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Abstract

We examine from an algebraic point of view some families of unitary
group representations that arise in mathematical physics and are as-
sociated to contraction families of Lie groups. The contraction fam-
ilies of groups relate different real forms of a reductive group and
are continuously parametrized, but the unitary representations are
defined over a parameter subspace that includes both discrete and
continuous parts. Both finite- and infinite-dimensional representa-
tions can occur, even within the same family. We shall study the sim-
plest nontrivial examples, and use the concepts of algebraic families
of Harish-Chandra pairs and Harish-Chandra modules, introduced
in a previous paper, together with the Jantzen filtration, to construct
these families of unitary representations algebraically.

1 Introduction

In a previous paper [BHS16] we showed how certain contraction families
of Lie groups that arise in mathematical physics [Seg51, IW53] can be con-
structed as real points of algebraic families of complex algebraic groups.
In this paper we shall examine associated families of unitary represen-
tations, and show how they can be obtained from algebraic families of
Harish-Chandra modules.
∗School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
†Department of Mathematics, Penn State University, University Park, PA 16802, USA.

1

ar
X

iv
:1

70
3.

04
02

8v
2 

 [
m

at
h.

R
T

] 
 1

0 
Se

p 
20

17



The focus of our study will be a family of groups obtained from SU(1, 1)
and its Cartan decomposition

su(1, 1) = u(1)⊕ p,

where u(1) is realized as the diagonal matrices in su(1, 1), and p is the vec-
tor space of matrices in su(1, 1) with zero diagonal entries. The group
SU(1, 1) may be contracted to its Cartan motion group U(1) n p. This
means that a smooth family of Lie groups {Gt}t∈R may be constructed with

Gt ∼=

{
SU(1, 1) t 6= 0
U(1)n p t = 0.

There is also a very similar contraction of SU(2) to the same motion group.
For all this see [DR85, DR83].

Every infinite-dimensional unitary irreducible representation of the mo-
tion group U(1)n p can be approximated by two different families of rep-
resentations associated to these two contractions. The first is a continuous
family of unitary principal series representations of SU(1, 1) and the sec-
ond is a discrete family of finite-dimensional irreducible representations of
SU(2). These two families of representations are examples of the two dif-
ferent procedures for contraction of representations that were introduced
in [IW53, Sections 2(a) and 2(b)].

The problem that we shall address in this paper is to understand these
families algebraically. We shall show that the two families of representa-
tions may be obtained from one algebraic family of Harish-Chandra mod-
ules by means of a single procedure that uses Jantzen filtration techniques.

In [BHS16] we constructed an algebraic family of Harish-Chandra pairs
(g,K) over the complex affine line1 with fibers

(
g|z,K|z

)
∼=

{(
su(1, 1)C, U(1)C

)
z 6= 0(

u(1)C n pC, U(1)C
)
z = 0.

It may be equipped with a real structure σ, and there is a corresponding

1Actually the family extends to a family over the projective line, but the phenomena
that we shall study in this paper are purely local, and so we shall work over the affine
line.
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family of real groups over the real line with fibers

Gσ|t ∼=


SU(1, 1) t > 0

U(1)nR2 t = 0

SU(2) t < 0.

We shall review these constructions in Sections 2 and 3. The family Gσ

combines the two contractions mentioned above.
Let F be a quasi-admissible and generically irreducible algebraic fam-

ily of Harish-Chandra modules for (g,K), and assume that F is rationally
isomorphic to its σ-twisted dual F〈σ〉; see Section 2.4. We shall obtain from
F a family of unitary representations of a subfamily of Gσ.

Our method is to associate to an intertwining operator from F to F〈σ〉

(defined over the field of rational functions) Janzten-type filtrations of the
fibers of F. Jantzen’s technique equips the subquotients with nondegen-
erate hermitian forms. If we isolate those subquotients on which the her-
mitian forms are definite, then the Harish-Chandra module structures on
these fibers may be integrated to unitary group representations.

The generically irreducible, algebraic families of Harish-Chandra mod-
ules for the family (g,K) were analyzed in [BHS16]. Applying the above
method to a family of “spherical principal series type” we obtain precisely
the family of unitary representations described above, consisting of the
family of all unitary spherical principal series representations for SU(1, 1)
when t > 0, together with highest weight 2m spherical unitary irreducible
representations of SU(2) when t = −1/(2m + 1)2. (In addition we ob-
tain the unitary irreducible representation of the motion group at t = 0 to
which both of these families of representations converge.)

In summary, we are able to place the contraction families of unitary
representations within a purely algebraic context. This is despite the fact
that the “spectrum” of values t over which the contraction families are
defined includes both discrete and continuous parts, together.

In fact the structure of this spectrum strongly recalls the quantum me-
chanics of the hydrogen atom. It will be shown elsewhere that the fam-
ily of Harish-Chandra pairs studied in this paper arises as symmetries of
the Schrödinger equation for the hydrogen atom, and the collection of all
physical solutions of the Schrödinger equation coincides with one of the
families of representations studied here. This suggests that our techniques
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for obtaining unitary representations from algebraic families of Harish-
Chandra modules may be useful for quantization.

