and consider the 
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natural map v: X ~ R (O). Using v we realize R*(O)  as some space of functions on 

X. Clearly, the space Fgooa(O) lies in the subspace ~ (X) of regular functions on X. 

Since ~ ( X )  is a finitely generated 3(O)-module ,  Fgoo~(| is also a finitely 

generated ~(O)-module.  

In an earlier version of the paper  we used this realization in order  to prove the 

theorem. Let us sketch the proof. 

First, using 3.2 and 3.3, we reduced the proof  to the s tatement  that any discrete 

form [ E F~ood(| is a trace form. Since ~ (X)  is a finitely generated ,q(| it 

is sufficient to check that for each point 0 E O the function [ ~ ~ ( X )  can be 

approximated by trace functions modulo any power of the maximal ideal J/0 C 

,4(o). 
Assume ~ ( G ) =  1 (in the general case one should argue as in 4.2). By 4.1 [ is 

equal to a trace function [ '  on a finite subset v - l (0 )C  X. Now we can apply the 

following simple s ta tement  from linear algebra. 

(*) Let  A :  V----~ V be an endomorphism of a finite-dimensional vector space. 

Then for each n ~ Z  § there exists a polynomial P ( t ) ~ C [ t [  such that 

t r P ( A  + X ) = t r A  + o(llxll") for X E E n d  V. 

This s tatement allows us to replace [ '  by a trace form [", which coincides with [ '  

and [ on v-t(O) and is a constant modulo a high power of J,~0. Since f is discrete, it is 

constant on each component  of X, and hence [" approximates )t modulo a high 

power of ~0.  

6 .2 .  Discrete G-modules  and discrete forms, which appeared in our proof,  

apparently play a very important  role in harmonic analysis on G. Some interesting 

results can be found in [6]. 

6 .3 .  It would be interesting to study more thoroughly the combinatorial  

structures, described in 5.4-5.5. They have some relations with Hopf  algebras (see 

[7]). Here  we want only to note that the operators  TM in 5.4 do not coincide (and 

even do not commute)  for associate Levi subgroups. 

E x a m p l e .  Let  O = GL(3), M = GL(2) x GL(1), N = GL(1) x GL(2). Then 

TMTu(Tr)~  TNTMm if 7r E R ( G )  is the trivial G-module .  

REFERENCES 

1. J. N. Bernstein and P. Deligne, Le "'centre" de Bernstein, in Reprdsentations des groupes reducti[s 
sur un corps local, Hermann, Paris, 1985. 

2. J. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups L Ann. Sci. 
Ec. Norm. Super. 10 (1977), 441-472. 

3. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of 
Reductive Groups, Ann. of Math. Studies, Princeton Univ. Press, 1980. 

4. W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), t01-105. 
5. J. Dixmier, Algebres Enoeloppantes, Gauthier-Villars, 1974. 



192 J. BERNSTEIN ET AL. 

6. D. Kazhdan, Cuspidal geometry ofp-adic groups, J. Analyse Math. 47 (1986), 1-36 (this issue). 
7. A. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Sci. Ec. Norm. Super. 

13 (1980), 165-210. 
8. D. Kazhdan, Representations of groups overclose local.[ields, J. Analyse Math. 47 (1986), 175-179 

(this issue). 

Address of the first and third authors 
DEPARTMENT OF MATHEMATICS 

HARVARD UNIVERSITY 
CAMBRIDGE, MA 02138, USA 

Address of the second author 
INSTITUTE FOR ADVANCED STUDIES 

PRINCETON UNIVERSrrY 
PRINCETON, NEW JERSEY, USA 

(Received August 26, 1985) 