Another application that we shall explore elsewhere is the Mackey bi-
jection. Mackey showed in some specific cases how to place most of the
unitary dual of a semisimple Lie group in bijection with most of the uni-
tary dual of the corresponding Cartan motion group [Mac75]. Later on a
precise bijection between the tempered duals was obtained—first for com-
plex groups in [Hig08], and then for real groups in [Afg15]. The bijec-
tion for complex groups was examined from an algebraic perspective in
[Hig11], and extended to admissible duals. This latter bijection fits very
well with the methods of this paper, although, since unitarity is not the
main issue for the Mackey bijection, we shall identify appropriate sub-
quotients in this context using minimal K-types rather than definiteness of
hermitian forms.

Finally, perhaps it is also worth mentioning that the algebraic families
of Harish-Chandra pairs considered here, which place real reductive pairs
together with their compact forms, provide a means to study hermitian
forms on Harish-Chandra modules and c-invariant forms in the sense of
[AvLTV15, Section 10] within one algebraic context. See also [Ada17] for
another study of families of Harish-Chandra modules inspired by similar
considerations.

The first and third authors were partially supported by ERC grant
291612. Part of their work on this project was done at Max-Planck In-
stitute for Mathematics, Bonn, and they would like to thank MPIM for the
very stimulating atmosphere. The second author was partially supported
by NSF grant DMS-1101382.

2 Algebraic families and real structures

In this section we fix notations and quickly recall some definitions that
were given in [BHS16] (we refer the reader to that paper for more details).
Throughout, by a variety we shall mean an irreducible, nonsingular, quasi-
projective, complex algebraic variety (in all the examples and computa-
tions done in the paper, the variety will be the complex affine line). If X is
a variety, then we shall denote its structure sheaf by OX.
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2.1 Algebraic families of Harish-Chandra pairs

An algebraic family of complex Lie algebras over a variety X is a locally free
sheaf of OX-modules that is equipped with an OX-linear Lie bracket to
make it a sheaf of Lie algebras. An algebraic family of complex algebraic
groups over X is a smooth group scheme over X. Thanks to the smoothness
assumption, to any algebraic family of complex algebraic groups there is
a corresponding algebraic family of complex Lie algebras.

Suppose given an algebraic family K of complex algebraic groups and
an algebraic family g of complex Lie algebras on which K acts, along with a
K-equivariant embedding of families of Lie algebras j : Lie(K) −→ g. This
data defines an algebraic family of Harish-Chandra pairs if the two actions of
Lie(K) on g coincide.

We shall deal in this paper with algebraic families of Harish-Chandra
pairs (g,K) with a constant group scheme whose fiber is connected and
reductive. That is, we shall deal here only with cases where K = X×K for
some complex connected reductive group K.

2.2 Algebraic families of Harish-Chandra modules

Let (g,K) be an algebraic family of Harish-Chandra pairs over X. An al-
gebraic family of Harish-Chandra modules for (g,K) is a flat, quasicoherent
OX-module F that is equipped with

(a) an action of K on F, and

(b) an action of g on F,

such that the action morphism

g⊗OX F −→ F

is K-equivariant, and such that the differential of the K-action in (a) is
equal to the composition of the embedding of Lie(K) into g with the action
of g on F.

Assuming, as indicated above, that the family K is constant and reduc-
tive, F is said to be quasi-admissible if [L⊗OXF]K is a locally free and finitely
generated sheaf of OX-modules for every family L of representations of K
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that is locally free and finitely generated as an OX-module. In this case,
there is a canonical isotypical decomposition

F =
⊕
τ∈K̂

Fτ.

2.3 Real structures

Denote by X the complex conjugate variety of X. A real structure on X is a
morphism of varieties σX : X −→ X such that the composition

X
σX // X

σX // X

is the identity morphism (here σX is equal to σX as a map of sets; it is a
morphism of varieties from X to X). Denote by Xσ ⊆ X the set of points
that are fixed by σ (recall that X and X are equal as sets). The fixed set
might be empty.

If F is a sheaf ofOX-modules, then its complex conjugate F is a sheaf of
OX-modules. Given a real structure on X, a (compatible) real structure on
F is a morphism

σF : F −→ σ∗XF

of OX-modules for which the composition

F
σF // σ∗XF

σ∗X(σF) // σ∗Xσ
∗
XF

∼= // F

is the identity morphism.
Finally, let (g,K) be an algebraic family of Harish-Chandra pairs over

X. A real structure on (g,K) is a triplet {σX, σg, σK} with σX a real structure
on X, σg a compatible real structure on the OX-module g, and σK a real
structure on K for which the morphisms

σg : g −→ σ∗Xg

σK : K −→ σ∗XK

are a morphism of algebraic families of Harish-Chandra pairs over X.
For further discussions about real structures see for example [Bor91,

Chapter 1] or [Spr98, Chapter 11].
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2.4 The sigma-twisted dual

If (g, K) is an ordinary Harish-Chandra pair (not a family) and if V is
an admissible (g, K)-module, then its contragredient V† is the admissible
(g, K)-module consisting of all K-finite linear functionals on V . The con-
jugate contragredient V† is a (g, K)-module, but if (g, K) is equipped with
a real structure σ, then the conjugate contragredient becomes an admissi-
ble Harish-Chandra module V 〈σ〉 for (g, K), called the σ-twisted dual of V
(compare [AvLTV15, Section 8], where this is called the σ-Hermitian dual).

This construction is easily generalized to the case of families, at least
when the algebraic family of groups K is constant and reductive. If F is a
quasi-admissible algebraic family of Harish-Chandra modules for (g,K),
with isotypical decomposition

F = ⊕τ∈K̂Fτ

then we define its contragredient to be

F† =
⊕
τ∈K̂

F†τ =
⊕
τ∈K̂

HomOX(Fτ, OX),

which is a quasi-admissible family of Harish-Chandra modules for (g,K).
The complex conjugate of F† is a quasi-admissible algebraic family of

Harish-Chandra modules for the family (g,K) over X.

Definition. Let (g,K) be an algebraic family of Harish-Chandra pairs over
X for which K is a constant and reductive algebraic family of groups. Let
{σX, σg, σK} be a real structure on (g,K). If F is a quasi-admissible algebraic
family of Harish-Chandra modules for (g,K), then the σ-twisted dual of F
is the sheaf

F〈σ〉 = σ∗XF
†

equipped with the (g,K)-module structure obtained by composition with
the morphism of families of Harish-Chandra pairs

(g,K)
(σg,σK) // (σ∗Xg, σ

∗
XK)

over X.
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3 The SU(1,1) family

In [BHS16] algebraic families over the complex projective line were at-
tached to many classical symmetric pairs of algebraic groups, and real
structures were constructed on these families. In this section we shall re-
mind the reader of the construction as it applies to SL(2,C) and its diago-
nal subgroup, viewed as the fixed group of the involution

Θ :

[
a b

c d

]
7−→ [

a −b
−c d

]
.

In [BHS16] we obtained a family over the projective line; here we shall
consider only its restriction to the affine line, which is enough for our pur-
poses.

3.1 An algebraic family of groups

The family of complex algebraic groups is a subfamily of the constant fam-
ily over C with fiber SL(2,C)×SL(2,C). The fiber over z ∈ C is

G|z =

{([
a b

zc d

]
,

[
a zb

c d

])
: ad− zbc = 1

}
.

It contains as a subfamily the constant family with fiber

K =

{([
a 0

0 a−1

]
,

[
a 0

0 a−1

])
: a ∈ C∗

}
.

The fibers of g, the family of complex Lie algebras corresponding to G, are

g|z =

{([
a b

zc −a

]
,

[
a zb

c −a

])
: a, b, c ∈ C

}
.

The family (g,K) is an algebraic family of Harish-Chandra pairs over C.

3.2 Real structure

A real structure on the family (g,K) above is given by the involution

σX : z 7−→ z
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on the base space C, and the real structure

σG : G|z −→ G|z, σG : (S, T) 7−→ (Θ(T−1)∗, Θ(S−1)∗)

on G, which determines real structures on g and K. The explicit formula
for the real structure on G is

σG :
([
a b

zc d

]
,

[
a zb

c d

])
7−→ ([

d c

zb a

]
,

[
d zc

b a

])
,

from which it is clear that the fixed groups of the involution over R ⊆ Cσ
are the real groups

G|σx =

{([
a b

xb a

]
,

[
a xb

b a

])
: |a|2 − x|b|2 = 1

}
.

So we see that

G|σx
∼=


SU(1, 1) x > 0

U(1)nC x = 0

SU(2) x < 0,

where the action of U(1) on C is scalar multiplication by the squares of
elements in U(1).

3.3 The Casimir section

Associated to the algebraic family of Lie algebras g there is a family of
enveloping algebras. It is generated by the sections

H : z 7−→ ([
1 0

0 −1

]
,

[
1 0

0 −1

])
,

E : z 7−→ ([
0 1

0 0

]
,

[
0 z

0 0

])
,

F : z 7−→ ([
0 0

z 0

]
,

[
0 0

1 0

])
.

The sections H,E, F are almost a standard sl(2)-triplet:

[H,E] = 2E, [H, F] = −2F, and [E, F] = zH.(3.1)
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Of special concern to us is the Casimir section

C = H2 +
2

z
EF+

2

z
FE = H2 + 2H+

4

z
FE

over C \ {0}, which is invariant under the adjoint action of G. (This is the
same as the Casimir section considered in [BHS16], but it is expressed here
in terms of different generators.)

3.4 Generically irreducible families of modules

In this section we recall some facts about quasi-admissible and generically
irreducible families of Harish-Chandra modules for (g,K) that were noted
in [BHS16].

Since we are working over the base space X = C, we can and will rep-
resent sheaves of OX-modules by their global sections, which are modules
over the ring O of polynomial functions on C. Let K be the field of rational
functions on C. A quasi-admissible family F of Harish-Chandra modules
for (g,K) is generically irreducible if the representation of the Lie algebra
K ⊗O g on K ⊗O F is irreducible over the algebraic closure of K. Equiva-
lently, in the present context, F is generically irreducible if the fiber F|z is
an irreducible g|z-module for all except at most countably many z.

If F is quasi-admissible and generically irreducible, then the Casimir
section C acts as multiplication by a regular function cF on C \ {0}. This
is a first invariant of quasi-admissible and generically irreducible fami-
lies of Harish-Chandra modules. A second invariant is the set of K-types,
or weights, that occur in a quasi-admissible and generically irreducible
family. This set must agree with the set of weights of some irreducible
(sl(2,C), K)-module, where K is the diagonal subgroup in SL(2,C). All the
nonzero weights have multiplicity one.

These two invariants fall quite far short of determining quasi-admissible
and generically irreducible families up to isomorphism, but they do deter-
mine the families up to rational isomorphism:

Proposition. Let F1 and F2 be two quasi-admissible and generically irreducible
families of Harish-Chandra modules for (g,K). If they have the same Casimir and
weight invariants, then there is an isomorphism of K-vector spaces

K⊗O F1
∼=

−→ K⊗O F2
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that intertwines the actions of K⊗O g.

Proof. It is clear from the formulas (3.1) that

K⊗O g ∼= sl(2,K).

Now from a generically irreducible quasi-admissible family of Harish-
Chandra modules for (g,K) we obtain an Harish-Chandra module for
(sl(2,K), KK) (the underlying vector space of the module is a K-vector
space) such that

(i) the representations space decomposes into integer weight spaces for
the action of KK,

(ii) the Casimir for sl(2,K) acts as multiplication by an element of K, and

(iii) the representation is irreducible over the algebraic closure of K.

The classification of such modules, up to equivalence, is carried out exactly
as in the standard case of complex representations of (sl(2,C), KC) (and in-
cidentally, in the presence of (i) and (ii), irreducibility over K is equivalent
to irreducibility over the algebraic closure). The result follows.

3.5 The sigma-twisted duals

The theorem from the previous section allows us to characterize those
generically irreducible and quasi-admissible families that are rationally
isomorphic to their σ-twisted duals:

Proposition. Let F be a quasi-admissible and generically irreducible family of
Harish-Chandra modules for (g,K). There is an isomorphism of K⊗O g-modules

K⊗O F
∼=

−→ K⊗O F〈σ〉

if and only if the regular Casimir function cF on C \ {0} is real-valued on R \ {0}.

Proof. This follows from the proposition in the previous section, together
with the fact that the weights of F and F〈σ〉 are equal, while

cF〈σ〉 = σ(cF),

where σ(c)(z) = c(z).
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4 Families of unitary representations

In this section we shall indicate how one can use Jantzen filtration tech-
niques to obtain families of unitary representations from quasi-admissible
and generically irreducible families of Harish-Chandra modules. The fam-
ilies will include both discretely- and continuously-parametrized parts. In
the next section we shall show that the families of unitary representations
that may be obtained in this way include the contraction family that we
described in the introduction.

4.1 The Jantzen filtration

Let F and H be quasi-admissible algebraic families of Harish-Chandra
modules for (g,K) and let

(4.1) ϕ : F −→ H

be a morphism that is generically an isomorphism. In this section we shall
review the construction of canonical increasing and decreasing filtrations
of the fibers of F and H, respectively (the Jantzen filtrations; compare
[Jan79, Hum08]). We shall also recall that a choice of coordinate near any
point determines isomorphisms between corresponding subquotients at
that point.

We shall continue to assume that K is a constant family of reductive
groups with fiber K, and we shall continue to think of F and H as free
modules over the algebra of regular functions on the line, with compatible
actions of K and the Lie algebra of global sections of g. To be precise, rather
than (4.1) we shall start with a map

(4.2) ϕ : K⊗O F −→ K⊗O H

that is a (g, K)-equivariant isomorphism of K-vector spaces, where O is
the algebra of regular functions on the line and K is the field of rational
functions.

Let z be a point on the affine line, and denote by Oz the localization
of O at z, comprised of those rational functions whose denominators are
nonzero at z. In addition form the localizations

Fz = Oz ⊗O F and Hz = Oz ⊗O H.
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We shall think of these as Oz-submodules of K ⊗O F and K ⊗O H, respec-
tively. Fix a coordinate p at z, or in other words a degree-one polynomial
function that vanishes at z, and for n ∈ Z define

Fnz = { f ∈ Fz : ϕ(f) ∈ pnHz }

and
Hn
z = {h ∈ Hz : p

nh ∈ ϕ[Fnz ] }.

These constitute decreasing and increasing filtrations of Fz and Hz, respec-
tively, by Oz-submodules.

Consider the fibers of F and H,

F|z = C⊗O F = C⊗Oz Fz and H|z = C⊗O H = C⊗Oz Hz,

which are complex vector spaces and (g|z, K)-modules. Denote by

F|nz ⊆ F|z

the image in the complex vector space F|z of the morphism

C⊗O Fnz −→ C⊗O Fz,

and similarly denote by
H|nz ⊆ H|z

the image in H|z of the morphism of complex vector spaces

C⊗O Hn
z −→ C⊗O Hz.

These are decreasing and increasing filtrations of F|z and H|z, respectively,
by (g|z, K)-submodules.

We shall now obtain isomorphisms between subquotients of these two
filtrations. The formula

f 7−→ p−nϕ(f)

defines an isomorphism of Oz-modules from Fnz to Hn
z and induces a sur-

jective morphism of (g|z, K)-modules

ϕn : F|nz −→ H|nz .
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Proposition. The above morphism ϕn maps the subspace Fn+1z ⊆ Fnz into the
subspace Hn−1

z ⊆ Hn
z and induces an isomorphism of (g|z, K)-modules

ϕn : F|nz
/
F|n+1z

∼=
−→ H|nz

/
H|n−1z

(that depends on the differential of p at z).

The proof is a simple calculation, but for the convenience of the reader
we shall give it in a moment. The proof shows that there is an isomor-
phism of subquotients, as above, whether or not the morphism ϕ in (4.2)
is assumed to be an isomorphism. But the hypothesis that ϕ is an isomor-
phism implies the following additional important fact:

Proposition. If the morphism ϕ : K ⊗O F → K ⊗O H is an isomorphism, then
the filtrations F|•z and H|•z are exhaustive: the intersections of the filtration spaces
are zero, while the unions are F|z and H|z, respectively.

Proof. The modules Fz and Hz decompose into direct sums of free and
finite rank submodules according to the K-isotypical decompositions of F,
and H and the morphism ϕ respects these decompositions. So it suffices
to prove the proposition for a single summand, where it is easy.

Proof of the first proposition. If f ∈ Fnz , and if f determines an element of the
subspace F|n+1z ⊆ F|nz , then we can decompose f as

f = f1 + pf2,

where f1 ∈ Fn+1z and f2 ∈ Fz. It follows from the formula

f2 = p
−1(f− f1)

that in fact f2 ∈ Fn−1z . Consider now the formula

p−nϕ(f) = p · p−(n+1)ϕ(f1) + p
−(n−1)ϕ(f2).

The first term on the right lies in p ·Hz while the second term on the right
lies in Hn−1

z . So the image of the class of f in F|nz under the morphism ϕn

lies in H|n−1z , as required.
Surjectivity of the induced map on quotient spaces is clear. As for injec-

tivity, if an element of F|nx/F|n+1z is represented by some f ∈ Fnz and maps
under ϕn to an element of H|n−1z , then we may write

p−nϕ(f) = p−(n−1)ϕ(f1) + ph1

14



for some f1 ∈ Fn−1z and some h1 ∈ Hz. But then

ϕ(f− pf1) = p
n+1h1,

which implies that f− pf1 ∈ Fn+1z , so that f determines the zero element of
F|nz /F|

n+1
z , as required.

4.2 The Jantzen filtration and real structures

Let (g,K) be an algebraic family of Harish-Chandra pairs over the com-
plex affine line C, as in the previous section, with K a constant family of
connected reductive groups with fiber K. Assume that (g,K) is equipped
with a real structure compatible with the standard real structure z 7→ z

on C. Let F be a quasi-admissible and generically irreducible algebraic
family of Harish-Chandra modules for (g,K), and suppose that there is an
isomorphism

ϕ : K⊗O F −→ K⊗O F〈σ〉.

In this section we shall show that the Jantzen subquotients F|nx/F|
n+1
x may

be equipped with canonical (up to real scalar factors) nondegenerate her-
mitian forms that are σ-invariant for the actions of the Harish-Chandra
pairs (g|x, K).

We shall identify F〈σ〉 with the space of functions from F to O that are
conjugate O-linear in the sense that if e ∈ F〈σ〉, q ∈ O and f ∈ F, then

e(qf) = σ(q)e(f),

where σ(q)(z) = q(z), and that vanish on all but finitely many of the K-
isotypical summands of F. The O-module structure is (q · e)(f) = q · e(f)
and the g-module structure is (X · e)(f) = −e(σ(X)f). We obtain from the
isomorphism ϕ above a complex-sesquilinear map

〈 , 〉 : (K⊗O F)× (K⊗O F) −→ K

using the formula 〈f1, f2〉 = ϕ(f1)(f2). This map is in fact K-sesquilinear in
the sense that

〈q1f1, q2f2〉 = q1〈f1, f2〉σ(q2),
for all f1, f2,∈ K⊗O F and all q1, q2 ∈ K, where again σ(q)(z) = q(z). The
pairing is also σ-invariant under the g-action and the K-action in the sense
that

〈X · f1, f2〉+ 〈f1, σ(X) · f2〉 = 0

15



〈g · f1, σK(g) · f2〉 = 〈f1, f2〉

for all f1, f2,∈ K⊗O F, all X ∈ g, and all g that are global sections of K.
By Schur’s lemma, any other isomorphism

ψ : K⊗O F −→ K⊗O F〈σ〉

is equal to ϕ times a rational function q ∈ K. Note that the sesquilinear
form associated to ψ is q · 〈f1, f2〉. Returning to ϕ, it follows from this that
there is some q ∈ K such that

σ(〈f2, f1〉) = q · 〈f1, f2〉

for all f1, f2,∈ K⊗OF. This is because the left-hand side is the K-sesquilinear
form associated to the isomorphism

ψ : K⊗O F −→ K⊗O F〈σ〉

defined by ψ(f1)(f2) = σ(〈f2, f1〉). Note that since σ is an involution,

σ(q) · q = 1.

Hence the rational function q has no zeros or poles on the real axis.
Now fix x ∈ R and choose a real coordinate p at x (meaning that

σ(p) = p). The Jantzen construction of the previous section produces non-
degenerate, invariant, complex-sesquilinear forms

〈 , 〉x,n : F|nx/F|n+1x × F|nx/F|
n+1
x −→ C.

The space F|nx is determined by elements f1 ∈ Fx such that

ordx(〈f1, f2〉) ≥ n

for every f2 ∈ Fx, and the scalar 〈f1, f2〉x,n is equal to the value of the func-
tion p−n〈f1, f2〉 at x.

Up to a shift in the index n, the quotient spaces F|nx/F|
n+1
x , are inde-

pendent of ϕ and also independent of the choice of p. Moreover up to a
real scalar factor the above forms are also independent of the choice of p.
Finally since

〈f2, f1〉x,n = q(x) · 〈f1, f2〉x,n,
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where |q(x)| = 1, after rescaling the above forms by a square root of q(x)
we obtain, for all n, Hermitian forms that are independent of all choices,
up to real scalar factors.

So for each x ∈ R we have constructed a canonical (finite) set of (g|x, K)-
modules (the Jantzen quotients). Each is equipped with a canonical, up to
a real scalar factor, nondegenerate Hermitian form. All the forms are σ-
invariant for the action of (g|x, K).

4.3 Distinguished parameter values

For all but a countable set of values x, the Jantzen filtration on F|x will be
trivial, so that there will be a unique Jantzen quotient at x, namely F|x it-
self. As a result the filtration immediately selects a distinguished, discrete
collection of parameter values, where there is more than one Janzten quo-
tient, and a corresponding discretely parametrized set of representations.

Obviously if the fiber is an irreducible module, then the filtration must
be trivial. In the particular special case that we shall analyze in the next
section the distinguished values are precisely the reducibility points, but
this need not be so in general.

4.4 Infinitesimally unitary Jantzen quotients

In this section we shall continue with the notation of the previous section;
in particular we shall denote by x a fixed element of the real line. We shall
consider the problem of integrating the Lie algebra representation of g|σx
on a Jantzen quotient F|nx/F|n+1x so as to obtain a unitary representation.
The arguments in this section no longer involve families; they just involve
the hermitian forms constructed above.

Definition. We shall say that a Jantzen quotient F|nx/F|n+1x is infinitesimally
unitary if the real one-dimensional space of hermitian forms on F|nx/F|

n+1
x

that was constructed in the previous section includes a positive-definite
hermitian form (that is, an inner product).

Assume that F|nx/F|n+1x is infinitesimally unitary. Adjust the sesquilin-
ear form 〈 , 〉x,n by a (uniquely determined) complex scalar factor, if nec-
essary, so as to make it an inner product. We can apply the following the-
orem of Nelson [Nel59, Theorem 5] to show that the admissible (g|σx , K

σ)-
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module F|nx/F|n+1x integrates to a unitary representation on the Hilbert space
completion of the Jantzen quotient.

Theorem. Let g be a real, finite-dimensional Lie algebra of skew-symmetric op-
erators acting on a common invariant and dense domain F in a Hilbert space H.
Let X1, . . . , Xk be a basis for g and form the symmetric operator

∆ = X21 + · · ·+ X2k
with domain F. If ∆ is essentially self-adjoint (that is, if ∆ has a unique self-
adjoint extension), then each Xj is essentially skew-adjoint, and if G is the simply
connected Lie group associated to g, then there is a unique unitary representation

π : G −→ U(H)

for which the generators of the one-parameter unitary groups {π(exp(tXj))}t∈R
are the skew-adjoint extensions of the operators Xj.

In order to apply Nelson’s theorem we shall assume that there is an
internal vector space direct sum decomposition

g|σx = kσ ⊕ pσx

in which pσx is a real subspace of g|σx that is invariant under the action of
Kσ. We shall assume that both kσ and pσx carry Kσ-invariant inner products.
This is certainly the case in our example. Indeed it is the case whenever
the real group Kσ is compact.

Fix orthonormal bases of kσ and pσx with respect to the Kσ-invariant in-
ner products, and combine them to form a basis {Xj} for g|σx . The operator

∆ : F|nx/F|
n+1
x −→ F|nx/F|

n+1
x

in Nelson’s theorem is symmetric. It is also Kσ-invariant, and so it leaves
invariant theKσ-isotypical summands in F|nx/F|

n+1
x , which are finite-dimen-

sional. This implies that ∆ is essentially self-adjoint, as required.
We conclude that the representation of g|σx on each infinitesimally uni-

tary Jantzen quotient integrates to a unitary representation of the universal
cover of G|σx on the Hilbert space completion of the Jantzen quotient.

By definition of a (g|σx , K
σ)-module, we also know that the action of

kσ ⊆ g|σx integrates to a unitary action of Kσ. So if the inclusion of Kσ into
Gσ|x induces a surjection

π1(K
σ) −→ π1(G|σx),

18



then in fact the above unitary representation of the universal covering
group of G|σx factors through G|σx . This is the case in our example (although
it is not the case in all the examples in [BHS16] constructed from symmet-
ric pairs of reductive groups).

5 Contraction families

In this final section we shall determine the infinitesimally unitary Jantzen
quotients associated to a family of quasi-admissible and generically irre-
ducible modules for the family of Harish-Chandra paris (g,K) described
in Section 3. We shall recover in this way the contraction family of unitary
representations described in the introduction.

The infinitesimally unitary Jantzen quotients are shown in Figure 1.
The quotients include both a continuous family of unitary principal series
representations for SU(1, 1) and a discrete sequence of (finite-dimensional)
irreducible representations for SU(2). The figure gives some sense of the
convergence phenomenon that is of interest in the theory of contractions.

5.1 Bases for generically irreducible families

Let (g,K) be the algebraic family of Harish-Chandra pairs from Section 3.
For simplicity, from here on we shall be calculating with those families that
have nonzero K-isotyopical components precisely for every even weight
(recall that K ∼= C×). These are the families that are relevant to the con-
traction families of unitary representations mentioned in the introduction;
however the other possible types of families are listed in [BHS16] and they
can be analyzed in a similar way.

Let F be such a family. As a consequence of our assumption, the O-
module F has a basis {fk} indexed by the even integers k, with

Hfk = kfk

Efk = Akfk+2

Ffk+2 = Bkfk

where Ak, Bk ∈ O. Here H, E and F are the sections of g defined in Sec-
tion 3.3. The Casimir from Section 3.3 acts on fn as multiplication by the
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Figure 1: The diagram illustrates the infinitesimally unitary
Jantzen quotients for the unique family with Casimir −(1+ x)/x
that is generated by its 0-weight space. The real parameter x runs
horizontally. At every x, the weights that appear in a unitary
Jantzen quotient of F|x are shown vertically. For x < 0 there is
a unitary quotient for a sequence of values x = −(2m + 1)−2

converging to zero, giving finite-dimensional unitary represen-
tations of SU(2). At x = 0 there is an irreducible unitary repre-
sentation of the Cartan motion group that includes every even
weight. When x > 0 every even weight occurs once agian, and
the representations are the unitary spherical principal series for
SU(1, 1) with Casimir converging to infinity as x converges to
zero.

polynomial

k2 + 2k+
4

z
AkBk

(so this expression is independent of k).
Let us now make a further assumption: that F is generated as a family

of Harish-Chandra modules by its 0-isotypical component F0.2 Then Ak is
nowhere zero for k ≥ 0. This is because the isotypical component Fk+2 is
generated as a O-module by the element

AkAk−2 · · ·A0fk+2.
2Other natural choices are possible, and are described in [BHS16, 4.9], but for brevity

we shall focus on just this one example here.
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Similarly, Bk is nowhere zero for k < 0. Hence

Ak = constant, when k ≥ 0

and
Bk = constant, when k < 0,

where the constants might be distinct, but are all nonzero.
In fact after adjusting the basis elements fk by scalar factors we can,

and will from now on, assume that all the above constants are 1. When
that is done, the value of the Casimir section on fk becomes

k2 + 2k+
4

z
Bk, when k ≥ 0

and
k2 + 2k+

4

z
Ak, when k < 0.

So we see that the remaining Ak and Bk are completely determined by the
action of the Casimir section. Hence:

Proposition. Let F be a quasi-admissible and generically irreducible algebraic
family of Harish-Chandra modules for (g,K). Assume that the weight k isotyp-
ical summands of F are nonzero precisely for the even integer weights. If F is
generated by its weight k isotypical summand, then F is determined up to iso-
morphism by the action of the Casimir section.

Conversely, a family of the type described in the proposition may be
constructed for which the action of the Casimir section is by any given
regular function on C \ {0}, other than one of the constants k2 + 2k, that
has at most a simple pole at 0 (a family can be constructed for the ex-
cluded constants, too, but it is not generically irreducible). See [BHS16]
for this and for further information on classification of quasi-admissible
and generically irreducible algebraic families of modules for (g,K).

Remark. Similar families are considered in [AvLTV15, Section14]. The con-
cern there is with constant families of Harish-Chandra pairs, but in ap-
plying Jantzen filtration techniques to our families we shall certainly be
following the lead of [AvLTV15].
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5.2 Computation of the Jantzen quotients

We shall work in this section with a family F as in the previous proposi-
tion, and we shall assume in this section that there is an isomorphism

ϕ : K⊗O F −→ K⊗O F〈σ〉.

This is so precisely when the value of the Casimir section is fixed by the
involution σ.

The σ-twisted dual Fσ has the same weights as F, namely a one-dimen-
sional k-isotyopical summand for every even integer k. If we choose basis
elements ek ∈ F

〈σ〉
k such that ek(fk) = 1, then

Hek = kek

Eek = −σ(Bk)ek+2

Fek = −σ(Ak−2)ek−2.

The isomorphism ϕ can be described by a sequence of formulas

ϕ(fk) = ϕkek,

where ϕk ∈ K. The rational functions ϕk are not independent of one an-
other, since compatibility with the action of E and F implies that

Ak−2ϕk = −σ(Bk−2)ϕk−2

Bkϕk = −σ(Ak)ϕk+2

for all even integers k. These relations imply in turn that

ϕk = (−1)
k
2
Bk−2

σ(Ak−2)

Bk−4

σ(Ak−4)
· · · B0

σ(A0)
ϕ0 if k > 0

and that

ϕk = (−1)
k
2
σ(Ak)

Bk

σ(Ak+2)

Bk+2
· · · σ(A−2)

B−2

ϕ0 if k < 0.

If we are working, as we may, with a basis {fn} for F for which Ak = 1

when k ≥ 0 and Bk = 1when k < 0, then the formulas simplify to

ϕk = (−1)
k
2Bk−2Bk−4 · · ·B0ϕ0 if k > 0
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and that
ϕk = (−1)

k
2AkAk+2 · · ·A−2ϕ0 if k < 0.

Once again, each of the A- or B-polynomials appearing in these formulas
is explicitly determined by the value of the Casimir section.

Let us now consider the specific example where the action of the Casimir
is given by the regular function

cF(z) = −
1+ z

z

on C\{0} (this is choice of Casimir that will lead to the contraction families
from mathematical physics that were mentioned in the introduction). We
want to determine all the infinitesimally unitary Jantzen quotients.

If we work with the isomorphism ϕ for which ϕ0 = 1, then we get

Bk = −
1

4

(
1+ x(1+ k)2

)
when k ≥ 0 and hence

ϕk(x) =
1+ (k−1)2x

4
· 1+ (k−3)2x

4
· · · · · 1+ 9x

4
· 1+ x
4
.

The same formula holds when k < 0. So unless x = −(2m + 1)2, for some
m, all the scalars ϕk(x) are nonzero, and hence the Jantzen filtration is
trivial.

On the other hand, if x = −(2m+ 1)2, then we find that

ordx(〈fk, fk〉) = ordx(ϕk) =

{
1 |k| > 2m

0 |k| ≤ 2m,

and as a result

F|nx =


F|x n ≥ 0
(· · · ⊕ C−2m−4 ⊕ C−2m−2) ⊕ (C2m+2 ⊕ C2m+4 ⊕ · · · ) n = 1

0 n > 1

So if x = −(2m + 1)2, then the Jantzen filtration is nontrivial. The set
of distinguished points from Section 4.3 is therefore precisely this set of
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values. (These are also the x for which the fibers F|x are reducible, as we
mentioned in Section 4.3.)

Let us now discuss infinitesimal unitarity. The scalars ϕk(x) are pos-
itive if x ≥ 0, and from this it follows that the nonzero Jantzen quotient
is infinitesimally unitary for these values. If x is negative but not of the
form x = −(2m+ 1)2, then all the ϕk(x) are real and nonzero, but they are
not all of the same sign, so the quotient is not infinitesimally unitary. The
nonzero Jantzen quotients at x = −(2m+ 1)2 are

F|nx/F|
n+1
x

∼=

{
C−2m ⊕ C−2m+2 ⊕ · · · ⊕ C2m n = 0

(· · · ⊕ C−2m−4 ⊕ C−2m−2) ⊕ (C2m+2 ⊕ C2m+4 ⊕ · · · ) n = 1.

The n = 0 quotient is infinitesimally unitary; the other one is not.
This completes our computations of the Jantzen quotients. In summary

we find that:

(a) For x > 0 the unitary representation of G|σx
∼= SU(1, 1) on the (comple-

tion of the) unique infinitesimally unitary Jantzen quotient is the uni-
tary spherical principal series representation with Casimir −(x+ 1)/x.
As x varies these representations exhaust the spherical unitary princi-
pal series except for the base of the spherical principal series.3

(b) The unitary representation of the motion group G|σ0 on the unique and
infinitesimally unitary Jantzen quotient is the unique spherical uni-
tary irreducible representation π−1 on which the Casimir element 4EF,
which generates the center of the enveloping algebra, acts as multipli-
cation by −1.

(c) The remaining infinitesimally unitary Jantzen quotients only occur at
x = −(2m + 1)−2, with m = 0, 1, 2 . . . . There is a unique one at each
such x, and the unitary representation of G|σx

∼= SU(2) on it is the ir-
reducible representation of highest weight 2m. These representations
exhaust the unitary irreducible representations of SU(2) that contain
the 0-weight of U(1).

Comparing the above to the contraction families we find that

3In a certain sense, the base of the spherical unitary principal series is located at x =∞.
This can be made precise using the “deformation to the normal cone” family of Harish-
Chandra pairs over the projective line considered in [BHS16, 2.3.1].
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(d) The unitary representations for x > 0 are those that appear in the con-
traction of the unitary principal series SU(1, 1) to π−1 [DR85, SBBM12]
(also compare [VK93, sec. 9.2.4]), while the discretely occurring uni-
tary representations in the region x < 0 are those that appear in the
contraction of unitary irreducible representations of SU(2) to π−1 [IW53,
DR83, SBBM12].

Remark. Although we focused above on a family that is relevant to the the-
ory of contractions of representations, even for the SU(1, 1) case we have
studied here there are other families that show quite different features,
and may be of interest for other purposes. For instance if we analyze the
family with Casimir

cF(z) =
1− z

z

in the same way, then we obtain infinitesimally unitary quotients that in-
clude both discrete series and complementary series representations when
x > 0. See Figure 2.

Figure 2: The infinitesimally unitary Jantzen quotients for the
family with Casimir 1−x

x . There are no infinitesimally unitary
quotients in the region x ≤ 0. In the region x > 0 there arise all
the discrete series with even weights, the trivial representation
(indicated by a white dot), and all the complementary series.
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